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JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 4 22 JULY 2001
Approximate accelerated stochastic simulation of chemically
reacting systems
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Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

~Received 29 December 2000; accepted 19 April 2001!

The stochastic simulation algorithm~SSA! is an essentially exact procedure for numerically
simulating the time evolution of a well-stirred chemically reacting system. Despite recent major
improvements in the efficiency of the SSA, its drawback remains the great amount of computer time
that is often required to simulate a desired amount of system time. Presented here is the ‘‘t-leap’’
method, an approximate procedure that in some circumstances can produce significant gains in
simulation speed with acceptable losses in accuracy. Some primitive strategies for control parameter
selection and error mitigation for thet-leap method are described, and simulation results for two
simple model systems are exhibited. With further refinement, thet-leap method should provide a
viable way of segueing from the exact SSA to the approximate chemical Langevin equation, and
thence to the conventional deterministic reaction rate equation, as the system size becomes larger.
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I. INTRODUCTION

The stochastic simulation algorithm~SSA! allows one to
numerically simulate the time evolution of a well-stirre
chemically reacting system in a way that takes proper
count of the randomness that is inherent in such a syste1,2

The SSA is exact in the sense that it is rigorously based
the same microphysical premise that underlies the chem
master equation~CME!;3,4 thus, a history or ‘‘realization’’
produced by the SSA gives a more realistic representatio
the system’s evolution than would a history inferred from t
conventional deterministic reaction rate equation~RRE!. The
RRE can be particularly misleading if the molecular popu
tion of some critical reactant species becomes so small
microscopic fluctuations can conspire with reaction chan
feedback loops to produce macroscopic effects. It has b
shown that this can happen with dramatic consequence
the genetic/enzymatic reactions that go on inside a liv
cell.5,6

Two mathematically equivalent recipes for implementi
the SSA were originally proposed.1 Dubbed the ‘‘Direct
method’’ and the ‘‘First Reaction method,’’ both are exa
and straightforward to program. Since the Direct method
usually more efficient, it is usually the method employe
But the Achilles’ heel of either method has always been co
puting speed: The computer times required to simulate
sonable system times tend to be prohibitively long if t
molecular populations of at leastsomeof the reactant specie
are very large, and even in cellular systems that is ne
always the case.

Recently, substantial improvements have been mad
stochastic simulation methodology. Lukkienet al.7 have im-
proved the Direct method for the special but important c
of surface reactions. And Gibson and Bruck8 have trans-
formed the First Reaction method into a clever new sche
called the Next Reaction method; although more challeng

a!Electronic mail: GillespieDT@mailaps.org
1710021-9606/2001/115(4)/1716/18/$18.00
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to program, it is significantly faster than even the Dire
method when many species and many reaction channels
involved. At present, the Next Reaction method appears to
the most computationally efficient way to makeexact sto-
chastic simulations of complex volumetric chemical system
But modelers, especially of cellular systems,9 are increas-
ingly feeling the need for even faster methods. It theref
seems prudent to ask if major gains in simulation speed
be obtained by making minor sacrifices in simulation ac
racy. That is the question that will be addressed in this pa

We shall begin in Sec. II by establishing our notation a
briefly reviewing the chemical master equation, the stoch
tic simulation algorithm, the chemical Langevin equatio
and the reaction rate equation. In Sec. III we shall consi
what kinds or degrees of simulation detail we might be w
ing to sacrifice in return for greater simulation speed; th
considerations will lead us to propose anapproximateaccel-
eration procedure called thet-leap method. In Sec. IV we
shall show how thet-leap method simplifies, given suffi
ciently large molecular population levels, to aLangevin
methodthat is equivalent to the chemical Langevin equatio
the Langevin method in turn usually reduces, in the limit
infinitely large molecular populations, to an updating alg
rithm that is equivalent to the deterministic reaction ra
equation. In Sec. V we shall present a simple strategy
choosing appropriate values of the parameters that go
the t-leap method—a very modest first step toward a rob
optimal control strategy. In Sec. VI we shall describe a
finement that in at least some cases will reduce the error
t leaping. In Sec. VII we shall demonstratet leaping on two
simple model systems. In Sec. VIII we shall briefly descri
an alternate but essentially equivalent leaping strategy ca
ka-leaping. Finally, in Sec. IX, we shall offer some tentativ
conclusions.

II. STOCHASTIC CHEMICAL KINETICS

We shall be concerned here a well-stirred mixture ofN
>1 molecular species$S1 ,...,SN% that chemically interact,
6
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1717J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Simulation of chemically reacting systems
inside some fixed volumeV at a constant temperature
through M>1 reaction channels$R1 ,...,RM%. We specify
the dynamical state of this system byX(t)
[(X1(t),...,XN(t)), where

Xi~ t ![the number of Si molecules in the system at timet

~ i 51,...,N!. ~1!

Our goal will be to describe the evolution ofX(t) from some
given initial stateX(t0)5x0 . ~All boldface vectors in this
paper are species indexed, withN components.!

The molecular populationsXi(t) will actually berandom
variables, because we choose not to track the positions
velocities of all the molecules in the system. Indeed, we
liberately rely on the occurrence of manynonreactivemo-
lecular collisions to ‘‘stir’’ the system between success
reactivecollisions. Under these conditions, it can be prov
using elementary kinetic theory arguments4 that there will
exist for each reaction channelRj a well defined functionaj ,
called thepropensity functionfor Rj , which is such that

aj~x!dt[the probability, givenX~ t !5x, that one Rj

reaction will occur somewhere insideV

in the next infinitesimal time interval

@ t,t1dt! ~ j 51,...,M !. ~2!

The functionaj and thestate-change vectornj , whosei th
component is defined by

n j i [the change in the number ofSi molecules

produced by oneRj reaction

~ j 51,...,M ; i 51...,N!, ~3!

together completely characterize reaction channelRj .
The physical rationale for Eq.~2! has been detailed

elsewhere,1,4 and is briefly summarized in Ref. 10. Here
should suffice to give a couple of illustrative examples: IfR1

is the reactionX11X2→2X1 , then a1(x)5c1x1x2 and n1

5(11,21,0,...,0), with the ‘‘specific reaction probabilit
rate constant’’c1 being algebraically related to the conve
tional deterministic rate constantk1 by c15k1 /V. And if R2

is the inverse of that reaction, thena2(x)5c2x1(x121)/2
andn252n1 , with c252k2 /V. For the present, we do no
adopt any specific forms for the propensity functio
$a1(x),...,aM(x)% and the state-change vectors$n1 ,...,nM%;
we simply assume that those quantities are specified,
hence that the chemically reacting system is defined. Eq
tions ~2! and ~3! together then imply thatX(t) is a jump
Markov process on theN-dimensional non-negative intege
lattice.

One rigorous consequence of Eqs.~2! and~3! is a time-
evolution equation for the probabilityP(x,tux0 ,t0) thatX(t)
will equal x given that X(t0)5x0 ~for t>t0!. This is the
chemical master equation~CME!:3,4

]

]t
P~x,tux0 ,t0!5(

j 51

M

@aj~x2nj !P~x2nj ,tux0 ,t0!

