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There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical 
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process 
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic 
approach regards the time evolution as a kind of random-walk process which is governed by a single dif- 
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the 
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but 
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way 
to make exact numerical calculations within the framework of the stochastic formulation without having to 
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously 
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like 
the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations 
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures 
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal 
time increments dt by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated 
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and 
the Oregonator. 

I. Introduction 
In this paper we shall be concerned with the following 

general problem: If a fixed volume V contains a spatially 
uniform mixture of N chemical species which can inter- 
react through M specified chemical reaction channels, then 
given the numbers of molecules of each species present a t  
some initial time, what will these molecular population 
levels be at  any later time? 

The traditional way of treating this problem begins by 
translating it into the mathematical language of ordinary 
differential equations. More specifically, if we assume that 
the number of molecules of the ith species in V a t  time 
t can be represented by a continuous, single-valued 
function X , ( t )  (i = 1,. . .,N, and if we further assume that 
each of the M chemical reactions can be regarded as a 
continuous rate process, then we can easily construct a set 
of coupled, first-order, ordinary differential equations of 
the form 
d X , / d t  = f l ( X 1 , .  . . J N )  

u Z / d t  = . . . .  fZ(X1,- * J N )  (1) 

a N / d t  = f N ( x 1 , .  * . J N )  

The specific forms of the functions fi on the right (which 
are usually nonlinear in the Xi’s) are determined by the 
structures and rate constants of the M chemical reaction 
channels. These equations are called the “reaction-rate 
equations”; solving them for the functions Xl( t ) , .  . . , X d t ) ,  
subject to the prescribed initial conditions, is tantamount 
to solving the time-evolution problem posed earlier. 
Analytical solutions to the reaction-rate equations can be 
found only for rather simple systems, so it is usually 
necessary t o  solve these equations numerically on a 
computer. As is evident from many of the papers in this 
symposium series, the art of reliably solving reaction-rate 
equations on a computer has been developed to an im- 
pressive and sophisticated level. 

*Address correspondence to the author at Code 3821, Naval 
Weapons Center, China Lake, Calif. 93555. 

Although the great importance and usefulness of the 
differential reaction-rate equations approach to chemical 
kinetics cannot be denied, we should not lose sight of the 
fact that the physical basis for this approach leaves 
something to be desired. This approach evidently assumes 
that the time evolution of a chemically reacting system is 
both continuous and deterministic. However, the time 
evolution of a chemically reacting system is not a con- 
tinuous process, because molecular population levels 
obviously can change only by discrete integer amounts. 
Moreover, the time evolution is not a deterministic process 
either. For, even if we put aside quantum considerations 
and regard the molecular motions to be governed by the 
equations of classical mechanics, it is impossible even in 
principle to predict the exact molecular population levels 
a t  some future time unless we take account of the precise 
positions and velocities of all the molecules in the system. 
In other words, although the temporal behavior of a 
chemically reacting system of classical molecules is a 
deterministic process in the full position-momentum phase 
space of the system, it is not a deterministic process in the 
N-dimensional subspace of the species population num- 
bers, as (1) implies. 

In many cases of course the time evolution of a 
chemically reacting system can, to a very acceptable degree 
of accuracy, be treated as a continuous, deterministic 
process. However this should not always be taken for 
granted, especially now that the attention of chemical 
kineticists is increasingly being drawn to the study of 
ecological systems, microscopic biological systems, and 
nonlinear systems driven to conditions of chemical in- 
stability. In some cases like these, the inability of the 
reaction-rate equations to describe the fluctuations in the 
molecular population levels can be a serious shortcoming. 
Moreover, contrary to widespread belief, it is not even 
guaranteed that the reaction-rate equations will provide 
a sufficiently accurate account of the auerage molecular 
population levels; for, except for very simple linear systems, 
the average molecular population levels will not exactly 
satisfy any closed system of equations such as (1). 
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Figure 1. The "collision volume" 6 Vod, which molecule 1 will sweep 
out relative to molecule 2 in the next small time interval 6t. 

Many chemical kineticists would probably argue that 
these considerations are rather academic, because despite 
whatever shortcomings the differential reaction-rate 
equations may have, they seem to provide the only 
practical means for numerically analyzing the time be- 
havior of nontrivial chemical systems. However, in a recent 
paper by this writer,' a new computational method was 
developed from premises which take explicit account of 
the fact that the time evolution of a spatially homogeneous 
chemical system is a discrete, stochastic process instead 
of a continuous, deterministic process. This new com- 
putational method, which we shall refer t o  as the 
"stochastic simulation algorithm", now offers an alternative 
to the differential reaction-rate equations-an alternative 
that is free of the difficulties mentioned above. 

In sections I1 and I11 of this paper, we shall describe the 
stochastic simulation algorithm and give a brief synopsis 
of the arguments used in ref 1 to derive it. Then, in section 
IV, we shall exhibit for the first time some actual numerical 
results that have been obtained in applying the algorithm 
to some well-known model chemical systems. Our purpose 
in section IV will be not so much to shed new light on the 
models treated as to illustrate in a convincing way the 
feasibility and utility of our new computational method. 

11. Physical Basis of the Stochastic Formulation 
of Chemical Kinetics 

In general, a chemical reaction occurs whenever two or 
more molecules of appropriate kinds collide in an ap- 
propriate way. The "stochastic formulation" of chemical 
kinetics is simply a consequence of taking seriously the fact 
that collisions in a system of molecules in thermal equi- 
librium occur in an essentially random manner. In this 
section we want to sketch briefly how this intuitive notion 
can be expressed in a more precise, quantitative way; a 
more detailed treatment may be found in ref 1. 

IIA. Molecular Collisions. Consider a system composed 
of a mixture of two gas-phase molecular species, SI and 
Sz,  in thermal (but not necessarily chemical) equilibrium 
inside some volume V. For simplicity, let us assume that 
the SI and S2 molecules are hard spheres of radii rl and 
rz, respectively. Then a 1-2 collision will occur whenever 
the center-to-center distance between an SI molecule and 
an S z  molecule decreases to r12 = rl + r2. Let us try to 
calculate the rate at which such collisions are occurring 
in V. Following traditional textbook derivations of the 
molecular collision rate, we begin by picking an arbitrary 
1-2 molecular pair, and denoting by ulZ the speed of 
molecule 1 relative to molecule 2. We then observe that, 
in the next small time interval 6 t ,  molecule 1 will sweep 
out relative to molecule 2 a "collision volume" SV," = 
m122.u12 6t (see Figure l), in the sense that if the center 
of molecule 2 happens to lie inside 6Vwtt at time t, then 
the two molecules will collide in the time interval ( t ,  t + 
St). 

The usual procedure now would be to estimate the 
number of S2 molecules whose centers lie inside SV,,,, 

Flgure 2. Schematic of the stochastic simulation algorithm. 

Flgurc 3. The one-standard deviation envelope (dashed) and two- 
siandara deviation envelope (solid) as CalcJlated from the master 
equalon. superimposed on me resm of one slocnastic s.mmtion run 
(dots). of tne simple isomerization reaction (221 with c = 0 5 and X ,  
= 1000. The simulation run s ploned a1 1 rpd (reactions per dot). 

divide that number by 6 r ,  and then take the limit 6t -- 0 
LO obtain the rate at which the S, molecule is colliding with 
S? molecules. However, this procedure suffers from an 
emharassing difficulty: As 6V,,, - 0, the number of S.? 
molecules whose centers lie inside 6V,, will be either I or 
0. with the latter possibility becoming more and more likely 
as the limiting process proceeds. Strictly speaking. then, 
it is physically meaningless to talk about .'the number at' 
molecules whose centers lie inside bv,,,,, in the required 
limit of vanishingly small 61. 

Instead of following the usual prartice of overriding this 
difficulty with nonrigorous "averaging" arguments, let us 
redirect our inquiry in the following way Since the system 
is in thermal equilihrium, the molecules will at all times 
he distributed randomly and uniform/) throughout the 
containing volume V. Therefore, the prubabilily that the 
center of an arbitrary S2 molecule will he found inside 6V,,, 
at time r will he given by the simple ratio ~ 6 \ ' ~ , , ,  1'; 
moreover, this is true wen in rhe limit of uanishingly small 
6V,,. If we now average this ratio over the velocity 
distributions of the St and S2 molecules. we may conclude 
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Figure 4. Same as Figure 3, except Xo = 5000 and the run is plotted 
at 5 rpd. 

time 

Flgure 5. Same as Figure 3, except Xo = 10000 and the run is plotted 
at 10 rpd. 

that 
6 V,,/V = T’ nr122G 6 t 

= average probability tha t  a particular 1-2 
molecular pair will collide in the  next  
vanishingly small time interval 6 t (2a) 

For Maxwellian velocity distributions the average relative 
speed will be equal to ( 8 k T / ~ m ~ ~ ) ~ / ~ ,  where k is 
Boltzmann’s constant, T the absolute temperature, and 
m12 the reduced mass m1m2/(m1 + mz). In any case, if we 
are given that at time t there are in VX1 of the SI mol- 
ecules and X2 of the S2 molecules, making a total of XlXz 
distinct 1-2 molecular pairs, then it follows from (2a) that2 

XlX2V-’  n r 1 2 2 G  dt  = probability that  a 1-22 
collision will occur some- 
where inside V in the next  
infinitesimal time interval 
(t,  t + d t )  (2b) 

We see then that, although we cannot rigorously cal- 
culate the number of 1-2 collisions occurring in V in any 
infinitesimal time interval, we can rigorously calculate the 
probability of a 1-2 collision occurring in V in any in- 
finitesimal time interval. This means that we really ought 
to characterize a system of thermally equilibrized mole- 
cules by a “collision probability per unit time”-namely, 
the coefficient of dt in (2b)-instead of by a “collision 
rate”. This is why these collisions constitute a stochastic 
Markov process instead of a deterministic rate process. 

IIB. T h e  Stochastic Reaction Constant c,. If one 
applies the foregoing arguments specifically to reactive 
collisions (i.e., collisions which result in chemical alterations 
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Figure 6. A 10 rpd plot of two stochastic simulation runs for reactions 
29, with clX= 5 and c2 = 0.005, corresponding to the deterministic 
steady state Y = 1000; one run starts at Y = 10, and the other run 
starts at Y = 3000. 

of the colliding molecules), one finds in a similar way that 
chemical reactions are more properly characterized by a 
“reaction probability per unit time” instead of a “reaction 
rate”. Thus, suppose the S1 and S2 molecules in V can 
undergo the reaction 

R,:  S, t S, -+ 25, (3a) 

Then in direct analogy with (2a), we may assert the ex- 
istence of a constant cl, which depends only on the physical 
properties of the two molecules and the temperature of the 
system, such that 
c1 dt = average probability tha t  a particular 1-2 

molecular pair will react according to R1 
in the next  infinitesimal time interval d t  

(3b)  
This implies that, if a t  time t there are in VX1 of the S1 
molecules and X2 of the S2 molecules, making a total of 
XlX2 distinct 1-2 pairs, then2 
X,X2cl dt = probability tha t  an  R1 reaction will 

occur somewhere inside V in the  next  
infinitesimal time interval (t ,  t + d t )  

(3c) 
More generally, suppose the volume V contains a 

spatially homogeneous (or thermally equilibrized) mixture 
of X, molecules of chemical species S, (i = 1,. , .,N, and 
suppose further that these N species can interreact through 
M specified chemical reaction channels R, (p = 1,. . .,MI. 
Then we may assert the existence of M constants c, (p = 
1,. . .,AI), which depend only on the physical properties of 
the molecules and the temperature of the system, such that 
c, dt = average probability tha t  a particular 

combination of R, reactant molecules will 
react accordingly in the  next  infinitesimal 
time interval d t  (4) 

By “average” here we mean simply that, if we multiply c, 
dt by the total number of distinct combinations of R, 
reactant molecules in V at time t ,  we will obtain the 
probability that an R, reaction will occur somewhere inside 
V in the next infinitesimal time interval ( t ,  t + dt). 

