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Foreword to the Third Edition

Nine new entries have been added to those in the Second Edition.
Four of them relate to the law: Murder, the Poison Hypothetical,
the Prosecutor’s Fallacy, and the Red Taxi Paradox. The others are
the much discussed Paradox of Future Generations, Pascal’s
Wager, a new paradox involving infinite series, the Pasadena
Paradox, the Newcomb-like Dr Psycho Paradox and the Trolley
Problem. There are now 94 entries altogether.

Some minor corrections have been made and the reading lists
updated and expanded. I should like to thank Peter Cave, Isabel
Gois, Bob Kirk, and especially Nicholas Shackel for their comments.

ix





Preface

Pick up a recent issue of a philosophical journal like Mind or
Analysis and it is surprising how many of the papers you see there
are about philosophical paradoxes. Philosophy thrives on them,
and many have borne abundant fruit. As Quine says, ‘More than
once in history the discovery of paradox has been the occasion 
for major reconstruction at the foundation of thought’. The
development of nineteenth-century mathematical analysis (Zeno’s
paradoxes), twentieth-century set theory (the paradoxes of set
theory), the limitative theorems of Gödel, and Tarski’s theory of
truth (the liar group) are dramatic illustrations. 

The term paradox is given a very broad interpretation in this
book, far broader than will appeal to many logical purists. Any
puzzle which has been called a ‘paradox’, even if on examination
it turns out not to be genuinely paradoxical, has been regarded as
eligible for inclusion, though the most fascinating are among those
recognized by the purist, those which appear to be perennially
controversial. For a brief discussion of the notion see the entry
Paradox, p. 159.

This A to Z is a personal selection. But with the exception of
two small groups, the well-known philosophical paradoxes will be
found here, along with others less familiar or else recently pro-
pounded. The first missing group contains a few rather technical
set-theoretic paradoxes like Burali–Forti and Zermelo–König, and
those of Schrödinger and time-travel involving advanced physics.
The other group includes paradoxes I regard as trivial, like the
paradox of the omnipotent god who cannot make a stone so heavy
that he can’t lift it, and near duplicates of some already included.
Most of those discussed concern motion, infinity, probability, sets,
inference, identity, rationality, knowledge and belief, though there
are some from the fields of ethics, political theory and aesthetics.
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One entry at least is not a paradox at all, but helps to address the
question of what a paradox is.

I have sought to avoid technicality, but many of the most
fascinating paradoxes involve infinity, and here it is not possible
to avoid technicality completely; the same applies to some of the
entries on logical inference. I have tried to explain the basic ideas
in simple terms, but if they are still not to your taste there are
plenty of wholly non-technical entries to move on to. Most entries
are self-contained, although there are frequent cross-references.
Where one entry depends on another, this is indicated: for example,
the entries on Cantor’s and Richard’s paradoxes presuppose that
those on Galileo’s paradox and Hilbert’s hotel have been read first,
and that on plurality presupposes Galileo’s, Hilbert’s and Cantor’s.

For some paradoxes, for example the Zeno paradoxes of Achilles
and the Tortoise, The Arrow and The Racecourse, there is now 
a broad consensus about their resolution. This is also true of 
the statistical illusions, like Bertrand’s Box, Monty Hall, The
Xenophobic Paradox and Simpson’s. But often the most frivolous-
seeming of puzzles turn out to have an unexpected depth and
fecundity. It is a mark of such paradoxes (which include The Liar
group and The Heap) that not only is their resolution persistently
controversial but their significance is also a matter of debate. The
suggested resolutions offered for them here should be read with
their controversial nature in mind.

There are two cases in which I have had to provide my own
name for a paradox: those I call ‘The Paradox of Jurisdiction’ and
‘The Xenophobic Paradox’. A happy consequence was that they
enabled me to include paradoxes for the letters ‘J’ and ‘X’, which
might otherwise have lacked an entry. 

Cross-references to other paradoxes are indicated in bold.
Items marked with an asterisk in the Further Reading lists are of a
more advanced, and often technical, nature.
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Achilles and the Tortoise

d1 d2 d3 d4 d5

Achilles runs faster than the tortoise and so he gives it a head
start: Achilles starts at d1 and the tortoise at d2. By the time
Achilles has made up the tortoise’s head start and got to d2, the
tortoise is at d3. By the time Achilles has got to d3 the tortoise
has reached d4 . Each time Achilles makes up the new gap the
tortoise has gone further ahead. How can Achilles catch the
tortoise, since he has infinitely many gaps to traverse?

This is perhaps the most famous of the paradoxes of Zeno of Elea
(born c. 490 BC).

Summing an Infinite Series

Of course we know that Achilles will catch the tortoise. He
completes the infinitely many intervals in a finite time because
each successive interval, being smaller than the one before, is
crossed more quickly than its predecessor. Suppose Achilles catches
the tortoise after running a mile. The infinitely many smaller and
smaller intervals he traverses have to add up to a mile. But how
can that be? 

It wasn’t until the nineteenth century that a satisfactory
mathematical way of summing the intervals was developed. The
solution was to define the sum of an infinite series as the limit to
which the sequence of its successive partial sums converges. For
simplicity, suppose they both proceed at a uniform speed, and 
that Achilles goes only twice as fast as the tortoise, giving him a
half-mile start. (The principle is the same if Achilles’ speed is, more
realistically, much greater than twice the tortoise’s, but the
assumption of a dilatory Achilles makes the arithmetic simpler.)
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By the time Achilles has made up this head start, the tortoise
has gone a further quarter-mile. When he has gone this further
quarter-mile the tortoise is a furlong (one-eighth of a mile) ahead,
and so on. Then the intervals Achilles traverses, expressed as
fractions of a mile, are 1⁄2, 1⁄4, 1⁄8, 1⁄16, . . . . The partial sums are 

1⁄2 mile
1⁄2 + 1⁄4 = 3⁄4 mile
1⁄2 + 1⁄4 + 1⁄8 = 7⁄8 mile
1⁄2 + 1⁄4 + 1⁄8 + 1⁄16 = 15⁄16 mile
and so on.

So the sequence of partial sums will go:

1⁄2, 3⁄4, 7⁄8, 15⁄16, 31⁄32, 63⁄64, 127⁄128, 255⁄256, 511⁄512, 1023⁄1024, 2047⁄2048, 4095⁄4096, . . . 

It goes on for ever, getting closer and closer (‘converging’) 
to 1. In this case 1 is the limit, and so the sum, of the series. Achilles
gradually closes in on the tortoise until he reaches it. 

More precisely, but in more technical terms, take any number
ε greater than 0: then there will be some term in the sequence of
finite sums, call it Sj, such that every term from Sj onwards is within
ε of the limit. For example, suppose ε is 1⁄8. Then every term of the
sequence from 15⁄16 onwards is within 1⁄8 of the limit, 1. If ε is 1⁄1000,
every term from 1023⁄1024 is within 1⁄1000 of 1. And so on.

Thomson’s Lamp

With Achilles and the tortoise the appearance of paradox arose
from the seeming impossibility of completing an infinite series of
tasks, a ‘supertask’. The following example of a lamp, proposed by
the late James Thomson, is a vivid illustration. The lamp is switched
on and off alternately: the first switching takes place at 1⁄2 minute,
the second after 3⁄4 minute, and so on. Every time it is switched on
it is then switched off, and vice versa. The supertask is completed
one minute after it is started. Of course this particular supertask
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can’t physically be performed, but is it impossible in principle? 
At first Thomson thought he could generate a contradiction out 
of this description by asking whether the lamp was on or off at one
minute: it couldn’t be off, because whenever it was turned off it
was immediately turned on again, nor could it be on, for a similar
reason. But the description of the supertask entails nothing about
the lamp’s state at one minute, since each switching in the un-
ending series occurs before one minute is up. 

Perhaps it stretches our notion of task to breaking point to
suppose that there is no lower limit whatsoever to the time a task
can take. But then the use of the term ‘task’ for each of Achilles’
traversals is tendentious. The claim is only that Achilles can be
regarded as having traversed infinitely many intervals in catching
the tortoise.

Why, then, is Achilles at the limit, 1, after his infinitely many
traversals? After all, none of them gets him to 1, since there is no
last traversal. The answer is that, if he is anywhere – as he surely
is – he must be at 1, since he can neither be short of 1 nor beyond
it. He cannot be short of 1 because he would then still have some
– indeed, infinitely many – traversals to make, having so far only
made finitely many of the traversals. And he cannot be beyond 1,
since there is no interval from 1 to any point beyond 1 which is
covered by the traversals.

See also The Arrow, The Paradox of the Gods, The Tristram
Shandy, The Spaceship, The Racecourse.

Further Reading

Paul Benacerraf, ‘Tasks, super-tasks, and the modern Eleatics’,
Journal of Philosophy, 1962, vol. 59, reprinted in Wesley C.
Salmon, Zeno’s Paradoxes, Indianapolis, Ind., Bobbs-Merrill,
1970. Salmon’s anthology contains other illuminating papers.

A. Grünbaum, Modern Science and Zeno's Paradoxes, Middletown,
Connecticut, Wesleyan University Press, 1967.
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R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, chapter 1. 

Wesley C. Salmon, Space, Time and Motion, Enrico, California and
Belmont, California, Dickenson Publishing Co., Inc., 1975,
chapter 2.
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Allais’ Paradox

You are offered a choice between (1) getting £400 and (2)
having a 50% chance of winning £1,000. Although the
expected utility of the latter, namely £500, is greater than that
of the former, you are more likely to choose (1). A 100% chance
of £400 is more attractive than a 50% chance of £1,000 to
generally reasonable people.

Up to a point, people who are generally reasonable and prudent
prefer a certain gain to an uncertain one with greater expected
utility (EU).  Thus, (1) they prefer a certain £400 to a 0.5 chance of
£1,000, the expected utility of which is £500. 

(2) A case involving two choices shows again the psychological
advantage of certainty:

In B, we get the EU by multiplying the probability by the value 
for each of the three chances and adding the results together. 
So we get EU = (0.1 × 10) + (0.89 × 2) + (0.01 × 0) million pounds.
(See the Two-Envelope Paradox for further explanation.) Most
people prefer A to B, because they prefer the certainty of £2m to
an uncertain outcome with a greater EU.

5

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

A Chance of £2m = 1.0 EU = £2m

B 0.1 chance of £10m EU = £2.78m

0.89 chance of £2m

0.01 chance of £0



But most people prefer D to C (the 0.01 extra chance here of £0 in
D has no significant effect) – which is not consistent with the first
choice.

(3) Given the choice between a certain £2m (EU = £2m) versus
a 0.98 chance of £10m and a 0.02 chance of £0 (EU = £9.8m), most
people prefer the certainty of the first to the second, although the
latter has much greater EU. 

But they prefer 0.98 of £10m to 0.01 of £2m, because, in the
absence of certainty and a very much higher EU for the former,
their psychological values follow probability.

Again, up to a point, people will avoid great loss, however
great the expected gain. 

(4) A comfortably-off person will prefer a 0.999999999 chance
of £2m and a 0.000000001 chance of ruin to a 0.999999999 chance
of ruin and 0.000000001 chance of gain, however great the gain.
(Cf. the Sure Loss Principle in the St Petersburg Paradox.) 

Suppose, for example, the gain were so huge that a tiny chance
of it still had a very high EU. For example, suppose the expected
gain were a billion (109) pounds. This is a 0.000000001 (10–9)
chance of a quintillion pounds, a quintillion being a million trillion
or 1018. He will still prefer the virtual certainty of £2m. Allais asks
rhetorically, ‘Who could claim that such a man is irrational?  He
accepts the first because it gives him a practical certainty of
gaining [£2m] and refuses the second because it gives him a
practical certainty of being ruined’ (Allais, 532, my translation.
We ignore here any complication arising from the diminishing
marginal utility of money.)

Reasonable, prudent people ‘begin in effect by fixing a
maximum loss which they do not want in any case to exceed, then
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they choose by comparing their expected mathematical gain with
their chance of ruin, but here it is not a case of mathematical
expected gain M of monetary values g, but of mathematical
expectation µ of psychological values γ . . .’ (533).

In short, people who are generally quite rational tend to be
attracted to certainty and averse to loss in the face of mathematical
utilities to the contrary, and it would be a mistake to follow the
mathematics in our economic planning in ignorance of the
psychology. Once this is recognized, the paradox dissolves, but it
has helped to teach us an important lesson.

These cases are taken from Allais’ paper (referenced below).
Maurice Allais, a distinguished French economist and physicist
born in 1911, became a Nobel Laureate in Economics in 1988.

A further type of example is given by Kahneman and Tversky,
who offer the following 2-stage example:

Stage 1: 0.25 chance of moving to 2nd stage.
Stage 2: Choice between

A. sure win of $30;
B. 0.8 chance $45, 0.2 chance of nothing.

You must first choose for both stages. For the second stage,
most people will choose A.

When presented in the equivalent, 1-stage, form:

A′ 0.25 chance of $30, 0.75 chance of nothing;
B′ 0.2 chance of $45, 0.8 chance of nothing;

most people will choose B′.
The authors explain this in terms of an ‘isolation effect’: in the

first case people simplify by ignoring the first stage, since it is
common to both options, and go for the certainty of $30.

Allais’ Paradox
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Further Reading

*M. Allais, ‘Le comportment de l’homme rationnel devant le risque’,
Econometrica, 1953, vol. 21. (Has English summary at the
beginning.)

Daniel Kahneman, Thinking, Fast and Slow, London, Allen Lane,
2011.

*Daniel Kahneman and Amos Tversky, ‘Prospect theory: an
analysis of decision under risk,’ Econometrica, 1979, vol. 47.
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The Paradox of Analysis

We can analyse the notion of brother by saying that to be a
brother is to be a male sibling. However, if this is correct, then
it seems that it is the same statement as ‘To be a brother is to
be a brother’. Yet this would mean the analysis is trivial. But
surely informative analysis is possible?

This paradox is associated with G. E. Moore (1873–1958), but the
problem arose in the work of Gottlob Frege (1848–1925), and it can
be traced back to the Middle Ages.

Consider

(1) A brother is a male sibling
(2) Lines have the same direction if and only if they are

parallel to one another.

If these analyses are correct then ‘brother’ and ‘male sibling’
are synonymous, and so are the expressions for the analysed and
analysing notions in the second example. Yet to say (1) is not the
same as to say that a brother is a brother – any more than saying
(2) is saying that lines have the same direction when they have 
the same direction.

The paradox poses a threat to the possibility of giving an
analysis of a concept, the threat that such an analysis must be
either trivial or wrong. 

But are ‘brother’ and ‘male sibling’ precisely synonymous? 
As Moore points out, it would be correct to translate the French
word frère as ‘brother’ but not as ‘male sibling’. And it seems that
someone could believe that Pat is a brother without believing he
was a male sibling, or believe that two lines had the same direction
without believing they were parallel to one another. What then
makes an analysis correct? Can examples like (1) and (2) be correct
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analyses unless the analysing expression is synonymous – at least
in a coarse-grained way – with the expression for that which is
being analysed? It seems not, at least if we are concerned with the
analysis of concepts.

So what makes (1) and (2) more informative than their trivial
counterparts, ‘A brother is a brother’, etc.? The answer is surely 
that different concepts are employed in analysing the concept in
question: the notion of brother is explained in terms of the two
different concepts, those of sibling and male; (more interestingly)
the notion of same direction is explained in terms of the notion of
being parallel. If you had the concept of brother but not the more
general concept of sibling, you could believe that Pat was a brother
without believing that he was a male sibling. If you lacked the
concept of parallel lines you could believe two lines had the same
direction without believing that they were parallel to one another.

Frege famously pointed out that the same object, the planet
Venus, could be referred to by expressions with different senses,
‘the Morning Star’ and ‘the Evening Star’. The senses are different
‘modes of presentation’ of the same planet. Analogously, the senses
of ‘brother’ and ‘male sibling’ can be recognized as the same, but
presented differently by the two expressions. So analysis can be
informative by presenting the same sense in terms of different
concepts.

It is only fair to add that there is widespread contemporary
scepticism, inspired principally by the late W. V. Quine, about a
notion of synonymy which would support conceptual analysis.

Further Reading

Thomas Baldwin, G. E. Moore, London and New York, Routledge,
1990, chapter 7. 

G. E. Moore, ‘A reply to my critics’, in P. A. Schilpp, ed., The
Philosophy of G. E. Moore, Chicago and Evanston, Ill.,
Northwestern University Press, 1942.
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The Arrow

An arrow cannot move in the place in which it is not. Nor can
it move in the place in which it is. But a flying arrow is always
at the place at which it is. Therefore, it is always at rest.

This is another of Zeno’s paradoxes.
If an arrow is moving, it cannot move in the place where it is,

since it is only there at an instant. Since movement is change of
place over time, the arrow moves during an interval of time: 
it cannot move during an instant of time, since an instant has no
duration. Doesn’t this mean that the arrow is at rest at every
instant, and so never moves? If so, everything is likewise always
at rest, and there is no such thing as motion. 

Though the arrow cannot move during an instant of time, it
does not follow that it cannot be moving at an instant. It’s a matter
of what it’s been doing before and after that instant. If you are asked
what you were doing at midday on Sunday it makes perfectly good
sense to reply that you were mowing the lawn. If Zeno had been
right, there could be no such activity as mowing the lawn, since that
involves motion. You can’t, of course, have done any mowing
during that instant; rather, at that moment, you were in the course
of mowing. Thus the flying arrow is in the course of moving at any
instant included in a stretch of time during which it is moving. 
The arrow is moving at an instant, i, if it is in different positions at
nearby instants before and after i (or, to put it more accurately, 
at arbitrarily close positions at arbitrarily close instants). And it is
at rest at an instant only if there is an interval of time, containing
that instant, during which it does not change its position. 