2aj~x!P~x,tux0 ,t0!#. ~4!
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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But it is rarely possible to solve the CME, either analytica
or numerically, for any but the simplest of chemical system

Another rigorous consequence of Eqs.~2! and ~3! is the
existence and form of thenext-reaction density function
p(t, j ux,t).1,4,11 By definition, p(t, j ux,t)dt is the probabil-
ity, given X(t)5x, that thenext reaction in the system will
occur in the infinitesimal time interval@ t1t,t1t1dt) and
will be an Rj reaction. It follows from Eqs.~2! and ~3! that
this function takes the form

p~t, j ux,t !5aj~x!exp~2a0~x!t! ~t>0; j 51,...,M !, ~5!

where

a0~x![(
j 51

M

aj~x!, ~6!

and this provides the basis for the SSA. The SSA uses ri
ous Monte Carlo techniques to generate random pairs (t, j )
according to the joint density function~5!, then augments the
time t by t and the system statex by nj , and finally recal-
culates the propensity functions as necessary in order to
peat these steps until a sufficiently long time span has b
simulated. The resultant trajectory constitutes an ‘‘unbia
realization’’ of the processX(t).

One way of generating random pairs (t, j ) according to
the joint density function Eq.~5! is the so-called Direct
method. For it, we first writep in the ‘‘conditioned’’ form

p~t, j ux,t !5p1~tux,t !p2~ j ut,x,t !, ~7!

and we then generatet according top1 and j according to
p2 . It follows from Eq. ~5! that the functionsp1 andp2 are
given by

p1~tux,t !5a0~x!exp~2a0~x!t! ~t>0!, ~8a!

p2~ j ut,x,t !5
aj~x!

a0~x!
~ j 51,...,M !, ~8b!

and from this we may conclude thatt is a sample of
E(a0(x)), the exponential random variable with decay co
stanta0(x), while j is an independent sample of the integ
random variable on @1,M # with point probabilities
aj (x)/a0(x). The standard Monte Carlo inversion generati
rule then dictates the following recipe for generating rand
pairs (t, j ): Draw two independent samplesr 1 and r 2 of
U~0,1!, the unit-interval uniform random variable, and tak

t5
1

a0~x!
lnS 1

r 1
D , ~9a!

j 5the smallest integer satisfying(
j 851

j

aj 8~x!.r 2a0~x!.

~9b!

Another method of generating values fort and j is the
First Reaction method. It generates atentativereaction time
for each reaction channelRl according to

t l5
1

al~x!
lnS 1

r l
D ~ l 51,...,M !, ~10!

wherer 1 ,...,r M areM statistically independent samplings o
U~0,1!, and then takes

t5the smallest of$t1 ,...,tM%, ~11a!
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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j 5the index of the smallest of$t1 ,...,tM%. ~11b!

That the random pairs (t, j ) produced by this procedure ar
actually distributed according to the joint density functi
~5!, and hence that this procedure is fully equivalent to
Direct method ~9!, is proved in Ref. 1. Since the
M21 unused tentative reaction times in Eq.~10! are dis-
carded after the selections in Eqs.~11! are made, the Firs
Reaction method is usually less efficient than the Dir
method, and consequently is rarely used. But the mere
that the First Reaction method works carries an import
lesson: WheneverM reaction events with respective prope
sities a1 ,...,aM are in ‘‘competition’’ with each other, one
can resolve the question of which of those events actu
occurs next by imagining that each event occurs indep
dently on its own—i.e., at the times given by Eq.~10!—and
thenallowing the occurrence ofonly that event with theear-
liest occurrence time.

A third way of generating random pairs (t, j ) according
to the joint density function~5! is the recently developed
Next Reaction method of Gibson and Bruck.8 It is possible to
view that method as an extension of the First React
method in which theunusedreaction times~10! are suitably
modified for reuse. The Next Reaction method also empl
clever data storage structures for efficiently accomplish
step~11!. The overall result is a procedure for stepping fro
one reaction to the next that is significantly faster than
Direct method for largeM andN, requiring~asymptotically!
only one random number per reaction event. Referenc
describes the Next Reaction method in detail.

The Direct, First Reaction, and Next Reaction metho
all produce exact realizations ofX(t) by essentially generat
ing random pairs (t, j ) rigorously according to the joint den
sity function ~5!. The three methods can therefore be
garded as different but mathematically equivalent ways
implementing the SSA.

In addition to the foregoingexactconsequences of Eqs
~2! and ~3!, we shall also require here a recently identifi
approximateconsequence:10 If the system possesses amac-
roscopically infinitesimal time scale, in the sense that during
any time incrementdt on that scaleall the reaction channel
fire many more times than once yetnoneof the propensity
functions changes appreciably, then the jump Markov p
cessX(t) can be approximated by thecontinuousMarkov
process defined by the standard formchemical Langevin
equation~CLE!

Xi~ t1dt!5Xi~ t !1(
j 51

M

n j i aj~X~ t !!dt

1(
j 51

M

n j i aj
1/2~X~ t !!Nj~ t !~dt!1/2

~ i 51,...,N!. ~12!

Here,N1(t),...,NM(t) areM temporally uncorrelated, statis
tically independent normal random variables with mean
and variance 1, anddt is a ‘‘macroscopically infinitesimal’’
time increment in the sense just described.~Associated with
this standard form Langevin equation is a white noise fo
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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Langevin equation as well as a Fokker–Planck equatio10

but we shall not need either of those equations here.!
Finally, as discussed in Ref. 10, in the limit of infinitel

large molecular populations of the reactant species, the
mulative contribution of each term in the second summat
on the right hand side of Eq.~12! usually becomes vanish
ingly small compared to that of the correspondingly index
term in the first summation. Therefore, in that ‘‘thermod
namic limit,’’ Eq. ~12! usually reduces to

dXi~ t !

dt
5(

j 51

M

n j i aj~X~ t !! ~ i 51,...,N!. ~13!

This equation is, apart from an inconsequential scaling fac
of V21, the well knownreaction rate equation~RRE! of
conventional chemical kinetics. As a set of coupled ordin
differential equations, it describesX(t) as acontinuous de-
terministic process. For most macroscopic systems enco
tered in practice, Eq.~13! suffices. But it is important to
recognize that the RRE~13! is actually a limiting approxi-
mation of the CLE~12!, and the CLE in turn is an approxi
mate consequence of the premises~2! and ~3! which rigor-
ously underlie the CME and the SSA.

III. THE t -LEAP METHOD

As the time evolution ofX(t) unfolds from some initial
statex0 at some initial timet0 , let us suppose the history o
the system to be recorded by marking on a time axis
successive instantst1 ,t2 ,t3 ,... at which the first, second
third,... reaction events occur, and also appending to th
points the indicesj 1 , j 2 , j 3 ,... of the respective reaction
channelsRj that ‘‘fire’’ at those instants. This ‘‘history axis’’
completely describes a realization ofX(t); indeed, we could
imagine it being constructed by simply monitoring th
(t, j )-generating procedure of the SSA as it dutifully steps
along from eachtn to tn11 . We note that this ‘‘stepping
along the history axis’’ approach of the SSA is both
strength and its weakness: The meticulous construction
every individual reaction event gives us a complete and
tailed history ofX(t), but that construction is usually a ver
time-consuming task for systems of practical interest,
cause of the enormous number of reaction events that
place in real systems.