Equation 4 may be regarded both as the definition of 
the stochastic reaction constant c,, and also as the fun- 
damental hypothesis of the stochastic formulation of 
chemical kinetics. As is shown by more detailed arguments 
in ref 1, we may expect this hypothesis to be valid for any 
molecular system that is kept “well-mixed”, either by 
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Figure 7. A 40 rpd plot of two stochastic simulation runs for reactions 
29, wtth c l X =  5 and c2 = 0.00125, corresponding to the deterministic 
steady state Y = 4000; one run starts at Y = 40, and the other run 
starts at Y = 12000. 

direct stirring, or else by simply requiring that nonreactive 
molecular collisions occur much more frequently than  
reactive molecular collisions. In section I11 we shall take 
up the problem of how to use (4) to actually calculate the 
time evolution of such a system. 

IIC. Connection with the Deterministic Reaction-Rate 
Constant k,. Intuition suggests that the stochastic reaction 
constant c, should be closely related to the more familiar 
reaction-rate constant k,, which forms the basis for the 
deterministic approach to chemical kinetics. For the 
particular reaction R1 in (3a), it turns out that’ 

hl = VCl(X1X2)/(X1)(X2) (5a) 
where the angular brackets denote an average over an 
ensemble of identical systems, However, in the deter- 
ministic formulation of chemical kinetics, no distinction 
is made between the average of a product and the product 
of the averages. Therefore, to the extent that  the det- 
erministic formulation is adequate, we have ( X l X , )  = 
(Xl)(Xz) ,  and (5a) simplifies to 

k , ;  Vcl (5b) 
The presence of the factor V is merely a consequence of 
the fact that the reaction-rate constant is normally used 
in differential equations that contain molecular concen- 
trations (numbers of molecules per unit volume) rather 
than total numbers of molecules. If reaction R1 had three 
reactant molecules instead of two, we would have v2 in- 
stead of V; if R1 had only one reactant molecule (a simple 
isomerization), the factor V would be absent. 

Aside from possible factors of V, there is one other 
practical difference between c, and k, that can arise. To 
see this, consider the reverse of the reaction R1 in (3a): 
R,: 2S, + S, + S, (6a) 

Following (41, we would characterize this reaction by a 
constant cz, such that cz dt is the average probability that 
a particular pair of S1 molecules will react according to Rz 
in the next dt. However, the number of distinct pairs of 
SI molecules in Vis not X I X l  but X 1 ( X 1  - 1)/2!. Hence, 
the probability that an R2 reaction will occur somewhere 
inside V in the next time interval dt is l / z X 1 ( X 1  - l ) c z  d t .  
This leads to the result that 

k2 = V C ~ ( ’ / Z X ~ ( X ~  - l ) ) / ( X i ) ( X i )  V ~ 2 / 2  (6b) 
in contrast to eq 5. In general, if R, has two identical 
reactant molecules then c,  will be larger than k, by a factor 
of 2! = 2; if R, has three identical reactant molecules, this 

factor will be 3! = 6. 
We see then that, from a practical numerical point of 

view, c, and k, will differ a t  most by only two simple 
constant factors. From a theoretical point of view, 
however, the difference between c ,  and k, is much more 
complicated, and relates ultimately to the conceptual 
differences that exist between the stochastic and deter- 
ministic approaches to chemical kinetics. 

111. Calculating the Stochastic Time Evolution of 
a Chemically Reacting System 

The temporal behavior of a spatially homogeneous 
mixture of N molecular species interreacting through M 
chemical reaction channels is governed solely by the 
fundamental hypothesis (4). However, it is not at all 
obvious just how we should go about using (4) to calculate 
this temporal behavior. In this section we shall outline two 
different ways of approaching this problem-the tradi- 
tional “master equation” approach, and the new 
“stochastic simulation” approach. Although their stra- 
tegies are quite different, it is important to keep in mind 
that these two approaches are nevertheless equivalent in 
the sense that both are rigorous consequences of the 
fundamental hypothesis (4). 

IIIA. The Master Equation Approach. The traditional 
method of calculating the stochastic time evolution of a 
chemically reacting system is to set up and solve a so-called 
“master equation” for the system. A good review of the 
master equation approach to chemical kinetics has been 
given by McQ~ar r i e .~  Here we would merely like to 
summarize briefly the main features of the master equation 
formalism in order to provide a conceptual setting for our 
subsequent presentation of the stochastic simulation 
approach. It should be emphasized, though, that the 
master equation itself plays no role whatsoever in either 
the derivation or the implementation of the stochastic 
simulation algorithm. 

The key element of the master equation formalism is 
the “grand probability function” 
P(Xl,Xz,. . .,XN; t )  = probability tha t  there will 

be in V a t  time t X1 
molecules of species S1, and 
X 2  molecules of species 
S2,. , ,, and X, molecules of 
species SN (7)  

A knowledge of this function would evidently provide a 
fairly complete characterization of the “stochastic state” 
of the system at time t. Thus, for example, the kth 
moment of P with respect to X i  

00 M) 

Xi‘”(t) = E ’ z: X , V ( X , , .  . .,x,; t )  
X i = o  X N = o  

( i =  1,. . . , N ;  k = O , l ,  2,. . .) 
gives the “average (number)k of S, molecules in V at time 
t”. By “average” here we mean an average taken over 
many repeated “runs” from time 0 to time t of the sto- 
chastic process defined by (4), each run having the same 
initial numbers of  molecule^.^ The number X ,  of S, 
molecules found at time t will vary from run to  run, but 
the average of the kth power of these numbers will ap- 
proach Xi@)( t )  in the limit of infinitely many runs. Es- 
pecially useful are the k = 1 and k = 2 moments; this is 
because X, ( l ) ( t )  and 

(8) 

(9) 
measure, respectively, the average number of Si molecules 
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in Vat  time t ,  and the magnitude of the root-mean-square 
fluctuations that occur about this average. In other words, 
we may “reasonably expect” to find between 

molecules of S, in V in time t .  The functions X i ( t )  ap- 
pearing in the deterministic reaction-rate equations (1) 
usually approximate the first moments Xi‘l)(t) fairly 
closely, but only rarely is there exact equality. 

The master equation is simply the time-evolution 
equation for the function P(X1, .  . .,XN; t ) .  It may be de- 
rived from (4) by using the addition and multiplication 
laws of probability theory to write P(X1,. . .,XN; t + dt) as 
the sum of the probabilities of the 1 + M different ways 
in which the system can arrive at  the state (Xl , .  . . ,XN) at 
time t + dt:5 

[Xi‘”(t) - Ai(t)] and [Xi“)( t )  + Aj(t)] (10) 

P(X1,. . .JN; t + d t )  = P(X1,. . .,XN; t ) [  1 - 

Here we have defined the quantities a, by 
d t  E c, dt X {number of distinct R, molecular 

combinations in the state 
(Xl , .  . -,-%)I 

in the  state ( X l , ,  . , ,XN) at t ime t 

= probability that  an R, reaction will occur 
in V in (t, t + dt) ,  given that the  system is 

(12) 
Thus, the first term in (10) is the probability that the 
system will be in the state (XI,. . . ,XN) at time t, and then 
remains in that state (Le., undergoes no reactions) in ( t ,  
t + d t ) .  The quantity B, dt gives the probability that the 
system is one R, reaction removed from the state (XI,. 
. . ,XN) at time t ,  and then undergoes an R, reaction in ( t ,  
t + dt). Thus, B, will be the product of P evaluated at  the 
appropriate once-removed state at  t ,  times c,, times the 
number of R, molecular reactant combinations available 
in that once-removed state. Without going into any further 
details, it is sufficient here to simply observe that (11) leads 
directly to the “master equation” 
a M 
-P(X1,. . .,XN; t )  = 2 [B, - a,P(XI,. .,XN; t ) ]  (13) 
a t  ,=1 

In any particular case, the master equation is fairly easy 
to write; however, solving it is quite another matter. The 
number of problems for which the master equation (13) 
can be solved analytically is even fewer than the number 
of problems for which the deterministic reaction-rate 
equations (1) can be solved analytically. In addition, unlike 
the reaction-rate equations, the master equation does not 
readily lend itself to numerical solution on a digital 
computer, owing to the number and nature of its inde- 
pendent variablese6 Attempts to use the master equation 
to construct tractable time-evolution equations for the 
moments, and in particular X,(’)(t) and Ai(t ) ,  are also 
usually unsuccessful; for i t  turns out that, unless all the 
reactions R, are simple monomolecular reactions, the 
equations for the time derivative of any moment will 
always involve higher order moments, thus rendering the 
set of moment equations infinitely open ended. 

In short, although the master equation is both exact and 
elegant, it is usually not very useful for making practical 
numerical calculations. 

IIIB. The Reaction Probability Density Function. Let 
us now put aside the master equation formalism, and 
consider instead how we might go about simulating the 
stochastic time evolution of a chemically reacting system. 
If we are given that the system is in the state (XI,. . . ,XN) 

at time t ,  then essentially all we need in order to “move 
the system forward in time” are the answers to two 
questions: when will the next reaction occur, and what 
kind of reaction will i t  be? Because of the stochastic 
nature of the reactions, though, we may expect that these 
two questions will be answerable only in some 
“probabilistic” sense. 

Prompted by these considerations, we introduce the 
function P(T, y) defined by1 

P(r,  p )  d r  probability that ,  given the state 
(X l , .  . .,XN) at t ime t ,  t he  next  re- 
action in V will occur in the  infin- 
itesimal t ime interval ( t  + r ,  t t r + 
dr) ,  and  will be an R, reaction (14) 

We call P(7, p) the “reaction probability density function”, 
because in mathematical terminology it is a joint proba- 
bility density function on the space of the continuous 
variable T (0 I T < m) and the discrete variable y (p = 1, 
2, .  . .,M). Notice that the variables r and y are quantities 
whose respective values would give us answers to the two 
questions mentioned above. Our first step toward finding 
a legitimate method for assigning numerical values to r and 
p is to derive, from the fundamental hypothesis (4), an 
analytical expression for P(T, y). 

To this end, we begin by defining for each reaction R, 
a function h, according to 
h, number of distinct R, molecular reactant 

combinations available in the state 
(Xl,XZ,. . J N )  (P = 1,. . .,w (15) 

Thus, if R, has the form SI + S2 4 anything, then we will 
have h, = X l X 2 ;  if R, has the form 2S1 4 anything, then 
we will have h, = 1/2X1(X1 - 1). In general, h, will be some 
combinatorial function of the variables XI ,  Xz,. . .,XN. With 
h, so defined, then (4) implies that [cf. ( la)]  
a, dt 3 h,c, dt  = probability that an R, re- 

action will occur in V in ( t ,  t + 
dt),  given that  the  system is in 
the  state ( X l , .  . .,XN) at t ime 
t ( p  = 1, ..., M) (16) 

We now calculate the probability in (14) as the product 
of: Po(r), the probability that, given the state (Xl , .  . . ,XN) 
at time t ,  no reaction will occur in the time interval ( t ,  t + 7); times a, dr,  the subsequent probability that an R, 
reaction will occur in the time interval ( t  + T, t + r + d ~ ) : ~  

(174  
To find an expression for P0(7), we first note that I1 - XUau 
dr’] is the probability that no reaction will occur in time 
dr’ from the state ( X I , .  . . ,XN) .  Therefore 

P(r, p )  dr = Po(r).a, dr 

M 

V = l  
Po(r‘ -I- dr’) = Po(~‘).[l - Z av dr’] (17b) 

from which it is readily deduced that 
M 

v=1 
P0(7) = exp[-Z avr] 

Inserting (17c) into (17a), we conclude that the reaction 
probability density function defined in (14) is given by7 

a, exp(-aor) 

0 otherwise 
P(T, P) = 

where 
a, h,c, (p = 1, ..., M )  

if 0 < r < - and 
p = 1,. . .,M (18) 

(19a) 

1 
and 

a. Z a, 2 h,c, 
M M 

V = l  v=1 
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The expression for P(7, p )  in (18) is, like the master 
equation (13), a rigorous mathematical consequence of the 
fundamental hypothesis (4). Notice that P(7, p )  depends 
on all the reaction constants (not just on c,), and on the 
current numbers of molecules of all reactant species (not 
just on the R, reactants). 

