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In chemical systems formed by living cells, the small numbers of molecules

of a few reactant species can result in dynamical behavior that is discrete and

stochastic, rather than continuous and deterministic (McAdams & Arkin, 1999;

McAdams & Arkin, 1997; Arkin et al., 1998; Elowitz et al., 2002; Fedoroff

& Fontana, 2002). By “discrete”, we mean the integer-valued nature of small

molecular populations, which makes their representation by real-valued (contin-

uous) variables inappropriate. By “stochastic”, we mean the random behavior

that arises from the lack of total predictability in molecular dynamics. In this

chapter we introduce some concepts and techniques that have been developed

for mathematically describing and numerically simulating chemical systems that

take proper account of discreteness and stochasticity. Throughout, we shall

make the simplifying assumption that the system is well-stirred or spatially ho-

mogeneous. In practice this assumption is often justified, and it allows us to

specify the state of the system simply by giving the molecular populations of the

various chemical species. But in some circumstances the well-stirred assump-

tion will not be justified; then the locations of the molecules and the dynamics

of their movement must also be considered. Some approaches to this more

computationally challenging situation are described in Chapter ??.
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1.1 Chapter Overview

We begin in Section 1.2 by outlining the foundations of “stochastic chemical

kinetics” and deriving the chemical master equation (CME), the time-evolution

equation for the probability function of the system’s state. Unfortunately, the

CME cannot be solved, either analytically or numerically, for any but the sim-

plest of systems. But we can generate numerical realizations (sample trajectories

in state space) of the stochastic process defined by the CME by using a Monte

Carlo strategy called the stochastic simulation algorithm (SSA). The SSA is de-

rived and discussed in Section 1.3. Although the SSA is an ideal algorithm in

the sense that it provides exact realizations of the CME, there is a computa-

tional price for this: Because the SSA simulates every reaction event, it will be

painfully slow for systems that involve enormous numbers of such events, which

most real chemical systems do. This has motivated a search for algorithms that

give up some of the exactness of the SSA in return for greater simulation speed.

One such approximate accelerated algorithm is known as tau-leaping, and it

is described in Section 1.4. In tau-leaping, instead of advancing the system to

the time of the next reaction event, the system is advanced by a pre-selected

time τ which typically encompasses more than one reaction event. The number

of times each reaction fires in time τ is approximated by a Poisson random

variable, and we explain why that can be done in 1.4. In Section 1.5 we show

how, under certain conditions, tau-leaping further approximates to a stochastic

differential equation called the chemical Langevin equation (CLE), and then how

the CLE can in turn sometimes be approximated by an ordinary differential

equation called the reaction rate equation (RRE). Tau-leaping, the CLE, and

the RRE are successively coarser-grained approximations which usually become

appropriate as the molecular populations of the reacting species are made larger

and larger.

In the past, virtually all chemically reacting systems were analyzed using

the deterministic RRE, even though that equation is accurate only in the limit

of infinitely large molecular populations. Near that limit though, the RRE

practically always provides the most efficient description. One reason for this is

the extensive theory that has been developed over the years for efficiently solving

ordinary differential equations, especially those that are stiff. A stiff system of

ordinary differential equations is one that involves processes occurring on vastly
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different time scales, the fastest of which is stable. Stiff RREs arise for chemical

systems that contain a mixture of fast and slow reactions, and many if not

most cellular systems are of this type. The practical consequence of stiffness is

that, even though the system itself is stable, naive simulation techniques will be

unstable unless they proceed in extremely small time steps. In Section 1.6 we

describe the problem of stiffness in a deterministic (RRE) context, along with

its standard numerical resolution: implicit methods.

Given the connections described above between tau-leaping, the CLE, and

the RRE, it should not be surprising that stiffness is also an issue for tau-leaping

and the CLE. In Section 1.7 we describe an implicit tau-leaping algorithm for

stochastically simulating stiff chemical systems. We conclude in Section 1.8 by

describing and illustrating yet another promising algorithm for dealing with stiff

stochastic chemical systems, which we call the slow-scale SSA.

1.2 Foundations of Stochastic Chemical Kinet-

ics and the Chemical Master Equation

We consider a well-stirred system of molecules of N chemical species

{S1, . . . , SN} interacting through M chemical reaction channels {R1, . . . , RM}.
The system is assumed to be confined to a constant volume Ω, and to be in ther-

mal (but not necessarily chemical) equilibrium at some constant temperature.

With Xi(t) denoting the number of molecules of species Si in the system at time

t, we want to study the evolution of the state vector X(t) = (X1(t), . . . , XN (t)),

given that the system was initially in some state X(t0) = x0.

Each reaction channel Rj is assumed to be “elemental” in the sense that it

describes a distinct physical event which happens essentially instantaneously.

Elemental reactions are either unimolecular or bimolecular; more complicated

chemical reactions (including trimolecular reactions) are actually coupled se-

quences of two or more elemental reactions.

Reaction channel Rj is characterized mathematically by two quantities. The

first is its state-change vector νj = (ν1j , . . . , νNj) , where νij is defined to be the

change in the Si molecular population caused by one Rj reaction; thus, if the

system is in state x and an Rj reaction occurs, the system immediately jumps to

state x + νj . The array {νij} is commonly known as the stoichiometric matrix.

The other characterizing quantity for reaction channel Rj is its propensity
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function aj . It is defined so that aj(x) dt gives the probability, given X(t) = x,

that one Rj reaction will occur somewhere inside Ω in the next infinitesimal

time interval [t, t + dt). This probabilistic definition of the propensity func-

tion finds its justification in physical theory (Gillespie, 1992a; Gillespie, 1992b).

If Rj is the unimolecular reaction Si → products, the underlying physics is

quantum mechanical, and implies the existence of some constant cj such that

aj(x) = cjxi. If Rj is the bimolecular reaction Si + Si′ → products, the un-

derlying physics implies a different constant cj , and a propensity function aj(x)

of the form cjxixi′ if i 6= i′, or cj
1
2xi(xi − 1) if i = i′. The stochasticity of a

bimolecular reaction stems from the fact that we do not know the precise po-

sitions and velocities of all the molecules in the system, so we can predict only

the probability that an Si molecule and an Si′ molecule will collide in the next

dt and then react according to Rj .

It turns out that cj for a unimolecular reaction is numerically equal to the

reaction rate constant kj of conventional deterministic chemical kinetics, while

cj for a bimolecular reaction is equal to kj/Ω if the reactants are different species,

or 2kj/Ω if they are the same (Gillespie, 1976; Gillespie, 1992a; Gillespie, 1992b).