It is probably so that much of the detail on the histo
axis of the system is neither useful nor necessary. In part
lar, it is conceivable that the system’s history axis could
divided into a set of contiguous subintervals in such a w
that, if we could determine only how many times each re
tion channel fired in each subinterval, we could fore
knowing the precise instants at which those firings to
place. Such a circumstance would allow us toleapalong the
system’s history axis from onesubinterval to the next, in-
stead of stepping along from one reaction event to the n
And if enough of the subintervals contained many individu
reaction events, the gain in simulation speed could be s
stantial, provided of course that each subinterval leap co
be done expeditiously.
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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1719J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Simulation of chemically reacting systems
To get a mathematical handle on such a leaping strat
consider the probability functionQ, defined by

Q~k1 ,...,kMut;x,t !

[the probability, givenX~ t !5x, that in the

time interval @ t,t1t! exactly kj firings of

reaction channelRj will occur, for each

j 51,...,M . ~14!

Q is evidently the joint probability density function of theM
integer random variables

K j~t;x,t ![the number of times, givenX~ t !5x,

that reaction channelRj will fire

in the time interval @ t,t1t!

( j 51,...,M ). ~15!

To determine Q(k1 ,...,kMut;x,t) for arbitrary t.0
would be a task at least as formidable as solving the ma
equation~4! for P(x,tux0 ,t0) for arbitraryt.t0 . But we can
get a simpleapproximateform for Q(k1 ,...,kMut;x,t) if we
impose the following condition ont .

Leap Condition: Requiret to be small enough that th
change in the state during@ t,t1t# will be so slight that no
propensity function will suffer an appreciable~i.e., macro-
scopically noninfinitesimal! change in its value.

Assuming this condition is satisfied, then during the e
tire interval@ t,t1t) contemplated in Eqs.~14! and~15!, the
propensity function for each channelRj will remain essen-
tially constantat the valueaj (x). This means thataj (x)dt
will give the probability that channelRj will fire during any
infinitesimal intervaldt inside @ t,t1t), regardless of wha
the other reaction channels are doing. In that case, as
remind ourselves in the Appendix,K j (t;x,t) will be the
Poissonrandom variable

K j~t;x,t !5P~aj~x!,t! ~ j 51,...,M !. ~16!

And since these M random variables K1(t ;x,t),...,
KM(t ;x,t) will be statistically independent, the joint densi
function ~14! will simply be the product of the density func
tions of the individual Poisson random variables:

Q~k1 ,...,kMut ;x,t !5)
j 51

M

PP~kj ;aj~x!,t!. ~17!

As noted in the Appendix, reliable numerical techniqu
exist for generating sample values of the Poisson rand
variableP(a,t). So, provided the Leap Condition is sati
fied, we can leap down the history axis of the system by
amountt from statex at time t by proceeding as follows
First we generate for each reaction channelRj a sample
valuekj of the Poisson random variableP(aj (x),t); kj will
be the number of times reaction channelRj fires in
@ t,t1t). Since each firing ofRj changes theSi population
by n j i molecules, the net change in the state of the system
@ t,t1t) will be
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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kjnj . ~18!

Thus we arrive at the following procedure.

Basict-Leap Method: Choose a value fort that satisfies
the Leap Condition; i.e., a temporal leap byt will result in a
state changel which is such that, for every reaction chann
Rj , uaj (x1l)2aj (x)u is ‘‘effectively infinitesimal.’’ Gener-
ate for eachj 51,...,M a sample valuekj of the Poisson
random variableP(aj (x),t), and computel5( j kjnj . Fi-
nally, effect the leap by replacingt by t1t andx by x1l.

The accuracy oft leaping will depend upon how wel
the Leap Condition is satisfied. In the trivial case where no
of the propensity functions depend onx, the Leap Condition
would be satisfied exactly for anyt, andt leaping would be
exact. Much more commonly, the propensity functions w
depend linearly or quadratically on the molecular popu
tions, andt leaping will not be exact. But since each reacti
event changes the reactant populations by no more than
or two molecules, thenif the reactant molecule population
are very large, it will take a very large number of reactio
events to change the propensity functions ‘‘noticeably.’’ S
if we have large molecular populations, and the exact SS
therefore slow, we should be able to satisfy the Leap con
tion with a choice fort that allowsmanyreaction events to
occur in@ t,t1t#; that of course will result in a ‘‘leap’’ down
the history axis of the system that is much longer than
single reaction ‘‘step’’ of the exact SSA.

If, on the other hand, satisfying the Leap Condition tur
out to requiret to be so small that only a very few reaction
are leaped over, then it would be faster to forego leaping
use the exact SSA. For example, if we were to taket to be
the relatively small value 1/a0(x) @see Eq.~6!#, then the re-
sultant leap would be theexpectedsize of the next time step
in the SSA@see Eqs.~8a! and ~9a!#, and very likely one of
the generatedkjs would be 1 and all the others would be
Still smaller choices fort would result in leaps in whichall
of the kjs would likely be 0, a circumstance that clear
would gain us nothing. But, although it would beinefficient
to use thet-leap method whent is less than or equal to
1/a0(x), it would not be incorrect; indeed, leaps with n
more than one reaction event should be virtually exact.
may therefore expect that ast decreases to 1/a0(x) or
smaller, the results produced byt leaping will segue
smoothly to results that would be produced by the ex
SSA.

In order to successfully employt leaping in a practical
situation, we obviously need some way of quickly determ
ing the largest value of t that is compatible with the Leap
Condition. We shall make an initial assault on this critic
problem in Sec. V, although it must be stated in advance
a completely satisfactory solution seems not yet to be
hand. But before we address that problem, let us show h
the t-leap method segues, in the limit ofvery large reactant
populations, to an even faster simulation method.
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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IV. THE LANGEVIN METHOD

Suppose conditions are such that, starting in statex at
time t, we can leap down the history axis of the system by
amountt that spans avery largenumber of firings ofevery
reaction channel andstill satisfy the Leap Condition. More
quantitatively, suppose theexpectednumber of firings of
each reaction channel in@ t,t1t) obeys~see Appendix!

^P~aj~x!,t!&5aj~x!t @1~; j 51,...,M !, ~19!

yet all those firings induce only miniscule changes in
values of all the propensity functions. Then the followin
simplification can be made in thet-leap method: Since the
Poisson random variableP(a,t) will, when at@1, be well
approximated by anormal random variable with the sam
mean and variance@see Eq.~A5!#, then the number of firings
of channelRj in @ t,t1t) can be approximated by

K j~t;x,t !5Pj~aj~x!,t!

'Nj~aj~x!t,aj~x!t!

K j~t;x,t !5aj~x!t1~aj~x!t!1/2Nj~0,1! ~ j 51,...,M !.
~20!