Now if the arrow is moving at a given instant there must surely
be some speed at which it is moving. Its average speed is the
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distance it travels divided by the time it takes. But its speed at an
instant cannot be calculated in this way, since that would involve
an illicit division by 0. So how can it have a speed at an instant?
It needed the mathematical developments of the nineteenth century
to make sense of how fast it is travelling at a given instant i. Speed
at an instant i is identified with the limit of average speeds during
intervals converging to 0 and containing i. The simplest case is
when the arrow is flying at a constant speed during such intervals:
then it will be travelling at that speed at each instant during those
intervals. For the notions of limit and convergence see Achilles and
the Tortoise.

See also The Racecourse, The Spaceship, The Paradox of the
Gods.

Further Reading

Wesley C. Salmon, Space, Time and Motion, Enrico, California and
Belmont, California, Dickenson Publishing Co., Inc., 1975,
chapter 2.
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The Barber Shop Paradox 
(The Paradoxes of Material

Implication)

Allen, Brown and Carr work in a barber’s shop. At least one of
them has to stay in to mind the shop. So 

(1) If Carr is out, then if Allen is out, Brown is in.

Allen is too nervous to go out without Brown. So

(2) If Allen is out, then Brown is out too.

It seems to follow that Carr can never go out. But this can’t
be right: Carr can be out provided Allen is in.

This comes from Lewis Carroll’s (C. L. Dodgson’s) Symbolic Logic.
We can abbreviate the argument as follows:

(1) If C, then if A then not-B.
(2) If A then B.

So (3) not-C.

It seems that, if (2) is true, then the consequent, or main ‘then’
clause, of (1) is false: doesn’t if A then not-B contradict if A then
B? But then the antecedent, or principal ‘if ’ clause, of (1), namely
C, will be false too. (For, if it is true that if p then q but false that
q, then it must be false that p.) Hence (3). 

But surely the two premisses do not really require Carr to be
in. Both premisses can be true when Carr is out and Allen is in. For,
if Allen is in, there is at least one man in to mind the shop, and,
whether Brown is in or out, Allen hasn’t gone out without him.
What has gone wrong with the argument of the last paragraph? 
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Although if A then not-B appears incompatible with if A 
then B, arguably it is not (though many logicians dispute this).
Provided A is false, both can be true together. To see this, consider
the following case. Dennis has applied for a job with a certain
company but, with his experience and ambition, he will not work
for it unless he is made a director. So if he works for the company
he will be a director. But the company has enough directors and is
unwilling to appoint any more. So if he works for the company he
won’t be a director. Clearly Dennis will not work for the company,
for if they offer him a post it will be in a non-directorial position,
and he won’t accept that. It is because we know both of the itali-
cized conditionals that we know that Dennis won’t work for the
company.

So the argument of the opening paragraph breaks down 
and C is not excluded by (1) and (2) but is compatible with them.
Despite first appearances, it does not follow from (1) and (2) that
Carr is never out.

An Analogous Geometrical Argument

Carroll reported that someone had sent him the following geo-
metrical analogue of the paradox. In the figure angle a = angle b.

(1) If C, then if A then not-B, becomes: 

(1′) If lines KL and NM are unequal, then if K coincides with N,
angles a and b are not equal. 
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(2) If A then B, becomes: 

(2′) If K and N coincide, then angle a = angle b. 

As Carroll notes, (1′) is proved in Euclid I.6. ‘The second’, he
says, ‘needs no proof ’. After all, it is a given that the angles in the
figure are equal, so they are equal whether or not the points
coincide. The lines can be unequal when K and N don’t coincide,
whether or not the angles at the base are equal. In other words, 
(1′) and (2′) do not rule out the inequality of KL and NM: (3′), not-
C, does not follow from (1′) and (2′).

Some might argue that a different sense of ‘if ’ is involved in
cases like this, though intuitively the senses seem the same. Then
the onus is on them to show that they differ, for senses ought not
to be multiplied without necessity.

Material Implication 

In classical modern logic it is usual to formalize singular indicative
conditionals like (2) above using material implication, though
logicians are divided over whether this is wholly adequate or is
merely the best available approximation in that logic. A statement,
p, materially implies another, q, when it is not the case that both
p and not-q. A common way of symbolizing material implication
is by means of the horseshoe: p � q, read as ‘p materially implies
q’. A material implication is sometimes called a ‘Philonian con-
ditional’, after the Stoic contemporary of Zeno, Philo of Megara,
who had construed conditionals in this way.

There is a prima facie case for reading indicative conditionals
as material implications. There does seem to be a way of deriving
if p then q and not-(p and not-q) from one another. Consider 

(2) If Allen is out then Brown is out 
(2m) Allen is out � Brown is out. 

The Barber Shop Paradox
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Using the definition of p �q given above we can write 
(2m) as 

It is not the case that Allen is out and Brown is not out. 

Clearly this follows from (2), for (2) precludes Allen being out
with Brown in. 

The converse seems to hold as well. Suppose (2m) is true and
that Allen is out. Then Brown must be out too (for it is not the 
case that Allen is out and Brown is not). So from (2m) it follows
that if Allen is out, then Brown is out, which is (2).

On the other hand, before treating this demonstration of the
equivalence of p � q and if p then q as conclusive, notice that on
the definition of material implication as given above p � q will be
true whenever p is false, for, if p is false, p and not-q is also false,
and its negation true. But it doesn’t seem right to allow that ‘if 2=5
then the earth has a moon’ is true merely in virtue of the falsity of
its antecedent (‘if ’ clause). Similarly, p � q will be true whenever
q is true, for, if q is true, p and not-q is false, and its negation true.
But it doesn’t seem right to allow that ‘if 2=5 then the earth has a
moon’ is true merely in virtue of the truth of its consequent (‘then’
clause). (These are the so-called paradoxes of material implication,
which arise if you treat singular indicative conditionals as material
implications.)

Nevertheless, if we treat (1) and (2) above as material impli-
cations, as we know that (in effect) Carroll himself did, then there
can be no denying that C is compatible with them.

(1) If C, then (if A then not-B) (1m) C � (A � not-B)
(2) If A then B (2m) A � B

For suppose Carr is out (C) and Allen is in:

(1m) is true, because its consequent is true: it is not the case
that Allen is out and Brown is out (not-not-B), because it is not
the case that Allen is out. 
(2m) is true, because its antecedent is false.
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So C is true and so are (1m) and (2m). (1m) and (2m) can both
be true together because A � B is compatible with (A � not-B):
when Allen is in, both have false antecedents.

However, this does not show that formalizing indicative if . . .
then . . . statements in terms of � is wholly adequate to their logic.
Clearly some of the principles that hold for one hold for the other,
and that is all we need to bring out the erroneous reasoning in the
barber shop paradox. It does not follow that every principle that
holds for one holds for the other. From 

(if p then q, if p then not-q) is a compatible pair

and

(p � q, p � not-q) is a compatible pair

it does not follow that if p then q can be identified with p � q and
if p then not-q identified with p � not-q. There are many different
compatible pairs. Nevertheless, it is true that anyone who wants
to construe the indicative conditional as a material implication
needs both of the pairs above to be compatible. The argument
above may therefore contribute to her case, but that is the most that
can be said. (Naturally, if the case for identification could be made
out independently, the erroneous step in the barber shop argument
would be nailed without further ado.) 

Further Reading 

C. L. Dodgson, Lewis Carroll’s Symbolic Logic, ed. W. W. Bartley
III, New York, Clarkson Potter, 1977.

*Frank Jackson, Conditionals, Oxford, Basil Blackwell, 1987.
Stephen Read, Relevant Logic, Oxford, Blackwell, 1988, section 2.3.
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Berry’s Paradox

‘The least integer not describable in fewer than twenty syllables’
is itself a description of nineteen syllables. So the least integer
not describable in fewer than twenty syllables is describable in
fewer than twenty syllables, because the quoted expression is
such a description and has only nineteen syllables.

This paradox was reported in 1906 by Bertrand Russell, who
attributed it to G. H. Berry of the Bodleian Library. It belongs to
the family of semantic paradoxes discovered about the turn of 
the nineteenth and twentieth century, which also includes the
Heterological paradox and Richard’s. We may assume that it is
only the non-negative integers that are in question here.

We could avoid the contradiction by distinguishing between
levels of description, in line with some treatments of semantic
paradoxes like The Liar and of logical paradoxes like Russell’s. At
level 0, integers would never be specified in terms of descriptions
of the form ‘the least integer describable in such-and-such a way’;
only at higher levels would such descriptions be admitted, and
they would only refer to descriptions at the level one below. So 
the description ‘the least integer describable in fewer than twenty
syllables’ would not be admitted at level 0. At level 1 this phrase
would be interpreted as meaning ‘the least integer not describable
at level 0 in fewer than twenty syllables’. Since it would not be a
level-0 description itself, it would not be self-refuting.

On the face of it this solution seems ad hoc. However, it may
be possible to resolve the paradox without appeal to different levels
of description. The non-negative integers, or natural numbers 
(0, 1, 2, . . .) can be defined in terms of 0 and the notion of
successor, where the successor of a number is the number which

18

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34



is one greater than it – the successor of 23 is 24, for example:

0 is a number
1 is the successor of the number defined in the last line
2 is the successor of the number defined in the last line
3 is the successor of the number defined in the last line
and so on ad infinitum.

‘The successor of the number defined in the last line’ is a
description of only fourteen syllables. 24, for example, will be
described in this way by the line following the definition of 23. In
general, any natural number can be described in this way by using
an expression of fewer than twenty syllables. So there will be no
least number you can describe in no fewer than twenty syllables
for Berry’s description to pick out. There will therefore be no
number both describable and not describable in fewer than twenty
syllables.

But though this solution is not ad hoc, it may well appear a
cheat. After all, these descriptions do not pick out the numbers on
their own, independently of the context in which they occur. If we
were to make that context explicit in the descriptions, most of
them would exceed nineteen syllables. However, this may not make
the proposed resolution any worse than the appeal to levels of
description: short of making the level of description numerically
explicit every time, the level of ‘describable’ in the Berry expres-
sions will be context-dependent. And in any case what we mean
by ‘level 2’ or ‘level 23’, for example, is only intelligible in the
context of their explanation. If context dependence is unavoidable
anyway, it is no obstacle to this proposal.

Further Reading

James D. French, ‘The false assumption underlying Berry’s
paradox’, Journal of Symbolic Logic, 1988, vol. 53, offers the
resolution given above.

Berry’s Paradox
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Bertrand’s Box Paradox

You choose one of three boxes at random. One contains two
gold coins (GG), another two silver coins (SS) and the third has
one gold and one silver (GS). Each box is divided into two halves,
which you can open separately, and each half contains a coin.

What is the chance that you select the one with two
different coloured coins? One-third, obviously. 

But suppose you select a box and the first side you open
reveals a gold coin. Then either you have GG or GS, so that it
seems your chance of GS is a half. Equally, if the first coin is
silver, either you have SS or GS, and again your chance of GS
seems to be a half. But the first coin you see must be either gold
or silver. So your chance of GS must have been a half.

Of course the chance of choosing the box with different coloured
coins is only 1⁄3. The problem is to see what is wrong with the
argument above.

The fallacy, as Bertrand himself pointed out, is to assume that
if the first of the coins in the chosen box is gold the chance that
the other is gold is the same as the chance that the other is 
silver. It isn’t, the silver is less likely. You are twice as likely to see
a gold coin first if your box is GG than if it is GS; so seeing that
one of your coins is gold tells you it is twice as likely you have 
GG as GS. Similarly, seeing that one of your coins is silver tells you
it is twice as likely you have SS as GS. 

Imagine repeating the choice 3,000 times, the coins being
restored to the boxes, which are shuffled out of your sight between
selections. Each time you pick a box you look at the first coin, and
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inevitably find it is either gold or silver. If you accept the fallacious
argument for each selection, you would expect to pick GS about
1,500 times, but you would be mistaken. In fact about 2,000 of your
selections will be same-colour selections, GG or SS. Only about
1,000 will be GS.

J. Bertrand was a mathematician who published his Calculs
des Probabilités in 1889. See the next entry for a more significant
paradox from the same author.

Bertrand’s Box Paradox
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Bertrand’s (Chord) Paradox

What is the chance that a random chord of a circle is longer
than the side of an inscribed equilateral triangle? 

(1) The chords from a vertex of the triangle to the circum-
ference are longer if they lie within the angle at the vertex.
Since that is true of one-third of the chords, the
probability is one-third. 

(2) The chords parallel to one side of such a triangle are longer
if they intersect the inner half of the radius perpendicular
to them, so that their midpoint falls within the triangle.
So the probability is one-half. 

(3) A chord is also longer if its midpoint falls within a circle
inscribed within the triangle. The inner circle will have a
radius one-half and therefore an area one-quarter that of
the outer one. So the probability is one-quarter.

A chord is a straight line joining the ends of an arc.
According to Laplace’s Principle of Indifference, if there is

reason to believe that it is equally possible that each of a number
of cases should be a favourable one, the probability of an event is 

the number of favourable cases
the total number of cases

For example, the chance of randomly selecting an ace from a
pack of cards is 4⁄52.

Bertrand uses the three different answers to argue that his
question is ‘ill-posed’, because he doesn’t think it is possible to
choose randomly from among an infinite number of cases. For
there are infinitely many different chords of a circle. Apart from
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diameters, chords are uniquely identified by their midpoints, and
a circle contains infinitely many points. (To put it technically, each
point can be specified by an ordered pair of real Cartesian
coordinates.) How would you divide the number of favourable
cases by infinity? As it stands Bertrand’s question is certainly ill-
posed. But can it be replaced by a well-posed question? In fact, it
turns out that it can be replaced by indefinitely many different
questions. The trouble with the original question is that it fails to
specify how the chord is to be randomly selected.

(1) The first solution can be shown to be equivalent to the
probability that a randomly selected point on the circumference lies
between any two given vertices (say B and C) of the triangle. If 
you select two vertices, then in theory one-third of the chosen
points will lie between them. Each chosen point is the end-point
of a chord which goes to the other vertex (A). Since the vertices
determine three arcs of the circumference of equal length, the
probability must be one-third. You could simulate this empiri-
cally by tossing broom straws at a straight line, thought of as a
straightened-out circumference, dividing the number of those that
intersect the middle third of the line by the total of those that
intersect the line at any point. Generally the outcome will more or
less converge to one-third.

(2) Throw broom straws at random at the circumference of a
small circle, ignoring those that fail to intersect the circumference
twice. In theory half the straws should form chords longer than the
side of the triangle, and reported empirical tests confirm this. 
You can make do with a single inscribed triangle and radius if you

Bertrand’s (Chord) Paradox
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rotate the straw about the chord’s midpoint until it is parallel to
AB. Again the probability can be proved equivalent to that of
Bertrand’s second case.

(3) Inscribe the diagram for the third case on a dartboard and
throw darts randomly at the board. Each point chosen determines
the midpoint of a chord. You might think that of the throws where
the dart sticks, the proportion where the dart strikes within the
inner circle should approach one-quarter. But what if the dart hits
the centre of the bull’s eye? There are infinitely many, indeed
uncountably many, diameters which have that mid-point. So no
probability can be determined in this case, since the number of
favourable cases and the number of total cases will both be
uncountable, yet clearly the probability is not 1.

If we set aside cases like (3), there are indefinitely many other
cases yielding a different probability. But this does not show there
is really no probability at all. When the method of random selection
is adequately specified, a determinate answer is available. So the
proper response to Bertrand’s original question is: what is the
mechanism for selecting the chord randomly? And in general there
is no one method to be preferred.

Poincaré thought that in the absence of further specification
we should choose (2), so that the chance that a randomly chosen
chord belongs to one of two sets of congruent chords is the same
as the chance that it belongs to the other. The examination of this
sort of case led to the development of what is known as integral
geometry, which is used in stereology, the three-dimensional
interpretation of flat images. Stereology has significant practical
applications in mineralogy and medicine.

J. Bertrand published this paradox in 1889. The solution given
here (except for case 3) is set out in Louis Marinoff, *‘A resolu-
tion of Bertrand’s paradox’, Philosophy of Science, 1994, vol. 61,
where full proofs are given. For criticism, see *Nicholas Shackel,
‘Bertrand’s paradox and the principle of indifference’, Philosophy
of Science, 2007, vol. 74.
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The Paradox of Blackmail

There is nothing illegal about asking someone for money, 
nor is it illegal to threaten to report someone’s theft. But if, for
example, you threaten to expose someone’s crime unless she
pays you money, you are guilty of blackmail.

This case has the superficial appearance of a paradox, but, although
some philosophical and legal writers have labelled it ‘the paradox
of blackmail’, it doesn’t really merit the name. Even if blackmail
were nothing but the simple combination of a threat and a demand,
it wouldn’t give rise to a genuine paradox. This is easy to see if you
consider some parallel cases. It is not in itself illegal to be drunk
nor is it illegal to drive a car, but it is illegal to be drunk while
driving. It is not illegal for two adults to have consensual sexual
intercourse nor is it illegal for them to be seen together in a crowded
public park, but it is illegal for them to be seen together having
sexual intercourse in a crowded public park. 