But it would be wrong to infer from this that the propensity functions are simple

heuristic extrapolations of the rates used in deterministic chemical kinetics; in

fact, the inference flow actually goes the other way. The existence and forms

of the propensity functions follow directly from molecular physics and kinetic

theory, and not from deterministic chemical kinetics.

The probabilistic nature of the dynamics described above implies that the

most we can hope to compute is the probability P (x, t |x0, t0) that X(t) will

equal x, given that X(t0) = x0. We can deduce a time-evolution equation for

this function by using the laws of probability to write P (x, t + dt |x0, t0) as:

P (x, t + dt |x0, t0) = P (x, t |x0, t0)× [1−
M
∑

j=1

aj(x)dt]

+

M
∑

j=1

P (x− νj , t |x0, t0)× aj(x− νj)dt.

The first term on the right is the probability that the system is already in state

x at time t and no reaction of any kind occurs in [t, t + dt), and the generic

second term is the probability that the system is one Rj reaction removed from

state x at time t and one Rj reaction occurs in [t, t + dt). That these M + 1
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routes from time t to state x at time t+dt are mutually exclusive and collectively

exhaustive is ensured by taking dt so small that no more than one reaction of

any kind can occur in [t, t + dt). Subtracting P (x, t |x0, t0) from both sides,

dividing through by dt, and taking the limit dt → 0, we obtain (McQuarrie,

1967; Gillespie, 1992a)

∂P (x, t |x0, t0)

∂t

=

M
∑

j=1

[aj(x − νj)P (x− νj , t |x0, t0)− aj(x)P (x, t |x0, t0)]. (1.1)

This is the chemical master equation (CME). In principle, it completely deter-

mines the function P (x, t |x0, t0). But the CME is really a set of nearly as many

coupled ordinary differential equations as there are combinations of molecules

that can exist in the system! So it is not surprising that the CME can be solved

analytically for only a very few very simple systems, and numerical solutions

are usually prohibitively difficult.

One might hope to learn something from the CME about the behavior of

averages like 〈f (X(t))〉 ≡∑

x
f(x)P (x, t |x0, t0), but this too turns out to pose

difficulties if any of the reaction channels are bimolecular. For example, it can

be proved from equation (1.1) that

d 〈Xi(t)〉
dt

=
M
∑

j=1

νij 〈aj (X(t))〉 (i = 1, . . . , N).

If all the reactions were unimolecular, the propensity functions would all be

linear in the state variables, and we would have 〈aj (X(t))〉 = aj (〈X(t)〉). The

above equation would then become a closed set of ordinary differential equations

for the first moments, 〈Xi(t)〉 . But if any reaction is bimolecular, the right hand

side will contain at least one quadratic moment of the form 〈Xi(t)Xi′(t)〉 , and

the equation then becomes merely the first of an infinite, open-ended set of

coupled quations for all the moments.

In the hypothetical case that there are no fluctuations, we would have

〈f (X(t))〉 = f (X(t)) for all functions f . The above equation for 〈Xi(t)〉 would

then reduce to

dXi(t)

dt
=

M
∑

j=1

νij aj(X(t)) (i = 1, . . . , N). (1.2)
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This is the reaction rate equation (RRE) of traditional deterministic chemical

kinetics — a set of N coupled first-order ordinary differential equations for the

Xi(t), which are now continuous (real) variables. The RRE is more commonly

written in terms of the concentration variables Xi(t)/Ω, but that scalar trans-

formation is inconsequential for our purposes here. Examples of RREs in a

biological context abound in Chapter ??.

Although the deterministic RRE (1.2) would evidently be valid in the ab-

sence of fluctuations, it is not clear what the justification and penalty might be

for ignoring fluctuations. We shall later see how the RRE follows more deduc-

tively from a series of physically transparent approximating assumptions to the

stochastic theory.

1.3 The Stochastic Simulation Algorithm

Since the CME (1.1) is rarely of much use in computing the probability density

function P (x, t |x0, t0) of X(t), we need another computational approach. One

approach that has proven fruitful is to construct numerical realizations of X(t),

i.e., simulated trajectories of X(t)-versus-t . This is not the same as solving

the CME numerically, as that would give us the probability density function of

X(t) instead of samplings of that random variable. However, much the same

effect can be achieved by either histogramming or averaging the results of many

realizations. The key to generating simulated trajectories of X(t) is not the

CME or even the function P (x, t |x0, t0), but rather a new function, p(τ, j |x, t)

(Gillespie, 1976). It is defined so that p(τ, j |x, t) dτ is the probability, given

X(t) = x, that the next reaction in the system will occur in the infinitesimal

time interval [t + τ, t + τ + dτ), and will be an Rj reaction. Formally, this

function is the joint probability density function of the two random variables

“time to the next reaction” (τ) and “index of the next reaction” (j).

To derive an analytical expression for p(τ, j |x, t), we begin by noting that if

P0(τ |x, t) is the probability, given X(t) = x, that no reaction of any kind occurs

in the time interval [t, t + τ), then the laws of probability imply the relation

p(τ, j |x, t) dτ = P0(τ |x, t)× aj(x)dτ.
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The laws of probability also imply

P0(τ + dτ |x, t) = P0(τ |x, t)× [1−
M
∑

j′=1

aj′ (x)dτ ].

An algebraic rearrangement of this last equation and passage to the limit dτ → 0

results in a differential equation whose solution is easily found to be P0(τ |x, t) =

exp (−a0(x) τ ), where

a0(x) ≡
M
∑

j′=1

aj′(x). (1.3)

When we insert this result into the equation for p, we get

p(τ, j |x, t) = aj(x) exp (−a0(x) τ ) . (1.4)

Equation (1.4) is the mathematical basis for the stochastic simulation ap-

proach. It implies that the joint density function of τ and j can be written as

the product of the τ -density function, a0(x) exp (−a0(x)τ ), and the j-density

function, aj(x)/a0(x). We can generate random samples from these two den-

sity functions by using the inversion method of Monte Carlo theory (Gillespie,

1992b): Draw two random numbers r1 and r2 from the uniform distribution in

the unit-interval, and select τ and j according to

τ =
1

a0(x)
ln

(

1

r1

)

, (1.5a)

j = the smallest integer satisfying

j
∑

j′=1

aj′(x) > r2 a0(x). (1.5b)

Thus we arrive at the following version of the stochastic simulation algorithm

(SSA) (Gillespie, 1976; Gillespie, 1977):

1. Initialize the time t = t0 and the system’s state x = x0.

2. With the system in state x at time t, evaluate all the aj(x) and their sum

a0(x).

