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MULTIVARIATE NORMAL DISTRIBUTION

This is the most important distribution we will use, and generalises
the 1d normal. In d dimensions

p(x|µ,⌃) = N(x|µ,⌃) =
1

p
(2⇡)d det(⌃)

exp
 
�1

2
(x � µ)⌃�1(x � µ)T

!

It holds µ = hxi, and ⌃ = cov(x,x) = h(x � µ)(x � µ)T i
Multivariate Gaussian
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Figure 8.7: (a): Bivariate Gaussian with mean (0, 0) and covariance [1, 0.5; 0.5, 1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues,

�
�i.

The marginal of a single component �i is a Beta distribution:

p(�i) = B

�

��i|ui,
�

j �=i

uj

�

� (8.3.34)

8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

p(x|µ,�) = N (x µ,�) � 1�
det (2��)

e� 1
2 (x�µ)T��1(x�µ) (8.4.1)

where µ is the mean vector of the distribution, and � the covariance matrix. The inverse covariance ��1

is called the precision.

One may show

µ = �x�N (x µ,�) , � =
�
(x � µ) (x � µ)T

�

N (x µ,�)
(8.4.2)

Note that det (�M) = �Ddet (M), where M is a D � D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses µ and � to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b,M, c) = ce� 1
2xTMx+xTb (8.4.3)

is related to the moment representation via

� = M�1, µ = M�1b,
1�

det (2��)
= ce

1
2bTM�1b (8.4.4)
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PROPERTIES OF MULTIVARIATE NORMAL

Completing the square

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di�erent co-ordinate system. First we use the fact that
every real symmetric matrix D � D has an eigen-decomposition

� = E�ET (8.4.5)

where ETE = I and � = diag (�1, . . . , �D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = �� 1
2 ET (x � µ) (8.4.6)

so that

(x � µ)T ��1 (x � µ) = (x � µ)T E��1ET (x � µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance � = �I for some scalar
� is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,�1) N (x µ2,�2) = N (x µ,�)
exp

�
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

�

�
det (2�S)

(8.4.8)

where S � �1 + �2 and the mean and covariance are given by

µ = �1S
�1µ2 + �2S

�1µ1 � = �1S
�1�2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

�
�1

2
xTAx + bTx

�
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx � bTx =

1

2

�
x � A�1b

�T
A

�
x � A�1b

�
� 1

2
bTA�1b (8.4.11)

Hence

exp

�
�1

2
xTAx � bTx

�
= N

�
x A�1b,A�1

� �
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.12)

From this one can derive

�
exp

�
�1

2
xTAx + bTx

�
dx =

�
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.13)
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p(x|A,b)c exp
⇣
� 1

2 xAxT + bT x
⌘

is known as the canonical representation, and it is normal with mean A�1b and

covariance A�1.

Linear transformation
Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + � (8.4.14)

where x���, � � N (µ,�), and x � N (µx,�x). Then the marginal p(y) =
�
x p(y|x)p(x) is a Gaussian

p(y) = N
�
y Mµx + µ,M�xM

T + �
�

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,�) defined jointly over two vectors x
and y of potentially di�ering dimensions,

z =

�
x
y

�
(8.4.16)

with corresponding mean and partitioned covariance

µ =

�
µx

µy

�
� =

�
�xx �xy

�yx �yy

�
(8.4.17)

where �yx � �T
xy. The marginal distribution is given by

p(x) = N (x µx,�xx) (8.4.18)

and conditional

p(x|y) = N
�
x µx + �xy�

�1
yy

�
y � µy

�
,�xx � �xy�

�1
yy �yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

�
xTAx

�

N (x µ,�)
= µTAµ + trace (A�) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
��
Ay + ��� , where ��� � N

���� ��µ ,
��
�

�
(8.4.21)

and show that the marginal over the ‘reverse’ noise ��� is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

�
�
�
x � ��

Ay � ���
�

p(��� ), p(��� ) = N
���� ��µ ,

��
�

�
(8.4.22)

for suitably defined
��
A, ��µ ,

��
� . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
��
Ay + ��µ , �xx =

��
� . (8.4.23)

We can make these match equation (8.4.19) by setting
��
A = �xy�

�1
yy ,

��
� = �xx � �xy�

�1
yy �yx, ��µ = µx � �xy�

�1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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PROPERTIES OF MULTIVARIATE NORMAL
Multivariate Gaussian
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Figure 8.7: (a): Bivariate Gaussian with mean (0, 0) and covariance [1, 0.5; 0.5, 1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues,

�
�i.

