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MULTIVARIATE NORMAL DISTRIBUTION
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PROPERTIES OF MULTIVARIATE NORMAL

Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression
1 K~
exp (7§XTAX + bTx> (8.4.10)

can be transformed as follows. First we complete the square:

%XTAX —bTx= % (x-A"b) A (x—A'b) - %bTA‘lb (8.4.11)
Hence
exp (—%XTAX 1 bTx> =N (x]A7'b,A7") y/det (2rA " )exp (%bTA’1b> (8.4.12)
—Jy

~
Wmcexp(—%xAxT +b7x) is known as the canonical representation, and it is normal with mean| A~ b‘and
cc»variance\A‘1 .
—

Linear transformation

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

YFEMx+n (8.4.14)
-
where x ILn, n ~ N (1, %), and x ~ N (g, 5). Then the marginal p(y) = [, p(y[x)p(x) is a Gaussian

w5 p(y) =N (y\l\jlm + 1, MEMT + E) (8.4.15)
N ——— N~
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PROPERTIES OF MULTIVARIATE NORMAL

| A
o . o
(a) (b,
Eigendecomposition
'
~~] - S =EAE" (8.4.5)
where ETE = T and A = diag (M,---,Ap). In the case of a covariance matrix, all the eigenvalues \; are
positive. This means that one can use the transformation ——
_iloT
Y¥ AT ZE' (x—p) (8.4.6)
so that
(x=p)' 2 (x—p) = (x— ) EATET (x—p) =yTy (8.4.7)

So by rescaling, we can obtain a product of d-univariate standard normal distributions, one per dimension.
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PROPERTIES OF MULTIVARIATE NORMAL

Marginal and conditional of multivariate Gaussians

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z|p, £) defined jointly over two vectors x
and y of potentially differing dimensions,

7= < ; )Af\, (8.4.16)
with corresponding mean and partitioned covariance
n= (_ Ha ‘> == (-—Eﬁ R ) (8417)
Hy Sy Ty
y
where 3, = EIyA The marginal distribution is given by

O p(x) =N (x|t ) ‘:(ﬂ‘ ?[(l‘ﬂélr% (8.4.18)

and conditional

M pY) =N (x[p + Say By, (v — 1) Bw — Bay Dy Tye) (8.4.19)



DISTRIBUTIONS 37/65

PROPERTIES OF MULTIVARIATE NORMAL

Product of multivariate Gaussians

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (el S0) N (xl g, 5) = N (s ) exp (*%(I—H*Hz)TS*l(Ih*HQ)) (8.48) '\
x|y, X| o, Bo) = x|p, 4.
Hy, 21 Hao, 22 K \/det (27S)
where S = 3 + 35 and the mean and covariance are given by
=318y + oSy »=%81%, (8.4.9)

Gaussian average of a quadratic function

Result 8.5 (Gaussian average of a quadratic function).

TA = T Ap + trace (AS) <=
<x X>N(x\u,)3) pAp + trace ( )
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THE CURSE OF DIMENSIONALITY

Exercise I. Suppose you want to explore uniformly a region by
gridding it. How many grid points do you need? J

N
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THE CURSE OF DIMENSIONALITY

d dimensions. What is the probability of finding a point inside

Exercise II.: Suppose you sample from a uniform distribution in
the region [, 1 — €]9? }

U - (UI , ,—U—JB U,; '\/UN'FOM(O,1>
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THE CURSE OF DIMENSIONALITY J Lo iundip, Shakod

M5 G,
Exercise IlI: Suppose you sample from a spherlcal Gau35|an %

distribution. Where do the points lie as the dimensions
increase?
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

o More general distributions can be built via mixtures: e.g.

p(X|,U1...,n,0'$ n): T (/J,',O',g) &~

1o4) ASe"

where the mixing coefficients n; are discretely dlstrlt?uted

.....
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

o More general distributions can be built via mixtures: e.g.

where the mixing coefficients n; are discretely distributed

@ You can interpret this as a two stage hierarchical process:

choose one component out of a discrete distribution, then
choose the distribution for that component

41/65
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

o IMPORTANT CONCEPT: the mixture

p(XIl‘H ek} O-$

.....
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

o IMPORTANT CONCEPT: the mixture

.....

is an example of latent variable model, with a latent class
variable and an observed continuous value. The mixture is
the marginal distribution for the observations (w.r.t. the
latent variable)

o The probability of the latent variables given the
observations can be obtained using Bayes’ theorem.
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CONTINUOUS MIXTURES: SOME COOL DISTRIBUTIONS

@ No need for the mixing distribution (latent variable) to be
discrete
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CONTINUOUS MIXTURES: SOME COOL DISTRIBUTIONS

@ No need for the mixing distribution (latent variable) to be
discrete

@ Suppose you are interested in the means of normally
distributed samples (possibly with different variances/
precisions): Marginalising the precision in a Gaussian
using a Gamma mixing distribution yields a Student
t-distribution
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CONTINUOUS MIXTURES: SOME COOL DISTRIBUTIONS