3. Generate values for τ and j according to equations (1.5).

4. Effect the next reaction by replacing t← t + τ and x← x + νj .

5. Record (x, t) as desired. Return to Step 2, or else end the simulation.
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The X(t) trajectory that is produced by the SSA might be thought of as

a “stochastic version” of the trajectory that would be obtained by solving the

RRE (1.2). But note that the time step τ in the SSA is exact, and is not

a finite approximation to some infinitesimal dt, as is the time step in most

numerical solvers for the RRE. If it is found that every SSA-generated trajectory

is practically indistinguishable from the RRE trajectory, then we may conclude

that microscale fluctuations are ignorable. But if the SSA trajectories deviate

noticeably from the RRE trajectory, then we must conclude that microscale

fluctuations are not ignorable, and the deterministic RRE does not provide an

accurate description of the system’s real behavior.

The SSA and the CME are logically equivalent to each other; yet even when

the CME is completely intractable, the SSA is quite straightforward to imple-

ment. The problem with the SSA is that it is often very slow. The source of

this slowness can be traced to the factor 1/a0(x) in the τ equation (1.5a): a0(x)

can be very large if the population of one or more reactant species is large, and

that is often the case in practice.

There are variations on the above method for implementing the SSA that

make it more computationally efficiency (Gibson & Bruck, 2000; Cao et al.,

2004). But any procedure that simulates every reaction event one at a time

will inevitably be too slow for most practical applications. This prompts us to

look for ways of giving up some of the exactness of the SSA in return for greater

simulation speed.

1.4 Tau-Leaping

One approximate accelerated simulation strategy is tau-leaping (Gillespie,

2001). It advances the system by a pre-selected time τ which encompasses

more than one reaction event. In its simplest form, tau-leaping requires that

τ be chosen small enough that the following Leap Condition is satisfied: The

expected state change induced by the leap must be sufficiently small that no

propensity function changes its value by a significant amount.

We recall that the Poisson random variable P(a, τ) is by definition the num-

ber of events that will occur in time τ given that adt is the probability that

an event will occur in any infinitesimal time dt, where a can be any positive

constant. Therefore, if X(t) = x, and if we choose τ small enough to satisfy the
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Leap Condition, so that the propensity functions stay approximately constant

during the leap, then reaction Rj should fire approximately Pj (aj(x), τ ) times

in [t, t + τ). Thus, to the degree that the Leap Condition is satisfied, we can

leap by a time τ simply by taking

X(t + τ)
.
= x +

M
∑

j=1

νj Pj (aj(x), τ ) . (1.6)

Doing this evidently requires generating M Poisson random numbers for each

leap (Press et al., 1986). It will result in a faster simulation than the SSA to

the degree that the total number of reactions leapt over,
∑M

j=1 Pj (aj(x), τ ), is

large compared to M .

In order to use this simulation technique efficiently, we obviously need a way

to estimate the largest value of τ that is compatible with the Leap Condition.

One possible way of doing that (Gillespie & Petzold, 2003) is to estimate the

largest value of τ for which no propensity function is likely to change its value

during τ by more than εa0(x), where ε (0 < ε� 1) is some pre-chosen accuracy-

control parameter. Whatever the method of selecting τ , the (explicit) tau-

leaping simulation procedure goes as follows (Gillespie, 2001; Gillespie & Petzold,

2003):

1. In state x at time t, choose a value for τ that satisfies the Leap Condition.

2. For each j = 1, . . . , M , generate the number of firings kj of reaction Rj in

time τ as a sample of the Poisson random variable P (aj(x), τ ).

3. Leap, by replacing t← t + τ and x← x +
M
∑

j=1

kj νj .

In the limit that τ → 0, tau-leaping becomes mathematically equivalent to

the SSA. But tau-leaping also becomes very inefficient in that limit, because

all the kj ’s will approach zero, giving a very small time step with usually no

reactions firing. As a practical matter, tau-leaping should not be used if the

largest value of τ that satisfies the Leap Condition is less than a few multiples

of 1/a0(x), the expected time to the next reaction in the SSA, since it would

then be more efficient to use the SSA.

Tau-leaping has been shown to significantly speed up the simulation of some

systems (Gillespie, 2001; Gillespie & Petzold, 2003). But it is not as foolproof as

the SSA. If one takes leaps that are too large, bad things can happen; e.g., some
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species populations might be driven negative. If the system is “stiff”, meaning

that it has widely varying dynamical modes with the fastest mode being stable,

the Leap Condition will generally limit the size of τ to the time scale of the

fastest mode, with the result that large leaps cannot be taken. Stiffness is very

common in cellular chemical systems, and will be considered in more detail later.

It is tempting to try to formulate a “higher-order” tau-leaping formula by

extending higher-order ODE methods in a straightforward manner for discrete

stochastic simulation. However, doing this correctly is much harder than it

might at first appear. Most such extensions are not even first order accurate

for the stochastic part of the system. An analysis of the consistency, order, and

convergence of tau-leaping methods is given in (Rathinam et al., 2005), where

it is shown that the tau-leaping method defined above, and the “implicit” tau-

leaping method to be described in Section 7, are both first-order accurate as

τ → 0.

1.5 Transitioning to the Macroscale: The

Chemical Langevin Equation and the Reac-

tion Rate Equation

Suppose we can choose τ small enough to satisfy the Leap Condition, so that

approximation (1.6) is good, but nevertheless large enough that

aj(x) τ � 1 for all j = 1, . . . , M. (1.7)

Since aj(x)τ is the mean of the random variable Pj (aj(x), τ ), the physical

significance of condition (1.7) is that each reaction channel is expected to fire

many more times than once in the next τ . It will not always be possible to find

a τ that satisfies both the Leap Condition and condition (1.7), but it usually

will be if the populations of all the reactant species are sufficiently large.

