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SOME FACTS WORTH CONSIDERING

Mobile traffic in 2013 = 18 × total internet traffic in 2000

We are living in a world pervaded by data (information?)
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SOME FACTS WORTH CONSIDERING

UK National Health Service plans to sequence genome of
750.000 cancer patients in the next ten years

How to make sense of all this data?
How to extract knowledge from it?
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SOME FACTS WORTH CONSIDERING

Google purchased DeepMind (after 1 year of operation) for
450M GBP

Surprised? Google’s business is based on analysing immense
quantities of data...
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SOME FACTS WORTH CONSIDERING

Data Science, as a term,
“was first coined in 2001.

Its popularity has exploded
since 2010, pushed by the
need for teams of people to

analyze the big data that
corporations and
governments are

collecting.” (Wikibook on
data science)

Number of job postings for data scientists increased globally by
20.000% between 2009 and 2015...
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THE PROBLEM (BIG DATA)

Vast amounts of quantitative data arising from every
aspect of life, due to technological advances.
Advanced informatics tools necessary just to handle the
data (data storage, transmission, querying - cloud
computing, data centers)
Widespread belief that data is valuable, yet worthless
without analytic tools
Converting data to knowledge is the challenge. This is
where computational statistics comes into play.
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DATA SCIENCE

Data Science is an interdisciplinary field about processes and
systems to extract knowledge or insights from large volumes of data
in various forms, either structured or unstructured... [wikipedia]

Computational statistics lies in between statistics and computer
science. It is more often known as machine learning. Advances in

this field are at the core of the successes of data science.
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MACHINE LEARNING

IF YOU GOOGLE IT...
Machine learning is a subfield of computer science that evolved
from the study of pattern recognition and computational
learning theory in artificial intelligence. Machine learning
explores the study and construction of algorithms that can learn
from and make predictions on data. [source: wikipedia]
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A ROUGH CLASSIFICATION

Machine learning explores the study and construction of algorithms
that can learn from and make predictions on data. [source: wikipedia]

Supervised learning: learn a model from input-output data. The
goal is to predict a the (most-likely) output value for a new,
unobserved, input. We distinguish

Regression (continuous output)
Classification (binary/ discrete output)

Unsupervised learning: extract information/ learn a model from
input-only data

Reinforcement Learning: find suitable actions to take in a given
situation in order to maximize a reward.
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IT’S ALL ABOUT THE MODELS

Machine Learning is all about learning models...
But, what is a model? Discuss for 5 minutes and provide 3
examples



11 / 20

MY OWN ANSWER

A model is a hypothesis that certain features of a system of
interest are well replicated in another, simpler system.

A mathematical model is a model where the simpler
system consists of a set of mathematical relations between
objects (equations, inequalities, etc).
A stochastic model is a mathematical model where the
objects are probability distributions.
All modelling usually starts by defining a family of models
indexed by some parameters, which are tweaked to reflect
how well the feature of interest is captured.
Machine learning deals with algorithms for automatic
selection of a model from observations of the system.
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SUPERVISED LEARNING - REGRESSION

Regression: The computer is
presented with example inputs
and their observed outputs, both
continuous, and the goal is to
learn a general rule that maps
inputs to outputs.

we observe input-output data: x1–y1, . . . xn–yn (xi ∈ R
n, yi ∈ R,

input X, output y).

We assume this data is generated by y = f (x) + ε, ε noise.

We want to learn f (a good approximation of it) from X,y.

Alternatively, data comes from a probabilistic model p(y ,x).

We want to learn (an approximation of) p.
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SUPERVISED LEARNING - CLASSIFICATION

Classification: The computer is
presented with example inputs
from different classes (binary/
discrete), and the goal is to
learn a general rule that
assigns inputs to a class.

204 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

we observe input-output data: x1–y1, . . . xn–yn (xi ∈ R
n,

yi ∈ {0, . . . ,n}, input X, output y).
We want to learn a rule y = f (x) assigning each x to a
class.
Alternatively, data comes from a probabilistic model
p(y ,x), and we want to learn it as accurately as possible.
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UNSUPERVISED LEARNING

Unsupervised learning: No
labels are given to the
learning algorithm (input
only), leaving it on its own to
find structure in its input.

9.2. Mixtures of Gaussians 433
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π

Clustering: discover groups of similar examples within the
data.
Density estimation: determine the distribution of data
within the input space.
Dimensionality reduction: project the data from a
high-dimensional space to a lower dimension space. Often
down to two or three dimensions for the purpose of
visualization.
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REINFORCEMENT LEARNING

Reinforcement learning is concerned with the problem of finding
suitable actions to take in a given situation in order to maximize
a reward. Typically there is a sequence of states and actions in
which the learning algorithm is interacting with its environment.
Here the learning algorithm is not given examples of optimal
outputs, in contrast to supervised learning, but must instead
discover them by a process of trial and error.

An example is an algorithm learning to play the game of
backgammon to a high standard. Here the algorithm must learn
to take a board position as input, along with the result of a dice
throw, and produce a strong move as the output.

A general feature of reinforcement learning is the trade-off
between exploration, in which the system tries out new kinds of
actions to see how effective they are, and exploitation, in which
the system makes use of actions that are known to yield a high
reward. Too strong a focus on either exploration or exploitation
will yield poor results.
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GENERATIVE AND DISCRIMINATIVE MODELS

Supervised learning can have two flavours
Two different types of question can be asked:

what is the joint probability of input/ output pairs?
given a new input, what will be the output?

The first question requires a model of the population
structure of the inputs, and of the conditional probability of
the output given the input→ generative modelling
The second question is more parsimonious but less
explanatory→ discriminative learning
Notice that the difference between generative supervised
learning and unsupervised learning is moot
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COURSE PLAN

4 hours to “refresh” some basic notions of probability and
statistics (this week, hopefully).
Six blocks (one per week) of four hours of theory and three
hours of hands-on laboratory. Blocks will roughly be:

1 (Bayesian) Linear Regression
2 Linear Classification (and maybe some notions of Sparse

Vector Machines)
3 Gaussian Processes for Regression and Classification
4 Unsupervised learning: clustering, nearest neighbour and

kernel density estimation, Principal Component Analysis.
5 Mixtures of Gaussians and Expectation Maximisation
6 Graphical Models, message passing and inference.
B If we have time: Hidden Markov Models; Active Learning

and Bayesian optimisation
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LAB+EXAM

LABORATORY

The course will have theoretical lessons and Laboratory ones,
in which we will implement and test different methods on
sample data.

Bring your own laptop... (???)

EXAM

Report on the lab work, plus a final (team) project, with
presentation.
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COORDINATES

MOODLE

I will set up a moodle page of the course. At the moment, there
is a problem with Esse3...

WHERE CAN YOU FIND ME?
Around the World.
Room 328, 3rd floor - email me first at
lbortolussi@units.it.

OTHER STUFF

question time at the end of each lecture
Requests?

lbortolussi@units.it
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TIMETABLE

Forget the current one. We need to allocate preferrably 7/8
hours per week (2 theoretical lessons x 2 hours, 1 lab x 3 hours
or 2 labs x 4 hours).