IIIC. T h e  Stochastic Simulation Algorithm. A t  the 
beginning of section IIIB, we observed that essentially what 
is needed to simulate the time evolution of a chemically 
reacting system is some way of specifying when the next 
reaction will occur and what kind of reaction it will be. We 
can now frame this requirement in more precise, math- 
ematical terms: What is needed is a method for drawing 
or “generating” a pair (7, p )  from the set of random pairs 
whose probability density function is P(7, p) in (18). It 
turns out that there is a simple, rigorous way of doing this 
on a digital computer, provided we have access to a reliable 
“unit-interval uniform random number generator”. 

A unit-interval uniform random number generator is a 
computer subprogram which, when called, calculates and 
returns a random (or more properly, a “pseudorandom”) 
number r from the uniform distribution in the unit in- 
terval; that is, the a priori probability that any generated 
number r will fall inside any given subinterval [a,  b] of the 
unit interval [0, 11 is equal to b - a. Nowadays, virtually 
every large digitial computer facility has one of these 
subprograms in its library file that is fast, easy to use, and 
sufficiently reliableas When called, the typical generator 
subprogram calculates the required pseudorandom number 
r by performing a few relatively simple operations on the 
previous pseudorandom number that was calculated. 
Thus, n successive calls will produce a “chain” of n 
pseudorandom numbers. The f irst  number of the chain 
is determined by initializing the generator with a user- 
chosen starter number; different starter numbers will 
result in different but statistically equivalent chains. 

Now, if our goal were to generate a random pair (7, p )  
according to the probability density function 

1 if O <  T < 1 and 0 < p < 1 1 0 otherwise 
P ’ h  Y )  = 

then we could simply generate two random numbers r1 and 
r2 using a unit-interval uniform random number generator 
and take 
r =  rl  
Y = r2 

However, our objective here is to generate a random pair 
(7 ,  p)  according to the probability density function in (18), 
not the probability density function in (20a). As it 
happens, there exists a mathematically rigorous procedure 
for taking two random numbers r1 and r2 from the unit- 
interval uniform distribution, and constructing from them 
a random pair (7, p) from a set described by any specified 
pair probability density fun~ t ion .~  For the pair probability 
density function in (20a), this construction procedure turns 
out to be precisely (20b); for the pair probability density 
function P(7, p )  in (18), the construction procedure turns 
out to be as follows: 

With r1 and r2 two random numbers from the unit- 
interval uniform distribution, take 
7 = ( l / a o )  1n (1/r1) 

and take p to be that integer for which 

@Ob) 

2345 

P -  1 EL 

v= 1 v = l  
2 a, < rzao < a, 

A rigorous proof of the fact that the pair (7, p) constructed 

according eq 21  may be regarded as having been drawn 
from the set of random pairs whose probability density 
function is P(7, p )  in (18) may be found in section VA of 
ref 1. Suffice it here to say that (21a) generates a random 
number 7 according to the probability density function 
P1(7) = a. exp(-ao7), while (21b) generates a random 
integer p according to the probability density function 
P2(p) = a /ao, and the stated result follows, roughly 
speaking, iecause P1(7)’P2(p) = P(7, p) .  

The generating procedure (21) is easy to code in Fortran. 
In particular, (21b) may be implemented simply by cu- 
mulatively adding the successive values al, a2, ... in a 
do-loop until their sum is observed to equal or exceed r2a0, 
whereupon p is set equal to the index of the last a, term 
added. 

Our algorithm for simulating the stochastic time evo- 
lution of a chemically reacting system should now be rather 
obvious (see Figure 2): 

Step  0 (Initialization). Input the desired values for the 
M reaction constants cl,. . .,cM and the N initial molecular 
population numbers XI,. . .,XN. Set the time variable t and 
the reaction counter n both to zero. Initialize the unit- 
interval uniform random number generator (URN). 

S t e p  1. Calculate and store the M quantities al = 
hlcl , ,  . , , U M  = h f i M  for the current molecular population 
numbers, where h, is that function of X1,. . .,XN defined 
in (15). Also calculate and store as a. the sum of the M 
a, values. 

S t e p  2. Generate two random numbers r1 and r2 using 
the unit-interval uniform random number generator, and 
calculate 7 and 1.1 according to (21a) and (2lb). 

S t e p  3. Using the T and p values obtained in step 2, 
increase t by 7, and adjust the molecular population levels 
to reflect the occurrence of one R, reaction; e.g., if R, is 
the reaction in (3a), then increase X 1  by 1 and decrease 
X 2  by 1. Then increase the reaction counter n by 1 and 
return to step 1. 

In returning to step 1 from step 3, notice that it is 
necessary to recalculate only those quantities a, corre- 
sponding to reactions R, whose reactant population levels 
were just altered in step 3; also, a. may be recalculated 
simply by adding to a. the difference between each newly 
changed a, value and its corresponding old value. 

Of course, somewhere in the 1-2-3 loop one will want 
to provide for writing out or plotting the (Xl,. . ., X N ,  t )  
values at‘regular intervals of either t or n. Also, one will 
want to make provisions for halting the calculations when 
either t or n reaches some predetermined value, or if a. 
should ever reach zero. 

If it is desired to estimate any of the moments X,(k)(t) 
of the grand probability function (see eq 8-10), then it will 
be necessary to make several simulation runs from time 
0 to the chosen time t ,  all identical with each other except 
for the initialization of the random number generator in 
step 0. Any moment X j k ) ( t )  3 ( X l k ) t  may then be esti- 
mated directly as the average of the hth power of the 
numbers found for X ,  at  time t in these runs. In a similar 
way, one can estimate various cross-correlation functions 
such as (X,X ) t  - (Xi),(X,),,  etc. The number of runs 
necessary to oktain adequate statistics in these estimates 
will vary with the situation. 

IIID. Remarks. After the simulation algorithm de- 
scribed above had been developed, several earlier simu- 
lation procedures were brought to the attention of the 
author. Two of these deserve to be mentioned here. 

First is the method used by Nakanishi’O in 1972 to 
simulate the oscillating Lotka reactions. Like the com- 
putational method described above, Nakanishi’s method 
is expressly designed to numerically simulate the stochastic 
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the master equation approach provides through the various 
moments of the grand probability function P. 

(6) When ensemble averages (e.g., means, variances, 
correlations) cannot be readily calculated from the master 
equation, the stochastic simulation approach offers a 
universally straightforward (though possibly time-con- 
suming) way of numerically estimating them. 

On the minus side, the stochastic simulation algorithm 
has the following limitations: 

(1) A stochastic simulation computer program often 
requires lots of computer time to execute. From a cost 
standpoint, this fact is somewhat offset by the fact that 
such programs typically occupy only a small amount of 
computer memory. Nevertheless, the stochastic simulation 
algorithm places a high premium on the speed of the 
computer’s central arithmetical unit. 

(2) This computer time limitation essentially limits the 
total number of molecular reactions that can be simulated; 
indeed, the execution time for a given set of reactions will 
be roughly proportional to that number. This in turn 
implies limits on the total numbers of molecules involved 
and/or the total system time that can be simulated. In 
other words, the stochastic simulation algorithm is re- 
stricted to distinctly f ini te  chemical systems. However, 
in view of the fact that chemical reactions are usually 
rather “local” affairs, even for systems which as a whole 
contain enormous numbers of molecules, it is conceivable 
that this limitation might in some cases be more of an 
advantage than a disadvantage. 

(3) The stochastic simulation algorithm requires a 
“reliable” unit-interval uniform random number generator; 
however, a specific criterion for “reliability” is hard to come 
by. Many of the generators available today are quite good, 
and are probably quite adequate for our stochastic sim- 
ulation algorithm, but the possibility of trouble from this 
source should never be ignored. 

(4) The stochastic simulation approach requires making 
several runs to estimate ensemble averages. Depending 
on the dynamical quantity whose ensemble average is 
desired, and also the statistical accuracy required of its 
estimate, the number of runs needed for averaging may 
run afoul of computer time/cost limitations. 

IV. Illustrative Applications of the Algorithm 
We shall now present some numerical results that have 

been obtained in applying the stochastic simulation al- 
gorithm to several spatially homogeneous model chemical 
systems. Although our results may provide a few new 
insights into some of the systems treated; it should be kept 
in mind that the systems themselves are not the primary 
focus of our discussion here; rather, our principle objective 
is to demonstrate that the stochastic simulation algorithm 
is a feasible and potentially useful method for numerically 
calculating the temporal behavior of coupled chemical 
reactions. We shall begin by considering some fairly simple 
systems, and then proceed to three successively more 
complicated systems, namely, the Lotka reactions, the 
Brusselator, and the Oregonator. 

IVA. Some Simple Systems. Perhaps the simplest 
nontrivial “set of coupled chemical reactions” that one can 
write is the irreversible isomerization (or radioactive decay) 
reaction 

x-+ 2 ( 2 2 )  

This is a pedagogically attractive first problem to tackle 
because it can be solved analytically, without approxi- 
mations, in both the deterministic and the stochastic 
formulations. In the deterministic formulation we have 

C 

process described by the spatially homogeneous master 
equation. However, Nakanishi’s computational algorithm 
is neither as exact nor as efficient as ours. Essentially, it 
divides the time scale up into small bins At and then 
decides on the basis of a random number which, if any, 
of the M reaction types should be made to occur in each 
At. This approximate procedure becomes exact in the limit 
At - 0, but unfortunately the efficiency of the procedure 
becomes nil in that same limit. 

Much closer to our algorithm from an operational 
standpoint is the computational scheme proposed by 
Bunker et al.” in 1974. In terms of our notation, Bunker 
et al. use the same p-selection process as (21b), but they 
replace the 7-selection process in (21a) by simply 7 = l /ao .  
Since l /ao  is precisely the mean of the 7 values generated 
according to (21a), this substitution is a very reasonable 
approximation. Bunker et al. correctly characterize their 
computational procedure as a “hybrid method, interme- 
diate between differential equation solution and Monte 
Carlo”. However, they derive their method in a rather 
heuristic way within the context of the deterministic 
formalism instead of the stochastic formalism, and it is not 
a t  all clear from their development in precisely what re- 
spects their method should be regarded as approximate. 
From the standpoint of our exact computkional procedure, 
though, the method of Bunker et al. appears to be 
somewhat better than its inventors may have supposed. 

The stochastic simulation algorithm described in this 
paper has both its advantages and its limitations. Al- 
though these can be more readily appreciated in the 
context of the specific applications presented in the next 
section, we shall now summarize briefly the principle 
strengths and weaknesses of this computational approach. 

On the plus side, the method has the following ad- 
vantages: 

(1) The stochastic simulation algorithm is exact, in the 
sense that it takes full account of the fluctuations and 
correlations implied by the fundamental hypothesis (4). 
This is a consequence of the fact that, like the spatially 
homogeneous master equation, the stochastic simulation 
algorithm has been derived from (4) in a mathematically 
rigorous way. 

(2) Unlike standard numerical methods for numerically 
solving systems of differential equations, the stochastic 
simulation algorithm never approximates infinitesimal 
time increments dt by finite time steps At.12 This will be 
especially advantageous when dealing with systems in 
which the molecular population levels can change suddenly 
and sharply with time. 

(3) As is evident from Figure 2, the stochastic simulation 
algorithm is very easy to code in Fortran for any specified 
set of chemical reactions, no matter how complicated or 
highly coupled these reactions may be. 

(4) A stochastic simulation computer program will 
normally require very little in the way of computer memory 
space. For N molecular species and M reaction channels, 
the principle variables to be stored are the N X ,  values, 
the M c, values, and the M + 1 a, values-a total of only 
N + 2M + 1 in all. Notice in particular that, although the 
amount of computer memory required does depend on the 
number of species N, i t  does not depend on the numbers 
of molecules of these various species. 