However, blackmail is not merely any combination of a threat
and a demand: the threat and the demand must be related in a
particular way. Blackmail is a demand backed by a threat. The
threat is made in order to make sure that the demand is met. If 
the threat is made for some other reason, then this is not a case of
blackmail, as the following example makes clear. Suppose Arthur
notices his friend Barbara shoplifting. He is short of money and so
approaches her and asks her for some cash. He then tells her he is
going to report her. Barbara thinks she is being blackmailed, and
that if she gives him the money he will keep quiet. But Arthur will
report her even if she pays up, and he tells her this (and means it).
In this example Arthur certainly isn’t blackmailing Barbara, despite
the fact that he is making a threat and is asking for money.
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Blackmail arises only when a demand is actually backed by a
threat. As she knows he is going to carry out the threat whatever
happens, Barbara is under no pressure to give him money. Once
you recognize that blackmail is not simply a threat plus a demand,
then the alleged paradox of blackmail dissolves. 

But does it matter whether or not there is a paradox of black-
mail? Yes, it does, because, if there were a genuine paradox, then
there would be no satisfactory way of justifying a law against
blackmail while avoiding the paradox. 

If one or more of the component acts involved in blackmail
were itself illegal or ought to be, then it might seem that this would
provide grounds for making blackmail illegal. The alleged paradox
would obviously be avoided in such circumstances. For example,
a blackmailer who threatens violence commits the separate offence
of threatening violence, which is a crime whether or not the threat
is made within the context of blackmail. But, as this example makes
obvious, if the wrong involved in the threats themselves were the
only wrong involved, then there would be no reason for the law
to treat them separately as blackmail. Yet in cases like this the
element of blackmail exacerbates the offence, so that there is more
to the wrong than the threat of violence.

Where criminals are blackmailed, you might try to identify a
further component of the blackmail in virtue of which it should be
a crime. For example, in English law it is an offence to accept, or
agree to accept, money for not disclosing information that might
be of material help in enabling a prosecution (except when the
money is reasonable compensation for loss caused by the offence).
However, the reason why the blackmailer implies that he will take
money for his silence is that he threatens to report the crime unless
the victim pays up. The implication arises only because the demand
is backed up by a threat and does not simply accompany it. It is
difficult to see how there could be such an implication if the
paradox were genuine and blackmail were simply a combination
of unrelated components. But set that complication aside. The
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proposal would still not cover blackmail adequately, since you are
guilty of blackmail as soon as you make the blackmail threat. A
victim who neither pays up nor offers to do so has still been black-
mailed. And, if the criminality of the extra component were enough
to make blackmail of criminals an offence, there would once again
be no need of a separate crime of blackmail in these cases.

In short, until you recognize that the alleged paradox of
blackmail is really no paradox, you are not going to be able to
give satisfactory reasons for making blackmail illegal.

The so-called ‘paradox’ of blackmail has its origins in a series
of articles written in the 1950s by the distinguished academic
criminal lawyer, Glanville Williams, although he himself did not
describe it as a paradox.

Further Reading 

Michael Clark, ‘There is no paradox of blackmail’, Analysis, 1994,
vol. 54.

Joel Feinberg, Harmless Wrongdoing, vol. 4 of The Moral Limits
of the Criminal Law, Oxford, Oxford University Press, 1988, 
pp. 238–76.

James Lindgren, ‘Unravelling the paradox of blackmail’, Columbia
Law Review, 1984, vol. 84. 

Saul Smilansky, Ten Moral Paradoxes, Oxford, Blackwell, 2007,
chapter 4.
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The Bridge

Socrates arrives at a bridge guarded by a powerful lord, Plato,
and begs to be allowed to cross. Plato replies:

I swear that if the next utterance you make is true I shall
let you cross, but if it is false I shall throw you in the
water.

Socrates replies:

You are going to throw me in the water.

If Plato does not throw him in the water, Socrates has spoken
falsely and should be thrown in; but if he is thrown in, Socrates
has spoken truly and should not be thrown in.

This is Buridan’s seventeenth sophism. (See Further Reading below.)
You would expect that the only difficulty that Plato might 

have in fulfilling his oath would be in knowing whether Socrates’
utterance was true or not. But Socrates subtly manages to frustrate
him.

Many philosophers, following Aristotle, have denied that
future contingent propositions have a truth value. If this view were
right, Socrates’ utterance would not be true, since it is an utterance
about something that may or may not happen in the future. But it
would not be false either. However, Aristotle’s view confuses truth
with knowledge or predetermination. To say that it is true that
Socrates will be thrown in the water is not to say that anyone yet
knows whether he will or that it is already determined whether he
will. Its truth or falsity depends on what Plato is going to do.

It is logically impossible for Plato to fulfil his oath in the cir-
cumstances. ‘He has no obligation to keep it at all, simply because
he cannot do so’, Buridan concludes, reasonably enough. 
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Buridan’s sophism is the most superficial of paradoxes, if it is
to count as one at all. For it is merely an unusual case in which an
oath cannot be fulfilled for reasons of logic.

(If Plato is free of any obligation, presumably he is free to
throw Socrates in the water if he wishes. Interestingly, if we assume
Plato is honourable, there is a way that Socrates can guarantee he
doesn’t get wet. He can say:

(U) Either I’m speaking falsely and you will throw me in, or I’m
speaking truly and you won’t throw me in.

If (U) is true, the first alternative is ruled out and the second
alternative must be true: so Socrates is not thrown in.

If (U) is false, both alternatives must be false. And if the first
alternative is false, since Socrates is speaking falsely it will be false
that he will be thrown in.

Either way Socrates escapes a dousing.)
A variant of Buridan’s sophism appears in Cervantes’ Don

Quixote. The Bridge has been traced back to Chrysippus (c. 280–
c. 207 BC).

Further Reading

Jean Buridan, Sophismata, fourteenth century (undated), trans-
lation in John Buridan on Self-Reference, ed. and trans. G. E.
Hughes, Cambridge, Cambridge University Press, 1982.

Compare the Pinnochio example in P. and V. Eldridge-Smith,
Analysis, 2010, vol. 70 and P. Eldridge-Smith, Analysis, 2011,
vol. 71.
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Buridan’s Ass

A hungry, thirsty donkey is sitting exactly between two piles of
hay with a bucket of water next to each pile, but he has no
reason to go to one side rather than the other. So he sits there
and dies. But imagine that one of us were in a similar position
between two tables of food and drink. Wouldn’t we go to one
of the tables rather than sit there and die? 

If someone found himself midway between the food-laden tables,
he would have no reason to go to one or the other. He might, it is
true, consider tossing a coin. The trouble is that there would be
nothing to make him associate heads with one table rather than
another. Similarly, if he decided to choose on the basis of which
of two birds reached a tree first: he would have no reason to
associate a bird with a particular table.

This paradox is usually taken as a challenge to rationality. But
Spinoza (1632–77), who was the first to associate it with Buridan,
construed it as a challenge to causal determinism. Suppose that
there is nothing in the animal’s causal history to incline him to 
one table rather than the other. In that case, if all his actions are
causally predetermined – the inevitable effects of prior causes,
which themselves are produced by prior causes in a chain that goes
back indefinitely – he will sit there and perish. If causal deter-
minism is true of animals, we might expect it to apply to people
as well. If everything that happens is determined by prior causes,
a person would stay there and die. And it does seem possible in
principle that he should find himself in such a position. If he did,
wouldn’t he always find some way of choosing a table to go to 
first rather than let himself starve to death? ‘If I concede that he
will [starve to death]’, said Spinoza, ‘I would seem to conceive an
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ass, or a statue of a man, not a man. But if I deny that he will, then
he will determine himself, and consequently have the faculty of
going where he wills and doing what he wills.’

Now causal determinism may not be true, but it is surely not
overturned as easily as this. 

Consider what we would say if we came across what, as far as
we could tell, was a situation of this sort. If the man did go to one
of the tables, we could not be sure that there was nothing un-
detected in his causal history that explained his choice. If he stayed
there and died, we would think he was suicidal or had gone mad.
But then people do commit suicide, and they do go mad. In other
words, in the unlikely event that you found yourself between 
the two tables with nothing to incline you to choose either table, 
you would either want to kill yourself or be in a situation where
you were incapable of acting reasonably; and the latter seems very
like madness. This, at any rate, was Spinoza’s response: ‘I grant
entirely that a man placed in such an equilibrium . . . will perish
of hunger and thirst. If they ask me whether such a man should
not be thought an ass, I say that I do not know – just as I do not
know how highly we should esteem one who hangs himself, or
. . . fools and madmen . . .’ (p. 490). So it looks as if the case of
Buridan’s ass fails to demolish causal determinism at a stroke.

Spinoza seems to have been wrong in attributing the example
to Jean Buridan, the fourteenth-century philosopher and scientist
who wrote extensively about many Liar-like paradoxes.

Further Reading 

B. Spinoza, Appendix to Ethics 2, in The Collected Works of
Spinoza, ed. and trans. Edwin Curley, Princeton, NJ, Princeton
University Press, 1985.

Buridan’s Ass
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The Cable Guy Paradox

The Cable Guy will come between 8 a.m. and 4 p.m. You choose
whether to bet that he comes in the morning or the afternoon,
and if he arrives in your interval I pay you $10, and otherwise
you pay me $10. Before 8 a.m. there is no reason to prefer
afternoon to morning. But there will be a time before his arrival
when you will assign a higher probability to the afternoon. If
he arrives in the morning, then however soon after 8 he arrives
there will be a time after 8 but before his arrival when it will
be rational to prefer the afternoon. Why wait till then? Why not
bet on an afternoon arrival now?

More precisely, we divide the period from 8 to 4 into two four-hour
intervals: (8, 12] and (12, 4), with both intervals open on the left.
(If the first were not open on the left, the paradox would not arise,
because the man could arrive at the stroke of 8.) In consequence,
if the Cable Guy arrives precisely at noon the morning interval
wins. In the absence of further information, it looks as if his arrival
in either interval is equally likely. (The fact that the morning
interval is closed on the right does not make it any longer.)

Suppose you bet on the morning interval. Whenever the man
arrives, some part of the morning interval must have passed.
Whenever he arrives there will be an earlier time at which the
afternoon bet is preferable, since the afternoon interval will be
longer than what remains of the morning interval after that time.
On the other hand if you bet on the afternoon interval there will
be no time before the arrival at which you should rationally prefer
the morning bet.

Hájek puts the reasoning in terms of a principle he calls ‘Avoid
Certain Frustration’, according to which you should not choose an
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option if you are sure that in future, if you are rational,  you will
prefer that you had made the other choice. Alternatively, betting
on the morning interval, he says, is ‘self-undermining’ (116).

There is some idealization here, since if the Cable Guy comes
a few nanoseconds after 8 there will not in practice be time before
that for you to have the thought that you prefer the afternoon bet.
But you can in advance argue that even in that case the afternoon
bet would be preferable at some time before the arrival, and that
can be known in advance.

Hájek notes that if you act on the principle and bet on the
afternoon interval, any financial incentive, however small, to back
the morning interval should change your choice – though there is
no smallest such incentive. He also points out that there is no
particular time you can be certain you will be frustrated. It is
unclear whether these considerations make it easier to abandon the
principles which generate the paradox, namely Avoid Certain
Frustration and its equivalent in terms of self-undermining choices.
Yet clearly we must abandon those principles if we are to avoid the
paradox.

Further Reading

Alan Hájek, ‘The Cable Guy paradox’, Analysis, 2005, vol. 65, from
which this entry is almost exclusively drawn.

The Cable Guy Paradox

33

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34



Cantor’s Paradox 

The set of all sets, S, ought surely to be the biggest set of sets
there is. But the power set of the set of all sets is bigger than S.

Common sense suggests that when there are infinitely many 
items of some sort, that is as many as there could possibly be. But
there is a simple and very beautiful argument, due to Georg Cantor
(1845–1918), to show that this is not the case, that there are, after
all, bigger and bigger infinities. After much initial resistance, the
argument came to be accepted by most working mathematicians
but remains controversial to this day.

Now read Galileo’s Paradox to see how to count infinite sets.
For any finite set you can get a bigger one by adding in a new

member. For example, the set of the first 101 positive integers is
bigger than the set of the first 100 positive integers. But this does
not work with infinite sets. You cannot get a larger than denumer-
able set by adjoining a new member. (See the discussion of
Hilbert’s Hotel, which turns on the set of positive integers greater
than 1 being the same size as the set of all the positive integers.)
Similarly, the set of natural numbers, which has 0 and the positive
integers as its members, is no bigger than the set of positive integers.
In Galileo’s paradox we saw that the set of squares of positive
integers was denumerable, and so no smaller than the set of posi-
tive integers. Even if you adjoin denumerably many new members
to a denumerable set, the result (called the union of the two sets)
is still denumerable. Similarly it not difficult to show that the union
of the set of positive integers and the set of negative integers is
denumerable. Less obviously, the set of positive rational numbers
(all the fractions) also turns out to be denumerable. Clearly there
are denumerably many such fractions with a given denominator.
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Imagine them listed in rows of increasing fractions, those with
denominator 1 in the first row, those with denominator 2 in the
second, and so on:

Then imagine tracing through them, starting with 1⁄1, 2⁄1, 2⁄2, 1⁄2,
(back to top row) 3⁄1, 3⁄2, 3⁄3, 2⁄3, 1⁄3, (back to top row) 4⁄1, 4⁄2, 4⁄3, 4⁄4, 3⁄4, 2⁄4,
1⁄4,. . . . This gives us a linear enumeration: a first, a second, a third,
and so on ad infinitum (skipping duplicates like 2⁄2, which = 1⁄1.) The
rationals are paired off exhaustively with the positive integers in
their normal ascending order. It begins to look as if common sense
was right to stop at denumerable infinities. But Cantor showed
otherwise.

Subsets and Power Sets

Crucial to Cantor’s argument, in the simple form in which he even-
tually presented it, is the notion of the power set of a set, which is
simply the set of its subsets. So, first, we need to explain the notion
of subset. The set of Cabinet ministers, for example, is a subset 
of the set of Government ministers. In general, we say that x is a
subset of y if and only if there is no member of x which is not a
member of y. The definition is framed in this slightly awkward
way to cover the case of the empty set, which is a subset of any
set, y, since, having no members, it has no members which are not
members of y. There is only one empty, or null, set, although it can
be specified in many different ways, e.g. as the set of unicorns or
the set of round squares. Sets can be distinct only if they differ in
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their membership. So there could not be two distinct empty sets,
because they would both have the same members – none. Notice
that a set counts as a subset of itself. It proves convenient to include
this limiting case, and if we want to talk of a subset of y which is
distinct from y we speak of a proper subset.

The power set of a set is the set of all its subsets. Consider the
little set whose members are Tom and Dick. These two friends often
dine at a certain restaurant on Friday evenings, and the head waiter
always keeps a table for two ready for them each week. He knows
that, although they often dine together, sometimes only one of
them turns up, and occasionally neither appears. He is prepared for
any of the four subsets: {Tom, Dick}, {Tom}, {Dick}, �. (The last
symbol denotes the empty set.) To take another, only slightly larger,
example, suppose that a lift operating in a three-storey building
has three buttons inside, marked ‘G’, ‘1’ and ‘2’, for each of the
floors. The designer of the electrical circuit connecting the buttons
with the lift mechanism must consider all of the possible combi-
nations of button presses if the lift is to function properly. He has
to accommodate each of the subsets of the set of buttons {G, 1, 2}.
It is not difficult to see that there are eight of these:

{G, 1, 2}, {G, 1}, {G, 2}, {1, 2}, {G}, {1}, {2}, �.

That is, all three buttons might be pressed at a particular stage, or
any two, or any one, or none at all.

Every time you change a finite set by adding a member you
double the number of subsets; because, in addition to all the
original subsets, you have the sets formed by adding the new
member to each of those original subsets. Indeed it is not difficult
to prove that if a set has n members, where n is a finite integer, its
power set has 2n members. And, since 2n is always greater than n,
a finite set will always be smaller than its power set. Of course,
there is an easier way of getting a bigger finite set than taking its
power set: you just add in a new member. But this, as we have
seen, will not work with infinite sets. (Compare Hilbert’s Hotel.)
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Bigger and Bigger Infinities

What Cantor was able to show was that the power set of x is always
larger than x even when x is infinite. This is known as Cantor’s
theorem. His initial proof was rather involved, but in time he was
able to produce a very simple, short and beautiful proof. To make
it as accessible as possible I shall present a concrete example, and
generalize from it.

Suppose that we have a set of people. Nothing will be said of
its size: it may be finite, it may be infinite, and if infinite it may
be countable (no larger than the set of positive integers) or un-
countable. Its power set will contain all its subsets: think of all the
collections of people that can be formed from the original set. (Note
that each member of the original set will belong to many of the
subsets in the power set.)

We show first that the set of people is smaller than or equal 
in size to its power set by showing how to pair off each person 
with a distinct collection (set) of people belonging to the power 
set. Recall that a set may have only one member (such sets are
called unit sets or singletons): the one-membered sets {Tom} and
{Dick}, for example, are two of the subsets of the set {Tom, 
Dick}. Now the power set of our set of people will include all the
one-membered sets, to each of which will belong a single person.
Match up each person with the unit set containing that same
person and you have a one-to-one correlation between the set of
people and a subset of its power set. So the power set is at least as
large as the set of people. If we can show that the set of people is
not the same size as its power set, it will follow that the latter is
larger.