Here, the first line follows from the Leap Condition, with th
subscriptj on P reminding us that a different, statisticall
independent Poisson random variable is used for each r
tion channel; the second line follows by virtue of the a
proximation induced by condition~19!; and the last line fol-
lows from the normal random variable propertyN(m,s2)
5m1sN(0,1). Computationally, the third line in Eq.~20! is
an improvement over the first line~albeit an approximate
one!, because normal random numbers can be gener
more quickly than Poisson random numbers. The result~20!
provides the basis for a special case of thet-leap method that
we shall call the Langevin method.

Langevin Method: Suppose it is possible to choos
t so that ~i! the Leap Condition is satisfied,and ~ii !
t @Maxj$1/aj (x)%. Then for each j 51,...,M , generate
a sample valuenj of the ‘‘unit normal’’ random variable
N~0,1! and putkj5aj (x)t1(aj (x)t)1/2nj . Finally, compute
l5( j kjnj , and effect the leap by replacingt by t1t andx
by x1l.

We call this the Langevin method because it is entir
equivalent to the chemical Langevin equation~12!, with dt
replaced byt. To see this, observe that the Langevin meth
computes the changel i[Xi(t1t)2Xi(t) in the Si popula-
tion as

l j5(
j 51

M

kjn j i 5(
j 51

M

@aj~x!t1~aj~x!t!1/2nj #n j i

5(
j 51

M

n j i aj~x!t1(
j 51

M

n j i aj
1/2~x!njt

1/2,

and this is precisely the updating recipe dictated by C
~12!. In fact, the derivation of Eq.~12!10 requires that both
the Leap Condition and condition~19! be satisfied, and the
lines leading to Eq.~20! essentially trace the logic of tha
derivation.
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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The Langevin method will be fast not only because t
unit normal random numbersnj are relatively easy to gener
ate, but also because condition~19! implies that eachkj will
be large compared to 1, and hence that the leap will enc
pass many reaction events. But it should be clearly und
stood that, in order to validly use the Langevin method,both
the Leap Condition and condition~19! need to be satisfied.

If the t-leap method is used when allM conditions~19!
happen to be satisfied, the resultant leap will be entir
equivalent to a Langevin method leap, since all thePoisson
random numbers used in thet leap will then be practically
indistinguishable fromnormal random numbers. This mean
that thet-leap method smoothly transitions to the Langev
method as conditions~19! become satisfied. The Langevi
method in turn smoothly transitions to the deterministic RR
~13! whenever the inequalities~19! becomestrongly satis-
fied. This is because the limiting caseaj (x)t→` of condi-
tion ~19! implies that, in the Langevin method formul
kj5aj (x)t1(aj (x)t)1/2nj , the second term becomes neg
gibly small compared to the first term; hence, the increm
l i[Xi(t1t)2Xi(t) in the Si population becomes, in the
limit aj (x)t→`,

l i5(
j 51

M

kjn j i 5(
j 51

M

@aj~x!t#n j i 5(
j 51

M

n j i aj~x!t,

and this is nothing more than the Euler formula for nume
cally solving the RRE~13!. The Langevin method therefor
plays the important conceptual role of showing how the s
chastic simulation methods~the exact SSA and its approx
mating t-leap method! are related to the deterministic RR
of traditional chemical kinetics.

V. A PROCEDURE FOR SELECTING TAU

To successfully applyt leaping, we obviously need a
procedure for quickly determining the largest value oft that
is compatible with the Leap Condition. One way to do th
might be to make a postleap check of the differenc
uaj (x1l)2aj (x)u for eachj from 1 toM, and then try either
a smaller value oft if any of those differences is too large, o
a larger value oft if larger differences could be tolerated
But that procedure would probably be time consumin
moreover, it might engender a bias against infrequent
nonetheless legitimate large fluctuations.

A preleapcheck on the acceptability oft might be car-
ried out as follows: Since the mean or expected value okj

will be ^P(aj (x),t)&5aj (x)t, then theexpectednet change
in state in@ t,t1t) will be

l̄[l̄~x,t!5(
j 51

M

@aj~x!t#nj5tj~x!, ~21!

where we have defined

j~x![(
j 51

M

aj~x!nj . ~22!

j(x) can be interpreted as the mean or expected state ch
in a unit of time. We observe thatl̄ can be calculated fairly
easily for anyt. So, let us simply require that theexpected
changes in the propensity functions in timet, namely the
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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differencesuaj (x1l̄)2aj (x)u, be bounded by some spec
fied fraction e (0,e,1) of the sum of all the propensity
functions:

uaj~x1l̄!2aj~x!u<ea0~x! ~ j 51,...,M !. ~23!

We can estimate the difference on the left side of E
~23! by a first-order Taylor expansion:

aj~x1l̄!2aj~x!'l̄•¹aj~x!5(
i 51

N

tj i~x!
]

]xi
aj~x!.

So, defining

bji ~x![
]aj~x!

]xi
~ j 51,...,M ; i 51,...,N!, ~24!

the requirement Eq.~23! becomes, to a reasonably good a
proximation,

t U(
i 51

N

j i~x!bji ~x!U<ea0~x! ~ j 51,...,M !. ~25!

The largest value oft that is consistent with this condition
and hence the optimal choice fort given the value chosen fo
e, is

t5 Min
j P@1,M #

H ea0~x!Y U(
i 51

N

j i~x!bji ~x!UJ . ~26a!

There will clearly be some computational overhead
selectingt according to Eq.~26a!: We shall have to evaluat
the N functions j i(x) in Eq. ~22! and theMN functions
bji (x) in Eq. ~24! ~but note that the derivatives in the latt
may be computed beforehand and they will usually be q
simple!, and we shall then have to compute and find
smallest of theM ratios on the right side of Eq.~26a!. More-
over, thet value thus found shouldnot be used uncondition
ally; because, ift turns out to be less than a few multiples
the time required for the SSA to make anexact time step,
then it would be better to use the SSA instead. So, since
expected time to the next reaction in the SSA is 1/a0(x), we
supplement thet selection rule~26a! with the proviso

Use exact SSA instead ift <
2

a0~x!
, ~26b!

where the numerator 2 could arguably be replaced by a
thing between 1 and 10.

The foregoingt-selection procedure should be viewed
only a first step towards a more robust control strategy
optimally using thet-leap method in conjunction with th
SSA and the Langevin method. Note that the segue frot
leaping to the Langevin method will occur almost invisibly
the computer routine that generates samples of the Poi
random variableP(aj ,t) is written to return samples of th
normal random variableN(ajt,ajt) wheneverajt is ‘‘suf-
ficiently large.’’ When normal random variables are bei
returned forall the reaction channelsRj , the t-leap method
will have become the Langevin method.

VI. THE ESTIMATED-MIDPOINT TECHNIQUE

The Leap Condition requires that none of the propen
functions changes ‘‘appreciably’’ in the course of a leap. B
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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taking leaps that are large enough to produce a faster s
lation than the SSA will practically always result insome
changes in the propensity functions, and those changes
inevitably give rise to computational errors.