The marginal of a single component �i is a Beta distribution:

p(�i) = B

�

��i|ui,
�

j �=i

uj

�

� (8.3.34)

8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

p(x|µ,�) = N (x µ,�) � 1�
det (2��)

e� 1
2 (x�µ)T��1(x�µ) (8.4.1)

where µ is the mean vector of the distribution, and � the covariance matrix. The inverse covariance ��1

is called the precision.

One may show

µ = �x�N (x µ,�) , � =
�
(x � µ) (x � µ)T

�

N (x µ,�)
(8.4.2)

Note that det (�M) = �Ddet (M), where M is a D � D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses µ and � to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b,M, c) = ce� 1
2xTMx+xTb (8.4.3)

is related to the moment representation via

� = M�1, µ = M�1b,
1�

det (2��)
= ce

1
2bTM�1b (8.4.4)
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Eigendecomposition

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di�erent co-ordinate system. First we use the fact that
every real symmetric matrix D � D has an eigen-decomposition

� = E�ET (8.4.5)

where ETE = I and � = diag (�1, . . . , �D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = �� 1
2 ET (x � µ) (8.4.6)

so that

(x � µ)T ��1 (x � µ) = (x � µ)T E��1ET (x � µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance � = �I for some scalar
� is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,�1) N (x µ2,�2) = N (x µ,�)
exp

�
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

�

�
det (2�S)

(8.4.8)

where S � �1 + �2 and the mean and covariance are given by

µ = �1S
�1µ2 + �2S

�1µ1 � = �1S
�1�2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

�
�1

2
xTAx + bTx

�
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx � bTx =

1

2

�
x � A�1b

�T
A

�
x � A�1b

�
� 1

2
bTA�1b (8.4.11)

Hence

exp

�
�1

2
xTAx � bTx

�
= N

�
x A�1b,A�1

� �
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.12)

From this one can derive

�
exp

�
�1

2
xTAx + bTx

�
dx =

�
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.13)
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So by rescaling, we can obtain a product of d-univariate standard normal distributions, one per dimension.
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PROPERTIES OF MULTIVARIATE NORMAL

Marginal and conditional of multivariate Gaussians

Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + � (8.4.14)

where x���, � � N (µ,�), and x � N (µx,�x). Then the marginal p(y) =
�
x p(y|x)p(x) is a Gaussian

p(y) = N
�
y Mµx + µ,M�xM

T + �
�

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,�) defined jointly over two vectors x
and y of potentially di�ering dimensions,

z =

�
x
y

�
(8.4.16)

with corresponding mean and partitioned covariance

µ =

�
µx

µy

�
� =

�
�xx �xy

�yx �yy

�
(8.4.17)

where �yx � �T
xy. The marginal distribution is given by

p(x) = N (x µx,�xx) (8.4.18)

and conditional

p(x|y) = N
�
x µx + �xy�

�1
yy

�
y � µy

�
,�xx � �xy�

�1
yy �yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

�
xTAx

�

N (x µ,�)
= µTAµ + trace (A�) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
��
Ay + ��� , where ��� � N

���� ��µ ,
��
�

�
(8.4.21)

and show that the marginal over the ‘reverse’ noise ��� is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

�
�
�
x � ��

Ay � ���
�

p(��� ), p(��� ) = N
���� ��µ ,

��
�

�
(8.4.22)

for suitably defined
��
A, ��µ ,

��
� . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
��
Ay + ��µ , �xx =

��
� . (8.4.23)

We can make these match equation (8.4.19) by setting
��
A = �xy�

�1
yy ,

��
� = �xx � �xy�

�1
yy �yx, ��µ = µx � �xy�

�1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).
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PROPERTIES OF MULTIVARIATE NORMAL