So we proceed to show that the set of people is not the same
size as its power set. We do this by showing that there is no way
of exhaustively pairing off respective members of these two sets
one-to-one. For if they were the same size, there would be some
way of pairing them, some order in which the respective members
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could be matched without residue. To show that there is none, we
suppose that there is and then show that this supposition leads to
a contradiction.

Suppose then that there is a one-to-one pairing of the requisite
sort. To make the exposition more concrete, suppose that it takes
the following form. Each collection (including the singletons and
the empty set) of people in the power set is to have a unique agent
selected from the original set, and every person in the original set
is to be the agent of just one of the sets of people. Some collections,
perhaps, can find enough money to pay someone outside their 
own group to act as their agent: they appoint an external agent.
But some groups, perhaps, are too impecunious or mean to do this,
and select one of their own number to act as agent: they appoint
an internal agent. Of course, the empty set has no members to pay
an agent, and so it has an unpaid volunteer, who must of course
be external. Being the agent for the empty set of people is
something of a sinecure, anyway, so that the lack of payment is
no great sacrifice. (In any case, these details about payment merely
add colour and are not needed for the argument.) There is bound
to be at least one external agent, the agent for the empty set. And,
if the original set of people has any members at all, then there 
will also be at least one internal agent, the agent for the subset
which is the set of all the people. (Remember that a set is its own
subset.) 
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The set of the external agents is of course a subset of the
original set of people, and therefore belongs to its power set: so if
the pairing we envisage is possible this set too will have an agent.
She cannot belong to the set of people she represents, because only
external agents belong to this set. But since she doesn’t belong 
to the set, she is external and so does belong to it. We have a
contradiction.

There is only one way out of this contradiction, and that is to
recognize that it is impossible for such an agent to exist. But her
existence followed from supposing that an exhaustive pairing was
possible. Therefore that pairing must be impossible too. 

The precise nature of the agent relation is not essential to this
argument. All that matters is that we should consider a pairing
which associates each person with a distinct set in the power 
set. A person is ‘internal’ if she is paired with a set containing that
person; otherwise she is ‘external’. The contradiction is elicited by
considering the set of ‘external’ people.

Nor is it even essential to the argument that the members 
of the original set be people; they could be anything you like, 
provided we need make no assumption about the number in 
the set. Replace person by element in the paragraph above, and the
argument still goes through. No exhaustive pairing of any sort is
possible.

Finally, notice that the derivation of the contradiction does
not depend on supposing that the members of the original set are
matched with the members of the power set in any particular order.
This is important, since if they could be exhaustively paired in
some order or other, the sets would be equinumerous, so that we
need to show that there is no such pairing for any ordering.

The power set of a set x, then, is always greater in cardinality
than x, even when x is infinite. For, if the power set is at least as
large as x and yet not equinumerous with it, it must be larger.

Cantor’s Paradox
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The Paradox

Now, finally, to the paradox. Cantor had shown that you can always
get a bigger set by taking the power set of what you start with.
Consider, then, the set of all the sets there are, which should be 
the biggest set whose members are all sets. By Cantor’s theorem,
its power set contains even more sets. The set of all sets is both the
biggest and not the biggest set there is.

The moral is that the set of all sets is an illegitimate set. (But
see Further Reading below.) For discussion see Russell’s Paradox,
which exposes another illegitimate set; indeed the argument for
Russell’s paradox was inspired by Cantor’s proof. 

Scepticism about Completed Infinities

At first sight this may all seem quite mind-boggling. So it is
perhaps not all that surprising that established mathematicians of
the day, including Cantor’s own teacher Leopold Kronecker (1823–
91), rejected his results, and this may well have contributed to his
periods of depression. Later on, younger mathematicians came 
to his accept his work: for David Hilbert (1862–1943) it was ‘the
most admirable flowering of the mathematical spirit’. However, his
results remain controversial, and have been rejected by the
mathematical intuitionists led by L. E. J. Brouwer (1881–1966) and
A. Heyting (1898–1980), whose followers continue to repudiate
the conception of completed infinite wholes and cling to the
Aristotelian idea of the infinite as the open-ended. On their view
the paradox will not arise in the first place, of course.

Further Reading

A. W. Moore, The Infinite, 2nd edn, London and New York,
Routledge, 2001, chapter 8.

*Paul Halmos, Naïve Set Theory, Princeton, NJ, Princeton
University Press, 1960.
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*Thomas Forster, Set Theory with a Universal Set, revised edn,
Oxford, Clarendon Press, 1995, for set theories which admit the
set of all sets by restricting the axiom of subsets.
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The Paradox of the Charitable Trust

Suppose you invest some money in a charitable trust. When the
trust is terminated the income will go to an organization
fighting famine and poverty. The money is expected to grow at
a somewhat faster rate than famine and poverty. 

Suppose, too, that our present world will continue forever.
Whatever date you choose for the trust to mature, there would
be more money to help more people if you chose a later date.
But if you let the trust grow forever, it will never be terminated
to help anyone.

Maximizing utility in this case is impossible, since there is no
maximum – until it is terminated, the trust continues to increase
in value. The notion of satisficing, imported from economics,
contrasts with that of maximizing expected utility. Satisficing
involves choosing an alternative which, though it may not maxi-
mize expected utility, is good enough. One way of implementing
this is to choose the first alternative you come across that you
judge satisfactory. 

In order to maximize expected utility you need to compute
that utility and compare it with that of alternative options. These
problems are avoided artificially in the example of the charitable
trust because, for the sake of simplicity, we are assuming that more
money relieves more human misery. But in many cases such a
computation is impossible to perform, particularly as different sorts
of utility are incommensurable: how do you compare the utility of
reading a good short story with the pleasure of a backrub, for
example? By satisficing in the manner described, you avoid these
problems about computation and incommensurability. So it is not
only in the unusual case of the charitable trust that satisficing has
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its merits. It is arguably not just an ad hoc solution to the present
paradox.

There is one option that is clearly good enough and stands out
as the right option. The value of the trust will increase at a com-
pound rate faster than the famine and poverty, so that eventually
the value of the trust will be sufficient to wipe them out. This will
probably not be the first option that is good enough, so we had
better not take the first as a matter of course. If the trust is not
dissolved at the point of equal value it will go on to increase in
value so that in addition to wiping out poverty etc. it can do further
good. But, given that the aim of the trust was to fight poverty and
famine, termination at this time is surely defensible. Once the fight
has been won they can manage on their own.

The charitable trust example cries out for satisficing, whatever
the general merits of that approach outside this context. How else
can we avoid not terminating the trust and doing no good at all?
But it is not ordinary satisficing, at least as it is described in the
first paragraph above, since there is likely to be a much earlier
time when terminating the trust will be good enough. But it must
still count as satisficing of a sort, since maximizing is not possible
here.

Because of the simplifying assumptions the example itself is
somewhat unreal. But there will be examples in the real world
which raise a similar problem.

Cliff Landesman was the first to draw attention to this paradox.

Further Reading

Michael Byron, ‘Simon’s revenge: or, incommensurability and
satisficing’, Analysis, 2005, vol. 65.

Cliff Landesman, ‘When to terminate a charitable trust?’, Analysis,
1995, vol. 55.

Dan Moller, ‘Should we let people starve – for now?’, Analysis,
2006, vol. 66.
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The Chicken and the Egg

Which came first? Every chicken hatches from a chicken egg.
But every chicken egg is laid by a chicken. So neither can come
first. But surely one must. 

Aristotle believed that species had always been around, and so had
no beginning.  So on his view neither would come first.

Now that we know that this is false, we have to solve the 
riddle empirically, by appeal to biology. Admittedly the notion 
of species has come in for criticism in recent years, and there are
even those who deny their existence. But we set aside such
scepticism.

One answer which has gained scientific popularity puts the
egg first – ‘no egg, no chicken’:

A particular organism cannot change its own species
during its lifetime. The change came about from a mutation
when two organisms bred, producing a chicken egg. The
egg preceded the chicken which hatched from it. So the egg
came first.

On this view it doesn’t matter who the parents were. Their species
is not carried on through the egg because a mutation has taken
place, and its genetic material determines the nature of the
offspring. If it is a chicken egg, a chicken will hatch. 

A competing answer puts it the other way round – ‘no chicken,
no egg’:

Although the zygote results from both father and mother,
the surrounding egg comes from the mother alone. Only a
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chicken can lay a chicken egg: so the chicken came first.
(Waller in Mind, 1998.) 

Waller says: ‘To call any egg a chicken egg on account of its
embryonic passenger is like calling the mother’s uterus a chicken
uterus on account of its delivering a chicken’ (p. 852). He also
points out that, unlike chickens, roosters are optional for egg
producers.

On this view, presumably, a mutation takes place and produces
a chicken (the zygote) as embryonic passenger, though it is inside
an egg which is not a chicken egg. When it has hatched it will lay
chicken eggs; but the chicken came first.

The puzzle is first mentioned by Plutarch (c. 46–c. 120). 

Further reading

Aristotle, Generation of Animals and History of Animals.
Roy Sorensen, A Brief History of the Paradox, Oxford, Oxford

University Press, 2003, p. 11. (A fascinating history.)
R. Teichmann, ‘The chicken and the egg’, Mind, 1991, vol. 100.
David Waller, ‘The chicken and her egg’, Mind, 1998, vol. 107.
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Curry’s Paradox

Using the self-referential statement (S) ‘If it is true that S, then
Paris is the capital of Italy’, it seems that you can demonstrate
the conclusion that Paris is the capital of Italy, or indeed
anything you like. And the conclusion isn’t even conditional on
the truth of (S).

Assume the truth of (S), namely

(1) It is true that S.

From (1), it follows that 

(2) S

From (2), by the definition of (S) we get

(3) If is true that S, then Paris is the capital of Italy.

It follows from (1) and (3) by modus ponens (affirming the
antecedent) that 

(4) Paris is the capital of Italy.

Since (4) follows from the assumption (1), we can incorporate 
the assumption in an ‘if’ clause, and assert on the basis of no
assumption

(5) If it is true that S, then Paris is the capital of Italy.

From (5) by the definition of (S)

(6) S

From (6) it follows that

(7) It is true that S
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From (5) and (7) by modus ponens 

(8) Paris is the capital of Italy.

A parallel argument, substituting ‘S2’ for ‘S’ to yield (S2), ‘If it
is true that S2, then Paris is not the capital of Italy’, lets you prove
that Paris is not the capital of Italy, and, if we combine the results
of the two arguments, we have a contradiction on the basis of no
assumptions. 

Indeed, any statement, true or false, may be substituted uni-
formly in the argument above for ‘Paris is the capital of Italy’. We
can even substitute a contradiction and derive the contradiction
in one go.

Paradox is avoided if ‘provable’ is substituted for ‘is true’, since
the move from (6) to (7) then fails. 

There is also a set-theoretic version of the paradox, which uses
the unqualified comprehension principle (for which see Russell’s
Paradox).

For discussion see The Liar. One thing to notice in that dis-
cussion about this unusual variant of the liar is that it does not
seem amenable to cogent resolution by appeal to dialetheism 
– not that dialetheism has a very extensive following yet, anyway.
(See The Liar for an explanation of dialetheism.)

Further Reading

J.C. Beall, ‘Curry's Paradox’, The Stanford Encyclopedia of
Philosophy (Fall 2008 edition), ed. Edward N. Zalta, http://
plato.stanford.edu/archives/fall2008/entries/curry-paradox/.

*G. Boolos and R. Jeffrey, Computability and Logic, 4th edn,
Cambridge, Cambridge University Press, 2002, pp. 236–38.
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The Paradox of Democracy

Consider a democrat who favours monetary union. Suppose the
majority in a referendum vote against monetary union. Then it
appears that she is both for monetary union and, as a democrat,
against it.

What distinguishes a democrat who favours monetary union 
from someone who favours it but is not a democrat? They may both
vote in a democratic poll for it, since both want it enacted. What
is distinctive of the democrat is that her order of preference is

(1) Democratically enacted monetary union
(2) Democratically enacted monetary separation
(3) Monetary union enacted undemocratically
(4) Monetary separation enacted undemocratically.

She prefers 1 to 2, and both of these to 3 and 4. Her democratic
credentials are shown by her preference for 1 and 2 over 3 and 4,
and her support for monetary union by her preference for 1 over
2 and 3 over 4. There is no inconsistency here.

Moreover, it is clear that she is not committed to the obviously
untenable view that the majority is always right. Otherwise she
could not consistently prefer 1 to 2 or 3 to 4. (Nor need she be com-
mitted to allowing the majority to oppress a minority, since in 
such cases she may prefer not to accept the democratic decision.
Restricting democracy to protect minorities does not mean that
the paradox cannot be propounded.)

But what if she is torn between her support for democracy 
and her support for monetary union? What if she is torn between
2 and 3? The situation is then like the situation in other normative
conflicts. I promise to take my young daughter to a party but her
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brother falls over and splits his head open. I take my son to hospital
and have to break my promise to my daughter. But I still have to
make it up to her. The promise is not qualified by her brother’s
accident, it still stands. Or, to take a case where I am torn between
the two, I promise to take my daughter to a party and my son to a
film. The party was to be today, the film tomorrow, but both events
are then postponed until 3 o’clock the day after tomorrow, so that
I cannot keep both promises. I have conflicting obligations, both
genuine. Even if it is irrational to have two conflicting factual
beliefs (and the paradox of The Preface shows it may not always
be), there is nothing irrational about two obligations which clash
nor about having two political preferences which come into
conflict.

Despite its name, the paradox is not particularly about
democracy, but arises for the adherent of any other political system,
e.g. monarchy or oligarchy. The analogue for a monarchist would
give the following order of preference:

(1′) Monetary union ordered by the monarch
(2′) Monetary separation ordered by the monarch 
(3′) Monetary union contrary to the monarch’s will
(4′) Monetary separation contrary to the monarch’s will.

The paradox was identified by Richard Wollheim (‘A paradox
in the theory of democracy’, Philosophy, Politics and Society 2, 
ed. Peter Laslett and W. G. Runciman, Oxford, 1962). It differs from
the paradox of the same name mentioned by Karl Popper: the
possibility that the majority may vote for a tyrant to rule them,
which is an interpretation of Plato’s criticism of democracy
suggested by Leonard Nelson.

Further Reading 

Ross Harrison, Democracy, London, Routledge, 1993. He makes the
point about conflicting normative beliefs.
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Ted Honderich, ‘A difficulty with democracy’, Philosophy and
Public Affairs, 1974, vol. 3, which inspired the treatment
above.

Karl Popper, The Open Society and its Enemies, vol. I, London,
Routledge & Kegan Paul, 1945, chapter 7, note 4.
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The Designated Student

One of five students, called by the names of the weekdays, is to
have a test. The one designated has a gold star pinned on her
back while the others have silver stars. The teacher tells them
the one chosen will not know in advance that she has been
selected for the test. Monday to Friday are lined up in order one
behind the other, with Friday at the back. Each student can see
the backs of just those further up the line: Friday can see the
backs of all the others, Thursday can see the backs of
Wednesday, Tuesday and Monday, and so on. Everyone knows
it can’t be Friday, since Friday would see that none of those in
front have the gold star. But then they know it can’t be Thursday
either, since Thursday knows Friday is out and none of the others
had the gold star on their backs. And so on for Wednesday,
Tuesday and Monday. 

Yet obviously the teacher can give the surprise test.

Compare The Unexpected Examination. This paradox, due to Roy
Sorensen, emphasizes that memory is irrelevant in this type of
paradox. There is an argument similar to that for the second case
discussed in the entry on The Unexpected Examination that any
of Monday–Thursday can get the test without expecting it. 

Further Reading 

Roy Sorensen, Blindspots, Oxford, Clarendon Press, 1988, 
pp. 317–20.
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The Paradox of Deterrence

If you can only deter an enemy by sincerely threatening
retaliation which you know you will not want to carry out, since
it will then be pointless and self-destructive, you will not be able
to form the intention to retaliate because you know you won’t
fulfil it.

Suppose that the only likely way of warding off an enemy’s
aggression is to threaten devastating nuclear retaliation which
would kill many innocent people and rebound back on you. In
short, we are supposing that if the threat is ineffective you will have
much to lose and nothing to gain by carrying it out. Then there is
a problem for those who think this can be justified, if it is clear that
attempting to bluff the enemy will be ineffective, as it probably
would be in a democracy: you must genuinely intend to retaliate
if you are to have any chance of deterring them. You will not want
to retaliate if the enemy attacks, because that will have horrendous
consequences both for the innocent and for yourself; but you
nevertheless want to deter an enemy likely to attack you.

But if retaliation would be evil, isn’t it evil to form the intention
to retaliate? No doubt, but it might be a lesser evil than risking
likely aggression, particularly if enemy aggression was highly
probable if undeterred and if it was very unlikely that the threat
would have to be carried out. Then if you don’t make the threat you
will certainly suffer a crippling invasion. In this case those who
thought that it was impossible to avoid both evils could claim that
you would be justified in choosing the lesser evil.