A similar difficulty arises when numerically solving a
ordinary differential equation of the formdX/dt5 f (X) by
the simple Euler method, where a leap down thet axis byDt
according toX(t1Dt)5X(t)1 f (X(t))Dt will produce er-
rors whenever the functionf changes during thatDt incre-
ment. As is well known, one way to reduce those errors is
use the estimated-midpoint~or second-order Runge–Kutta!
procedure instead: WithD1X[ f (X(t))Dt, take X(t1Dt)
5X(t)1 f (X(t)1 1

2D1X)Dt; in other words, use the simpl
Euler method to estimate the ‘‘midpoint’’ value ofX during
@ t,t1Dt), and then calculate the actual increment inX by
evaluating the slope functionf at that estimated midpoint.

In an attempt to adapt this estimated-midpoint strategy
the t-leap method, let us take as the analogue of the sim
Euler incrementD1X theexpectedstate changel̄ in Eq. ~21!.
More precisely, with@z# denoting the largest integer inz, let
us takex1@ l̄/2# to be the ‘‘estimated midpoint state’’ durin
the leap, and then let us generate the Poisson random n
bers kj for the leap using density functions evaluated
x1@ l̄/2# instead of atx. So, our estimated-midpoint metho
for t leaping from statex at time t will be as follows.

Estimated-Midpointt-Leap Method: For the selected
leaping timet ~which satisfies the Leap Condition!, compute
the expectedstate changel̄5t( jaj (x)nj during @ t,t1t).
Then, with x8[x1@ l̄/2#, generate for eachj 51,...,M a
sample valuekj of the Poisson random variableP(aj (x8),t).
Compute the actual state change,l5( j kjnj , and effect the
leap by replacingt by t1t andx by x1l.

To examine the legitimacy of this strategy, let us co
sider its effect on a reaction set that is simple enough to so
exactly in the stochastic formalism. TheN5M51 isomer-
ization reaction

X→
c

Y ~27!

has propensity functiona(x)5cx and state change vecto
n521. The solution to its CME can be shown to be

P~x2k,t1tux,t !5
x!

k! ~x2k!!
@e2ct#x2k @12e2ct#k

~0<k<x;t>0!. ~28!

The correctness of this formula can be seen by noting
the second factor is the probability that a specified group
x2k molecules willnot isomerize in@ t,t1t), the third fac-
tor is the probability that a specified group ofk molecules
will isomerize in@ t,t1t), and the first factor is the numbe
of distinct ways of dividingx molecules into two groups ofk
andx2k molecules.

To effect a leapl5kn52k for this reaction from state
x at time t using theplain t-leap method, we would firs
choose a leaping timet, and then obtain the numberk of
reactions~27! that occur in@ t,t1t) by sampling the Poisson
density function
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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PP~k;cx,t!5
e2cxt~cxt!k

k!
~k50,...,̀ !. ~29a!

To leap using theestimated-midpointt-leap method, we
would first compute for the chosent value the expected stat
change in @ t,t1t), l̄5ta(x)n52tcx. Then, with

x8[x1@ 1
2l̄ #5x2@ 1

2tcx#, we would obtaink by sampling
the Poisson density function

PP~k;cx8,t!5
e2cx8t~cx8t!k

k!
~k50,...,̀ !. ~29b!

The exactway to choosek would be to sample the binomia
density function~28!, since that function is precisely th
probability that exactly k isomerizations will occur
in @ t,t1t).

In Fig. 1 we compare the exactk density function~28!
with the proposed approximations~29a! and ~29b! for c
51, x5100, and three different values oft. Figure 1~a! has
t50.9, a time leap that is ‘‘large’’ since the average time

FIG. 1. Probability density functions for the numberk of isomerizations~27!
occurring in a given timet, with c51 andx5100. ~a! hast50.9, ~b! has
t50.4, and~c! hast50.1. In each case, thesolid curve is the exact density
function ~28!, thedottedcurve is the density function~29a! predicted by the
plain t-leap method, and thedashedcurve is the density function~29b!
predicted by the estimated-midpointt-leap method.
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
isomerization for any individualX molecule isc2151; in-
deed, the exact~solid! curve in Fig. 1~a! shows that between
40 and 80 of the 100X molecules should isomerize in tha
time leap. In this case, the plaint-leap~dotted! curve signifi-
cantly overestimatesk, while the estimated-midpointt-leap
~dashed! curve, to a much lesser extent, underestimatesk.
Note also that plaint leaping witht50.9 predicts a substan
tial probability of producing ak value greater than 100
which of course is physically unrealistic. Fort50.4 @Fig.
1~b!#, the estimated-midpointk distribution provides an ar-
guably acceptable approximation to the truek distribution.
The plaink distribution is still too high, although it no longe
predictsk values that are unphysically large. Fort50.1 @Fig.
1~c!#, the estimated-midpointk distribution matches the ex
actk distribution extremely well, and the plaink distribution
has finally become arguably acceptable.

Figure 1 suggests that, at least for the simple isomer
tion reaction, the estimated-midpoint technique allows
roughly fourfold increase in the leap size for the same deg
of accuracy. But it remains to be seen how effective t
technique will be for other kinds of reactions. We also s
from Fig. 1 that the estimated-midpoint technique overc
rects the plaint-leap k distribution, at least insofar as pea
placement is concerned, so it might be better to takex8

5x1 f l̄, wheref is a bit lessthan 1/2; however, we shall no
pursue that ad hoc refinement at this stage.

The estimated-midpoint technique should also be ap
cable to the Langevin method. That would give us the f
lowing procedure.

Estimated-Midpoint Langevin Method: Choosing t so
that ~i! the Leap Condition is satisfied,and ~ii ! t

@Maxj$1/aj (x)%, computel̄5t( jaj (x)nj . Then, with x8

[x1@ l̄/2#, for eachj 51,...,M generate a sample valuenj

of the ‘‘unit normal’’ random variableN(0,1) and putkj

5aj (x8)t1(aj (x8)t)1/2nj . Finally, compute l5( j kjnj ,
and effect the leap by replacingt by t1t andx by x1l.

In the special case that condition~ii ! here happens to be
satisfied so strongly that the second term in the above
mula for kj is for every j negligibly small compared to the
first term, this method reduces to the second-order Run
Kutta algorithm for the deterministic reaction rate equati
~13!. This plausible result must, however, be viewed in t
light of a rather more disquieting one: For any Langev
equation whose diffusion functions are state dependent—
are the diffusion functionsn i j aj

1/2(x) in the chemical Lange-
vin equation~12!—the estimated-midpoint logic produces a
updating formula that is demonstrablywrong in the limit
t→0.12 But we can optimistically hope that this will no
pose a problem with our estimated-midpoint Langev
method here because condition~ii ! serves to keep us awa
from the limit t→0; i.e., since the CME~12! is valid only if
dt is a macroscopicinfinitesimal, then the limitdt→0 for
that particular Langevin equation is effectively precluded

VII. TWO ELEMENTARY EXAMPLES

As our first application of thet-leap method we shal
take the simplest of all chemical reactions, the irreversi
isomerization
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 2. Exact stochastic simulation of the simple isomerization reaction~30! with c151. Each of the 100 000 reactions is simulated, and the state is plo
as a dot after every 800 reactions. The last reaction in this run occurred att512.76. The two solid lines show the 1 sd envelope predicted by the chem
master equation.
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S1→
c1

0, ~30!

for which N5M51, a1(x)5c1x1 , andn1521. We shall let
c151, and assume that there are 105 S1 molecules at time 0.
The solutionP(x1 ,tu105,0) to the CME~4! for this reaction
can be read off from Eq.~28!.