When condition (1.7) does hold, we can make a useful approximation to the

tau-leaping formula (1.6). This approximation stems from the purely math-

ematical fact that the Poisson random variable P(a, τ), which has mean and

variance aτ , can be well approximated when aτ � 1 by a normal random vari-

able with the same mean and variance. Denoting the normal random variable

with mean m and variance σ2 by N (m, σ2), it thus follows that when condition
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(1.7) holds,

Pj (aj(x), τ )
.
= Nj (aj(x)τ, aj(x)τ ) = aj(x)τ + (aj(x)τ )

1/2Nj(0, 1),

the last step following from the fact that N (m, σ2) = m + σN (0, 1). Inserting

this approximation into equation (1.6) gives (Gillespie, 2000; Gillespie, 2002)

X(t + τ)
.
= x +

M
∑

j=1

νjaj(x)τ +

M
∑

j=1

νj

√

aj(x)Nj(0, 1)
√

τ , (1.8)

where the Nj(0, 1) are statistically independent normal random variables with

means 0 and variances 1. Equation (1.8) is called the Langevin leaping formula.

It evidently expresses the state increment X(t+ τ)−x as the sum of two terms:

a deterministic drift term proportional to τ , and a fluctuating diffusion term

proportional to
√

τ . It is important to keep in mind that equation (1.8) is an

approximation, which is valid only to the extent that τ is (i) small enough that

no propensity function changes its value significantly during τ , yet (ii) large

enough that every reaction fires many more times than once during τ . The ap-

proximate nature of (1.8) is underscored by the fact that X(t) therein is now a

continuous (real-valued) random variable instead of a discrete (integer-valued)

random variable; we lost discreteness when we replaced the integer-valued Pois-

son random variable with a real-valued normal random variable. The Langevin

leaping formula (1.8) gives faster simulations than the tau-leaping formula (1.6)

not only because condition (1.7) implies that very many reactions get leapt over

at each step, but also because the normal random numbers that are required

by (1.8) can be generated much more easily than the Poisson random numbers

that are required by (1.6) (Press et al., 1986).

The “small-but-large” character of τ in equation (1.8) marks that variable

as a “macroscopic infinitesimal”. If we subtract x from both sides and then

divide through by τ , the result can be shown to be the following (approximate)

stochastic differential equation, which is called the chemical Langevin equation

(CLE) (Gillespie, 2000; Gillespie, 2002):

dX(t)

dt

.
=

M
∑

j=1

νj aj (X(t)) +
M
∑

j=1

νj

√

aj (X(t)) Γj(t) . (1.9)

The Γj(t) here are statistically independent “Gaussian white noise” processes

satisfying 〈Γj(t) Γj′(t
′)〉 = δjj′ δ(t − t′), where the first delta function is Kro-

necker’s and the second is Dirac’s. The CLE (1.9) is mathematically equivalent
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to the Langevin leaping formula (1.8), and is subject to the same conditions for

validity. Stochastic differential equations arise in many areas of physics, but the

usual way of obtaining them is to start with a macroscopically inspired drift

term (the first term on the right side of the CLE) and then assume a form for

the diffusion term (the second term on the right side of the CLE) with an eye to

obtaining some pre-conceived outcome. So it is noteworthy that our derivation

here of the CLE did not proceed in that ad-hoc manner; instead, we used careful

mathematical approximations to infer the forms of both the drift and diffusion

terms from the premises underlying the CME/SSA.

Molecular systems become “macroscopic” in what physicists and chemists

call the thermodynamic limit. This limit is formally defined as follows: The

system volume Ω and the species populations Xi all approach∞, but in such a

way that the species concentrations Xi/Ω all remain constant. The large molec-

ular populations in chemical systems near the thermodynamic limit generally

mean that such systems will be well described by the Langevin formulas (1.8)

and (1.9). To discern the implications of those formulas in the thermodynamic

limit, we evidently need to know the behavior of the propensity functions in that

limit. It turns out that all propensity functions grow linearly with the system

size as the thermodynamic limit is approached. For a unimolecular propensity

function of the form cjxi this behavior is obvious, since cj will be independent of

the system size. For a bimolecular propensity function of the form cjxixi′ this

behavior is a consequence of the fact that bimolecular cj ’s are always inversely

proportional to Ω, reflecting the fact that two reactant molecules have a harder

time finding each other in larger volumes.

It follows that, as the thermodynamic limit is approached, the deterministic

drift term in (1.8) grows like the size of the system, while the fluctuating diffusion

term grows like the square root of the size of the system, and likewise for the

CLE (1.9). This establishes the well known rule-of-thumb in chemical kinetics

that relative fluctuation effects in chemical systems typically scale as the inverse

square root of the size of the system.

In the full thermodynamic limit, the size of the second term on the right side

of (1.9) will usually be negligibly small compared to the size of the first term,

in which case the CLE (1.9) reduces to the RRE (1.2). Thus we have derived

the RRE as a series of limiting approximations to the stochastic theory that

underlies the CME and the SSA. The tau-leaping and Langevin-leaping formulas
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evidently provide a conceptual bridge between stochastic chemical kinetics (the

CME and SSA) and conventional deterministic chemical kinetics (the RRE),

enabling us to see how the latter emerges as a limiting approximation of the

former.

1.6 Stiffness in Deterministic Reaction Rate

Equations

Stiffness can be defined roughly as the presence of widely varying time-scales

in a dynamical system, the fastest of which is stable. It poses special problems

for the numerical solution of both deterministic ordinary differential equations

(ODEs) and stochastic differential equations (SDEs), particularly in the context

of chemical kinetics. Stiffness also impacts both the SSA and the tau-leaping

algorithm (1.6). In this section we will describe the phenomenon of stiffness for

deterministic systems of ODEs, and show how it restricts the timestep size for

all “explicit” methods. Then we will show how the use of “implicit” methods

overcomes this restriction.

Consider the deterministic ODE system

dx

dt
= f(t,x). (1.10)

In simplest terms, this system is said to be “stiff” if it has a strongly damped,

or “superstable” mode. To get a feeling for this concept, consider the solutions

x(t) of an ODE system starting from various initial conditions. For a typical

nonstiff system, if we plot a given component of the vector x-versus-t we might

get a family of curves resembling those shown in Figure (1.1a): The curves either

remain roughly the same distance apart as t increases, as in the figure, or they

might show a tendency to merge very slowly. But when such a family of curves

is plotted for a typical stiff system, the result looks more like what is shown in

Figure (1.1b): The curves merge rapidly to one or more smoother curves, with

the deviation from the smoother curves becoming very small as t increases.

Stiffness in a system of ODEs corresponds to a strongly stable behavior of the

physical system being modeled. At any given time the system will be in a sort

of equilibrium, although not necessarily a static one, and if some state variable

is perturbed slightly, the system will respond rapidly to restore the equilibrium.