Product of multivariate Gaussians

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a di�erent co-ordinate system. First we use the fact that
every real symmetric matrix D � D has an eigen-decomposition

� = E�ET (8.4.5)

where ETE = I and � = diag (�1, . . . , �D). In the case of a covariance matrix, all the eigenvalues �i are
positive. This means that one can use the transformation

y = �� 1
2 ET (x � µ) (8.4.6)

so that

(x � µ)T ��1 (x � µ) = (x � µ)T E��1ET (x � µ) = yTy (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance � = �I for some scalar
� is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

N (x µ1,�1) N (x µ2,�2) = N (x µ,�)
exp

�
�1

2 (µ1 � µ2)
T S�1 (µ1 � µ2)

�

�
det (2�S)

(8.4.8)

where S � �1 + �2 and the mean and covariance are given by

µ = �1S
�1µ2 + �2S

�1µ1 � = �1S
�1�2 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression

exp

�
�1

2
xTAx + bTx

�
(8.4.10)

can be transformed as follows. First we complete the square:

1

2
xTAx � bTx =

1

2

�
x � A�1b

�T
A

�
x � A�1b

�
� 1

2
bTA�1b (8.4.11)

Hence

exp

�
�1

2
xTAx � bTx

�
= N

�
x A�1b,A�1

� �
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.12)

From this one can derive

�
exp

�
�1

2
xTAx + bTx

�
dx =

�
det

�
2�A�1

�
exp

�
1

2
bTA�1b

�
(8.4.13)
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Gaussian average of a quadratic function

Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through

y = Mx + � (8.4.14)

where x���, � � N (µ,�), and x � N (µx,�x). Then the marginal p(y) =
�
x p(y|x)p(x) is a Gaussian

p(y) = N
�
y Mµx + µ,M�xM

T + �
�

(8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z µ,�) defined jointly over two vectors x
and y of potentially di�ering dimensions,

z =

�
x
y

�
(8.4.16)

with corresponding mean and partitioned covariance

µ =

�
µx

µy

�
� =

�
�xx �xy

�yx �yy

�
(8.4.17)

where �yx � �T
xy. The marginal distribution is given by

p(x) = N (x µx,�xx) (8.4.18)

and conditional

p(x|y) = N
�
x µx + �xy�

�1
yy

�
y � µy

�
,�xx � �xy�

�1
yy �yx

�
(8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

�
xTAx

�

N (x µ,�)
= µTAµ + trace (A�) (8.4.20)

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

x =
��
Ay + ��� , where ��� � N

���� ��µ ,
��
�

�
(8.4.21)

and show that the marginal over the ‘reverse’ noise ��� is equivalent to conditioning. That is, for a Gaussian

p(x|y) =

�
�
�
x � ��

Ay � ���
�

p(��� ), p(��� ) = N
���� ��µ ,

��
�

�
(8.4.22)

for suitably defined
��
A, ��µ ,

��
� . To show this, we need to make the statistics of x under this linear system

match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

µx =
��
Ay + ��µ , �xx =

��
� . (8.4.23)

We can make these match equation (8.4.19) by setting
��
A = �xy�

�1
yy ,

��
� = �xx � �xy�

�1
yy �yx, ��µ = µx � �xy�

�1
yy µy (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).

170 DRAFT June 18, 2013



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 38 / 65

THE CURSE OF DIMENSIONALITY

Exercise I: Suppose you want to explore uniformly a region by
gridding it. How many grid points do you need?
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THE CURSE OF DIMENSIONALITY

Exercise II: Suppose you sample from a uniform distribution in
d dimensions. What is the probability of finding a point inside
the region [✏,1 � ✏]d?
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THE CURSE OF DIMENSIONALITY

Exercise III: Suppose you sample from a spherical Gaussian
distribution. Where do the points lie as the dimensions
increase?
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

More general distributions can be built via mixtures: e.g.

p(x |µ1...,n,�
2
1,...,n) =

X

i

⇡iN(µi ,�
2
i )

where the mixing coefficients ⇡i are discretely distributed

You can interpret this as a two stage hierarchical process:
choose one component out of a discrete distribution, then
choose the distribution for that component
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MIXTURES: HOW TO BUILD MORE DISTRIBUTIONS