@ No need for the mixing distribution (latent variable) to be
discrete

@ Suppose you are interested in the means of normally
distributed samples (possibly with different variances/
precisions): Marginalising the precision in a Gaussian
using a Gamma mixing distribution yields a Student
t-distribution

@ Suppose you have multiple rare event processes
happening with slightly different rates: Marginalising the
rate in a Poisson distribution using a Gamma mixing
distribution yields a negative binomial distribution
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PARAMETERS?

e Many distributions are written as conditional probabilities
given the parameters: p(x|6)

e Often the values of the parameters are not known

o If we have observations, we can try to estimate the
parameters from such data.

o We assume to have independent and identically distributed
(i.i.d.) observations of p(x|0iue): X = X1,..., XN-
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MAXIMUM LIKELIHOOD

@ Likelihood for[i.i.d. bservations X = x4, ..., Xy:

p(x|0) 3 ]_[ p(xil6) o

et



FITTING DISTRIBUTIONS

MAXIMUM LIKELIHOOD

o Likelihood for i.i.d. observations x = xq,..., Xn:

N

p(xi0) = [ | p(xil6)

i=1

e Choose the parameters that best explain the observations:

we pick 6 by maximum likelihood:

6 = argmax, [1_[ p(xl0)
i

46765
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MAXIMUM A POSTERIORI

@ Suppose we can encode prior knowledge (or absence of it)
in a prior distribution over parameters, p(6).
@ We can then compute the posterior distribution, given i.i.d.

observations x = x1, ..., Xy, by Bayes theorem: _

| "
plow) = PERED 0%,
9, v KL o
@‘ A e
where W e
px) = [ pxie)p(e)a
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MAXIMUM A POSTERIORI

@ Suppose we can encode prior knowledge (or absence of it)
in a prior distribution over parameters, p(6).

@ We can then compute the posterior distribution, given i.i.d.

observations x = x1, ..., Xy, by Bayes theorem:
p(xI6)p(6)
ox) = ———=
p(6Ix) p(x)
where

p(x) = f p(xI6)p(6)d6

o Estimate 6ye by the maximum a posteriori (MAP) estimate

Onap = argmax, {p(@) l—l pgi(ilﬁ)
i
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EXERCISE: FITTING A DISCRETE DISTRIBUTION

@ We have a discrete distribution with values in
K ={1,...,k}, with parameters u = u1,...,ux, 2ipi = 1.
o We have independent observations x = xy,..., Xy, €ach
taking values in K.

o The likelihood is

N

L(p) = p(xlu) = ]_[p Xilp)

i=1

o Compute the Maximum Likelihood estimate of u. What is
the intuitive meaning of the result? What happens if one of
the pvalues is not represented in your sample?
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EXERCISE: FITTING A DISCRETE DISTRIBUTION
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EXERCISE II: FITTING A GAUSSIAN DISTRIBUTION

We have independent, real valued observations x = xq,..., Xy.
Fit a Gaussian by maximum likelihood. >

-1 —
Ff()‘dl/"‘cr2>=ﬂ—-\/—‘/|c 2 lm)
! toNZTe

g (/(‘0\7.> = ""%ﬂm% ZIT()"‘_Z%L?; (M —/u\yz’

r)/i: -0 ~'_\_fo LL T lZ (‘Q\/«BL i— =0
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BAYESIAN ESTIMATION

e The Bayesian approach fully quantifies uncertainty

e The parameters are treated as additional random variables
with their own prior distribution p(6)

e The observation likelihood is combined with the prior to
obtain a posterior distribution via Bayes theorem 2

r) b‘«\ f> (% %\?\Q\W

e The distribution of the observable x (predictive distribution)

is obtained as
- PP ¢
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS

o Letdata x; i=1,..., N be distributed according to a
Gaussian with mean(ju and variance o2

o Let the prior distribution over the mean u be a Gaussian
with mean m and variance v2

@ Compute the posterior (and predictive distribution,
Exercise) ’i w&éc,\mb. \)\ﬂy \/“P .F},\

GL N N
W - /
K \ﬂ.\’ ('L [}’

(2%

Me
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS
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ESTIMATORS

e A procedure to calculate an expectation is called an
estimator

e e.g., fitting a Gaussian to data by maximum likelihood
provides the M.L. estimator for mean and variance, or
Bayesian posterior mean

@ An estimator will be a noisy estimate of the true value, due
to finite sample effects

o An estimator f is unbiased if its expectation (under the joint
distribution of the data set) coincides with the true value

o An estimator f is consistent if it converges to the true value
when the number of data goes to infinity.
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EXERCISE: BIASED ESTIMATOR

The ML estimator of variance, 62 = & SN, (x; - 2)? is biased:
2y _ N-1,.2
>_

<; Py " e . [“_ 2L ‘/"Z

(i 72
<><& X-BS = //\1
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BOOTSTRAP

e For an estimator, in theory we can compute its mean and
its variance under the joint distribution of the datasets. In
practice, getting the variance may be very hard.
Bootstrapping can be used instead.

o Given the dataset x = x4, ..., Xy, construct from it K new
datasets x;, also of size N, by sampling with repetitions.

e compute the estimator 6; for each x;.