Typically, the true solution x(t) of the ODE system does not show any rapid
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Figure 1.1: A system of ODEs is said to be “stiff” if its solutions show strongly

damped behavior as a function of the initial conditions. The family of curves

shown in (a) represents the behavior of solutions to a nonstiff system for various

initial conditions. In contrast, solutions to the stiff system shown in (b) tend to

merge quickly.

variation, except possibly during an initial transient phase. But the potential

for rapid response is always present, and will manifest itself if we perturb x out

of equilibrium. A stiff system has (at least) two time scales. There is a long

(slow) time scale for the quasi-equilibrium phase, and a short (fast) time scale

for the transient phase following a perturbation. The more different these two

time scales are, the ”stiffer” the system is said to be.

The smallest (fastest) time scale in a stiff system manifests itself in another

way when we try to carry out a numerical solution of the system. Solution by

an explicit time stepping method, such as the simple explicit Euler method

xn = xn−1 + τ f(tn−1,xn−1), (1.11)

where tn = tn−1 + τ and xn is the numerical approximation to x(tn), will

produce very inaccurate results unless the time stepsize τ is kept smaller than

the smallest time scale in the system.

To see why this is so, let us consider a simple example: the reversible iso-

merization reaction, S1

c1



c2

S2. Let xT denote the (constant) total number of

molecules of the two isomeric species, and x(t) the time-varying number of S1
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molecules. The deterministic RRE for this system is the ODE

dx

dt
= −c1x + c2(xT − x) = −(c1 + c2)x + c2xT. (1.12)

The solution to this ODE for the initial condition x(0) = x0, is given by

x(t) =
c2xT

c1 + c2
+

(

x0 −
c2xT

c1 + c2

)

e−(c1+c2)t.

¿From the form of this solution, we can see that if the initial value x0 differs from

the asymptotic value c2xT

c1+c2
, the solution will relax to that asymptotic value in a

time of order (c1 + c2)
−1; therefore, if (c1 + c2) is very 1arge, this system will be

stiff. In Figure (1.2) we show the exact solution of the reversible isomerization

reaction (1.12) along with numerical solutions obtained using the explicit Euler

method (1.11) with two different stepsizes τ . Note that the smaller stepsize

Euler solution is accurate, but the larger stepsize solution is unstable.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

5

Figure 1.2: Exact solution of (1.12) (solid line) and its explicit Euler approx-

imations for stepsizes 0.2 (asterisks) and 1.1 (triangles) with c1 = c2 = 1 and

xT = 2× 105. The fast time constant for this problem is (c1 + c2)
−1 = 0.5.

To see why this instability arises, let us write down the explicit Euler method

(1.11) with stepsize τ for the ODE (1.12):

xn = xn−1 − τ(c1 + c2)xn−1 + τc2xT. (1.13)

If we expand the true solution x(t) in a Taylor series about tn−1, we get

x(tn) = x(tn−1)− τ(c1 + c2)x(tn−1) + τc2xT + O(τ2). (1.14)
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Subtracting (1.14) from (1.13), and defining the error en = xn−x(tn), we obtain

en = en−1 − τ(c1 + c2)en−1 + O(τ2). (1.15)

Thus, en is given by the recurrence formula

en = (1− τ(c1 + c2)) en−1 + O(τ2). (1.16)

If τ > 2(c1 + c2)
−1, then |1− τ(c1 + c2)| will be greater than 1, and we will have

|en| > |en−1|. The recurrence will then be unstable. In general, to ensure the

stability of an explicit method, we must restrict the stepsize to the timescale

of the fastest mode, even though much larger stepsizes might seem perfectly

acceptable for getting an adequate resolution of the solution curve.

The restriction of the explicit Euler method (1.11) to timesteps τ that are

on the order of the short (fast) time scale makes the method very slow for stiff

systems. So it is natural to ask if there are other solution methods for which

the timesteps are not restricted by stability, but only by the need to resolve the

solution curve. It is now widely recognized that a general way of doing this is

provided by ”implicit” methods (Ascher & Petzold, 1998), the simplest of which

is the implicit Euler method. For the ODE (1.10), it reads

xn = xn−1 + τ f(tn,xn). (1.17)

In contrast to the explicit Euler formula (1.11), this method is implicit because

xn is not defined entirely in terms of past values of the solution; instead, it is

defined implicitly as the solution of the (possibly nonlinear) system of equations

(1.17). We can write this system abstractly as

F(u) = 0, (1.18)

where u = xn and F(u) = u−xn−1− τ f(tn,u). Usually, the most efficient way

to numerically solve the system of equations (1.18) is by Newton iteration: One

iterates the formula
(

∂F

∂u

)

[u(m+1) − u
(m)] = −F(u(m)) (1.19)

over m, where u
(m) is the mth iterated approximation to the exact root of F ,

and the Jacobian matrix ∂F/∂u is evaluated at u
(m). This is a linear system of

equations, which is to be solved at each iteration for u
m+1. Newton’s method
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converges in one iteration for linear systems, and the convergence is quite rapid

for most nonlinear systems given a good initial guess. The initial guess is usually

obtained by evaluating a polynomial that coincides with recent past solution

values at tn. In practice, the Jacobian matrix is usually not reevaluated at

each iteration; also, it is often approximated by numerical difference quotients

rather than evaluated exactly. The use of an approximate Jacobian that is fixed

throughout the iteration is called modified Newton iteration. On first glance, it

might seem that the expense of solving the nonlinear system at each time step

would outweigh the advantage of increased stability; however, this is usually not

so. For stiff systems, implicit methods are usually able to take timesteps that

are so much larger than those of explicit methods that the implicit methods

wind up being much more efficient.

To see why the implicit Euler method does not need to restrict the step

size to maintain stability for stiff systems, let us consider again the reversible

isomerization reaction (1.12). For it, the implicit Euler method reads [cf. (1.13)]

xn = xn−1 − τ(c1 + c2)xn + τc2xT. (1.20)

Expanding the true solution in a Taylor series about tn, we get [cf. (1.14)]

x(tn) = x(tn−1)− τ(c1 + c2)x(tn) + τc2xT + O(τ2). (1.21)

Subtracting (1.21) from (1.20), we find that the error en = xn − x(tn) now

satisfies [cf. (1.15)]

en = en−1 − τ(c1 + c2)en + O(τ2). (1.22)

Solving this for en, we get

en =
en−1

1 + τ(c1 + c2)
+ O(τ2). (1.23)

In contrast to the error (1.16) for the explicit Euler method, the error for the

implicit Euler method remains small for arbitrarily large values of τ(c1 + c2), as

seen in Figure 1.3.