IMPORTANT CONCEPT: the mixture

p(x |µ1...,n,�
2
1,...,n) =

X

i

⇡iN(µi ,�
2
i )

is an example of latent variable model, with a latent class
variable and an observed continuous value. The mixture is
the marginal distribution for the observations (w.r.t. the
latent variable)

The probability of the latent variables given the
observations can be obtained using Bayes’ theorem.
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CONTINUOUS MIXTURES: SOME COOL DISTRIBUTIONS

No need for the mixing distribution (latent variable) to be
discrete

Suppose you are interested in the means of normally
distributed samples (possibly with different variances/
precisions): Marginalising the precision in a Gaussian
using a Gamma mixing distribution yields a Student
t-distribution
Suppose you have multiple rare event processes
happening with slightly different rates: Marginalising the
rate in a Poisson distribution using a Gamma mixing
distribution yields a negative binomial distribution
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PARAMETERS?

Many distributions are written as conditional probabilities
given the parameters: p(x |✓)
Often the values of the parameters are not known
If we have observations, we can try to estimate the
parameters from such data.
We assume to have independent and identically distributed
(i.i.d.) observations of p(x |✓true): x = x1, . . . , xN .
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MAXIMUM LIKELIHOOD

Likelihood for i.i.d. observations x = x1, . . . , xN :

p(x|✓) =
NY

i=1

p(xi |✓)

Choose the parameters that best explain the observations:
we pick ✓ by maximum likelihood:

✓̂ = argmax✓

2
6666664
Y

i

p(xi |✓)
3
7777775
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MAXIMUM A POSTERIORI

Suppose we can encode prior knowledge (or absence of it)
in a prior distribution over parameters, p(✓).
We can then compute the posterior distribution, given i.i.d.
observations x = x1, . . . , xN , by Bayes theorem:

p(✓|x) =
p(x|✓)p(✓)

p(x)

where
p(x) =

Z

✓
p(x|✓)p(✓)d✓

Estimate ✓true by the maximum a posteriori (MAP) estimate

✓̂MAP = argmax✓

2
6666664p(✓)

Y

i

p(xi |✓)
3
7777775
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EXERCISE: FITTING A DISCRETE DISTRIBUTION

We have a discrete distribution with values in
K = {1, . . . , k }, with parameters µ = µ1, . . . , µk ,

P
i µi = 1.

We have independent observations x = x1, . . . , xN , each
taking values in K .
The likelihood is

L(µ) = p(x|µ) =
NY

i=1

p (xi |µ)

Compute the Maximum Likelihood estimate of µ. What is
the intuitive meaning of the result? What happens if one of
the D values is not represented in your sample?



BASICS DISTRIBUTIONS FITTING DISTRIBUTIONS INFORMATION THEORY DECISION THEORY 49 / 65

EXERCISE: FITTING A DISCRETE DISTRIBUTION
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EXERCISE II: FITTING A GAUSSIAN DISTRIBUTION

We have independent, real valued observations x = x1, . . . , xN .
Fit a Gaussian by maximum likelihood.
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BAYESIAN ESTIMATION

The Bayesian approach fully quantifies uncertainty
The parameters are treated as additional random variables
with their own prior distribution p(✓)

The observation likelihood is combined with the prior to
obtain a posterior distribution via Bayes’ theorem

p(✓|x) =
p(x|✓)p(✓)

p(x)

The distribution of the observable x (predictive distribution)
is obtained as

p(x |x) =

Z
p(x |✓)p(✓|x)d✓
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS

Let data xi i = 1, . . . ,N be distributed according to a
Gaussian with mean µ and variance �2

Let the prior distribution over the mean µ be a Gaussian
with mean m and variance v2

Compute the posterior (and predictive distribution,
Exercise)
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EXERCISE: BAYESIAN FITTING OF GAUSSIANS
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ESTIMATORS

A procedure to calculate an expectation is called an
estimator
e.g., fitting a Gaussian to data by maximum likelihood
provides the M.L. estimator for mean and variance, or
Bayesian posterior mean
An estimator will be a noisy estimate of the true value, due
to finite sample effects
An estimator f̂ is unbiased if its expectation (under the joint
distribution of the data set) coincides with the true value
An estimator f̂ is consistent if it converges to the true value
when the number of data goes to infinity.
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EXERCISE: BIASED ESTIMATOR