(5 )  In terms of the “statistical ensemble of systems” 
envisioned in the master equation approach, the stochastic 
simulation algorithm essentially provides us with infor- 
mation on the time behavior of individual ensemble 
members, such as one would observe in an ideal laboratory 
experiment. This complements quite nicely the infor- 
mation on the time behavior of ensemble averages which 
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the reaction-rate equation [cf. (l)] 

d X l d t  = -cx ( 2 3 4  

X ( t )  = Xoe-ct  (23b) 

whose solution, given that X = X o  at t = 0, is 

In the stochastic formulation, we may easily derive the 
master equation [cf. (13)] 
a 
-P(X; t )  = c [ e x , x , ( X  + l ) P ( X  + 1; t )  - at 

mx; t)l (24a) 
where the “Kronecker epsilon” q; is by definition zero if 
i = j and unity if i # j .  This equation can be solved for 
the initial condition P ( X ;  0) = 6 x,xo by dealing with it 
successively for X = X o ,  X = X o  - 1, X = X o  - 2, etc. In 
this way we find the solution 

(24b) 
KO! e-cxt [I - -ct x,-x P ( X ;  t )  = e l  

X ! ( X o  - X ) !  
( X  = 0,  1,. . .,Xi)) 

This is in the standard form of a binomial or Bernoulli 
probability function, and it is not difficult to calculate its 
mean and rms deviation directly from the definitions (8) 
and (9). They turn out to be 

and 

The fact that the stochastic mean X ( l ) ( t )  in (24c) is exactly 
equal to the deterministic function X ( t )  in (23b) will rarely 
be true for more complicated chemical systems. 

To apply our stochastic simulation algorithm to reaction 
22, we put M = N = 1, c1 = c ,  X 1  = X ,  and hl = X in 
Figure 2 (and we also note that the r2 calculations in step 
2 can be omitted). In Figure 3 we show, for 

how the results found in a typical stochastic simulation 
run of reaction 22 compare with the predictions of the 
master equation. The two dashed curves in Figure 3 are 
X ( l ) ( t )  f A( t )  (the one-standard deviation envelope), and 
the two solid curves are X ( l ) ( t )  f 2A(t)  (the two-standard 
deviation envelope). The dots, of course, represent the 
trajectory of the stochastic simulation run. A dot has been 
plotted a t  the ( t ,  X )  value found immediately after the 
occurrence of each molecular reaction. No attempt has 
been made to smooth these dots with a continuous con- 
necting curve, so they essentially represent the “raw 
output” of the simulation run. The horizontal spacing 
between the dots gives a direct measure of the time 
separation between successive reactions, and as we should 
expect, the average time separation between successive 
isomerizations (decays) increases as the number of X 
molecules decreases. Because there were 1000 X molecules 
at  t = 0, a total of 1000 reactions are simulated here, 
requiring exactly 1000 passes through the 1-2-3 loop of 
Figure 2. In this particular simulation run, all but 6 of the 
X molecules had isomerized (decayed) by t = 10; the last 
X molecule did not disappear until t = 15.6. The unit of 
time will depend upon the units assigned to the reaction 
constant c ,  and is irrelevant to our purposes here. 

The procedure used to obtain this plot was as follows: 
First, the computational steps outlined in Figure 2 were 
Fortran coded into a simulation program for reaction 22; 
provisions were made in this program so that the current 
( t ,  X )  value would be written out on a mass-storage f i le  

X ( ’ ) ( t )  = Xoe-ct  (24c) 

A ( t )  = [Xoe-c t ( l  - e-ct)]1’2 (24d) 

c = 0.5, X o  = 1000 (Figure 3) (25) 

0 , , . ,  
0 I 2  3 4 5  8 7 8 9 10 

t ime 

time 

- 
L I _i 

LE4 - 

1 
0 . . , . , . . . , , , . .  . . . , , . , . . . . .  
0 I ~ z m o s x , u m m J o I  

number of Yl molecules 

Figure 8. Results of a 1 X IO6 reaction stochastic simulation run of 
the Lotka reactions (38), with c , X =  IO, cp  = 0.01, and c3  = IO, 
corresponding to the deterministic steady-state Y 1  = Y2 = 1000. (a) 
Combined 100 rpd plots of Y ,  (left-shifted curve) and Y2 (right-shifted 
curve) vs. tfor 0 I t <  IO. (b) A 100 rpd plot of Y 1  vs. tfor 0 I t 
C 30. (c) A 100 rpd plot of Y 2  vs. Y ,  for 0 5. t < 30. 
after every reaction, and also on paper after every five 
reactions. This simulation program was then executed on 
a Univac 1110 computer, and the resulting paper output 
was examined for the purpose of determining how the data 
should be plotted. Then, a plotting program was written 
to read off the data from the mass-storage file and con- 
struct the plot. The plotting program consisted primarily 
of Fortran calls to appropriate subroutines from the 
standard DISSPLA (Display Integrated Software System and 
Plotting Language) library. Execution of the plotting 
program on the Univac 1110 computer caused the plot to 
be constructed on a device called an FR-80, which es- 
sentially is a cathode ray tube whose screen image is 
automatically recorded on photographic film; the resulting 
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Figure 9, Same as Figure 8 for a secondsimulation run, which differed 
from the first only in the choice of the "starter number" for the 
unit-interval uniform random number generator. 

film negative, together with an enlarged, X 11 in. 
Xerox positive print, constitute the output of the plotting 
program run. 

This two-step procedure (a simulation program followed 
by a plotting program) was used in obtaining all the plots 
shown in this paper. However, the numbers of reactions 
allowed to occur between the sampling outputs, both on 
the plotting file and on paper, can be varied as the situ- 
ation warrants. In Figure 4 we show another simulation 
run of reaction 22, this one with 
c = 0.5, X o  = 5000 (Figure 4) (26) 
As before, the dashed curves show the one-standard de- 
viation envelope as calculated from the master equation 
(24), while the solid curves form the two-standard deviation 
envelope. However, in this run we chose to write out the 
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current state ( t ,  X )  on the plotting file after every 5 re- 
actions, and on paper after every 25 reactions. 

Henceforth, we shall specify the number of reactions 
that occur between each dot that appears on a simulation 
output graph by the notation 

rpd = reactions per dot 
Thus, Figure 3 is a 1 rpd plot, while Figure 4 is a 5 rpd plot. 
In Figure 5 we show a 10 rpd plot of a simulation run of 
reaction 22 for 

(27) 

c = 0.5, X o  = 10000 (Figure 5) (28) 
Figures 3-5 illustrate two important, but certainly not 

unexpected, points: First, as the initial number of X 
molecules is increased, the temporal behavior of the system 
assumes more and more the appearance of the continuous, 
deterministic process described by the reaction-rate 
equation (23). Second, regardless of the initial number of 
X molecules, the temporal behavior as calculated by the 
stochastic simulation algorithm is entirely consistent with 
the predictions of the master equation (24). Of course, we 
are not attempting to prove here that the stochastic 
simulation algorithm provides a correct description of the 
time evolution of a chemically reacting system, for this has 
already been established in an a priori manner in sections 
I1 and 111; rather, our purpose here is simply to demon- 
strate that this computational method is capable of being 
implemented. Figures 3-5 offer rather convincing proof 
of the feasibility of the stochastic simulation algorithm for 
the simple reaction 22. In this connection, we might note 
that the total cost of simulating and plotting the run shown 
in Figure 5 was about $5, the cost being split roughly 
equally between the simulating and plotting programs. 

We turn next to a somewhat more complicated set of 
reactions: 
- 
x +  Y L  2Y ( 2 9 4  

2Y% z (29b) 
Here, the bar over X signifies that the molecular popu- 
lation level of this species is assumed to remain constant, 
either because the system is open to a large reservoir of 
X, or else because X is initially present in such great 
abundance that its depletion by reaction 29a will be 
negligible over any reasonable period of time. 

The set of reactions (29) is of some interest because 
Malek-Mansour and Nicolis13 recently claimed that it 
provides a refutation of the basic stochastic hypothesis (4): 
They proved that the master equation for reactions 29 is 
such that aP(F t) /at = 0 if and only if Y = 0; yet, the 
reaction-rate equation for (29) 

dY/dt  = c ~ X Y  - 2(cZ/2)Y2 (30) 

Y ,  = 0 (3W 
evidently possesses two steady-state solutions 

and 
Y,  = C l X I C ,  

and it can be shown that the first of these is mathemat- 
ically unstable while the second is mathematically stable. 
This lead Malek-Mansour and Nicolis to conclude that the 
stochastic formalism upon which the master equation is 
based "seems to have destroyed the stable solution [31b] 
of the macroscopic equation 1301 and preserved, instead, 
the physically unacceptable trivial (and unstable) solution 
[31a]: Even if the system starts initially with a great 
number of [Y] molecules, it will be driven eventually to 
extinction".13 

Since the master equation and the stochastic simulation 
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Figure 10. Combined 100 rpd plots of X(dark curve), Y ,  (upper 
oscillating curve), and Y2 (lower oscillating curve) vs. t for a stochastic 
simulation run of the closedLotka reactions, with c ,  = 0.0001, c2 = 
0.01, and cg = 10. 

algorithm are logically equivalent to each other, we can test 
this conclusion simply by making a few simulation runs 
of reactions 29. For this, we need only apply the procedure 
outlined in Figure 2 with M = 2, N = 1, X1 = Y, hl = XU, 
and h2 = Y(Y - 1)/2.  In Figure 6 we show a 10 rpd plot 
of two such runs with 

for the initial conditions Y = 10 and Y = 3000. Contrary 
to what we might have expected from the result of Ma- 
lek-Mansour and Nicolis, we see that both of these initial 
conditions lead to a situation in which the Y molecule 
population level fluctuates in a random but apparently 
stable manner over values in the vicinity of clX/cz = 1000, 
in reasonable agreement with the reaction-rate equation 
prediction (31b). In Figure 7 we show a 40 rpd plot of two 
more simulation runs of (29), these with 
c l X =  5, cz = 0.00125 (Figure 7) (33) 
for the two initial conditions Y = 40 and Y = 12000. Again, 
both initial conditions lead to stable random fluctuations 
over values in the vicinity of clX/cz = 4000. The only 
essential difference between the plots in Figures 6 and 7 
is that the relative fluctuations in Figure 7 are about half 
as large as those in Figure 6: this is due to the fact that 
the molecular population levels in Figure 7 are four times 
larger than those in Figure 6. 

The fact that the master equation for reactions 29 
predicts a stable stationary state at  Y = 0 can be easily 
understood directly from (29): clearly, if it should ever 
happen that the Y molecule population level ever drops 
to exactly zero, then that condition will persist indefinitely. 
However, it is very misleading to say that, if we start out 
with Y > 0, the system will be “driven” to Y = 0; for, as 
Figures 6 and 7 show quite convincingly, in such cases the 
Y molecule population level exhibits a definite affinity for 
values near clX/c2. Of course, it  is always possible that 
a chance, momentary, pairwise confluence of all the Y 
molecules could result in their complete annihilation via 
reaction 29b; and because this is possible, it will eventually 
happen if we just wait long enough (t - a). However, this 
contingency is not especially significant from a macro- 
scopic point of view; indeed, an examination of the tra- 
jectories in Figures 6 and 7 for t > 2 shows that, even for 
these relatively small numbers of molecules, one would 
have to wait an incredibly long time before observing a 
random fluctuation large enough to carry the system from 
the vicinity of Y = clX/cz down to Y = 0. More to the 
point here, though, is the fact that this contingency does 
not imply that the “transition probabilities [used in the 

c I X =  5, c2 = 0.005 (Figure 6) (32) 

stochastic approach] are not correctly written”, as was 
concluded by Malek-Mansour and Nic01is.l~ 

Shortly after the simulation runs in Figures 6 and 7 had 
been performed, the author received a preprint of an article 
by Gortz and Walls,14 in which essentially these same 
conclusions were arrived at  using an ingenious analytical 
technique based on the master equation. The reader is 
invited to consult their paper for further insights into this 
matter. Suffice it here to say that the objections to the 
stochastic formulation of chemical kinetics which Ma- 
lek-Mansour and Nicolis13 have raised on the basis of their 
analysis of reactions 29 are now seen to be groundless. The 
fact that our numerical simulation algorithm was helpful 
in clarifying this essentially theoretical matter obviously 
speaks well for the potential usefulness of the algorithm. 