Figure 2 shows the result of an exact stochastic sim
tion of reaction~30! in which (t,X1) has been plotted afte
every 800 reactions. What might appear to be a single s
line in Fig. 2 is actually two lines, which demarcate the 1
envelopê X1(t)&6sdev$X1(t)% as computed from the solu
tion to the CME. Reaction~30! evidently exhibits little sto-
chasticity on the population scale of Fig. 2; nevertheless,
exact SSA dutifully generates the precise~stochastic! instant
at which each of the 105 S1 molecules isomerizes. The fina
reaction occurs in this particular run att512.76, a value tha
will fluctuate considerably from run to run.

Figures 3~a!–3~c! show the results of three simulatio
runs of reaction~30! using thet-leap method. For each o
these runs the leap sizet was chosen using thee-control
strategy described in Sec. V, i.e., according to Eqs.~26a! and
~26b!. So each leap advances time by the amount that ma
the expected fractional decrease in the propensity func
equal toe, except that the final few reactions are genera
using the exact SSA. The plaint-leap run in Fig. 3~a! has
e50.03. The dots show the state of the system after ev
second leap, and the entire run uses 305 leaps, as com
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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to the 100 000 steps in the exact run of Fig. 2. The accur
appears to be good, although a close inspection reveals
the trajectory is slightly biased to the low side of the 1
envelope. Increasing the accuracy parametere by a factor of
5 gives the run in Fig. 3~b!, where now the state has bee
plotted after every leap. The run is of course faster, but
low bias has become unacceptably large. Repeating this
using the estimated-midpoint technique yields the traject
in Fig. 3~c!. The low bias appears to have been eliminat
and the run uses only 70 leaps.

Figures 3~a! and 3~c! together suggest that the estimate
midpoint strategy allows the average leap size in a simu
tion of reaction~30! to be increased by a factor of roughly
while maintaining the same degree of accuracy, consis
with our findings in Sec. VI. Additional simulations with
larger values ofe revealed that the slight high bias in th
estimated-midpoint method can be greatly reduced by
creasing midpoint fraction from 0.5 to 0.45. But other testi
should be done before adopting such anad hocrefinement.
For instance, we should plot histograms ofX1 at various
fixed times~e.g., t50.5, 2.0, and 8.0! for a thousand or so
repeated runs of each of the three cases in Fig. 3, and
compare those histograms with plots ofP(x1 ,tu105,0) as
given by Eq.~28! to see how accurately thedispersionin X1

about its mean is being replicated in these leaping sim
tions. For now, though, we shall simply take these init
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 3. Threet-leap simulations of the reaction in Fig. 2, using in each case the control strategy~26!. The solid lines show the 1 sd envelope predicted
the chemical master equation. In~a! the error control parametere50.03, and the state is plotted after every second leap; a total of 305 leaps were nee
complete the simulation, as compared to the 100 000 steps in Fig. 2. In~b! e has been increased by a factor of 5, and the state is plotted after every lea
trajectory now falls off too rapidly. The problem is corrected in~c! by using the estimated-midpoint technique, which evidently allows an accep
simulation to be accomplished in only 70 leaps.
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 3. ~Continued.!
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results for reaction~30! as ‘‘encouraging,’’ and move on to
slightly more complicated set of reactions.

We shall augment reaction~30! by adding two more mo-
lecular species and three more reaction channels as foll

S1→
c1

0

S11S1→
c2

S2

S2→
c3

S11S1

S2→
c4

S3.

~31!

Whenc2 andc3 are sufficiently large, the disappearance
S1 molecules through reactionR1 is superimposed on a fas
reversible dimerization of the ‘‘monomer’’S1 into an ‘‘un-
stable dimer’’S2 , which in turn can convert to a stable form
S3 . We shall simulate these reactions using the rate cons
values

c151, c250.002, c350.5, c450.04 ~32a!

and the initial conditions

X15105, X25X350. ~32b!

Figures 4~a! and 4~b! show the results of an exact sto
chastic simulation of reactions~31!, in which the species
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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populations have been plotted every 2000 reactions. We
serve that the initial monomer population first plumme
sharply @for comparison we show in Fig. 4~a! the pure
isomerization 1 sd envelope of Fig. 2# as reaction channelR2

rapidly builds up the unstable dimer population. At about
'0.2, a quasiequilibrium is achieved between speciesS1 and
S2 . Thereafter, those two volatile species are slowly deple
through reaction channelsR1 andR4 , respectively, with all
reactions ceasing whenX15X250. The final value ofX3

gives the number of stable dimers that were created from
initial pool of unstable monomers. The run shown in Fig.
actually ended att543.06 withX3517 027, after a total of
526 692 reactions. Of course, these terminal values will v
from run to run: In 20 independent simulations, the 1
ranges of those terminal values were found to bet546.4
62.0, X3517 0666106, and reaction count5526 009
61908.

Figures 5~a! and 5~b! show the results of a simulatio
using the plaint-leap method, with the leap sizet being
chosen according to the strategy of Eqs.~26! with e50.03.
The species populations here have been plotted after e
leap. The run ended after 459 leaps, witht543.67 andX3

517 045. Simple overlays of these trajectories on those
Figs. 4~a! and 4~b! show good agreement, although detail
statistical comparison tests were not performed. A repetit
of this run using the estimated-midpoint technique produ
the results shown in Figs. 6~a! and 6~b!, and these results ar
a little disappointing: After successfully negotiating the d
namical transition that occurs aroundt'0.2, the simulation
seems to ‘‘get lost’’ momentarily aroundt'1. But the simu-
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 4. Exact stochastic simulation of reaction set~31! for the rate constants~32a! and the initial condition~32b!. The state is plotted after every 200
reactions.~a! shows the evolution of the unstable monomer populationX1 ; the solid lines show the 1 sd envelope of Fig. 2, which would be obtained in
absence of the last three reactions in~31!. ~b! shows the evolutions of the unstable dimer populationX2 and the stable dimer populationX3 . All reactions end
whenX1 andX2 both reach zero; that happened in this simulation att543.06, after a total of 526 692 reactions had occurred.
se