Of course it may be enough if the enemy, though not fully
convinced your threats are sincere, are not confident that you are
bluffing either. They might not be prepared to take the risk that you

52

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34



were. But suppose even that would not be enough, that your only
hope of deterring their aggression was to make a threat that you
truly meant. Then we have the problem that is fancifully illustrated
by The Toxin Paradox and The Indy Paradox: how can you form
an intention you know you won’t fulfil when it comes to it? One
way out of this predicament would be to order less scrupulous
people to carry out the retaliation in the event of enemy invasion.
But, if you are in a position to order them to do that, you are also
in a position to countermand the order before they carry it out.
Another way would be to build a Doomsday machine programmed
to fire off retaliatory nuclear weapons if the enemy attacked. But
what if you couldn’t construct a machine that you couldn’t
demolish or deactivate when the time came?

It would seem that your only recourse would be to try to harden
your heart and make yourself more callous, in the hope that you
became capable of fulfilling a retaliatory threat and so could form
the intention to do so. If the threat fails to deter then it will be
irrational to retaliate. So it looks as if we have here a case where
it is rational to make yourself less rational. (Cf. Newcomb’s
Problem.) We can only hope that rationality will be regained if the
enemy launches its nuclear attack after all.

Gauthier’s resolution of The Toxin Paradox cannot be applied
here – as he recognizes – since you couldn’t argue you would be
better off if you adopted a policy of making the threat and fulfilling
it than if you didn’t make the threat in the first place.

None of this is to deny – nor to affirm – that nuclear dis-
armament would be the safest and most rational policy in the world
we actually live in. In making the suppositions above to generate
paradox, there is no implicit claim that they are true. But there
will probably be less dramatic but actual situations where one evil
can only be averted by threatening another and meaning it, and
maybe sometimes it will be possible to justify such a threat.

The Paradox of Deterrence
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Further Reading

Gregory Kavka, ‘Some paradoxes of deterrence’, Journal of
Philosophy, 1978, vol. 75. Kavka also considers some related
paradoxes of deterrence.
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The Dr Psycho Paradox

Dr Psycho has given you an apple which you have eaten. He
may have poisoned it with Z. He offers you a pill which contains
X, fatally poisonous by itself but an antidote to Z, though with
minor bad side effects. The doctor poisoned the apple if and only
if he predicted you were going to take the antidote. He is a
good predictor. 

So you have a life or death choice: should you take the
antidote?

This problem is due to Nicholas Rescher. Rescher produces two
conflicting calculations of the expected values of taking and not
taking the pill. He takes 1 to be the value of life, –1 the value of
death, and 1– to be the value of life with the bad side effects of the
pill. (The superscript minus sign means ‘a smidgeon less’.)

In his Analysis 1 (270–71) he calculates the expected values
relative to the correctness of Dr Psycho’s prediction, taking p to be
the probability that Dr Psycho predicts correctly. If the doctor
predicts correctly, you survive; otherwise you die. The expected
value of each possible action is the sum of the values of its out-
comes weighted by their probabilities:

Expected value of taking the pill = p(1–) + (1 – p)(–1) = 2p– – 1 

Expected value of not taking it = p(1) + (1 – p)(–1)  =  2p – 1

So the expected value of taking it is less than the expected
value of not taking it. 

In his Analysis 2 (271) Rescher calculates the expected values
relative to the state of the apple. If p is the probability that the apple
was poisoned, then:
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Expected value of taking the pill = p(1–) + (1 – p)(–1) = 2p– – 1

Expected value of not taking = p(–1) + (1 – p)(1) = –2p + 1

Now, if 2p– – 1 > –2p + 1, as it will if p > (1/2)+, the expected
value of taking the pill is greater than that of not taking it.
Rescher has added the information that it is (non-trivially) more
likely than not that the doctor has poisoned the apple. Because 
of the discordance between the two analyses in this case he con-
cludes that ‘the standard machinery of expected-value analysis
may leave us in the lurch because the probabilities may simply
fail to be well-defined quantities’ (Rescher 2001, 272). For on his
view there is nothing to choose between the two analyses.

On Analysis 1 Rescher assumes that the chance of a correct
prediction is the same whether the pill is taken or not (he uses p
for both). But if, as he assumes, the chance of the apple’s being
poisoned exceeds 1⁄2, you are more likely to die if you don’t take
the antidote. But this contradicts his assumption in Analysis 2 that
the state of the apple is independent of whether you take the pill
(he uses p for the probability that the pill was poisoned whether
you take the antidote or not). 

On Analysis 2, given that the pill is more likely than not to be
poisoned, you are more likely than not to need the antidote to
survive. Since you survive if and only if the doctor’s prediction is
correct, the chance of a correct prediction is greater if you take the
pill, which contradicts the assumption in Analysis 1.

So the inconsistency lies in the assumptions Rescher sets out
with, which undermines his claim that the probabilities are ill-
defined and that ‘the standard machinery of expected-value
analysis has left us in the lurch’ (272). He makes a similar mistake
in his treatment of Newcomb’s Problem.

Since at the point of choice it is already settled whether the
apple has been poisoned, it is more appropriate to use what is
known as causal decision theory here, what Gibbard and Harper
(1978/1981, 156–57) call the ‘genuine’ expected utility in such
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cases. ‘The “utility of an act”’, they say, ‘should be its genuine
expected efficacy in bringing about states of affairs the agent
wants’ (168). For Gibbard and Harper, this is to be calculated from
the probability of the relevant counterfactuals. So when calculating
the expected utility of taking the pill, the relevant probabilities are
the probabilities of ‘If I were to take the pill I would survive’ and
‘If I were to take the pill I would not survive’. The probability of
the former is plausibly the same as the unconditional probability
that the apple has been poisoned, Pr(P), and of the latter that it has
not, 1–Pr(P). When calculating the utility of not taking the pill, the
relevant probabilities are those of ‘If I were not to take the pill, 
I would not survive’ and of ‘If I were not to take the pill, I would
survive’; again, the former is Pr(P) and the latter 1 – Pr(P). So this
amounts to using Rescher’s Analysis 2 described above, which, to
recall, gives us

Expected value of taking the pill = p(1–) + (1 – p)(–1) = 2p– – 1

Expected value of not taking = p(–1) + (1 – p)(1) = 1–2p.

If the apple is more likely to be poisoned than not (by more than
a smidgeon), then the rational choice is to take the pill.

Further Reading

Michael Clark and Nicholas Shackel, ‘The Dr. Psycho paradox and
Newcomb’s problem’, Erkenntnis, 2006, vol. 64, pp. 85–100.

Alan Gibbard and W. L. Harper, ‘Counterfactuals and two kinds of
expected utility’ in C. A. Hooker, J. J. Leach, and E. F. McLennen,
eds, Foundations and Applications of Decision Theory,
Dordrecht, Reidel, 1978. Reprinted in W. L. Harper, R. Stalnaker,
and G. Pearce, eds, Ifs, Dordrecht, Reidel, 1981, from which
page references are taken.

Nicholas Rescher, Paradoxes, Chicago and La Salle, Ill., Open Court,
2001, pp. 264–75.
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The Eclipse Paradox

During a total solar eclipse we see the moon as a dark round disc
silhouetted against the sun. But which side of the moon do we
see? Standardly, we do not see an object unless the object causes
our perception. But in this case it is the far side of the moon
which absorbs and blocks the sunlight from us and causes us to
see the moon as a dark disc. So during an eclipse it is the far
side of the moon, not its near side, that we see. But that seems
quite contrary to the way we think of seeing.

Suppose that you are watching a play and the back of the stage
appears to look out on a garden with a tree. Actually there is a large
backcloth bearing a photograph lit in such a way that you cannot
see from where you are sitting that it is merely a photograph.
Furthermore there really is a garden with a tree behind the stage,
and if the backcloth and stage wall were not there it would look
just the same to you. But in this case you see the backcloth, not
the tree in the garden, because your perception is not caused 
(in the right way) by the tree in the garden. If the photograph is 
a photograph of that very tree, there is of course some causal
connection between the tree and your perception, but it is not
sufficient to count as your seeing the tree rather than the photo-
graph. This is shown by the fact that it would make no difference
if the photograph were of another scene coincidentally indistin-
guishable from that behind the stage wall: you see the photograph,
not the tree. 

But does our concept of seeing always require this sort of
causal connection? If it does, then we do indeed see the far side 
of the moon during an eclipse, since the moon appears as a dark
disc only because its far side absorbs the sunlight and prevents it
reaching us. 



Now suppose there are two moons in front of the sun rather
than one, and that either of them on its own would cast the same
shadow: the near one is smaller and just fits into the conical
shadow cast by the far one. It is the far side of the more distant
moon which absorbs the sunlight and occludes the sun, and since
the near moon is entirely in its shadow the near moon plays no
causal part in what we see. Admittedly the near moon would
occlude the sun if the far one were not there, but it is there, and as
things are it is the far moon which casts the shadow. For an
analogy, imagine that a would-be killer, Mac, shoots at his victim
but is pre-empted by a marksman who shoots the victim dead
before Mac’s bullet reaches him. The marksman, not Mac, is the
murderer and Mac is merely liable for attempted murder, even
though he would have killed had he not been pre-empted.

Most of us would be reluctant to say we see the far side of the
moon in an eclipse or the (far side of the) far moon in the double
eclipse. Is this because we misuse our concept, or is it because the
causal connection between object and perception which normally
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obtains does not hold in every case of seeing? After all, the concept
of seeing pre-dates our understanding of the physics of light.
Perhaps seeing is a natural kind like gold, and its essence has been
revealed at least in part by elucidating the causal mechanisms
involved, just as chemists have discovered the chemical essence of
gold. But if our ordinary notion of seeing cannot be captured in
this way, then there is nothing to stop us from saying that we do
see the dark nearside of the moon in the single eclipse and the dark
nearside of the nearer moon in the double eclipse.

A related puzzle about shadows was discussed at Yale in the
late 1960s. (Which moon casts the shadow between the near moon
and the observer?) The double eclipse paradox is due to Sorensen.

Further Reading 

Roy Sorensen, ‘Seeing intersecting eclipses’, Journal of Philosophy,
1999, vol. 96. 
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The Paradox of Entailment
(Paradoxes of Strict Implication)

A conclusion follows from, or is entailed by, the premisses of an
argument just when it is impossible for the premisses to be true
and the conclusion false. But a contradiction will entail any
conclusion, since it is impossible for a contradiction to be true;
a necessary conclusion will be entailed by any premisses, since
it is impossible for a necessary conclusion to be false.

This paradox was known in the Middle Ages. It is found, for
instance, in the fourteenth-century writings of Pseudo-Scotus, who
showed how to derive an arbitrary conclusion from inconsistent
premisses. Here is an example:

(1) Pat is both a mother and not a mother
(2) Pat is a mother, from 1
(3) Pat is a mother or Pat is a father, from 2 by the principle

of addition 
(‘or’ here is inclusive, it means ‘and/or’. An inclusive
‘or’ statement, A or B, is true provided at least one of
its disjuncts, A, B, is true.)

(4) Pat is not a mother, from 1
(5) Pat is a father, from 3, 4, by the principle of disjunctive

syllogism.

Any statement whatever can be substituted for the second
disjunct of (3) and for (5): ‘Paris is the capital of Spain’, for
example.

Perhaps this is innocuous. Paris is the capital of Spain does not
intuitively follow from an arbitrary contradiction, but can it not
be accepted as a harmless limiting case? After all, no such argu-
ment can force us to accept a false conclusion, since we are only



obliged to accept the conclusions of those valid arguments whose
premisses are true. However, we cannot swallow such entailments
without also swallowing those with an arbitrary premiss and a
necessary conclusion. And this would mean accepting the entail-
ment of any mathematical theorem by any other. 

If these counterintuitive entailments are not to be swallowed,
then we must block arguments like that from (1) to (4) above by
restricting one of following principles:

(i) addition: A or B follows from A
(ii) disjunctive syllogism: B follows from A or B, not-A
(iii) the transitivity of entailment, that is, the principle that if

A entails B and B entails C, then A entails C.

Each of these three possibilities has been proposed, though 
in recent years only two have been taken seriously enough to be
worked out in great detail, namely restricting (ii) and (iii).

Drop Disjunctive Syllogism

If you reject disjunctive syllogism (or indeed addition) you must
restrict transitivity anyway. Consider:

Pat is a mother or (Pat is) a father; Pat is not a mother; so Pat is
a father. 
(1) Pat is a mother or a father
(2) Pat is not a mother
(3) Pat is a parent, from 1
(4) Pat is a father, from 2, 3.

There won’t always be a term like ‘parent’ to mediate such 
a transition, but the validity of a logical rule should not depend
on a contingent feature like that, on whether a given language
happens to have a certain term or phrase. So, unless transitivity 
is restricted, we will still be able to infer B from A or B and 
not-A. 
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The Paradox of Entailment



There is a similar argument for addition: Pat is a mother. So
Pat is a parent. Hence Pat is a mother or father.

Much ingenuity has been exercised in devising relevance logics
in which disjunctive syllogism does not hold. 

(The formal systems encapsulate a notion of formal entailment,
entailments which turn on logical words, like and, or, and not,
rather than non-logical words like parent and mother.)

Drop Transitivity

Neil Tennant has devised a system of logic he calls CR (for Classical
Relevance), which restricts transitivity in a controlled and allegedly
innocuous way, but accepts disjunctive syllogism, and has a certain
naturalness. It disallows A and not-A entails B, for example, but
allows A and not-A entails A, because the latter instantiates the
unproblematic A and B entails A.

It still has A entails A and (B or not-B) and A or (B and not-B)
entails A, however. It is difficult, if not impossible, to formulate
satisfactory further restrictions to avoid these. But maybe we could
swallow these secondary paradoxes. After all, A entails A, and 
B or not-B is a logical truth. A or (B and not-B) entails A reflects
disjunctive syllogism: as Sherlock Holmes said, ‘It’s an old maxim
of mine that when you have excluded the impossible, whatever
remains, however tedious, must be the truth.’

Accept the Classical Definition

But then why not swallow the primary paradoxes? As noted above,
there is no danger of drawing false conclusions from accept-
able premisses, since inconsistent premisses are never all true. 
And you will only derive a theorem, T2, from a theorem, T1, if T2
follows without assuming its own theoremhood already. As for
inferences with contingent premisses and necessary conclusions,
their premisses are redundant, since they are not needed in order
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The Paradox of Entailment



to establish the conclusions. But redundant premisses are arguably
harmless.

p strictly implies q if and only if it is necessary that if p then
q. So the classical definition of entailment identifies it with strict
implication: hence the alternative name ‘paradoxes of strict
implication’.

Further Reading

Stephen Read, Thinking about Logic, Oxford, Oxford University
Press, 1995, chapter 2.

*Neil Tennant, Anti-realism and Logic, Oxford, Clarendon Press,
1987, chapter 17.
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The Paradox of Fiction

We can be afraid of something that does not in fact exist, but
it seems we must at least believe it exists. Again, we cannot hate
or love anything unless we believe it exists. But we also have
emotional responses to fiction: we can be afraid of a fictional
criminal in a film or feel vengeful when fictional injustice is
perpetrated, and in these cases we know the objects of our
emotions do not exist. 

Does this mean that our emotional responses to fiction are there-
fore inconsistent or incoherent? Surely not. Failure of emotional
response to fiction in many cases betokens insensitivity, which we
regard as a defect of character.

It is true that we talk about a ‘suspension of disbelief ’ when
engrossed in fiction, and if this suspension were genuine – as
perhaps in dreams – the paradox would disappear; while engrossed
in a novel, play or film we would temporarily believe in the
existence of the fictional characters. But generally we know we 
are in the cinema or reading a book: we don’t jump on to the stage
or into the cinema screen to protect a killer’s victim, we don’t try
to tell the police, or send a wreath for the dead victim – not if we
are sane, intelligent adults. (Those who send wreaths for characters
who die in television soap operas are regarded with amusement.)
And features that bring out the artificial nature of the work – the
broad brush strokes of impressionist paintings, the high-flown
arias of operas – can make the work more, not less, emotionally
engaging.

Nor when we react emotionally to fiction do we generally 
fear thoughts, images or representations. We fear the monster, or
at least we fear for characters with whom we identify who are



threatened by the monster, and we pity Tolstoy’s great fictional
creation, Anna Karenina. You can indeed fear thoughts, say obses-
sive distressing thoughts you are trying to keep at bay. But that is
not what is typically happening when we respond to fiction.

And it is not simply a matter of pitying those members of the
human race like Anna Karenina, even though the novel may
remind us of such human tragedy. Sometimes, admittedly, fiction
induces moods in us, with no specific objects: sadness, euphoria,
boredom or cynicism, for example. But when we pity Anna
Karenina, we don’t just feel in a pitying mood, we pity her.

On one prominent view fiction is a sort of make-believe, in
which we engage as producers or consumers. Pity for Anna
Karenina, for example, is construed as a quasi-emotion, because
it is make-believe. But whereas (unless they are method actors)
actors and actresses typically make-believe they are in emotional
states without feeling them, spectators feel their responses to
fiction and these feelings are not under the control of the will, as
make-believe is.

So if we are genuinely afraid of a fictional monster or angry
with a fictional cheat why don’t we take action as we would in a
real case? In non-fictional contexts inclinations to take action 
may be absent if we know the behaviour is inappropriate in the
circumstances, because the object is far in the past or in a distant
land, perhaps. There is nothing much we can do in these cases. But
our contempt for a past injustice or pity for the plight of distant
victims are none the less real. Similarly in fictional cases we 
don’t attempt to intervene when someone is being murdered in a
play or film, nor normally do we take evasive action – run from
the cinema, call the police – when we fear a fictional object. Yet if
emotions directed at past or distant objects are not merely ‘quasi-
emotions’, then why should emotions directed at fictional objects
be characterized in this way?