In addition to providing information on if and how a 
steady state is approached, the stochastic simulation 
algorithm can also be used to estimate various statistical 
properties of the steady state. For example, returning to 
the situation illustrated in Figure 6 [reaction 29 with c1 
and c2  as given in (32)], it is important to know just how 
well the population mean in the steady state is approx- 
imated by the reaction-rate equation estimate clX/cz = 
1ooO; and it is also important to know how large the natural 
random fluctuations will be about that steady-state mean. 
Essentially what we are askin for here are the asymptotic 

solution to the master equation for reactions 29. To obtain 
estimates of these values, we proceeded as follows: Starting 
with 1000 Y molecules at  t = 0, we made a stochastic 
simulation run to t = 0.3, at  which time we recorded the 
number of Y molecules present; to simulate this length of 
system time required roughly 2000 reactions, and this was 
judged sufficient to make the system “forget” the initial 
number of Y molecules. Repeating this process 4000 times, 
each time using different random numbers from URN (see 
Figure 2), we then estimated the mean and variance of the 
Y values found a t  t = 0.3 by a straightforward averaging 
procedure. The results of these calculations were 

Y S ( l )  = 999.9 k 1.2 and A: = 1450 f 75 (34) 
where the f uncertainties represent 95% confidence 
limits. The deterministic estimate of 1000 for the 
steady-state mean YS(l) is obviously well within our un- 
certainty limits. As for the steady-state variance A:, a 
subsequent analytical calculation furnished by Walls,15 
using the computational procedure of Gortz and Walls,14 
gave the result A: = (3/2)YSc1) for reaction 22; in the 
present case this would imply A: = 1500, which is obvi- 
ously quite consistent with our result in (34). 

The fact that the steady-state mean and variance are 
not equal to each other for reactions 29 is related to the 
fact that these reactions do not operate under conditions 
of chemical equilibrium (the reactions are irreversible, and 
they are also “driven” by the effective influx of X mol- 
ecules). Another simple set of reactions which does not 
operate under conditions of chemical equilibrium is the 
set 

values of the first moment v1 7 ( t )  and variance A2(t) of the 

-C 
X A  Y (35a) 

2Yc1. z (35b) 
It  has been shown by Nicolis,16 Mazo,17 and Gortz and 
Walls,14 using three different analytical techniques based 
on the master equation, that reactions 35 will have A; = 
(3/4)Y8(l). The significance of this result has been com- 
mented on by several authors.18J9 Taking 

c i x =  106, cz = 1 (36) 
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Flgure 11. Same as Figure 10, but for another simulation run in which 
only the random number starter was changed. 

which yields a deterministic estimate for Yil)  of (c lX/cz )1 /2  
= 1000, we applied our stochastic simulation procedure to 
these reactions in essentially the same way that we did in 
obtaining the estimates in (34). The results were 

YS( l f=  1000.7 k 0.9 and As2 2: 762 k 35 (37)  
where again the f uncertainties represent 95% confidence 
limits. Our result for A: is obviously consistent with the 
theoretically predicted value of 750. 

The computer programs used to obtain the statistical 
estimates in (34) and (37) are easy to write, especially since 
they require no periodic write-outs for subsequent plotting. 
However, in performing this type of calculation, care must 
be taken to make each run long enough to wipe out effects 
due to the choice of the initial state. Moreover, as is typical 
of Monte Carlo estimates of averages, if one wishes to 
reduce the uncertainties by l/f, one must make f times 
as many runs. These two features can conspire to make 
such calculations rather time consuming on a computer, 
and hence rather expensive; for example, it cost about $160 
to obtain the figures quoted in (37). The chief advantage 
of the method is that it is universally applicable, and does 
not require complicated or specialized analytical tech- 
niques. The method is therefore best reserved for cases 
in which an analytical calculation either cannot be made 
a t  all, or else is of questionable validity because of various 
approximations employed. 

IVB. T h e  Lotka Reactions. In 1920, Lotka observed 
that the set of coupled, autocatalytic reactionsz0 
- 
x t Y , L  2Y, (38a) 

Y, t Y, 2+ 2Y2 (38b) 

Y2% z ( 3 8 ~ )  

possessed some remarkable dynamical properties.21 
Several years later, Volterra independently investigated 
the use of the corresponding reaction-rate equations 
d Y , / d t  = ClXY1 - ~2 Y1 Y ,  (394 
dYz/dt = CZ Y1 Y2 - ~3 Y2 (39b) 
to mathematically model a simple predator-prey eco- 
system.22 Although the predator-prey interpretation of 
the Lotka reactions is a bit crude and cannot be pushed 
too far, it is helpful for visualizing and understanding the 
dynamics of these reactions. Thus, reaction 38b describes 
how a certain predator species Y2 reproduces by feeding 
on a certain prey species Y1; reaction 38a describes how 
Y1 reproduces by feeding on a certain foodstuff X, which 
is assumed here to be only insignificantly depleted thereby; 
and the isomerization 38c describes the eventual demise 

0 5 IO 15 M 25 30 
b m e  

smo / I  

P low 2Mo m 4wo 5ow Bwo 
number of Y1 molecules 

Figure 12. Results of a 1.5 X lo6 reaction stochastic simulation run 
of the Lotka reactions includingreaction 38d, with c1 = 0.0002, c p  
= 0.01, cB = c 4  = 10, and X =  lo5 (constant), corresponding to the 
deterministic steady-state Y1 = Y2 = 1000. (a) A 200 rpd plot of Y ,  
vs. tfor 0 I t 5 30. (b) A 200 rpd plot of Y2 vs. Y1 for 0 I t I 30. 

of Y2 through natural causes. 
A steady state system would be characterized by the 

condition 
dYl/dt = dYZ/dt = 0 
and it is easy to show from (39) that this condition is 
satisfied when 
Yi = Yi, E ~ 3 1 ~ 2  and Y2 = YZ, C l X / C z  (40) 
That is, if we start out at t = 0 with Yl = YIB and Y2 = Y2,, 
then the deterministic reaction-rate equations predict that 
this situation will persist indefinitely. However, as we shall 
now see, the physically more realistic stochastic approach 
tells quite a different story. 

A stochastic simulation computer program for the Lotka 
reactions was written according to the scheme in Figure 
2 (putting M = 3, N = 2, XI = Y1, X2 = Yz,  hl = XU,, hz 
= YIYz ,  and h3 = Y2): Figures 8a, 8b, and 8c show three 
plots of one simulation run of this program with 
c lX= 10, c2 = 0.01, c3 = 10 (Figures 8, 9) 

for the initial condition Yl = Y18 = 1000 and Yz = Yz, = 
1000. Figure 8a shows the Yl and Yz  population levels 
plotted against time, at 100 rpd, over the interval 0 5 t 
5 10; the leading (left-shifted) curve is the Yl (prey) 
population, and the lagging (right-shifted) curve is the Y2 
(predator) population. Instead of remaining constant at 
the 1000 level, as the reaction-rate equations (39) predict, 
the Yl and Y2 populations are seen to develop a pro- 
nounced oscillatory behavior. These oscillations are ev- 

(41) 
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time 

Figure 13. Combined 50 rpd plots of X(dark curve), Y, (upper oscillating 
curve), and Y2 (lower oscillating curve) vs. time, showing what would 
have happened in the run of Figure 12 if Xhad not been held constant. 

idently characterized by a fairly stable frequency and phase 
difference, but a markedly unstable amplitude. Figure 8b 
is a 100 rpd plot of Yl only over the interval 0 5 t I 30, 
illustrating more completely the stability of the frequency 
and the instability of the amplitude. And Figure 8c is a 
100 rpd plot over this same time interval showing the 
counterclockwise “orbits” traced out in the YIYz  plane. 
The simulation run from which the plots in Figures 8a-c 
were constructed contained a total of 1 X lo6 reactions. 
The cost of compiling and executing the simulation 
program for this run on the Univac 1110 computer was 
about $40, and the subsequent plotting programs averaged 
about $9 per graph. 

Figures 9a, 9b, and 9c are 100 rpd plots of a second 
Lotka simulation run; this run was identical with the first 
except that a different chain of random numbers was used 
(i.e., the “starter number” for the unit-interval uniform 
random number generator was changed). A comparison 
of Figures 8a and 9a shows that, although the frequencies 
and the phase-differences are essentially the same in both 
runs, the amplitude variations are quite different: fur- 
thermore, at any particular instant (e.g., t = 10) the Yl and 
Y2 values in Figure 9a are usually quite different from the 
Yl and Y z  values in Figure 8a. Although it might seem 
from these two figures that the vagaries in the amplitude 
are less pronounced in the second run than in the first run, 
a comparison of Figures 8b and 9b shows that this is true 
only temporarily: between t = 12 and t = 22 in the second 
run, the population oscillations become quite extreme, 
ranging over two full orders of magnitude. The Yl-Y2 
phase relationship in these large amplitude oscillations is 
illustrated in the 100 rpd plot in Figure 6c; the quasi- 
concentric orbits in this figure were traced in the coun- 
terclockwise direction, just as in Figure 8c. 

In retrospect, it is not hard to see why the Lotka model 
exhibits an out-of-phase oscillatory behavior: A rise in the 
prey population provides food for the reproduction of the 
predators, and hence is followed shortly by a rise in the 
predator population; but this leads to an increased con- 
sumption of preys and an eventual decline in the prey 
population; the resultant food shortage for the predators 
leads to a decline in their population, which in turn permits 
the prey population to increase again; and so on. In fact, 
if we were to solve the reaction-rate equations (39) for an 
arbitrary initial state (Ylo, YzO), the solution, when plotted 
in the Y1Y2 plane, would be a counterclockwise closed orbit 
about (YlS, Y,), passing through the initial point (Ylo, Y20), 
and shaped very much like the loops in Figures 8c and 9c. 
Further analysis of eq 39 would reveal that this solution 
orbit is, in mathematical terms, “neutrally stable”; Le., if 

perturbed slightly to a point (Yl l ,  YZl)  off of that orbit, 
the system will begin orbiting on the solution orbit which 
passes through ( Yll ,  Yzl) .  Thus, one way of viewing the 
behavior of the Lotka model is to say that the microscopic 
random fluctuations inherent in the reactions cause the 
system to execute a “drunkards walk” over the continuum 
of concentric, neutrally stable solution orbits, staggering 
sometimes outward and sometimes inward. In the case of 
Figure 9c, we see that the system has wandered out to 
solution orbits that approach to within less than 40 units 
of the Yl and Y2 axes. Clearly, it is only a matter of time 
before a random fluctuation carries the system’s phase 
point into one of these two axes. When that happens, the 
orbiting will cease: For if the system point, in its coun- 
terclockwise orbiting, should ever graze the Y2 axis, then 
the prey species Yl will become extinct, and reaction 38c 
will drive the system point straight down the Y2 axis into 
the origih. Similarly, if the system point should ever graze 
the Yl axis, then the predator species Yz  will become 
extinct, and reaction 38a will drive the system point 
straight out the Yl  axis to infinity. In short, no matter 
what the state of the system is initially, it will eventually 
wind up in either the state (Yl = 0, Y2 = 0) or the state 

The Lotka reactions thus provide a striking example of 
a model chemical system whose temporal behavior cannot 
be realistically calculated without taking specific account 
of the random fluctuations that occur at the microscopic 
level of the interactions. Although it is true that a con- 
siderable amount of information about the behavior of the 
Lotka model can be extracted from the deterministic 
formulation of chemical kinetics [i.e., the reaction-rate 
equations (39)], the stochastic formulation clearly provides 
a much more natural framework for this. In particular, 
the stochastic simulation algorithm leads routinely and 
automatically to a correct numerical description of the time 
evolution of the Lotka model without the need for any 
circumspect considerations of analytical stability. 

The numerical parameters used in Figures 8 and 9 are 
the same as used earlier by NakanishilO in his stochastic 
simulation calculations on the Lotka model. Nakanishi 
did not exhibit Yl-Yz phase plots as in Figures 8c and 9c, 
but he did subject his data to a detailed time-series analysis 
to determine the frequency components of the oscillations. 
As mentioned in section IIID, our stochastic simulation 
method represents a improvement over Nakanishi’s me- 
thod in terms of both rigor and ease of application. Also, 
our results bring out somewhat more clearly than did 
Nakanishi’s results the relative ease with which the Lotka 
system can progress from the stationary state (Yls, Y2,) to 
the absorbing states (0,O) or (m,  0). 