w
ed-
to
lation seems to recover itself quickly with no serious con
quences, as overlay comparisons with Figs. 4~a! and 4~b!
show good agreement elsewhere; indeed, the run ends
the quite acceptable terminal valuest543.26 and X3
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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517 093. Nevertheless, it appears that the plaint-leap run of
Fig. 5 provides a better simulation than the estimat
midpoint t-leap run of Fig. 6, which is in sharp contrast
what we found for the simple isomerization reaction~30!.
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FIG. 5. A plaint-leap simulation of the reactions in Figs. 4, using the control strategy~26! with e50.03. A dot is plotted after every leap, and only 459 lea
were required to complete the run.
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Perhaps we should apply the estimated-midpoint te
nique to reaction~31! in a more selective way. An attempt t
do that led to the simulation shown in Fig. 7: This run us
the estimated-midpoint technique withe50.2 only when
a2(x).0.6a0(x), a condition that is obtained only during th
early moments when the system is rapidly building up
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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population of unstable dimers; otherwise, ordinaryt leaping
was used withe50.03. The results of this simulation are
little more encouraging. The simulation seems to track w
with the exact SSA run in Fig. 4, but it uses only 289 lea
as compared to 526 692 steps; moreover, it ends with va
t547.31 andX3517 091, which compare favorably with th
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 6. A repetition of thet-leap simulation in Figs. 5, but now using the estimated-midpoint technique. Notice the spurious momentary instability tha
aroundt51.
or
,

up-
ending values found in the run in Fig. 4. But thead hoc
nature of this modestly improved simulation shows that m
remains to be understood aboutt leaping before an efficient
robust control strategy can be devised.
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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VIII. THE k a-LEAP METHOD

We now describe an alternative to thet-leap method that
might, under some circumstances, be more convenient. S
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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FIG. 7. A t-leap simulation of the reactions in Figs. 4 using a hybrid strategy: Whena2(x)/a0(x).0.6, the estimated-midpoint technique is used
conjunction with the control strategy~26! with e50.2; otherwise, the control strategy~26! is used with e50.03 without the estimated-midpoin
technique. A dot is plotted after every leap, and only 289 leaps were required to complete the run.
re
of

ings
pose that instead of leaping down the history axis by a p
determined timet, we leap by a predetermined number
firings ka of a specified reaction channelRa . With the sys-
tem as before in statex at time t, the task then would be to
determine the timet1t at which thekath firing of channel
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
-Ra occurs, and also the numbers of contemporaneous fir
of all the other reaction channelsRj Þa . Whereas int leaping
we generate values for theM random variables$K j (t;x,t)%
in Eq. ~15!, in ka leaping we generate values for theM
random variables $T(ka ;x,t),K j Þa(ka ;x,t)%, where
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FIG. 8. A ka-leap simulation of the reaction in Fig. 2 using the control strategy~34! in conjunction with the estimated-midpoint technique. This
simulation, which usesgammarandom numbers, is to be compared with thet-leap simulation in Fig. 3~c! which usesPoissonrandom numbers.
a

e
-

iz
oi

een

s
,
ac-

n a

that

But
the
he
T(ka ;x,t) is the time required for exactlyka firings of chan-
nel Ra . Assuming as before that the Leap Condition is s
isfied, it can be shown thatT(ka ;x,t) will be the gamma
random variableG(aa(x),ka) ~see the Appendix!. And once
a valuet has beenassignedto T(ka ;x,t), eachK j (ka ;x,t)
for j Þa will then be the Poisson random variable
P(aj (x),t). We thus arrive at the following procedure.

Basic ka-Leap Method: Choose a value forka that sat-
isfies the Leap Condition; i.e., a leap byka of the Ra reac-
tions will result in a state changel which is such that, for
every reaction channelRj , uaj (x1l)2aj (x)u is ‘‘effectively
infinitesimal.’’ Generate a sample valuet of the gamma ran-
dom variableG(aa(x),ka), and then generate for eachj
Þa a sample valuekj of the Poisson random variabl
P(aj (x),t). Computel5( j kjnj , and effect the leap by re
placing t by t1t andx by x1l.

Since theaveragevalue of t will be ~see Appendix!
^G(aa(x),ka)&5ka /aa(x), then the average orexpected
change in state in aka leap will be the following simple
variation on Eq.~21!:

l̄[l̄~x,ka!5
ka

aa~x!
j~x!. ~33!

Using this formula, we can easily adapt both the leap s
selection procedure of Sec. V and the estimated-midp
technique of Sec. VI toka leaping. In particular, we have in
place of Eqs.~26! the following formula for the optimalka :
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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ka5F Min
j P@1,M #

H eaa~x!a0~x!Y U(
i 51

N

j i~x!bji ~x!UJ G ,

~34a!

where@z# denotes the greatest integer inz. And we add the
proviso

Use exact SSA instead if ka,1 or
kaa0~x!

aa~x!
,2, ~34b!

where the 2 could arguably be replaced by anything betw
1 and 10.

In principle, theka-leap method is no more nor no les
accurate or efficient than thet-leap method. For example
Fig. 8 shows a simulation of the simple isomerization re
tion ~30! using theka-leap method in conjunction with the
estimated midpoint technique, and the results are quite o
par with the correspondingt-leap simulation in Fig. 3~c!.
The mathematical difference between those two runs is
the t-leap run in Fig. 3~c! was generated using onlyPoisson
random numbers~selectingt and generatingk!, whereas the
ka-leap run in Fig. 8 was generated using onlygammaran-
dom numbers~selectingk and generatingt!. Figures 9~a! and
9~b! show aka-leap simulation of reactions~31! using the
same auxiliary strategies as thet-leap simulation in Figs.
7~a! and 7~b!, and again the results are quite comparable.
we shall discuss in Sec. IX a reason for believing that
t-leap method will usually be more convenient than t
ka-leap method.
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FIG. 9. Aka-leap simulation of the reactions in Figs. 4, with the pacing channelRa chosen at each leap to be the channel with the largest propensity func
Whena2(x)/a0(x).0.6, the estimated-midpoint technique is used in conjunction with the control strategy~34! with e50.2; otherwise, the control strateg
~34! is used withe50.03 without the estimated-midpoint technique.
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IX. CONCLUSIONS AND PROSPECTS

The simulation results reported in Sec. VII are prelim
nary and limited in scope, but they strongly suggest that
t-leap method introduced in Sec. III can be made to wo
The t-leap runs in Figs. 3~c! and 7 are reasonably good a
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
e
.

proximations to the SSA runs in Figs. 2 and 4, respective
with the ratio of number of leaps to number of steps be
less than 1/1000. Of course, this cannot be interpreted
real acceleration factor of 103, since it takes longer to ex
ecute a leap than to take a step. Since these runs were
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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made with great attention to programming efficiency,
seems premature to try to estimate real acceleration fac
Suffice it for now to say that the leaping runs were notic
ably faster than the SSA runs.

The t-leap method fills a critical gap in our spectrum
tools for numerically simulating chemically reacting sy
tems. At the exact end of that spectrum we have the met
of molecular dynamics, which simulates every molecu
collision that occurs in the system. Next we have the SS
which simulates only those molecular collisions that arere-
active; this is an approximating simplification which is vali
only for systems that are well stirred. If the well-stirred sy
tem is large enough that we can approximately satisfy
Leap Condition, we can speed up the SSA by using
t-leap method. If, further, eacht leap encompasses avery
large number of firings ofeveryreaction channel, thet-leap
method becomes the Langevin method. Finally, in the li
of infinitely large systems, the Langevin method typica
approaches the deterministic RRE of traditional chemical
netics.