The ML estimator of variance, �̂2 = 1
N

PN
i=1(xi � µ̂)2 is biased:

h�̂2i = N�1
N �

2.
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BOOTSTRAP

For an estimator, in theory we can compute its mean and
its variance under the joint distribution of the datasets. In
practice, getting the variance may be very hard.
Bootstrapping can be used instead.
Given the dataset x = x1, . . . , xN , construct from it K new
datasets x

i

, also of size N, by sampling with repetitions.
compute the estimator ✓̂i for each x

i

.
Compute the empirical variance (or any other statistics)
from x

1

, . . . ,x
K

.
This is an estimate of the actual variance of the estimator.
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CONJUGATE PRIORS

The Bayesian way has advantages in that it quantifies
uncertainty and regularizes naturally
BUT computing the normalisation in Bayes theorem is very
hard
The case when it is possible is when the prior and the
posterior are of the same form (conjugate)
Example + Exercise: Bernoulli and Beta.
Example: discrete and Dirichlet
Exercise: conjugate priors for the univariate normal (mean)
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CONJUGATE PRIORS: BINOMIAL AND BETA

Show that the Beta is the conjugate prior for the Bernoulli
distribution.
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ENTROPY

Probability theory is the basis of information theory
(interesting, but not the topic of this course).
An important quantity is the entropy of a distribution

H[p] = �
X

i

pi log2 pi

Or for continuous distributions:

H[p] = �
Z

p(x) log p(x)dx

Entropy measures the level of disorder of a distribution; for
discrete distributions, it is always � 0 and 0 only for
deterministic distributions. The maximum is log K , if K is
the size of the support of the discrete distribution, and is
achieved by the uniform distribution.
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DIVERGENCE

The relative entropy or Kullback-Leibler (KL) divergence
between two distributions is

KL[qkp] =
X

i

qi log
qi

pi

Of in the continuous case

KL[qkp] =

Z
q(x) log

q(x)

p(x)
dx

Fact: KL is convex and � 0 (by Jensen ineq)
Fact: KL is zero if and only if p = q.
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CONDITIONAL ENTROPY AND MUTUAL INFORMATION

Conditional entropy is defined as

H[p(x |y)] = �
Z Z

p(x , y) log p(x |y)dxdy = H[p(x , y)]�H[p(y)]

and captures the residual uncertainty on x once y is
known.
Mutual information between r.v. x and y is defined as

I[x , y ] = KL[p(x , y)|p(x)p(y)] = H[p(x)] � H[p(x |y)]

and captures the reduction in uncertainty about x by
knowing y , i.e. it is a measure of how much y brings
information about x , and viceversa.
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JUSTIFICATION FOR MAXIMUM LIKELIHOOD

Given a data set x = {xi }, i = 1, . . . ,N, let the empirical
distribution be

pemp(x) =
1
N

NX

i=1

I(xi)

with I the indicator function of a set
To find a suitable distribution q to model the data, one may
wish to minimize the Kullback-Leibler divergence

KL[pempkq] = H[pemp] � hlog q(x)ipemp = � 1
N

X
log q(xi)

Maximum likelihood is equivalent to minimizing a KL
divergence with the empirical distirbution
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AN OVERVIEW

Suppose we have a classification problem, and we are
able to learn a model of the joint distribution p(x , y), where
y is a categorical variable. Given a new input x⇤, for which
we want to make a prediction, to which class should we
assign it?

We may choose to assign it to class j if p(y = j |x⇤) is the
maximum one. However, suppose y models having or not
a cancer, and that
p(y = 0|x⇤) = 0.51 > 0.49 = p(y = 1|x⇤).
To be more flexible, we can specify a loss function (or utility
function), which is the cost ck ,j of assigning x⇤ to class j
when the true class is k .
Then we can assign a point x⇤ to the class j minimising the
expected loss w.r.t. the learned joint distribution (i.e.P

k ck ,j p(y = k |x⇤)).
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