Figure 10 is a 50 rpd plot of the Lotka reactions showing 
what happens when we “close” the system and let the X 
population be depleted by reaction 38a in the normal way. 
The modification required in the simulation program to 
effect this depletion is trivial: in the section of the program 
which increments the Yl population by 1 after an R1 
reaction has occurred, we simply add an instruction to 
decrement the X population by 1. In the run plotted in 
Figure 10 we used essentially the same parameters as in 
the previous Lotka runs, but we have allowed X to de- 
crease from an initial value of lo5: 
c1 = 0.0001, e2 = 0.01, e3 = 10 (42) 

The heavy appearance of the X population trajectory is 
due to a “photographic burn” in the plotting hardware 
caused by the severe overlapping of successively plotted 
dots. The curve that oscillates about the 1000 level until 

(Y1 = a, Yz = 0).  

(Figures 10, 11) 

The Journal of Physlcal Chemistry, Vol. 81, No. 25, 1977 



2352 Daniel T. Gillespie 

that the random number starter was changed. Again we 
see the extreme variability in the Lotka system: the 
vanishing of the Y2’s occurs a t  t N 28 in Figure 11, as 
compared with t N 19 in Figure 10; also, the final number 
of Yl’s in Figure 11 turns out to be 7232, as compared with 
16449 in Figure 10. 

The behavior illustrated in Figures 10 and 11 suggests 
that a number of modifications could be made in the Lotka 
reactions (38) to make them a more realistic model of 
naturally occurring predator-prey systems. As a simple 
illustration, suppose we add a fourth reaction to (38a-c) 

Y, --t z (38d) 
which allows the preys to die of natural causes in the same 
way as the predators. Taking 

c4 

c1 = 0.0002, c2 = 0.01, c3 = c4 = 10 

and starting with X = lo5 and Yl = Yz = lo3, two sto- 
chastic simulation runs were made. In one of these runs 
X was held constant, and in the other X was allowed to 
be depleted by reaction 38a. The results of the constant 
X run are plotted at 200 rpd in Figures 12a and 12b. These 
two plots are obviously very similar to the plots in Figures 
8 and 9 (except that this modified run contains about half 
again as many reactions). Indeed, the reaction-rate 
equations for reactions 38a-d predict that, if X is held 
constant at lo5 and el,.  , . , c4 have the values in (43), then 
we will have dYl/dt = dY2/dt = 0 for Yl = Yz = 1000, just 
as we had in the runs in Figures 8 and 9. In Figure 13 we 
show a 50 rpd plot of the other simulation run, in which 
X is allowed to be depleted. As in Figures 10 and 11, the 
heavy curve is the X trajectory, the upper oscillating curve 
is the Yl trajectory, and the lower oscillating curve is the 
Yz trajectory. As expected, Yl as well as Y, becomes 
extinct in this case. However, it is intriguing to note that 
Y2 becomes extinct considerably before Yl does, even 
though the natural life expectancy of a Yl is the same here 
as the natural life expectancy of a Yz (i.e., 1/c4 = l/c3). 
It is also interesting to note that over 40% of the initial 
amount of X remains after both Yl and Yz have become 
extinct. 

It is obviously possible to modify the Lotka reactions 
in many other ways to obtain models of various other 
predator-prey systems. Suffice it here to say that, so long 
as these modifications can be expressed as additional 
chemical reactions and/or additional chemical species, they 
can be easily incorporated into our stochastic simulation 
computer program in a completely exact manner. 

IVC. The Brusselator. The neutrally stable character 
of the oscillations in the Lotka model, as illustrated by the 
phase trajectory plots in Figures 8c and 9c, leads us to 
wonder if there exists a model set of coupled chemical 
reactions with “positively stable” oscillations. More 
precisely, is there a model chemically reacting system with 
two intermediate species Yl and Yz which has the property 
that, no matter what its initial state, the system will 
eventually wind up orbiting around a well-defined, closed, 
stable path in the YIYz plane? This question has been 
answered in the affirmative by workers in who 
have devised the following example of such a “limit cycle” 
chemical oscillator:20 

(43) 
(Figures 12, 13) 

- 
XI 2 Y, (44a) 

0 4  . , , , . , , , I 
0 8 4 I I 10 18 I4 

time 

---- i 

0 l m o 2 m o 2 m o l o m ~ m m m  
number or Y1 molecules 

Figure 14. Results of a 2 X 10’ reaction stochastic simulation run of 
the Brusselator reactions (44), with c,Xl = 5000, c,X, = 50, c3 = 
0.00005, and c4 5 ,  corresponding to the deterministic steady state 
Y ,  = 1000 and Y, = 2000. (a) A 100 rpd plot of Y ,  vs. t for 0 I 
t < 14. (b) A 100 rpd plot of Y2 vs. t for 0 < t < 14. (c) A 50 rpd 
plot of Y ,  vs. Y1 for 0 I t <  18.1. 

zooming off the graph at about t = 19 is the Yl population 
curve. The curve that oscillates about a steadily decreasing 
value until it reaches zero a t  about t = 19 is the Yz 
population curve. The waviness of the X population curve 
is a direct consequence of the Yl oscillations, since the 
drain on X will be large when Yl is large and small when 
Yl is small. It is interesting to note that the depletion in 
the prey foodstuff X is more detrimental to the predators 
than to the preys. After the Y2’s become extinct a t  t N 

19, the remaining 15000 or so X’s are simply converted 
into Yl’s via reaction 38a. (Notice that the Yl’s do not use 
X for sustinence but only for reproduction.) Figure 11 
shows another run identical with that in Figure 10 except 

- x, t Y, E!+ Y, + z, 
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Figure 15. A 50 rpd plot of Y2 vs. Y ,  for four stochastic simulation 
runs of the Brusselator (44), each run having the same reaction pa- 
rameters as in Figure 14 but different initial values of Y1 and Y2.  

time 

Flgure 16. Showing what would have happened in the run of Figure 
14 if the system had been closed to species XI. The exponentially 
decaying curve in (a) and (b) is a 250 rpd plot of XI; the oscillating 
Y1 curve in (a) and Y2 curve in (b) are both plotted at 100 rpd. 

This set of reactions has been dubbed the “Brusselator” 
by T y ~ o n , ~ ~  and has been the object of extensive study by 
a number of  worker^.^^,^^ The deterministic reaction-rate 
equations for the Brusselator are evidently 
dY,/dt = ~1x1 - c ~ X Z Y ~  + 

(c3/2) y 1 2  y Z  - C q y 1  (45a) 
(45b) dYz/dt = ~ 2 x 2  Y1- (~3/2)Y1’Yz 

and it is easy to show from these that dY, f dt = dY2/dt 
= 0 when Yl = YIB and Yz = Y2,, where 

Yis c i x i / c 4  (46a) 

I 
. , . . . . , . . , . , . .  , 0 

0 5 10 is M 25 Ea 35 
time 

Figure 17. Showing what would have happened in the run of Figure 
14 if the system had been closed to species X p .  The heavy, smooth 
curve is X 2 ,  plotted at 250 rpd; the decaying jagged curve is Y 2 ,  and 
the horizontal jagged curve is Y1, both plotted at 100 rpd. 

Following the prescription of Figure 2, a stochastic 
simulation computer program was written for the 
Brusselator (putting M = 4, N = 2, X1 = Y1, XZ = Yz, hl 
= X1, h2 = X2Yl, h3 = Y2Y1(Yl - 1)/2, and h4 = YJ. With 

C1Xl = 5000, ~2x2 = 50, ~3 = 

0.00005, c4 = 5 (Figures 14-17) (47) 
a simulation run was made with Yl and Yz initially set to 
the values YIB = 1000 and Yz, = 2000. Figures 14a and 14b 
are 100 rpd plots of Yl vs. t and Yz vs. t ,  respectively, over 
the time interval 0 I t I 14. Clearly, Yl and Yz do not 
remain at  the stationary values Yls and Y2,, but commence 
almost immediately to oscillate vigorously in an apparently 
regular and stable way. The sharp rises in Yl in Figure 
14a coincide with the sharp falls in Yz in Figure 14b so 
closely that they appear to be single vertical lines when 
the two figures are superposed. It is worth noting that 
these sudden, drastic changes in the molecular population 
levels pose no special problems to our stochastic simulation 
procedure. Figure 14c is a 50 rpd plot of Yl vs. Yz over 
the slightly longer time interval 0 < t < 18; the cycle 
direction here is clockwise. The data in Figures 14a-c are 
from a 2 X lo6 reaction simulation run, which took the 
Univac 1110 computer about 7 min to perform, a t  a cost 
of about $60. 

Although Figure 14c shows that the phase orbits in the 
Brusselator are indeed much more stable than the phase 
orbits in the Lotka model [cf. Figures 8c and Sc], Figure 
14c also shows a rather peculiar property of the Brusselator 
oscillations which, so far as the author is aware, has never 
been noticed before. This is the apparent inability of the 
system to consistently retrace its previous path on the 
diagonal leg of the limit cycle. The variability in these 
diagonal traces is directly related to the erratic variations 
in the heights of the peaks in Figures 14a and 14b. Al- 
though obviously caused by random fluctuations at the 
microscopic level, the effect itself is clearly more than 
microscopic: the relative variations in the peak heights 
in Figures 14a and 14b are on the order of 12% , which is 
a good order of magnitude larger than one would expect 
on the basis of the usual “square root” argument. The time 
intervals between successive oscillations, as determined by 
the distances between the successive vertical rise lines in 
Figure 14a, show similar variations. Relatively crude ruler 
measurements on the graphs themselves indicate that the 
peak height achieved on any vertical rise in the Yl plot in 
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Figure 18. Results of a stochastic simulation run of the Brusselator 
with c , X ,  = 5000, Y,* = 1000, YD, = 2000, and Q = 0.1, all plotted 
at 100 rpd: (a) Y ,  vs. t ;  (b) Y2 vs. t ;  (c) Y2 vs. Y , .  

Figure 14a is roughly proportional to the time elapsed since 
the previous rise. These observations would seem to 
warrant further investigations, although we shall not at- 
tempt any here. 

The Brusselator phase trajectory in Figure 14c seems 
to have a different “character” along each of the three legs 
of the limit cycle. The peculiar character of the trajectory 
along the diagonal leg has already been commented on. 
Along the vertical leg the trajectory is fairly sharp and 
well-defined, subject to rather ordinary looking fluctua- 
tions. However, the trajectory along the horizontal leg has 
a thicker, labored look, with fluctuations that appear to 
be more “diagonal” than “up and down”. Indeed, it almost 
seems that the YlY2 plane is scored with a series of closely 
spaced, parallel diagonal grooves: Starting at the right end 
of the horizontal trajectory, the system phase point seems 
to struggle along against these grooves until it reaches the 

I I 

number o! Y1 molecules 

Figure 19, Same as Figure 18, except a = 0.2 (corresponding to the 
same reaction parameters as for the runs in Figure 14). 

neighborhood of the point ( YIs7 Y%). From there it seems 
to have a relatively smooth trip up the vertical leg, until 
it finally “drops” into one of the horizontal grooves. 
Precisely which groove the system phase point drops into 
is a matter of chance, but once lodged in one of these 
grooves it seems content to remain there for its quick trip 
down the final, diagonal leg of the orbit. 

Figure 15 shows a 50 rpd plot of four short simulation 
runs, each having the same parameters (47) as in the 
previous run, but each starting out a t  different points in 
the Y,Y, plane. As expected, no matter where we start out 
in this plane the system phase point eventually winds up 
on the clockwise limit cycle that we found in the previous 
run. However, the system seems to have very definite ideas 
as to just how it wants to approach the limit cycle: far 
from just spiraling in or out to the limit cycle as one might 
have naively expected, the system point seems again to be 
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Flgure 20. Same as Figure 19, except cy = 0.5. 

constrained by the imaginary diagonal grooves in the Y1Y2 
plane mentioned above. 