@ Compute the empirical variance (or any other statistics)
from xq,..., xx.

o This is an estimate of the actual variance of the estimator.
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CONJUGATE PRIORS

e The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally

e BUT computing the normalisation in Bayes theorem is very
hard

e The case when it is possible is when the prior and the
posterior are of the same form (conjugate)

e Example + Exercise: Bernoulli and Beta.
e Example: discrete and Dirichlet
e Exercise: conjugate priors for the univariate normal (mean)
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EjRoOL L]
CONJUGATE PRIORS: @AL AND BETA

Show that the Beta is the conjugate prior for the Bernoulli
distribution.

BERNOU§(_( < edoy]  Plx(%) > Q’K (4_
¥, — 5 Xn PLLIT) ;{T{ P a1 3) - ﬁk{ﬁﬁ%m-&
K‘—%KL:#(LI;)

Rete (Fot) = . & (49 .

- K N~ /9/
b (FIX) IS @
)

- ﬁam L ( >|0+N_\<~L _ gﬁh{VC [6(+K—1,K+N—~K~4)

{~x

’,\—‘IJ
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ENTROPY

o Probability theory is the basis of information theory
(interesting, but not the topic of this course).

e An important quantity is the entropy of a distribution
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ENTROPY

o Probability theory is the basis of information theory
(interesting, but not the topic of this course).

e An important quantity is the entropy of a distribution
\7,,
Hipl = - 3", pllogz pi T~
2.pieeeF |

Or for continuous distributions:

Hipl = - [ pto) 'W

o Entropy measures the level of disorder of a distribution; for
discrete distributions, it is always > 0 and 0 only for
deterministic distributions. The maximum is log K, if K is
the size of the support of the discrete distribution, and is
achieved by the uniform distribution.
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DIVERGENCE

° The] relative entropy or Kullback-Leibler (KL) divergence
between two distrlbutlons is

KL[qllp] Zq, Iog— ([G%c}> Log p>
H [q] 7
Of in the continuous case
q(x)
KL = f X)log ——=dx
[qlip] q(x)log (%)
e Fact: KL is convex and > 0 (by Jensen ineq)
e Fact: KL is zero if and only if p = q.
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CONDITIONAL ENTROPY AND MUTUAL INFORMATION

e Conditional entropy is defined as

Hip(xy)] = - [ [ ptx.y)log p(xiy)dxaly = Hip(x. »)-Hip(y)

and captures the residual uncertainty on x once y is
known.

o Mutual information between r.v. x and y is defined as

I[x,y] = KL[p(x, y)lp(x)p(y)] = Hlp(x)] - H[p(x1y)]

and captures the reduction in uncertainty about x by
knowing y, i.e. it is a measure of how much y brings
information about x, and viceversa.
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JUSTIFICATION FOR MAXIMUM LIKELIHOOD

<1640,41
o Givenadatasetx ={x;}, i=1,...,N, letthe empirical
distribution be

N ke
Pemp(X) = Z _ ?l_, (o) N
= P.Q“r (4 )—: h(
with I the indicator function of a set N

e To find a suitable distributio@to model the data, one may
wish to minimize the Kullback<Leibler divergence ,

IONEE Lo Lie
Ve N o
KL[Pen‘szQ] = H[pémp] — (log ?(X»pemp = N Z log q(x;) Tean

2 4
e Maximum likelihood is equivalent to minimizing a KL
divergence with the empirical distirbution
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AN OVERVIEW

@ Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x, y), where
y is a categorical variable. Given a new input x*, for which
we want to make a prediction, to which class should we
assign it?
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AN OVERVIEW

@ Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x, y), where
y is a categorical variable. Given a new input x*, for which
we want to make a prediction, to which class should we
assign it?

e We may choose to assign it to class j if p(y = jlx*) is the
maximum one. However, suppose y models having or not
a cancer, and that
p(y = 0|x*) = 0.51 > 0.49 = p(y = 1|x*).
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AN OVERVIEW

@ Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x, y), where
y is a categorical variable. Given a new input x*, for which
we want to make a prediction, to which class should we
assign it?

e We may choose to assign it to class j if p(y = jlx*) is the
maximum one. However, suppose y models having or not
a cancer, and that
p(y = 0|x*) = 0.51 > 0.49 = p(y = 1|x*).

o To be more flexible, we can specify a loss function (or utility
function), which is the cost ¢ ; of assigning x* to class j
when the true class is k.



DECISION THEORY 65/65

AN OVERVIEW

@ Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x, y), where
y is a categorical variable. Given a new input x*, for which
we want to make a prediction, to which class should we
assign it?

e We may choose to assign it to class j if p(y = jlx*) is the
maximum one. However, suppose y models having or not
a cancer, and that
p(y = 0|x*) = 0.51 > 0.49 = p(y = 1|x*).

o To be more flexible, we can specify a loss function (or utility
function), which is the cost ¢ ; of assigning x* to class j
when the true class is k.

e Then we can assign a point x* to the class j minimising the
expected loss w.r.t. the learned joint distribution (i.e.

Yk Ckjp(y = KIx™)).