For the general ODE system (1.10), the negative eigenvalues of the matrix

J = ∂f/∂x play the role of (c1 + c2). For stiff systems, the eigenvalues λ of J

will include at least one with a relatively large negative real part, corresponding

in the case of an RRE to the fastest reactions. The set of complex numbers τλ

satisfying |1 + τλ| < 1 is called the region of absolute stability of the explicit
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Figure 1.3: The implicit Euler method overcomes a weakness of the explicit

Euler method in that it does not need to restrict the step size to provide stable

solutions for stiff systems. The figure shows the true solution of the deterministic

reversible isomerization reaction (1.12) (solid line), and the numerical solution

by the implicit Euler method for stepsizes 0.2 (asterisks) and 1.1 (triangles)

with c1 = c2 = 1 and xT = 2× 105. Compare with Figure (1.2).

Euler method. The corresponding region for the implicit Euler method is given

by 1/|1− τλ| < 1, and it will be much larger.

A great deal of work has gone into the numerical solution of stiff systems

of ODEs (and of ODEs coupled with nonlinear constraints, called differential

algebraic equations (DAEs)). There is extensive theory and highly efficient and

reliable software which adapts both the method order and the timestep to the

given problem. See (Ascher & Petzold, 1998) for more details.

1.7 Stiffness in Stochastic Chemical Kinetics:

The Implicit Tau-Leaping Method

When stochasticity is introduced into a chemical system that has fast and slow

time scales, with the fast mode being stable as before, we may still expect there

to be a slow manifold corresponding to the equilibrium of the fast reactions.

But stochasticity changes the picture in a fundamental way: Once the system

reaches the slow manifold, naturally occurring fluctuations will drive it back

off, leading to persistent random fluctuations transverse to the slow manifold.
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If these fluctuations are negligibly small, then an implicit scheme which takes

large steps (on the time scale of the slow mode) will do just fine. But if the

fluctuations off the slow manifold are noticeable, then an implicit scheme that

takes steps much larger than the time scale of the fast dynamics will dampen the

fluctuations, and thus fail to reproduce them correctly. Fortunately, this failing

can usually be corrected by using a procedure called down-shifting, which we

will describe shortly.

The original tau-leaping method (1.6) is explicit because the propensity func-

tions aj are evaluated at the current (known) state, so the future (unknown)

random state X(t + τ) is given as an explicit function of X(t). It is this explicit

nature of (1.6) that leads to stability problems when stiffness is present, just as

with ordinary differential equations. One way of making the explicit tau-leaping

formula (1.6) implicit is to modify it as follows (Rathinam et al., 2003):

X(t + τ)
.
= X(t) +

M
∑

j=1

νjaj(X(t + τ)) τ

+

M
∑

j=1

νj [Pj(aj(X(t)), τ) − aj(X(t)) τ ] . (1.24)

Since the random variables Pj(aj(X(t), τ) here can be generated without know-

ing X(t+τ), then once values for those random variables are set, (1.24) becomes

an ordinary implicit equation for the unknown state X(t+ τ), and X(t+ τ) can

then be found by applying Newton iteration to (1.24).

Just as the explicit-tau method segues to the explicit Euler methods for

SDEs and ODEs, the implicit-tau method segues to the implicit Euler methods

for SDEs and ODEs. In the SDE regime we get, approximating Poissons by

normals, the implicit version of the Langevin leaping formula (1.8):

X(t + τ)
.
= X(t) + τ

M
∑

j=1

νjaj(X(t + τ)) +
M
∑

j=1

νj

√

aj(X(t))Nj(0, 1)
√

τ . (1.25)

Here, the Nj(0, 1) are, as in (1.8), independent normal random variables with

mean zero and variance 1. And in the thermodynamic limit, where the random

terms in (1.25) may be ignored, it reduces to the implicit Euler method

X(t + τ)
.
= X(t) + τ

M
∑

j=1

νjaj(X(t + τ)) (1.26)
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for the deterministic RRE (1.2).

We noted earlier that the implicit tau method, when used with a relatively

large timestep, will damp out the natural fluctuations of the fast variables.

Thus, although the implicit tau-leaping method computes the slow variables

with their correct distributions, it computes the fast variables with the correct

means but with spreads about those means that are too narrow. Fortunately,

a time-stepping strategy called down-shifting can restore the overly-damped

fluctuations in the fast variables. The idea is to interlace the implicit tau-leaps,

each of which is on the order of the time scale of the slow variables and hence

“large”, with a sequence of much smaller time steps on the time scale of the fast

variables, these being taken using either the explicit-tau method or the SSA.

This sequence of smaller steps “regenerates” the correct statistical distributions

of the fast variables. Further details on implicit tau-leaping and down-shifting

can be found in (Rathinam et al., 2003).

1.8 Stiffness in Stochastic Chemical Kinetics:

The Slow-Scale SSA

Another way to deal with stiffness in stochastic systems is to use the recently

developed (Cao et al., 2005) Slow-Scale SSA (ssSSA). The first step in setting up

the ssSSA is to divide (and re-index) the M reaction channels {R1, . . . , RM} into

fast and slow subsets,
{

Rf
1, . . . , R

f
Mf

}

and
{

Rs
1, . . . , R

s
Ms

}

, where Mf +Ms = M .

We initially do this provisionally (subject to possible later change) accord-

ing to the following criterion: the propensity functions of the fast reactions,

af
1, . . . , a

f
Mf

, should usually be very much larger than the propensity functions

of the slow reactions, as
1, . . . , a

s
Ms

. The broad result of this partitioning will be

that the time to the occurrence of the next fast reaction will usually be very

much smaller than the time to the occurrence of the next slow reaction.