As we observed in our calculations on the Lotka model, 
it is very easy to modify our stochastic simulation program 
so as to “open” or “close” the system to any particular 
reactant species. As indicated in (441, the Brusselator is 
normally considered to be open to both X1 and Xz; indeed, 
it is precisely this influx of X1 and Xz that drives the 
o~ci l la tor .~~ In Figures 16a and 16b we show what happens 
when, given the parameter values in (47), we close the 
system to X1, and allow X1 to be depleted by reaction 44a 
from an initial value of lo5. In these two figures, the X1 
trajectory is plotted at  250 rpd while the Yl and Y2 tra- 
jectories are each plotted at  100 rpd. The X1 trajectory 
simply falls exponentially according to the simple isom- 
erization mechanism (cf. Figures 3-5); the darkened areas 
along the X1 trajectory are “photographic burns” resulting 
from the increased tempo of the reactions that accom- 

0 . ,  
0 I 2  3 4 5 e 7 B 8 IO 

time 

- 1  I 

0 0  ImO number of Y1 molecules 4wo 

Figure 21. Same as Figure 20, except a = 1.0. In (a), the upper 
trajectory is Y ,  and the lower trajectory is Y,.  

panies the sudden changes in Y1 and Y2. As the X1 
population decreases, the Yl and Yz oscillations evidently 
become less frequent but more violent; in this connection, 
notice in Figure 16a that the Yl excursion time &e., the 
length of the base of a Yl spike) stays constant. After the 
last huge oscillation near t = 20, in which the Yl and Y2 
population levels change by a factor of about 400, Yl never 
rises again and Yz  never falls again. The time interval 0 
5 t I 35 shown in Figures 16a-b contain approximately 
1.45 X lo6 reactions. The action terminates about 0.04 X 
lo6 reactions later, at  t = 213.4, with X1 = 0, Yl = 0,  and 
Y2 = 35344. In Figure 17 we show what happens when the 
system is open to X1 but closed to X 2 ;  i.e., X1 is again held 
constant, but X 2  is allowed to be depleted by reaction 44b. 
In Figure 17 the X 2  trajectory is plotted at 250 rpd, while 
the Yl and Y2 trajectories are each plotted at  100 rpd. In 
this case the system’s behavior is not nearly so exotic: 
Starting out a t  lo5, X 2  quickly drops to zero-so rapidly 
in fact that an oscillating pattern for Yl and Y2 does not 
have time to fully develop. Y2, starting at  2000, decreases 
to zero, while Yl eventually settles back to its initial value 
1000; this final steady state is easily understood from eq 
46. 

A stability analysis of the deterministic reaction-rate 
equations (45) by Lefever and NicolisZ3 and also by TysonZ4 
predicts that the Brusselator should oscillate when the 
inequality 

(48) 

is satisfied, and presumably should remain at  the sta- 
tionary values Yls and YIB in (46) otherwise.25 To test this 
prediction, we first introduce a new parameter cr defined 
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a 1 by 
a! = 2c4/c2x2 (49) 
From now on, instead of specifying the Brusselator re- 
actions by the four parameters clX1, cZXz, c3, and c4 as in 
(47), we shall use the four parameters, c1X1, Y 1 ,  Y2,, and 
01; this is permissible because, using (46) and (49) 
c , x ,  = C l X l  (50a) 

c4 = ClXl/YlS (50d)  
Inserting (50) into the oscillation criterion (48), we find 
that this criterion assumes the somewhat simpler form 
a! < 2 0  - Yl,/Y,S) (51 )  
The significance of the new parametrization of the 
Brusselator reactions is that c lXl  controls the time scale 
of the reactions, Yls and Yz, control the molecular pop-  
ulation scales, and a controls the stability of the reactions. 

For Yls = 1000 and Ya, = 2000, as in the runs plotted 
in Figures 14 and 15, the condition (51) for oscillatory 
instability in the Brusselator is simply 

Since (49) implies that a = 0.2 for the parameter values 
in (47), then the oscillations observed in Figures 14 and 
15 tend to confirm this criterion. To check this out more 
thoroughly, a series of six simulation runs was made with 
Y18 = 1000 and Yz, = 2000, and with 01 8ssuming a suc- 
cession of values from 1/10 to 10. The results of these runs 
are plotted in Figures 18-23: 

a! < 1 (Yz ,  = 2Y,,) (52 )  

C i X 1  = 5000, Y1, = 1000, Y2, = 2000, 
a! = 0.1 (Figure 18) (53) 

a! = 0.2 (Figure 19) ( 5 4 )  

a: = 0.5 (Figure 20) ( 5 5 )  

a! = 1.0 (Figure 21) ( 5 6 )  

a! = 2.0 (Figure 2 2 )  (57)  

a! = 10.0 (Figure 23) ( 5 8 )  

ClXi zz 5000, Y1, = 1000, Y2, = 2000, 

~1x1 = 5000, Y1, = 1000, Y,, = 2000, 

ClXl = 5000, Y1, = 1000, Yzs = 2000, 

c ,X1 = 5000, Y , ,  = 1000, Y Z s  = 2000, 

~1x1 = 5000, Y , ,  = 1000, Y2, = 2000, 

All these runs start with Yl = 1000 and Y2 = 2000 at  t = 
0. The plots all have 100 rpd and use the same scale on 
the t axis; however, notice that Figures 18-20 use a dif- 
ferent scale on the Yl and Y2 axes than Figures 21-23. The 
01 = 0.1 plots in Figure 18 show the results of about 2 X 
lo6 reactions. The oscillations here are evidently quite 
violent. Notice in particular the incredible abruptness of 
the rises in Yl in Figure 18a and the concomitant falls in 
Yz  in Figure 18b; e.g., near t = 10 the rise and fall lines 
are virtually parallel to the vertical right borders of the 
plots. Again we point out that this kind of rapid temporal 
population excursion poses no special problems for our 
stochastic simulation program. As we proceed from Figure 
18 to 19 to 20, we observe that the amplitude of the os- 
cillations decreases and their frequency increases, corre- 
sponding to the fact that a is moving closer to the critical 
value at which we expect the oscillations to cease and 
stability to set in. Figure 21 shows the behavior exactly 
at  the critical point a = 1; the system evidently still os- 
cillates, but the oscillations are ragged and uneven. Figure 
22 shows the behavior for a = 2, which is supposedly in 
the stable, nonoscillating regime; however, we see in Figure 
22a that the Yl and Y2 population levels, though holding 
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Flgure 24. Results of a 0.71 X 10' reaction stochastic simulation run of the Oregonator reactions (59), with Yl,  = 500, Y2 = 1000, Y3, = 2000, 
vi, = 2000, and uZ = 50000 [see (Si)].  (a) Combined 100 rpd plots of Y1 (low-peaking curve), Y, (middle-peaking curve), and Y, (high-peaking 
curve) vs. t for 0 I t 5 6. (b) Same as (a), but for I C t < 3. (c) A 250 rpd plot in Y1 Y2 Y3 space for 0 I t 5 6. (d) Projection of the trajectory 
in (c) onto the Y ,  Y, plane. (e) Projection of the trajectory in (c) onto the Y ,  Y3 plane. (f) Projection of the trajectory in (c) onto the Y, Y 3  plane. 

fairly close to  Y18 and Y2,, respectively, still exhibit no- 
ticeable, anticorrelated excursions similar to those at  the 
critical point (cf. Figure 21a). When we increase a to 10, 
in Figure 23, stability seems finally to be a t  hand. 

IVD. T h e  Oregonator. The Brusselator has been 
criticized as being physically unrealistic on the grounds 
that reaction 44c, requiring as i t  does a simultaneous 
collision among two Yl molecules and a Y2 molecule, seems 
rather improbable from a kinetic theory point of view. 
However, Tyson and Light24 have shown that no set of 
chemical reactions with only two intermediate species (Y1 
and Y2) can exhibit limit cycle oscillations unless it 
contains at  least one reaction of order 13. Field and 
Noyes26 have devised a model chemical oscillator which 
circumvents this difficulty by introducing a third inter- 
mediate species (Y3); their model, which they have named 
the Oregonator, is20 

(59a) x, + Y, - Y, 

(59b) 

(59c) 

(59d) 2Y, - z, 

(59e) 
and evidently involves no reaction more complicated than 

C1 - 

Y ,  + Y ,  2 2, 
x, + Y, 2+ ZY, + Y, 

x, + Y, 5+ Y, 

- 

c4 

- 

6 
Figure 25. A 250 rpd plot in Y1 Y2 Y3 space for fourstochastic simulation 
runs of the Oregonator (59), each run having the same reaction pa- 
rameters as in Flgure 24 but different initial values of Y,, Yp, and Y3.  

b i m ~ l e c u l a r . ~ ~  Field and Noyes originally devised the 
Oregonator as a highly idealized model of the Belousov- 
Zhabotinskii reactions, which involve the cerium ion 
catalyzed oscillatory bromate oxidation of malonic acid.28 
A much more complete and realistic model of the Be- 
lousov-Zhabotinskii reactions was developed by Field, 
Koros, and Noyes,B and that model has been convincingly 
tested out by Edelson, Field, and Noyes30 through nu- 
merical integration of the corresponding reaction-rate 
equations. Our objective here is much less ambitious: we 
shall simply consider the Oregonator (59) as a chemical 
system in its own right, and show that its dynamical 
behavior for a given set of reaction parameters can be 
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values for the five auxiliary parameters Y18, Y%, Y%, pl,, and 
p2,. This is a convenient way to proceed because, by 
working with the parameters YIB, Y%, and Y3., we can more 
directly control the scales of the molecular population 
levels of the various species.31 Similar considerations 
motivated our reparametrization of the Brusselator re- 
action constants in (50). 

Following the procedure outlined in Figure 2, a sto- 
chastic simulation computer program was written for the 
Oregonator (putting M = 5, N = 3, X 1  = Yl, X 2  = Y2, X 3  

and h5 = X3Y3).  Taking 
= Y3, hl = XiY,, hz = Y1Y2, h3 = XZY,, h4 = Yl(Y1- 1) /2  

Y1, = 500, Yzs = 1000, YBS = 2000, pis  = 
2000, p Z s  = 50000 (Figures 24-27) (62)  

the corresponding reaction parameters were calculated 
from (611, and a stochastic simulation run was made with 
Y1, Yz, and Y3 initially set to the nominal steady-state 
values 500, 1000, and 2000, respectively. The results of 
this simulation run, which contained approximately 0.71 
X lo6 reactions, are shown in Figures 24a-f. Figure 24a 
is a 100 rpd plot of all three intermediate species vs. time. 
Just as we found in the Brusselator [cf. Figures 14a and 
14b1, the population levels quickly move away from the 
initial steady-state values and begin to oscillate vigorously 
in an apparently regular and stable manner. The low- 
peaking curve in Figure 24a is the Yl trajectory, the 
middle-peaking curve is the Y2 trajectory, and the high- 
peaking curve is the Y3 trajectory. To show the details of 
the cycling more clearly, the time interval 1 < t < 3 is 
shown on a horizontally expanded scale in Figure 24b 
(which is also a 100 rpd plot). The cycling behavior shown 
here is quite consistent with the interpretation of Field and 
Noyes:26 When the Yz molecular population level is high 
and the Yl and Y3 molecular population levels are low, 
reactions 59a and 59b dominate and act to slowly decrease 
the Yz population level; when the Y2 population is finally 
reduced below a certain critical level (evidently in the 
neighborhood of 1000 according to Figure 24b), reaction 
59c becomes momentarily dominant and produces a rapid 
increase in the Yr. and Y3 population levels; this increase 
in Yl and Y3 in turn stimulates reaction 59d, which pulls 
Yl down again, and reaction 59e, which pulls Y3 down and 
pushes Y2 back up. 

The cycle trajectories in Yl Y2Y3 space are plotted at 250 
rpd in Figure 24c. As we found in the Brusselator [cf. 
Figure 14~1,  we note that on some portions of the limit 
cycle the system phase point cannot consistently retrace 
its previous path. This seems to occur most prominently 
a t  the higher population levels, and is evidenced also in 
Figure 24a by the irregular variations in the peak heights 
of the Yl, Y2, and Y3 curves. Although obviously due to 
random microscopic fluctuations, the overall effect is too 
large to be labeled microscopic. One possible explanation 
for this behavior might be that the cycling serves to 
transmit the relatiue fluctuations at the lower molecular 
population levels directly to the higher molecular popu- 
lation levels, where they are then much larger than would 
normally be expected. Figures 24d-f are 250 rpd plots of 
the projections of the phase trajectory onto the three phase 
planes; Figure 24d emphasizes the peculiarly warped shape 
of the limit cycle orbit in YlY2Y3 space. 