An alternative to thet-leap method is theka-leap
method, described in Sec. VIII. It appears to work just
well as thet-leap method, but the following consideration
lead us to expect that thet-leap method will usually be more
convenient. It often happens in a simulation that a speci
event becomes scheduled to occur at some future instant8,
and that event will influence the subsequent evolution of
system. An example would be a determination that the tra
lation of a certain portion of an mRNA chain by a ribosom
will conclude at timet8, resulting in the release of a reacta
enzyme molecule into the system at that instant. If we w
doing t leaping, we could easily accommodate thet8 event
by proceeding as follows: Simulate as usual until we reac
time t when ourt-selection algorithmsuggestsa next-t value
satisfying t1t.t8. Leap instead by thesmaller value t
5t82t, which is always permitted, and which brings us
to the instantt8. Now introduce the scheduled event, a
then resume ordinaryt leaping. But it would be much les
easy to accommodate the scheduledt8 event when doingka

leaping. Note that theeffectof a ka leap can always beap-
proximatedby doing at leap witht5ka /aa(x), which is the
expectedtime for ka firings of reaction channelRa . But of
course, if ever the need should arise to step by anexact
number of firings of a particular reaction channel, then
should do aka leap for that step.

The shortcomings of thet-leap method as presented he
are most evident in the general raggedness of the traject
in Figs. 5, 6, and 7 in the time interval 1,t,20, which
shows that the procedure described in Sec. V for selec
optimal values fort needs improvement. Also, we need
understand why the estimated-midpoint technique descr
in Sec. VI does not work in all situations. More generally, w
need a robust control strategyfor dynamically deciding
when to step exactly and when to leap approximately, an
leaping then with what parameter values and with what a
iliary error-reduction scheme.Until such a robust control
strategy is developed, thet-leap method cannot be consid
ered ready for practical application.

We may hope that such a robust control strategy w
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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arise out of future efforts to applyt leaping to more compli-
cated reaction schemes, such as model chemical oscilla
bistable systems, and simple genetic regulatory reacti
Such applications should also try to determine, through
runs made in conjunction with exact SSA runs, the nat
and extent of the errors that are introduced by leaping.
example, whereas we show in Figs. 2 and 3~c!, respectively,
single SSA and estimated-midpointt-leap runs, we really
need to generate, say, 1000 runs of each, and then compa
detail the resultant SSA andt-leap histograms ofX(t) at
various values oft. And if it is found that thet-leap histo-
grams differ substantially from the SSA histograms in eith
peak placement or peak shape, then ways of reducing th
differences should be sought.

Finally, there are several purely computer science iss
that deserve attention. First, sincet leaping relies heavily on
Poisson random numbers, then any improvements in the
ficiency of the standard method13 for generating Poisson ran
dom numbers will naturally lead to faster leaping simu
tions. Also in that connection, when we can we reliab
invoke the simplifyingnormal approximation~A5! for the
Poisson random variable? Second, instead of generatink
values according to the estimated-midpoint formula~29b!,
would it be feasible and preferable to generatek values ac-
cording to the binomial formula~28!? Finally, in view of the
vector nature of the variableskj , l, and l̄, and also the
vector-matrix nature of thet-selection formula~26a!, we
may expectt leaping to lend itself naturally to vectorized o
parallel computation, especially when the numbers of che
cal species and reaction channels are large.

In summary,t leaping looks promising, but the prese
work is only a beginning.
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APPENDIX: THE POISSON AND GAMMA RANDOM
VARIABLES

ThePoissonrandom variableP(a,t) is defined to be the
number of ‘‘events’’ that occur in a timet, given thatadt is
the probability for an event to occur in any next infinitesim
time intervaldt. The parametersa and t can be any positive
real numbers; however, the random variableP(a,t) itself is a
non-negative integer.

Letting PP(k;a,t) denote the probability thatP(a,t)
5k, it is easy to show thatPP(0;a,t)5exp(2at), and by the
laws of probability, we have for any integerk>1,

PP~k;a,t !5E
t850

t

PP~k21;a,t8!3adt83PP~0;a,t2t8!.

Using this recursion relation and thek50 formula, one can
establish by induction that
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PP~k;a,t !5
e2at~at!k

k!
~k50,1,2,...!. ~A1!

It can be shown from this result that the mean and varia
of P(a,t) are

^P~a,t !&5var$P~a,t !%5at. ~A2!

Equation~A2! is the basis for the well known rule-of-thum
that, for random events occurring at a ratea, or more pre-
cisely with mean time per eventa21, the number of events
expected in a timet is at6Aat.

Thegammarandom variableG(a,k) is defined to be the
sum of k statistically independent exponential random va
ables with common decay constanta; so, in particular,
G(a,1)5E(a). The parametera can be any positive rea
number, and the parameterk can be any positive integer
however, the random variableG(a,k) itself is a non-negative
real.

To deduce the form of the probability density functio
PG(t;a,k) of G(a,k), we observe from the foregoing defin
tion that G(a,k)5( i 51

k Ti , where the random variable
T1 ,...,Tk have joint density function) i 51

k (a exp(2ati)).
Therefore, by the random variable transformation theorem14

the density function of the sum is

PG~ t;a,k!

5E
0

`

dt1¯E
0

`

dtk)
i 51

k

~a exp~2ati !!dS t2(
j 51

k

t j D ,

whered is the Dirac delta function. Evaluation of this inte
gral gives

PG~ t;a,k!5ae2at
~at!k21

~k21!!
~ t>0!. ~A3!

It can be shown form this result that the mean and varia
of G(a,k) are given by

^G~a,k!&5
k

a
, var$G~a,k!%5

k

a2 . ~A4!

Equations~A4! also follow from the fact that the mean an
variance of the sum ofk statistically independent random
variables are simply the sums of thek means and thek vari-
ances, those being in this case^E(a)&5a21 and var$E(a)%
5a22.
Downloaded 09 Jun 2013 to 128.192.169.62. This article is copyrighted as indicated in the abstract.
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Both the Poisson and the gamma random variables
comenormalrandom variables for suitable limiting values o
their parameters. In the case ofP(a,t), one can use the
Stirling factorial approximation together with the small-e ap-
proximation for ln(11e) to show from the density function
formula ~A1! that

P~a,t !→N~at,at! as at→`, ~A5!

N(m,s2) being the normal random variable with meanm
and variances2. And in the case ofG(a,k), its definition as
a sum ofk statistically independent random variables w
meana21 and variancea22 allows us to conclude from the
central limit theorem that

G~a,k!→NS k

a
,

k

a2D as k→`. ~A6!

Computer algorithms for generating Poisson and gam
random numbers are given in Presset al.13 Func-
tion poidev(x,iseed) of Ref. 13 generates a sample of a Po
son random variable with meanx, so a sample ofP(a,t) may
be calculated as poidev(at,iseed). And function
gamadev(k,iseed) of Ref. 13 generates a sample ofG(1,k);
so, since it follows from the random variable transformati
theorem thatG(a,k)5a21G(1,k), then a sample ofG(a,k)
may be calculated asa21gamdev(k,iseed). These are the
methods for generating Poisson and gamma random num
that were used for all simulations reported in this paper.
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