Next we divide (and re-index) the N species {S1, . . . , SN} into fast and slow

subsets,
{

Sf
1, . . . , S

f
Nf

}

and
{

Ss
1, . . . , S

s
Ns

}

, where Nf + Ns = N . This gives rise

to a like partitioning of the state vector X(t) =
(

X
f(t),Xs(t)

)

, and also the

generic state space variable x =
(

x
f,xs

)

, into fast and slow components. The

criterion for making this partitioning is simple: A fast species is any species

whose population gets changed by some fast reaction; all the other species are

slow. Note the asymmetry in this definition: a slow species cannot get changed
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by a fast reaction, but a fast species can get changed by a slow reaction. Note

also that af
j and as

j can both depend on both fast and slow variables. The

state-change vectors can now be re-indexed

ν
f
j ≡

(

νff
1j , . . . , ν

ff
Nfj

)

, j = 1, . . . , Mf,

ν
s
j ≡

(

νfs
1j , . . . , ν

fs
Nfj

, νss
1j , . . . , ν

ss
Nsj

)

, j = 1, . . . , Ms,

where νσρ
ij denotes the change in the number of molecules of species Sσ

i (σ = f, s)

induced by one reaction Rρ
j (ρ = f, s). We can regard ν

f
j as a vector with the

same dimensionality (Nf) as X
f, because νsf

ij ≡ 0 (slow species do not get changed

by fast reactions).

The next step in setting up the ssSSA is to introduce the virtual fast process

X̂
f(t). It is composed of the same fast species state variables as the real fast

process X
f(t), but it evolves only through the fast reactions; i.e., X̂

f(t) is X
f(t)

with all the slow reactions switched off. To the extent that the slow reactions

don’t occur very often, we may expect X̂
f(t) and X

f(t) to be very similar to

each other. But from a mathematical standpoint there is an profound difference:

X
f(t) by itself is not a Markov (past-forgetting) process, whereas X̂

f(t) is. Since

the evolution of X
f(t) depends on the evolving slow process X

s(t), X
f(t) is not

governed by a master equation of the simple Markovian form (1.1); indeed, the

easiest way to find X
f(t) would be to solve the Markovian master equation for the

full process X(t) ≡
(

X
f(t),Xs(t)

)

, which is something we have tacitly assumed

cannot be done. But for the virtual fast process X̂
f(t), the slow process X

s(t)

stays fixed at some constant initial value x
s
0; therefore, X̂

f(t) evolves according

to the Markovian master equation,

∂P̂ (xf, t |x0, t0)

∂t

=

Mf
∑

j=1

[

af
j(x

f − ν
f
j ,x

s
0)P̂ (xf − ν

f
j , t |x0, t0)− af

j(x
f,xs

0)P̂ (xf, t |x0, t0)
]

,

wherein P̂ (xf, t |x0, t0) is the probability that X̂
f(t) = x

f, given that X(t0) = x0.

This master equation for X̂
f(t) will be simpler than the master equation for X(t)

because it has fewer reactions and fewer species.

Finally, in order to apply the ssSSA, we require that two conditions be

satisfied. The first condition is that the virtual fast process X̂
f(t) be stable, in
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the sense that it approaches a well defined, time-independent random variable

X̂
f(∞) as t→∞; thus, we require the limit

lim
t→∞

P̂ (xf, t |x0, t0) ≡ P̂ (xf,∞|x0)

to exist. P̂ (xf,∞|x0) can be calculated from the stationary form of the time-

dependent master equation,

0 =

Mf
∑

j=1

[

af
j(x

f − ν
f
j ,x

s
0)P̂ (xf − ν

f
j ,∞|x0)− af

j(x
f,xs

0)P̂ (xf,∞|x0)
]

,

which will be easier to solve since it is purely algebraic. The second condition we

impose is that the relaxation of X̂
f(t) to its stationary asymptotic form X̂

f(∞)

happen very quickly on the time scale of the slow reactions. More precisely, we

require that the relaxation time of the virtual fast process be very much less

than the expected time to the next slow reaction.

These two conditions will generally be satisfied if the system is stiff. If

satisfying them can be accomplished only by making some changes in the way

we originally partitioned the reactions into fast and slow subsets, then we do

that, regardless of propensity function values. But if these conditions cannot be

satisfied, we must conclude that the ssSSA is not applicable.

Given the forgoing definitions and conditions, it is possible to prove the

Slow-Scale Approximation:(Cao et al., 2005) If the system is in state (xf,xs)

at time t, and if ∆s is a time increment that is very large compared to the

relaxation time of X̂
f(t) but very small compared to the expected time to the

next slow reaction, then the probability that one Rs
j reaction will occur in the

time interval [t, t + ∆s) can be well approximated by ās
j(x

s;xf) ∆s, where

ās
j(x

s;xf) ,
∑

x
f′

P̂ (xf′ ,∞|xf,xs) as
j(x

f′ ,xs). (1.28)

We call ās
j(x

s;xf) the slow-scale propensity function for reaction channel Rs
j

because it serves as a propensity function for Rj on the timescale of the slow

reactions. Mathematically, it is the average of the regular Rs
j propensity function

over the fast variables, treated as though they were distributed according to the

asymptotic virtual fast process X̂
f(∞).

The slow-scale SSA is an immediate consequence of this Slow-Scale Approx-

imation. The idea is to move the system forward in time in the manner of the
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SSA one slow reaction at a time, updating the fast variables after each step by

randomly sampling X̂
f(∞). (Cao et al., 2005)

To illustrate how the ssSSA works, consider the simple reaction set

S1

c1



c2

S2
c3−→ S3 (1.29)

under the condition

c2 � c3. (1.30)

Here, an S2 molecule is most likely to change into an S1 molecule, a change that

is relatively unimportant since it will eventually be reversed. On rare occasions

though, an S2 molecule will instead change into an S3 molecule, a potentially

more important change since it is irreversible. As an example, S2 might be the

active form of an enzyme which either becomes deactivated via reaction R2 (and

subsequently reactivated via reaction R1), or binds to a DNA promoter site via

reaction R3 thereby allowing the transcription of some important gene. For this

example we might be particularly interested in situations where the average

number of S2 molecules is very small, even less than 1, since that sometimes

happens in practice.

We shall take the fast reactions to be R1 and R2, and the slow reaction to

be R3. Then the fast species will be S1 and S2, and the slow species S3. The

virtual fast process X̂
f(t) will be the S1 and S2 populations undergoing only

the fast reactions R1 and R2. Unlike the real fast process, which gets affected

whenever R3 fires, the virtual fast process obeys the conservation relation

X̂1(t) + X̂2(t) = xT (constant). (1.31)

This relation greatly simplifies the analysis of the virtual fast process, since it

reduces the problem to a single independent state variable.