Figure 25 is a 250 rpd plot of four short simulation runs 
which have the same parameters as in (62) but different 
starting points in YlY2Y3 space; evidently, no matter where 
the starting point is taken, the system eventually winds 
up orbiting the same limit cycle path that was found in 
Figure 24c. 

Figure 26 is a 100 rpd plot showing what happens when, 
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Figure 26. Showing what would have happened in the run of Figure 
24 if the system had been closed to species X, .  All trajectories are 
plotted at 100 rpd. The decaying curve is XI, and the low-peaking, 
middle-peaking, and highpeaking curves are Y,, Y,, and Y, respectively. 

..... 

gxxI 

time 

Flgure 27. Showing what would have happened in the run of Figure 
24 if the system had been closed to species X p .  All trajectories are 
plotted at 100 rpd. The heavy decaying curve is X,, and the low-peaking, 
middle-peaking, and high-peaking curves are Y1, Y p r  and Y,, re- 
spectively. 

numerically calculated with our stochastic simulation 
procedure. 

To help guide us in assigning numerical values to the 
five reaction parameters c lX1,  c2,  ~3x2, c4 ,  and c5X3, we 
begin by writing the deterministic reaction-rate equations 
for the Oregonator: 
d Y l / d t  = C l X l  Y2 - c2 Y1 Y2 + c3x2 Y1 - 

2(c4/2) Y12 (604 
dYz /d t  = - C l X i  Y2 - ~2 Y1 Y2 + ~5x3 Y3 (Gob) 
dY3/d t  = ~3x2 Y1 - ~5x3 Y3 (60c) 
If Yl , Y%, and Y3, are the values of Yl, Y2, and Y3 for which 
dYl/dt = dY2/dt = dY3/dt = 0 and if pl ,  and p2, are the 
deterministic reaction rates of the first two reactions (59a) 
and (59b) when these steady-state values obtain, Le. 
P 1s EE C l X l  y 2 s  and P 2 s  = e2 Y1SY2, 
then it is not difficult to show from (60) that 
C l X l  = P l S / Y 2 S  ( 6 1 4  
c2 = P 2s I Y l s  y z s  (61b) 
c3x2 ( P  1s + P ~ S ) / ~ I S  (61c) 
c4 = 2P1S/Y1S2 (61d) 
c5x3 = ( P I S  + P 2 S ) / Y 3 S  (61e) 
Therefore, one way to specify values for the five reaction 
parameters clXl, c2 ,  ~3x2, c4, and cgX3 is to first specify 
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for the parameters in (62), the system is closed to species 
X1, and the X1 population level is allowed to be depleted 
by reaction 59a from an initial value of lo4. The upper 
curve is the X1 trajectory, and the low-peaking, middle- 
peaking, and high-peaking curves are as before the Yl, Y2, 
and Y3 trajectories, respectively. The waves in the X1 
trajectory are caused by the Y2 variations through reaction 
59a. As X1 decreases, the Yl and Y3 oscillations occur 
farther apart in time, but the shape of their peaks evidently 
remains unaffected. The oscillation near t = 3.4 is the 
system’s last gasp; the action terminates at t = 11.5 with 
X1 = Yl = Y3 = 0 and Y2 = 4470. Figure 27 is a 100 rpd 
plot showing what happens when we close the system to 
X 2  instead of X1, and allow the X 2  population level to be 
depleted by reaction 59c from an initial value of lo5. The 
waves in the X z  trajectory are caused by the Yl variations 
through reaction 59c. In this case we see that the oscil- 
lations just slowly die out altogether. By time t = 6, about 
0.25 X lo6 reactions have occurred; the action finally stops 
about 0.06 X lo6 reactions later, at t = 218, with Yl = Y2 
= Y3 = 0 and X 2  = 65. 

Figures 28-30 show the effect of changing the Orego- 
nator reaction parameters in such a way that the limit cycle 
oscillations are made to disappear. These figures show 
three separate simulation runs, all with Y18 = 500, Yz, = 
1000, Y3, = 2000 as in the previous runs, but with the other 
two parameters pl. and p z ,  set as follows: 
pls = 2000, p Z S  = 20000 (Figure 28) (63) 
p ls = 4000, p Z S  = 20000 (Figure 29) (64)  
plS = 5000, p z s  = 5000 (Figure 30) (65) 
Comparing these figures with their identically plotted 
counterparts in Figures 24a and 24c (which are for pl, = 
2000 and pz, = 50000) shows that, as the ratio p1,/p2, is 
increased from 0.04 to 1.00, the regular oscillations dissolve 
into random microscopic fluctuations about the nominal 
steady-state levels. 

Finally, to investigate the effects of moving somewhat 
closer to the high molecular population levels realized 
experimentally, we made a stochastic simulation run of the 
Oregonator in which all the population levels were uni- 
formly increased by a factor of 4 over the run plotted in 
Figure 24. This was accomplished by choosing the reaction 
parameter values so that, in contrast to (62) 
Y1, = 2000, Yzs = 4000, Y3s = 8000, p i s  = 

2000, p Z S  = 50000 (Figure 31) (66) 
Figure 31a is a 500 rpd plot showing the details of the 
cycling, and is to be compared with Figure 24b. Figure 31b 
is a 1000 rpd plot of the phase trajectory in YlYzY3 space, 
and is to be compared with Figure 24c. Evidently, the only 
significant difference between these plots is the fourfold 
increase in the molecular population levels, and an ac- 
companying decrease in the relative size of the random, 
microscopic fluctuations. Especially noteworthy is the fact 
that the curious “spreading” of the limit cycle path in 
YlYzY3 space does not seem to have been appreciably 
reduced; certainly, this spreading is much greater than the 
microscopic fluctuations on the individual orbits. The 
fourfold increase in the molecular population levels in this 
run was attended by a fourfold increase in the numbers 
of reactions per cycle, and hence a fourfold increase in the 
execution time of the computer simulation program: 
Figure 31b shows the results of approximately 2.8 X lo6 
reactions, which cost about $80 to simulate to the Univac 
1110. 

In view of the consistency between Figures 24b and 31a, 
and between Figures 24c and 31b, there would seem to be 
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Figure 28. Same as Figures 24a and 24c, except that p l ,  = 2000 
and p2, = 20000. 
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Flgure 29. Same as Figures 24a and 24c, except that pIs = 4000 
and p2, = 20000. 
little point to increasing the molecular population levels 
any further. In this connection, it should be recognized 
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Figure 30. Same as Figures 24a and 24c, except that p , ,  = 5000 
and p2, = 5000. 

that it  is not necessarily desirable to scale the molecular 
population levels so high that all trajectories appear to be 
devoid of random fluctuations. Such fluctuations should 
be regarded as an intrinsically real aspect of the dynamical 
behavior of a chemically reacting system, not as some 
imperfection in our observational technique that ought to 
be eliminated. Indeed, part of the utility of our stochastic 
simulation procedure is that it affords us a unique op- 
portunity to examine these fluctuations in a wide variety 
of controlled situations. 

V. Concluding Remarks 

This paper has described and ilustrated the use of a 
novel method for numerically calculating the time evo- 
lution of a spatially homogeneous system of coupled 
chemical reactions. This “stochastic simulation algorithm” 
has been shown to be physically and mathematically 
well-grounded from a kinetic theory point of view, and 
rigorously equivalent to the spatially homogeneous master 
equation, yet surprisingly simple and straightforward to 
implement on a digital computer. The principle advan- 
tages and limitations of the algorithm have been sum- 
marized in section IIID. Suffice it here to say that the 
specific applications considered in section IV demonstrate 
quite convincingly both the feasibility and the potential 
usefulness of this computational approach. 

A comparison of the relative advantages of the stochastic 
simulation algorithm with those of the traditional method 
of numerically solving the deterministic reaction-rate 
equations is perhaps inevitable, and strong points can be 
scored on both sides. However, it would seem more fruitful 
to focus on the complementary aspects of these two 
computational methods instead of the competitive aspects. 
From this point of view, each method represents a tool, 
with specific advantages and limitations, which the 

Figure 31. Showing the effects of increasing all molecular population 
levels In the Oregonator by a factor of 4 over their values in Figure 
24: Y1, = 2000, Yp, = 4000, YB3 = 8000, p l ,  = 2000, and p,. = 
50000. (a) A 500 rpd plot of Y, (low-peaking curve), Y, (middle-peaking 
curve), and Y, (high-peaking curve) vs. f for 4 < t < 12 (cf. Figure 
24b). (b) A 1000 rpd plot of the trajectory In Y ,  Y, Y,  space for 0 5 
f 5 24 (cf. Figure 24c). 

chemical kineticist may employ at  his discretion to elu- 
cidate the temporal behavior of a chemically reacting 
system. 

As presented here, the stochastic simulation algorithm 
is applicable only to spatially homogeneous systems. Work 
toward extending the algorithm to accommodate molecular 
diffusion in spatially inhomogeneous systems is currently 
in progress, and will be reported on at  a later date. 
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Discussion 

W. C. GARDINER, JR. (University of Texas). (1) Your stochastic 
algorithm involves substantially more operations per “integration 
cycle” (one more call to URN and one to ALOG) than the 
procedure published by Bunker and co-workers (Combust. Flame, 
1974). What does your procedure gain from this extra work? (2) 
What is the largest ratio of species concentrations that can 
reasonably be handled in a practical application of your routine? 

D. T. GILLESPIE: (1) The relationship between my stochastic 
simulation algorithm and the procedure of Bunker et al. (ref 11) 
is discussed in sectior IIID of this paper, and also on p 429 of 
ref 1. The main point is that my method is fully equivalent to 
the spatially homogeneous master equation, whereas the method 
of Bunker et al. is not. Therefore, a more appropriate question 
would be: “Under what conditions may one replace, in step 2 of 
Figure 2, the statement t = (l/ao) In (l /r l)  with the simpler 
statement t = (l/ao), without introducing sensible alterations in 
the computational results?” I think it should certainly be possible 
to make this replacement when one is calculating the mean and 
variance of a stable or metastable state, as described in connection 
with eq 34 and 37; in fact, for that type of calculation one could 
probably just dispense with t altogether. However, for calculating 
a system’s transient behavior, I do not see how one could con- 
fidently answer this question except empirically on a case-by-case 
basis. I am sure that for many situations the shorter expression 
for t would prove to be adequate; but notice, for example, that 
it could not be used for the simple isomerization reaction 22 if 
one were interested in studying fluctuations. I have made no study 
of this matter in these initial calculations, essentially taking the 
position that the a priori assurance of being rigorously correct, 
which comes with using the longer expression for t ,  is worth the 
fractional increase in computer running time. 

(2) The runs plotted in Figures 16 and 18 are “reasonable”, 
and show relative population ratios that span roughly four orders 
of magnitude. Of course, the fundamental limitation on this 
procedure is not the population ratios per se, but rather the total 
number of individual reaction events that must be simulated in 
order to cover the time span of interest. At typical charging rates 
on the Univac 1110, I found a rough rule of thumb to be $30 per 
IO6 reactions. The runs plotted in Figures 16 and 18 contain 
between 1 and 2 X lo6 reactions each. 

ROBERT J. GELINAS (Science Applications, Inc.). I must take 
exception to the remarks made subsequent to Gillespie’s talk by 
Professor Shuler, and the other allowed questioner, disparaging 
Gillespie’s method, Gillespie’s general method has strong 
foundations in quantum kinetic theory and in corresponding 
Langevin analysis which were not discussed. His imaginative 
reaction accounting method is to conventional statistical ap- 
proaches based on species concentrations, as second quantization 
is to  first quantization in quantum theory. I cannot vouch for 
his algebra at  this time, but his basic method is worthy of positive 
acknowledgment and encouragement. As with the origination 
of many new creative ideas, time is required to develop a veneer 
against unwarranted criticism. It would certainly be a disservice 
to discourage further pursuit of Gillespie’s work at  this early time. 

The Journal of Physical Chemistry, Vol, 8 1, No. 25, 1977 