It is true that our fear of a non-fictional object normally
subsides if we learn that the object doesn’t exist. For example, we
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were afraid that a hurricane would strike, but now we hear that the
hurricane has died down our fear disappears. Nevertheless, when
we are involved in fiction, even though we know the objects are
fictional, we do have emotional responses to them. In fact, in the
fictional case there is an analogue of emotion disappearing 
with belief in the object. We are afraid the fictional township and
inhabitants are going to be hit by a hurricane, but as the story
develops it emerges that the hurricane has died out 100 miles away.
Typically our fear would disappear.

These considerations suggest that the way to resolve the
paradox is simply to recognize fiction as a special case, where we
do not need to believe in the existence of objects in order to have
emotions towards them.

Some writers can evoke empathy in us for fictional characters
who are the sort of person we would normally despise: Gregory
Currie has called this ‘the paradox of caring’. (See his essay in the
collection cited below.) Currie attributes this to imaginative
simulation of the character’s feelings, but this won’t do for cases
where, for example, I am afraid or disappointed for a character
who doesn’t have that emotion because he doesn’t yet know that
he is in danger or that he has had his hopes dashed. Perhaps our
empathy is to be explained by nothing more than the writer’s skill
in making us see in an understanding and sympathetic light 
what normally repels us. In any case the phenomenon is not con-
fined to fiction – unpleasant historical characters can be depicted
sympathetically too.

See also The Paradox of Tragedy.

Further Reading

M. Hjort and S. Laver, eds, Emotion and the Arts, Oxford, Oxford
University Press, 1997.

Kendall Walton, Mimesis as Make-believe, Cambridge, Mass.,
Harvard University Press, 1990.
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The Paradox of Foreknowledge

If God, or indeed anyone, knows that you will get married, how
can you be free to marry or not? Foreknowledge of free action
seems to be ruled out.

The sentence If you know you will get married, you must get
married can be interpreted in two different ways. It can be taken
as meaning either 

(1) It is necessary that (if you know you will get married then
you will get married)

or
(2) If you know you will get married then it is necessary that

(you will get married).

In the first case we have necessity of the conditional:
necessarily (if you know that p, then p). In the second, we have
necessity of the consequent (the ‘then’ clause): if you know that p,
then necessarily p. (1) is true, since you cannot know you will be
married if you’re not going to be, but (2) doesn’t follow from it. 
On (2), knowledge rules out a future voluntary marriage, whereas
on (1) it does not.

But God’s omniscience is supposed to be necessary, and the
following argument is valid: 

(i) Necessarily if God knows you will get married then you
will get married 

(ii) Necessarily God knows you will get married
So,

(iii) necessarily you will get married. 



For to say that it is necessary that if God knows you will get
married then you will get married is to say that you will get married
in any possible situation in which God knows you will get married.
And to say that necessarily God knows you will get married is to
say that, in any possible situation, God knows you will get married.
So it follows that it is true that you will get married in any possible
situation, i.e. that it is necessarily true that you will get married.

However, God’s omniscience does not require us to accept the
second premiss, (ii), that necessarily God knows you will marry. For
God does not know just any old proposition: He will not know you
will get married if you are not going to get married. No one, not
even God, can know a falsehood. If God is necessarily omniscient,
then what is necessary is that if you will get married then God
knows that you will get married.

But if God, or indeed anyone, already knows that you will
marry, it might still seem that you are unable not to marry, for if
you failed to marry you would invalidate the knowledge. All that
is required, however, is that you marry, and your marrying quite
freely will suffice. Similarly, if I know you are reliable then I know
you will turn up promptly unless prevented by some event like 
an unforeseen illness or an accident on the way. But that does not
mean that you are forced to be prompt. If you were, then your
punctuality would not be a symptom of your reliability.

There remains a problem for the libertarian, though: the liber-
tarian does not believe that determinism is compatible with free
will. How then could God invariably know our future actions? He
could not predict via deterministic laws, since on the libertarian
view our actions are not determined by such laws, so it would seem
that backwards causation, from actions to earlier knowledge,
would be needed. And there are indeed those who defend the
possibility of backward causation.

Boethius (c. 480–524) thought that foreknowledge was ruled
out, even for God. God doesn’t foresee, because He is timeless, and
‘beholds as present those future events which happen because of
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free will’. On this view God sees the whole of history spread out
before him in a four-dimensional space-time manifold, and so can
be omniscient without threatening our free will. But, if what is
said above is right, it is not necessary to rule out foreknowledge
in order to make room for free will, unless you are a libertarian.

Although the question, whether foreknowledge of A means
that A cannot be a free action, has arisen historically in the context
of religious belief in an omniscient God, it is independent of it. We
can ask whether it is possible to know of any free act that it will
be performed. It is, in any case, questionable whether the notion
of omniscience, of total knowledge, is consistent: see The Paradox
of Omniscience and The Prediction Paradox.

Further Reading

A. N. Prior, ‘The formalities of omniscience’, Philosophy, 1962, 
vol. 37.
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The Paradox of 
Future Generations

In his Reasons and Persons (1984) Derek Parfit famously
canvassed what he called ‘The Repugnant Conclusion’: ‘For any
possible population of at least ten billion people, all with a very
high quality of life, there must be some much larger imaginable
population whose existence, if other things are equal, would be
better, even though its members have lives that are barely worth
living’ (p. 388).

Parfit is here assuming that the best outcome has ‘the greatest
quantity of whatever makes life worth living’. Henry Sidgwick, the
great nineteenth-century utilitarian, had taken a similar view in
terms of happiness; the total not the average was what mattered.
One way of reaching the Repugnant Conclusion involves what
Parfit calls the ‘mere addition paradox’.  Start with a population (A)
where everyone has a high quality of life. If you add a number of
people with a good but lower quality of life (giving B), you have
greater total well-being. Population C, with the same number as
B, all with the same well-being, has average well-being a little
above that of B but lower than the average in A. C is better than
B (more average well-being and more equality) and B at least as
good as A. Hence C is better than A. By continuing to repeat this
argument (starting with C), we eventually get to a large population,
Z, where each member has very low positive well-being, which
has been shown to be better than A.

The mere addition argument depends on the transitivity of
‘better than’ (cf. The Paradox of Preference), but there is an
alternative form which does not use transitivity. So rejecting
transitivity will not avoid the Repugnant Conclusion.
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The Stanford Encylopedia article reviews ten ways of dealing
with this problem (of which rejecting transitivity is one). These
include using the principle of maximizing the average well-being
instead of the overall maximum, but this is no more successful: as
Parfit argues, if Adam and Eve lived marvellous lives, and there are
a billion billion other people with lives almost as good as theirs,
the average well-being would be lower, and so this population
would be worse on that view. No more successful, it seems, are
compromise theories according to which the value adding good
lives to a population is greater when the original population is
smaller. Or the view that improvement comes only if the added
life is above a certain critical positive level.

Another approach rejects the Benthamite view that all goods
can be measured on a linear scale. Superior goods cannot be
compensated for by any amount of the inferior ones. So a world
with only inferior goods, ‘muzak and potatoes’, however large the
population, would not be a better one, and the Repugnant
Conclusion is avoided. But this approach also has unacceptable
consequences. For example, suppose we start with a large
population of people whose lives are full of the higher goods. There
is a very much larger population where everyone experiences a
superior good just once in a lifetime, all the rest being muzak and
potatoes; their lives are hardly worth living. Then, the second
population is so much larger than the first that its total of superior
goods is greater. As Parfit points out (p. 162), it is hard to believe
the second world is better. 

A further approach involves, for example, only counting the
well-being of people actually existing now. That particular view
would mean that a small gain for present people would count
against a huge loss for future people.

Some have rejected the repugnancy of the conclusion. Even
privileged people in the West have lives little different from a
population where lives are barely worth living, so this is not so
objectionable. True there are desirable features of our lives. In the
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film Manhattan Woody Allen says that what makes his life worth
living includes Groucho Marx, Willie Mays, the second movement
of  the Jupiter Symphony, Louis Armstrong’s Potato Head 
Blues, Swedish movies, Flaubert’s Sentimental Education, Marlon
Brando, Frank Sinatra, and Cézanne’s picture of apples and pears.
On the other hand most of us experience countervailing miseries:
toothache, bereavement, illness, depression, injury, disappoint-
ment, personal animosity, burglary, and so on. One trouble 
with this view is that there is a much larger population, where 
each person has such a tiny surplus of what is worthwhile over
their miseries, that life really is barely worth living at all, but with
a greater total well-being, and that is undeniably repugnant. 

It looks as if philosophers are still searching for a solution to
this problem. Perhaps, as some have argued, there can be no
satisfactory population ethics. 

Further Reading

Gustaf Arrhenius, Jesper Ryberg and Torbjörn Tännsjö, ‘The
repugnant conclusion’ in The Stanford Encyclopedia of
Philosophy (Fall 2010 edition), ed. Edward N. Zalta, http://
plato.stanford.edu/archives/fall2010/entries/repugnant-
conclusion/.

Derek Parfit, Reasons and Persons, Part 4, Oxford, Oxford
University Press, 1984.

Derek Parfit, ‘Overpopulation and the quality of life’, in P. Singer,
ed., Applied Ethics, Oxford, Oxford University Press, 1986.

Henry Sidgwick, The Methods of Ethics, 6th edn, London,
Macmillan, 1901, pp. 415–16.
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Galileo’s Paradox

On the face of it there would seem to be more whole numbers
(1, 2, 3, . . .) than squares of those numbers (1, 4, 9, . . .). 

But the whole numbers can be paired off with their squares:

1 2 3 4 5 6 7 8 . . .

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

1 4 9 16 25 36 49 64 . . .

and so there are just as many of one as the other.

The squares of numbers seem to be far fewer than all the positive
whole numbers (the integers), and if you pick them out from the
sequence of integers arranged in their usual ascending order they
rapidly thin out. Yet, as the incredulous Galileo (1564–1642) noticed,
they can be exhaustively paired off with all the positive integers:
each positive integer has a unique square associated with it and
each square has a unique positive integer (its positive square root)
associated with it. The squares form what is called a proper subset
of the positive integers, that is a subset whose membership falls
short of the set of positive integers, and is therefore distinct from
it. Yet the subset can be mapped without remainder onto the set of
all the positive integers. So are there fewer squares or just as many?

We are so accustomed to thinking of finite collections that our
intuitions become disturbed when we first consider infinite sets
like the set of positive integers. Consider first how we count finite
sets. Suppose that there are two piles, one of red balls, the other of
blue, and you wish to determine which, if either, is more numerous.
The most straightforward way would be to pair off the red balls
with the blue ones and see whether either colour was exhausted



before the other: if you could pair them off one-to-one without
remainder then you could conclude that there were just as many
red balls as blue ones, that the piles were equinumerous. Obviously
if there were any unmatched blue balls then you would conclude
that there were more blue balls than red. That two sets have the
same number when the members of one correspond one-to-one
with the members of the other is an idea which is fundamental to
our practice of counting and our notion of number. David Hume
(1710–76) knew this: ‘When two numbers are so combin’d, as that
the one has always an unit corresponding to every unit of the other,
we pronounce them equal.’ Counting the balls in each pile, and
comparing the results, implicitly involves such one-to-one
matching. You match each of the red balls with a different one of
the first 423 whole numbers, say, and if you can do the same with
the blue balls without remainder you conclude the piles are
equinumerous. This is justified because if the red balls pair off with
the first 423 integers, and the first 423 integers pair off with the
blue balls, the red balls must pair off with the blue ones. Of course,
you would normally use the integers in their natural ascend-
ing order, starting with 1 and ending with 423, especially if you
did not know the number of balls in each pile to start with. But it
would be sufficient for establishing equinumerosity that you could
pair off the red and blue balls respectively with the first 423
integers taken in any order.

Counting Infinite Sets

When we come to counting infinite sets we need to generalize the
notion of whole number to that of cardinal number. You obviously
cannot answer questions like How many even numbers are there?
and How many prime numbers are there? by giving a positive
whole number. Those cardinal numbers which number infinite 
sets are known as transfinite. Their arithmetic was worked out by
Cantor, and turns out to have some very peculiar features. 
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We saw that two finite sets were equinumerous if and only if
their members could be paired off one-to-one without remainder.
The order in which the members of one set are paired off with those
of the other does not matter. For example, take the sets {Tom,
Dick} and {Jill, Mary}. You can pair off Tom with Jill and Dick
with Mary; or you can pair off Tom with Mary and Dick with 
Jill. Either pairing is sufficient to establish that the sets have the
same number. When you pair off the blue balls with the red ones,
the order in which you take the balls is immaterial. Piaget tells of
a mathematician who chose his career because of a childhood flash
of inspiration while counting some stones. He counted them from
left to right and found there were ten, and then he counted them
from right to left with the same result. ‘Then he put them in a circle
and, finding ten again, he was very excited. He found, essentially,
that the sum is independent of the order.’

It does not need much reflection to see that, whenever members
of a finite set can be paired off in one order with members of
another, they can be paired off in any other order. But this does
not apply to infinite sets. Consider the sequence of positive integers
in which all the odd numbers, in their natural ascending order,
precede all the even numbers: 

1, 3, 5, 7, 9, 11, . . . , 2, 4, 6, 8, 10, 12, . . .

and compare it with the sequence of all the positive integers in
ascending order:

1, 2, 3, 4, 5, 6, . . .

If you now imagine the members of the first sequence paired
off, in the order given, with the members of the second sequence,
in their order, you will see that the odd numbers in the first
sequence exhaust all the members of the second sequence, which
therefore has nothing left to pair with the first sequence’s even
numbers. 
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1, 3, 5, 7, 9, 11, . . . , 2, 4, 6, 8, 10, 12, . . .

↕ ↕ ↕ ↕ ↕ ↕

1, 2, 3, 4, 5, 6, . . .

Every number from the second sequence gets matched with an odd
number in the first sequence. 2 gets matched with 3, and in general
a number in the lower sequence gets matched with one less than its
double. In short, the whole numbers cannot be paired off with them-
selves if they are taken in the orders of the two sequences above.

There seem to be two non-arbitrary ways of generalizing the
notion of number to accommodate infinite sets. We could say that
infinite sets are equinumerous if and only if their respective
members can be paired off in at least one order; or we could say
that they are equinumerous if and only if they can be paired off in
every possible order. But the second way is obviously too stringent,
since, if we chose that, we should have to deny that the set of
whole numbers was equinumerous with itself. We are left with the
first proposal, which emerges as the only feasible one. So a set x
has the same cardinal number as a set y if and only if there is some
one-to-one correspondence between the members of x and the
members of y.

In the case of the finite piles of balls we saw that there were
more blue balls if the red balls paired off exhaustively with only
some of the blue ones. In the case of finite sets we can say that a
set x is larger than a set y if and only if y is equinumerous with a
proper subset of x. But this does not work with infinite sets, as
Galileo’s pairing shows. There are just as many squares of positive
integers as there are positive integers. In general, x is larger than
or equal in size (cardinality) to y if and only if y is equinumerous
with a subset of x.

A set whose members can be paired off one-to-one with the
positive integers is said to be denumerable. A set is countable if and
only if it is either finite or denumerably infinite. 

77

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Galileo’s Paradox



An infinite set is now defined as ‘Dedekind-infinite’ if it can
be mapped onto a proper subset of itself, after J. W. R. Dedekind
(1831–1916). (Given the axiom of choice – see note below – it can
be shown that all infinite sets are Dedekind-infinite.) The point
behind Galileo’s paradox was noticed as early as Plutarch (c.
46–120). Proclus, the fifth-century commentator on Euclid,
remarked that a circle has infinitely many different diameters and
that, since each diameter divides the circle into two, there is
apparently a double infinity of halves. It is evident that the double
infinity can be mapped onto one of the single infinities: inter-
leaving the two will give a single enumeration.

Note on the Axiom of Choice

The axiom of choice, mentioned parenthetically in the last
paragraph, is an axiom of set theory which is actually presupposed
in the proof of the theorem given in the entry on Cantor’s paradox.
It states that, if you have a – possibly infinite – set of non-empty
sets, then there is a set with just one member chosen from each of
them.

See also Hilbert’s Hotel, The Tristram Shandy, Cantor’s
Paradox.

Further Reading

A. W. Moore, The Infinite, 2nd edn, London and New York,
Routledge, 2001, chapters 1 and 8.
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The Gentle Murder Paradox 
(The Good Samaritan)

If you commit murder you ought to do so gently. Suppose then
that you do commit murder. Then you ought to do so gently.
Now from you ought to do A it follows that you ought to do
anything logically implied by A. (For example, from I ought to
help my mother and spend time with my children it follows that I
ought to help my mother.) You are murdering gently  entails you
are committing murder. So it follows that you ought to commit
murder.

This is a version, due to J. W. Forrester, of the paradox known as
‘the Good Samaritan’. 

You ought not to commit murder. So, by the argument above,
it follows that if you commit murder, you both ought and ought not
to do so. Now there may indeed be cases where you both ought and
ought not to do something, as when I promise to take my daughter
to a party and my son to a film. The party was to be today, the 
film tomorrow, but both events are then postponed until 3 o’clock
the day after tomorrow, so that I cannot keep both promises. I 
have conflicting obligations, both genuine. (See The Paradox of
Democracy.) But the ‘ought and ought not’ in the murder example
is not a case of conflicting obligations like these. So something
must be wrong with the argument. 