Eliminating X̂2(t) in favor of X̂1(t) by means of equation (1.31), we see that

given X̂1(t) = x′

1, X̂1(t+dt) will equal x′

1−1 with probability c1x
′

1dt, and x′

1+1

with probability c2(xT−x′

1)dt. X̂1(t) is therefore what is known mathematically

as a “bounded birth-death” Markov process. It can be shown (Gillespie, 2002)

that this process has, for any initial value x1 ∈ [0, xT], the asymptotic stationary

distribution

P̂ (x′

1,∞|xT) =
xT!

x′

1! (xT − x′

1)!
qx′

1(1− q)xT−x′

1 , (x′

1 = 0, 1, . . . , xT) (1.32)
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where q ≡ c2/(c1 + c2). This tells us that X̂1(∞) is the binomial random

variable B(q, xT), whose mean and variance are given by
〈

X̂1(∞)
〉

= xTq =
c2xT

c1 + c2
, (1.33a)

var
{

X̂1(∞)
}

= xTq(1− q) =
c1c2xT

(c1 + c2)2
. (1.33b)

It can also be shown (Cao et al., 2005) that X̂1(t) relaxes to X̂1(∞) in a time

of order (c1 + c2)
−1.

The slow scale propensity function for the slow reaction R3 is, according to

the result (1.28), the average of a3(x) = c3x2 with respect to X̂
f(∞). Therefore,

using equations (1.31) and (1.33a),

ā3(x3; x1, x2) = c3

〈

X̂2(∞)
〉

=
c3c1(x1 + x2)

c1 + c2
. (1.34)

Since the reciprocal of ā3(x3; x1, x2) estimates the average time to the next R3

reaction, the condition that the relaxation time of the virtual fast process be

very much smaller than the mean time to the next slow reaction is

c1 + c2 �
c3c1(x1 + x2)

c1 + c2
. (1.35)

This condition will be satisfied if the inequality (1.30) is sufficiently strong. In

that case, the Slow-Scale SSA for reactions (1.29) goes as follows:

1. Given X(t0) = (x10, x20, x30), set t← t0 and xi ← xi0 (i = 1, 2, 3).

2. In state (x1, x2, x3) at time t, compute ā3(x3; x1, x2) from equation (1.34).

3. Draw a unit-interval uniform random number r, and compute

τ =
1

ā3(x3; x1, x2)
ln

(

1

r

)

.

4. Advance to the next R3 reaction by replacing t← t + τ and

x3 ← x3 + 1, x2 ← x2 − 1,























With xT = x1 + x2,

x1 ← sample of B
(

c2

c1 + c2
, xT

)

,

x2 ← xT − x1.
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5. Record (t, x1, x2, x3) if desired. Then return to Step 2, or else stop.

In Step 4, the x3 update and the first x2 update actualize the R3 reaction.

The bracketed procedure then “relaxes” the fast variables in a manner consistent

with the stationary distribution (1.32) and the new value of xT. See (Press et al.,

1986) for a way to generate samples of the binomial random variable B(q, xT).

Figure 1.4 (a) shows the results of an exact SSA run of reactions (1.29) for

the parameter values

c1 = 10, c2 = 4× 104, c3 = 2; x10 = 2000, x20 = x30 = 0. (1.36)

The S1 and S3 populations here are plotted out immediately after each R3

reaction. The S2 population, which is shown on a separate scale, is plotted

out at a like number of equally spaced time intervals; this gives a more typical

picture of the S2 population than plotting it immediately after each R3 reaction

because R3 reactions are more likely to occur when the S2 population is larger.

For the parameter values (1.36), condition (1.35) is satisfied by 4 orders of

magnitude initially, and even more so as the total population of S1 and S2 de-

clines; therefore, this reaction set should be amenable to simulation using the

Slow-Scale SSA. Figure 1.4 (b) shows the results of such a simulation, plotted

after each R3 reaction. We note that all the species trajectories in this approx-

imate ssSSA run agree very well with those in the exact SSA run of Figure 1.4

(a); even the behavior of the sparsely populated species S2 is accurately repli-

cated by the ssSSA. But whereas the SSA run in Figure 1.4 (a) had to simulate

over 23 million reactions, the Slow-Scale SSA run in Figure 1.4 (b) simulated

only 587 reactions, with commensurate differences in their computation times.

1.9 Concluding Remarks

In this chapter we have discussed two broad themes. The first is the “logi-

cal bridge” that connects the chemical master equation (CME) and stochastic

simulation algorithm (SSA) on one side with the reaction rate equation (RRE)

on the other side. Under the well-stirred (spatially homogeneous) assumption,

the CME/SSA provides a mathematical description that is exact, discrete, and

stochastic. If the system is such that the Leap Condition can be satisfied, the

CME/SSA can be approximated by the Poissonian tau-leaping formula (1.6) to

obtain a description that is approximate, discrete, and stochastic. If further the
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reactant populations are large enough that the Poissonian tau-leaping formula

(1.6) can be approximated by the Gaussian tau-leaping formula (1.8), which in

turn is equivalent to the chemical Langevin equation (CLE) (1.9), we obtain a

description that is approximate, continuous, and stochastic. And finally, in the

thermodynamic limit of an infinitely large system, the random terms in the CLE

usually become negligibly small compared to the deterministic terms, and the

CLE reduces to the RRE, which is approximate, continuous, and deterministic.

This progression – from the CME to the tau-leaping approximation to the

CLE to the RRE – in which each successive level is an approximation of the

preceeding level, would, along with the corresponding numerical methods at each

level, give us all the tools we need to efficiently simulate spatially homogeneous

systems were it not for the multiscale nature of most biochemical systems: Both

the species populations and the rates of the various chemical reactions typically

span many orders of magnitude. As a consequence in many cases the system

as a whole does not fit efficiently into one level of description exclusive of all

the others. The second theme of our development in this chapter has been

to describe two strategies for coping with multiscale problems: implicit tau-

leaping, and the slow-scale SSA. Much more remains to be done on the problem

of multiscale.



CHAPTER 1. NUMERICAL SIMULATION FOR BIOCHEMICAL KINETICS27

(a) SSA
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(b) Slow-Scale SSA
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Figure 1.4: (a) Two simulations of reactions (1.29) using the parameter values

(1.36). (a) shows an exact SSA run in which the populations are plotted es-

sentially after each R3 reaction (see text for details). Over 23 million reactions

make up this run, the overwhelming majority of which are R1 and R2 reactions.

(b) shows an approximate ssSSA run in which only R3 reactions, which totaled

587, were directly simulated, and the populations are plotted after each of those.

The ssSSA simulation ran over 1000 times faster than the SSA simulation.
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