There is a case for challenging the inference from ‘If you
commit murder then you ought to commit murder gently’ and ‘You
are committing murder’ to ‘You ought to commit murder gently’ .
If the scope of the ‘ought’ is the whole conditional rather than
simply the ‘then’ clause, the conclusion does not follow.



It ought to be the case that (if you commit murder then you
do so gently).

You are committing murder.

do not logically imply that you ought to commit murder gently.
But even if the ‘ought’ has narrow scope and the inference

goes through, we can question the general principle that when you
ought to do A you ought to do anything entailed (logically implied)
by A. ‘You ought to confess your sins’ entails that you have sinned,
but surely not that you ought to have done so. 

Indeed, when we see how analogous principles fail, it ceases
to have any attraction. Consider:

‘I’m glad you corrected your mistakes’

from which it does not follow that I’m glad you made mistakes,
even though you cannot correct your mistakes if you haven’t made
any.

‘She wants to grow old gracefully’

from which it does not follow that she wants to grow old, even
though you cannot grow old gracefully if you do not grow old.

‘I’m sorry you missed our wedding’

from which it does not follow that I’m sorry our wedding took
place, even though you cannot miss a wedding if it didn’t take
place.

Further Reading

J. W. Forrester, ‘Gentle murder and the adverbial Samaritan’,
Journal of Philosophy, 1984, vol. 81. For the original Good
Samaritan version see P. H. Nowell-Smith and E. J. Lemmon,
‘Escapism: the logical basis of ethics’, Mind, 1960, vol. 69.
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The Paradox of the Gods

A man wants to walk a mile from a point a. But there is an
infinity of gods each of whom, unknown to the others, intends
to obstruct him. One of them will raise a barrier to stop his
further advance if he reaches the half-mile point, a second if
he reaches the quarter-mile point, a third if he goes one-eighth
of a mile, and so on ad infinitum. So he cannot even get started,
because however short a distance he travels he will already have
been stopped by a barrier. But in that case no barrier will rise,
so that there is nothing to stop him setting off. He has been
forced to stay where he is by the mere unfulfilled intentions of
the gods.

Of course our own world does not contain such gods, but it seems
possible in principle – it’s not excluded by logic – that all of the gods
could form their intentions and set in place a comprehensive system
of obstruction. This however is an illusion. Imagine that the gods
lay mines along the route which will ensure that a barrier rises at a
point if the man reaches that point. The system cannot survive being
tested. For if the man gets away from a, however little distance he
goes, a barrier will have risen to obstruct him before he gets there.
A barrier is supposed to rise at a point p if and only if the man gets
to p, and so if and only if no barrier has risen before p.

There is no first point beyond a at which a barrier can rise. The
sequence of points

. . . , 1⁄64, 1⁄32, 1⁄16, 1⁄8, 1⁄4, 1⁄2

has an end but no beginning. If there were a first point in this
sequence then the man could get there before being obstructed. But
any point on the route from a at which one of the gods intends to



raise a barrier will be preceded by infinitely many points at each
of which some god intends to raise a barrier if the man reaches it.
The system of obstruction as a whole will not work as intended: if
the man gets going, not all their intentions can be fulfilled. Recall
that, in effect, each god intends to raise a barrier at his point if and
only if no barrier nearer a has already been raised. For suppose the
man gets going. Either at least one barrier rises, or no barriers 
go up at all. If a barrier rises, a god will have raised it despite the
existence of barriers nearer a; if there is no point at which a barrier
rises, each god will have refrained from raising his barrier even
though there is no preceding barrier. So the set-up is logically
flawed. And, once we see that, the puzzle disappears.

The paradox was invented by J. Benardete. See pp. 259–60 of
his book Infinity (Oxford: Clarendon Press, 1964). The resolution
given above is drawn from the paper by Stephen Yablo cited below.

See also Yablo’s Paradox.

Further Reading

Jon Pérez Laraudogoitia, ‘Priest on the paradox of the gods’,
Analysis, 2000, vol. 60.

Graham Priest, ‘On a version of one of Zeno’s paradoxes’, Analysis
1999, vol. 59.

Stephen Yablo, ‘A reply to new Zeno’, Analysis, 2000, vol. 60.
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Grue (Goodman’s ‘New Riddle 
of Induction’)

If we generalize on the basis of emeralds we have examined we
can reach the conclusion that all emeralds are green. Now define
a new adjective, ‘grue’: x is grue if it is green and examined (by
now), or blue and unexamined (by now). If we generalize on the
basis of previously examined emeralds it seems we can also
reach the contrary conclusion that all emeralds are grue.

Not only are all examined emeralds green, they are also, because
already examined, grue. The unexamined emeralds cannot be both
green and grue, since if they are grue and unexamined they are
blue. If it is licit to argue from All examined emeralds are green to
All emeralds are green, why is it illicit to argue to All emeralds are
grue?

The property grue looks suspicious and gerrymandered, and
apparently less fundamental than blue or green. But if we had the
concepts of grue and of bleen (blue if examined, green if not) first,
then we could define green and blue in terms of them. Green, 
for example, would be defined as grue if examined and bleen if 
not. We can also imagine circumstances in which we would have
a use for ‘grue’. Suppose there were a sort of precious stone which
was sensitive to examination (which we will assume is a matter of
looking at the stone) and when exposed to light changed from blue
to green. We may suppose that exposure to light produces a
chemical change, which if it could have been inhibited would have
left the gems looking blue. Then all of these stones would be grue,
not just the examined ones. 

We do not believe emeralds are like that, however. Scientists
know about their physical structure, and know stones with this



structure do not turn from blue to green on exposure to light. We
therefore have good reason to believe that if an unexamined
emerald had been examined it would have been green and would
not have changed colour, so we do not believe that unexamined
emeralds are grue. The examined emeralds count as grue only
because they have been examined, and our background knowledge
tells us that being examined doesn’t change them from blue to
green. If they are green when examined then they were green, not
grue, before. In short, we cannot generalize in a simple way from
cases we have examined to all other cases, without relevant
background information. We can properly make the generalization
only if that background information entitles us to regard the
examined cases as a representative sample with respect to the
property in question. The imagined stones which lost their blue
colour when exposed to light were not a representative sample
with respect to green, since the sample included none of those yet
unexposed to light. That they have been examined, however, does
not rule out the emeralds as a representative sample for green as
opposed to grue, since we know that the normal examination of
emeralds has no physical or chemical effect on them.

If our background information includes the fact that a certain
feature of our sample biases it with respect to the property in
question, then generalization is certainly illicit. For example, if a
survey of university students finds that more of them vote for the
left than the right, it is obviously wrong to conclude that this is 
true of the general population, since we know how age affects
voting patterns. And even if we did not know how age affects voting
patterns, given what else we know about differences in attitude
between the younger and older generations, we could not assume
that voting patterns would be the same in young and old.
Enumerative induction, the mere accumulation of positive instances
of a generalization, is worthless on its own (as the discussion of 
The Paradox of the Ravens also illustrates). 

What if we started with grue and defined ‘green’ as ‘grue and
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examined’ and ‘blue’ as ‘grue and unexamined’? Now the emeralds
we have examined are grue and green. What of the unexamined
ones? Well, it is a feature of grue things that they are blue if un-
examined. Our sample is unrepresentative for grue since it contains
only examined gems.

If there is nothing in our background information to help us
determine whether examined cases are typical, then we should
refrain from making any generalizations until we have done more
investigation, so that we acquire an idea of what factors might
skew our sample.

Though anticipated by Russell, the paradox is principally
associated with Nelson Goodman, who published a version of it in
1946 – his example of grue came later. The word ‘gruebleen’ had
appeared in James Joyce’s Finnegans Wake (1939).

Further Reading

Nelson Goodman, Fact, Fiction and Forecast, Cambridge, Mass.,
Harvard University Press, 1955; 4th edn, Cambridge, Mass.,
Harvard University Press, 1983.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, pp. 99–107.

Douglas Stalker, ed., Grue! the New Riddle of Induction, Chicago,
Open Court, 1994. Fifteen papers with an extensive annotated
bibliography covering 316 publications. According to the
introduction there are now about twenty different approaches
to the problem.

Alan Weir, ‘Gruesome perceptual spaces’, Analysis, 1995, vol. 55,
for a stronger version of the paradox, which he argues cannot
be dealt with so easily.
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The Heap (The Bald Man, 
The Sorites, Little-by-little

Arguments)

10,000 grains suitably arranged make a heap. But, at no point
can you convert a collection of grains that is a heap into one
that is not, simply by removing a single grain. So it follows that
a single grain makes a heap. For if we keep removing grains
over and over again, say 9,999 times, at no point does it cease
to be a heap. Yet we obviously know that a single grain is not
a heap.

Let us set out the argument above more explicitly.

Argument I

A pile of 10,000 grains is a heap.
If 10,000 grains are a heap, so are 9,999 grains.
So 9,999 grains are a heap.
If 9,999 grains are a heap, so are 9,998 grains.
So 9,998 grains are a heap.

:
:

If 2 grains are a heap, so is one grain.
So one grain is a heap.

The conclusion is reached here by repeated applications of 
the logical form of inference known as modus ponens (or affirming
the antecedent): if p then q; p; so q. This sort of chain argument,
in which the conclusion of each sub-argument becomes a premiss
of the next, is called a ‘sorites’.



The argument can be formulated more compactly in the follow-
ing way, in which the ‘if ’ premisses of Argument I are generalized
in the second premiss of Argument II:

Argument II

A pile of 10,000 grains is a heap.
For any number n greater than 1, if a pile of n grains is a heap
then so is a pile of n – 1 grains.
So one grain is a heap.

The premiss could contain any arbitrarily large number with-
out affecting the apparent validity of the argument. The premisses
appear indisputable but the conclusion is obviously false. 

Compare Argument II with this argument about temperature:

A temperature of 60°F is above freezing point.
For any (whole number) n, if n°F is above freezing point, then
so is a temperature of (n–1)°F .
So a temperature of 1°F is above freezing point.

The second premiss is false because of the sharp cut-off point
at 32°F. But there does not seem to be any point at which the
subtraction of a single grain can make all the difference between
a heap and a non-heap. Gradually the subtraction of grains 
will make it cease to be a heap, but there seems to be no clean
point of transition. Unless we are to retreat to scepticism about 
the existence of any objects whose terms are vague, we must find
a reason for rejecting Arguments I and II.

Our language seems to contain many vague nouns and
adjectives which could be used to construct sorites arguments like
those above. Obvious examples are ‘adult’, ‘book’, ‘mountain’,
‘lake’, ‘hot’, ‘bald’, ‘heavy’ and ‘tall’. The child, for example, grows
into an adult after the passage of many millions of seconds. It
would seem absurd to think that there is a child at one moment and
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an adult a second later. By contrast, attaining the legal age of
majority is achieved overnight at a precise time.

Epistemic View 

Yet there have been both ancient and modern philosophers who
have denied gradual transitions where vague terms are involved,
claiming that one of the premisses of the sorites argument is
straightforwardly false. There is a sharp cut-off point, it is just that
we do not know where it is. The adjective ‘epistemic’ (‘pertaining
to knowledge’) is applied to this view, since it treats our failure to
detect a sharp transition as merely a defect in our knowledge. This
is simply because our powers of discrimination are limited and we
have to recognize margins of error. For example, suppose we are
looking at a spectrum of shades of colour on which red gradually
turns to purple. If there were a definite point which marked the end
of the red section, we should not be able to discriminate shades just
either side of that point which were none the less distinct. Similarly,
if an accumulation of grains organized and configured in a certain
way became a heap as soon as it had a certain number of grains,
a pile with one grain fewer would ordinarily look no different 
to us. Our beliefs here are not reliable and so do not constitute
knowledge.

But at most this explains why we cannot detect cut-off points.
It does not show that there really is a cut-off point between shades
and between heaps and non-heaps. We may not be able to detect
the exact cut-off point between 32°F and less than 32°F when the
temperature falls below freezing point – there are margins of error
even in our use of precision instruments – but we know what it is
and what we are trying to detect. 

In many cases it is difficult to see how we could acquire precise
notions without first having vague ones. If we did not have adjec-
tives like ‘hot’, how could we acquire the notion of temperature?
Two objects have the same temperature if one is just as hot as the
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other. Children don’t learn what temperature is first and then come
to understand the word ‘hot’.

Nevertheless, these considerations are probably not decisive.
The epistemic view has distinguished contemporary proponents,
who have deployed considerable ingenuity in its defence. 

Degrees of Truth

If there is a genuine borderline between heaps and non-heaps, then
a statement that says of a borderline case that it is a heap is not
strictly true, but it is roughly true. Is France hexagonal? Not
exactly, but it is roughly true that it is. Olivia is 5′ 7′′. Is it true to
say she is tall? Only roughly. But if she grows another inch the
claim is closer to the truth. This suggests that there are degrees of
truth. Some borderline heaps are closer to being heaps than others:
the attribution of the term ‘heap’ becomes less accurate as more
grains are subtracted, until there are so few that it becomes
unequivocally false. Even the subtraction of a single grain brings
the accumulation slightly closer to being a non-heap, though the
difference is so tiny that it will rarely concern us. Admittedly, the
falling winter temperature will get closer and closer to freezing
point as it goes down, but it is strictly true that it is not below
freezing point before it goes below 32°F, and as soon as it does the
statement that it is below freezing point is strictly true.

Suppose we are within the borderline for a heap when there are
70 grains, and consider the conditional statement

If 71 grains make a heap, then so do 70.

Both the ‘if’ part (the antecedent), ‘71 grains make a heap’, and
the ‘then’ part (the consequent), ‘70 grains make a heap’, are, taken
on their own, roughly true, but 71 grains are closer to being a heap
than 70, so the antecedent is nearer the truth than the consequent.
Now a conditional is clearly false if its antecedent is true and
consequent false, as is the case, for example, with ‘If New Orleans
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is the largest city in Louisiana, it is the state capital’. So if we recog-
nize that there can be degrees of truth, it seems reasonable to say
that a conditional whose antecedent is closer to the truth than its
consequent falls short of being strictly true. It may not fall very
short. It may fall short only to a very tiny degree. But that is enough
to stop the sorites argument being sound, for not all its premisses
will be strictly true. Quite a few of the 9,999 conditional premisses
in Argument I above will deviate very slightly from the truth. 
These tiny errors propagate through the chain to yield a wholly
erroneous conclusion, as surely as the continued subtraction of
grains destroys a heap. Similarly the generalization in the second
premiss of Argument I (‘For any number n greater than 1, if a pile
of n grains is a heap then so is a pile of n – 1 grains’) will fall short
of the truth by a significant degree, because many of its instances
fall short.

Various attempts have been made to provide logics which
assign precise numerical degrees of truth to statements. But often
such assignments are quite artificial. What value should you assign
to ‘France is hexagonal’? It would have to be less than 1 and pre-
sumably greater than 0.5, but any assignment within this range
would seem to be quite arbitrary. How could you possibly decide
whether ‘The Middle Ages ended in 1485’ should be assigned a
higher or lower value than the statement about the shape of
France? 

Even if we are prepared to accept this artificiality, the logics
used tend to have counterintuitive consequences. So-called fuzzy
logic is a popular choice. A common version gives a conjunctive
statement the same value as that of its lowest conjunct. For
example, if ‘Amanda is tall’ is assigned 0.8 and ‘Sam is tall’ is
assigned 0.95, then the conjunction ‘Amanda is tall and Sam is
tall’ gets the value 0.8. This may seem reasonable enough. But
suppose we have a conjunction of six conjuncts each of which
gives the population of a specified area. Each of the first five gives
the population of a large country and is 99 per cent accurate, but
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the last says that the population of the little town of Uzès is 3,000
when it is actually 3,750. Presumably the last conjunct would have
a degree of truth of about 0.8, which would be inherited, with
questionable justice, by the whole conjunction. Worse, if Amanda
is borderline tall so that ‘Amanda is tall’ is assigned 0.5, the neces-
sary falsehood ‘Amanda is tall and not tall’ gets the value 0.5.

A more serious problem for the use of these logics, however,
is that they do not dispense with sharp transitions. They accom-
modate the gradual transition from heap to non-heap at the
expense of imposing a sharp transition from heap to borderline,
and from borderline to non-heap. For among the conditional
premisses of Argument I there will be a first and a last that falls
short of 1. This is known as the problem of higher-order vagueness.

Supervaluations 

So it looks as if we should avoid assigning precise numerical values
as degrees of truth. To assign ranges of values will not help either.
But roughly true statements must somehow be distinguished from
those which are strictly true. Another approach is to treat them as
neither true nor false, and identify them as those which could
become true or false by admissible ways of making the vague term
precise. For scientific and legal purposes we often need a precise
term, and one way of introducing it is to tighten up an existing
vague one. For example, although the transition from childhood
is normally a very gradual one, the law needs a precise cut-off
point after which the legal duties and rights of adults can be
assigned to citizens. The term ‘child’ could be made precise in a
number of admissible ways: ‘under age 16’ and ‘under age 21’ are
all right, but it would violate the sense of the term to sharpen it to
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—— heaps —— —— borderline cases —— —— not heaps —— 



‘under the age of two’, or ‘under the age of 65’. ‘A person aged six
is a child’ is true under all admissible sharpenings (‘supertrue’).
‘Someone aged 60 is a child’ is false under all admissible sharp-
enings (‘superfalse’). But ‘Someone aged 16 is a child’ would be true
under some sharpenings, false under others, and so count as neither
supertrue nor superfalse. So we have three possible values:
supertrue, superfalse, and neither. These are known as super-
valuations, and their formal properties have been worked out in
detail with considerable elegance. Arguments I and II again fail to
be sound because not all their premisses will be (super)true. The
approach also avoids the counterintuitive consequences that can
arise when fuzzy logic is employed to handle vagueness.

But it still fails to solve the problem of higher-order vagueness.
In Argument II, for example, there will be a first premiss which is
neither true nor false, and a last one: the borderline is again sharply
delimited. And elaboration of the logic to avoid this has been found
to introduce other counterintuitive consequences.

The three approaches sketched above do not exhaust the
solutions that have been mooted, but they are currently the most
prominent. 

Perhaps a ‘degree of truth’ view can be rescued if we refrain
from interpreting it in terms of some system of logic. It will have to
recognize that it is indeterminate where the borderline begins 
and ends, in such a way that it doesn’t follow that there is a deter-
minate range of cases where it is indeterminate whether they are on
the borderline – or a determinate range of cases where it is indeter-
minate whether it is indeterminate that they are on the borderline,
and so on. One way of doing this has been suggested by Oswald
Hanfling (see the paper cited below): borderline cases are those
which we hesitate to classify, but the point at which we start to
hesitate will typically vary from time to time and person to person.

The paradox has been traced back to Eubulides, a contemporary
of Aristotle.

See also Quinn’s Paradox, Wang’s Paradox.
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Further Reading

Patrick Grim, ‘The buried quantifier: an account of vagueness and
the sorites’, Analysis, 2005, vol. 65.

Oswald Hanfling, ‘What is wrong with sorites arguments?’,
Analysis, 2001, vol. 61.

Rosanna Keefe, Theories of Vagueness, Cambridge, Cambridge
University Press, 2000.

Rosanna Keefe and Peter Smith, eds, Vagueness: A Reader,
Cambridge, Mass. and London, MIT Press, 1987. Contains an
excellent introductory survey and a range of important papers.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, chapter 3.

R. M. Sainsbury and Timothy Williamson, ‘Sorites’, chapter 18 
in R. Hale and C. Wright, eds, A Companion to the Philosophy
of Language, Oxford, Blackwell, 1997.

Roy Sorensen, Vagueness and Contradiction, Oxford, Oxford
University Press, 2001.

Timothy Williamson, Vagueness, London, Routledge, 1994.
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Heraclitus’ Paradox

As Heraclitus said, you cannot step into the same river twice. 
For, if Heraclitus had bathed in a river on Saturday and the

same river on Sunday, he would have bathed in the same water
on the two successive days, since whatever is a river is water.
But it wouldn’t have been the same water, so it wouldn’t have
been the same river.

We are to suppose, of course, that the river is flowing, so that the
water Heraclitus bathes in on Saturday cannot be the same water
he bathes in on Sunday. But since we know that it is perfectly
possible to bathe in the same flowing river on successive days, we
need to find a way of blocking the inference.

Is what he bathes in on successive days the same or different?
It is surely perverse to force an answer to this question without 
a further gloss. To someone who puts this question, shouldn’t we
ask whether she means the same river or the same water? According
to what is known as the doctrine of relative identity, there is no such
thing as simple identity: to say that a is the same as b is to say
something incomplete. a must be the same river, the same water,
the same word, the same colour, as b; it can’t simply be the same,
full stop. It is a consequence of this position that a can be the same
F as b but a different G. For example, on the line below

(1) cat (2) cat

(1) is the same type-word as (2), but they are different token-words.
A book may be the same novel but a different translation. 

Call the river r. Let the water in r at the time Heraclitus steps
into the river on Saturday be wSATURDAY, and the water in r at the
time he steps into the river on Sunday be wSUNDAY. On the relative



identity view, on Saturday r is the same water as wSATURDAY, on
Sunday the same water as wSUNDAY. Although wSATURDAY is not the
same water as wSUNDAY, it is – on the relative identity view – the
same river. So Heraclitus steps into the same river on successive
days but into different water. This blocks the paradoxical inference,
but has its problems. Clearly the life histories of r, wSATURDAY and
wSUNDAY are different. For example, the volume of water wSATURDAY

will eventually mingle with the sea and cease to belong to the river.
But if r is identified with wSATURDAY, as it would be on Saturday, 
how could this be? Wouldn’t whatever was true of wSATURDAY be
true of r? Yet the locations of r and wSATURDAY are different at other
times. Contrast Lewis Carroll, who was the same man as Rev. C. L.
Dodgson, and who therefore had precisely the same life history 
as C. L. Dodgson. It is true that before he adopted the pen-name
he was known only as ‘Dodgson’, but it was the same man whose
original name was ‘Dodgson’ who came to be known as ‘Carroll’,
and who had just one life-history, whatever he was called on
different occasions.

Nevertheless, it may still seem that the river is identical with
a volume of water like wSATURDAY at a particular time. Now, if you
bathe in the river at one location and then at another, you bathe
in the same river by bathing in different spatial parts of it. On
another conception currently popular among philosophers the 
river is a sequence of temporal parts, or time-slices; it has four
dimensions, three spatial, and one temporal. On this view, if you
bathed in the river on successive days, you would be bathing in
the same river by bathing in different temporal parts of it, just as
you can bathe in the same river by bathing in different spatial
parts of it. The different temporal parts could be identified with
different, but related, volumes of water. However, the four-
dimensional view has a problem too. The river is something which
changes, and change seems to require a persistent substance which
changes. If we merely had a sequence of temporal parts, a sequence
of related volumes of water, what would change? 
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Whether anything can be made of the four-dimensional view,
the relation between the river r and the volumes of water wSATURDAY

and wSUNDAY is better regarded as one of composition than of
identity. When we say that brass is copper and zinc, we are not
saying that brass is identical with copper and zinc, we are saying
what brass is composed of. If we ask whether the table-top is wood
or plastic, we are not asking about its identity but about its
composition. Equally, when we ask whether the statue is marble
or stone, we are asking what the statue is made of. The river is
made up of a volume of water, and of different volumes of water
at different times. That is how it can change, how it flows. So the
second premiss (‘Whatever is a river is water’) is true only if it
construed as meaning that rivers are made up of water; and they
are not normally made up of the same volume of water throughout
their history. On this construal, then, we can infer only that
Heraclitus stepped into something made up of water on each day,
without the implication that the water was the same on both
occasions.

See also The Paradox of the Many, The Ship of Theseus.

Further Reading 

David Wiggins, Sameness and Substance Renewed, Cambridge,
Cambridge University Press, 2001, chapter 1.
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Heterological (Grelling’s Paradox,
The Grelling–Nelson Paradox)

A predicate expression is heterological if and only if it doesn’t
apply to itself, autological if and only if it does. For example,
‘is monosyllabic’, ‘is a French phrase’, and ‘is three words long’
are heterological, since they don’t apply to themselves, whereas
‘is polysyllabic’, ‘is an English phrase’, and ‘is four words long’
are autological.

Is ‘is heterological’ heterological? If it is heterological, it
doesn’t apply to itself and so it is not. If it is not, it does apply
to itself, and so is heterological. In other words, it is if and only
if it isn’t.

(1a) One solution is to treat predicates about predicates as one level
higher than their subjects, so that a statement about a predicate is
only accepted as significant if its predicate is of a level one higher
than that of its subject. So ‘short’ cannot apply to itself, since both
subject and predicate in ‘Short’ is short would be of the same level.
‘Heterological’ is heterological will also be disqualified for the 
same reason, as will ‘Heterological’ is autological. No predicate
can properly be applied to or denied of itself: a predicate can only
properly be applied to a predicate one level lower, and therefore
distinct from itself. On this view, the question whether ‘heter-
ological’ is heterological or autological cannot properly be 
raised. The very question is excluded by the rule about levels, and
so the paradox does not arise. But it is highly counterintuitive to
dismiss as meaningless the statements that ‘short’ is short and that
‘monosyllabic’ is not monosyllabic. The distinction of levels when
predicates are applied to predicates seems simply gerrymandered
to avoid the present paradox.



(1b) An alternative solution is to recognize a hierarchy of
‘heterological’s and ‘autological’s. Call ‘heterological2’ a second-
level predicate which is true of first-level predicates which don’t
apply to themselves. ‘Heterological3’ is true only of first- and
second-level predicates, and is itself a third-level predicate. And
so on. This hierarchy differs from that in (1a) in allowing predicates
– except these ‘heterological’s (and the correlative ‘autological’s) –
to apply to themselves. The exception means that there will be no
‘heterologicali’ which applies to all levels including level i. So once
again paradox is avoided. But it is more simply avoided by having
a single typeless adjective ‘heterological’ which is undefined for
itself as subject. Which leads us to (2).

(2) A better resolution parallels one suggested for The Liar
(proposal 3), but without the restriction to tokens: ‘heterological’
is heterological is neither true nor false, since it is not a statement
with any genuine content. When we consider whether it is true
that ‘monosyllabic’ is monosyllabic, we look at the number 
of syllables in the expression and see that it isn’t. But we cannot
tell from the expressions ‘heterological’, ‘autological’ whether 
or not they apply to themselves. In order to know whether ‘is
heterological’ is heterological we need to know whether it applies
to itself, that is, we need to know the answer to our question 
before we can answer it! (Compare analogous diagnoses of the
paradoxes of Validity, Berry, Richard, Russell, The Liar and
Curry.) But we can still say that ‘short’ is autological because ‘short’
is short, and that ‘monosyllabic’ is heterological because it is not
monosyllabic.

(3) Yet another solution appeals to dialetheism, according to
which we can accept the contradiction that ‘heterological’ is both
heterological and autological. But we disregard that possibility
here, as we do below in the discussion of The Liar (q.v. for an
explanation of dialetheism).

The paradox originated in an article in German by K. 
Grelling and L. Nelson, ‘Remarks on the paradoxes of Russell 
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and Burali–Forti’ (1908). A variant appeared in Russell’s Principles
of Mathematics (1903).

Further Reading 

Robert L. Martin, ‘On Grelling’s paradox’, Philosophical Review,
1968, vol. 77.
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Hilbert’s Hotel 

A hotel with infinitely many rooms, every one of them occupied,
can accommodate a new guest if everyone moves along a room.
So despite being fully occupied, the hotel will always be able to
give a room to a new guest.

This is an example which the mathematician David Hilbert (1862–
1943) used in his lectures. Read Galileo’s Paradox first.

Once you see that there are no more positive integers than
there are squares of positive integers it should come as no great
surprise that the set of all the positive integers is no more numerous
than the positive integers greater than 1. 

1, 2, 3, 4, 5, 6 . . .

↕ ↕ ↕ ↕ ↕ ↕

2, 3, 4, 5, 6, 7 . . .

Each of the infinitely many guests can move to the room with
the next higher number, and room 1 is left vacant for the new
guest. None of the previous guests is without a room.

See also The Tristram Shandy, Cantor’s Paradox.

Further Reading

A. W. Moore, The Infinite, 2nd edn, London and New York,
Routledge, 2001, chapter 1.
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The Indy Paradox

You (Indy) get 500 euros if you intend to take an exam – you
are not required to take that exam to get the money. You hate
exams and will avoid them if possible, but you need money. You
know that if you form the intention to take an exam you will
get the money and have no reason to go on to take the exam.
If you know you won’t take the exam, however, you can scarcely
form the intention to do so. 

But now suppose that there are five possible exams, one
each afternoon of the week, and for any exam you take before
Friday you earn the chance to get more money for intending 
to take the next one. So there is the potential of making quite
a lot of money. You can’t intend to take Friday’s exam, because
you know that once you had got the money you would have
nothing to gain from subjecting yourself to the hateful
experience. But, knowing you won’t intend to take Friday’s, 
you will see no point in taking Thursday’s, so you can’t intend
to take that one either. You continue the backwards induction
to eliminate each of the possible intentions right back to
Monday’s. 

Yet with the chance of making the money, surely you would
go ahead and fulfil intentions to take at least some of the
exams. 

This puzzle, due to Roy Sorensen, has a similar structure to The
Unexpected Examination, but it is about intention rather than
justified belief. It is developed from The Toxin Paradox. (Sorensen
does not explain his choice of the name ‘Indy’.)

Here is one way you might proceed quite rationally. You realize
you can make some money and that you can continue to do so. So



you go ahead on Monday, but postpone the decision when to stop.
You know you will stop on Friday morning, since you cannot
rationally form the intention to take the last exam, and that you
may well give up before then if you cannot stop yourself rehears-
ing the backward induction. But on the preceding days there 
was a reason for taking an exam, namely that you could continue
the sequence and continue to make money. As Friday approaches,
you will have made some money, and, if you make the decision to
stop one morning after you have just been given the money, when
you can no longer refrain from making the backward induction,
you will avoid taking an unnecessary exam.

See The Toxin Paradox for Gauthier’s resolution, in which you
adopt a policy which enables you to form intentions to take all the
exams, do so, and maximize your financial return.

The problem about intention here is no mere academic puzzle,
since it also arises in the dramatic real-world scenario of The
Paradox of Deterrence.

See also The Unexpected Examination.

Further Reading 

Roy Sorensen, Blindspots, Oxford, Clarendon Press, 1988, 
chapter 7.
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The Paradox of Inference

Given the inference

(A) Things that are equal to the same are equal to
each other

(B) The two sides of this triangle are equal to the
same

So (Z) The two sides of this triangle are equal to each 
other

we are not obliged to accept Z on the basis of A and B unless
we first grant that (C) if A and B are true Z must be true. But
then we are not obliged to accept Z on the basis of A, B, and C
until we first grant that (D) if A and B and C are true, Z must
be true. And so on ad infinitum. 

But then we never get to the point when we are obliged to
accept the conclusion of a valid inference whose premisses 
we accept.

A deductive inference is valid just when the conclusion follows
logically from its premisses; and the conclusion follows just when
there is no possible situation in which the premisses are true but
the conclusion is not. So, on the face of it, accepting A and B
logically commits me to Z. Why, then, must I accept Z if I accept
A and B? Lewis Carroll argued that, even though I accept A and
B, I am not obliged to accept Z without first granting

(C) If A and B are true then Z must be true.

But what obliges me then to accept Z? I am not obliged to do so
until I have granted 

(D) If A, B and C are true then Z must be true.



But then I am not obliged to grant Z until I have granted

(E) If A and B and C and D are true then Z must be true.

And so on ad infinitum. But this means we are never going to be
obliged to accept the validity of any inference.

Adding ‘If P and Q are true then R must be true’ as a premiss
to an inference of the form 

P, Q; therefore R

always gives you a valid inference: P, Q, (necessarily) if P and Q
then R; therefore R. But that does not mean the original inference
was valid. Take the invalid argument

All voters are taxpayers
Lord Macdonald is a taxpayer
Therefore, Lord Macdonald is a voter.

We certainly form a valid inference if we add the further premiss
‘If all voters are taxpayers and Lord Macdonald is a taxpayer then
Lord Macdonald must be a voter’. But that doesn’t show the original
inference was valid – in this case the original inference is plainly
invalid. It would only do so if the added premiss were true, and that
would only be the case if it were redundant because R already
followed from P and Q. 

Conclusions follow from premisses in virtue of rules of
inference, transformations which take us from sentence(s) to sen-
tence; without such rules we cannot advance from the premisses
to a conclusion. Piling up premisses takes us nowhere. If the
inference is a simple one, as in this case, C itself encapsulates a rule
of inference that licences the move from premisses to conclusion.
In deriving a conclusion from premisses you apply rules of
inference, even if only tacitly. Even if you explicitly appeal to a
conditional like C to justify your inference, you do not need to add
it as an extra premiss in order to make use of it, and, as we have
seen, doing so provides no justification.
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The Paradox of Inference



To suppose that logically valid arguments need the addition of
conditionals like C to their premisses before one who accepts the
original premisses is logically obliged to accept the conclusion is
to treat all logically valid arguments as if they were enthymemes,
incomplete arguments with suppressed premisses, like ‘Socrates is
a man; so Socrates is mortal’. By adding the assumed premiss ‘All
men are mortal’ you turn it into a complete valid argument, and
anyone who accepts that Socrates is a man is obliged to accept that
he is mortal, given acceptance of the added premiss. Of course it
is not usually necessary to do this, because premisses are normally
suppressed only when they are taken for granted as known truths.
Nevertheless, it is a proper response to someone who accepts the
premisses of an enthymeme but not its conclusion. But, once we
have the completed logically valid inference, there is nothing to
be gained by adding as a further premiss, ‘If Socrates is a man and
all men are mortal then Socrates must be mortal’.

The paradox appeared in a little article by Lewis Carroll (C. L.
Dodgson) called ‘What the tortoise said to Achilles’ in Mind, 1895.

Further Reading

C. L. Dodgson, Lewis Carroll’s Symbolic Logic, ed. W. W. Bartley III,
New York, Clarkson Potter, 1977, reprints the article referred
to above. Carroll’s letter to the editor, reproduced in facsimile
in the volume (pp. 471–74), throws some light on it.

Timothy Smiley, ‘A tale of two tortoises’, Mind, 1995, vol. 104.
Barry Stroud, ‘Inference, belief, and understanding’, Mind, 1979,

vol. 88.
J. F. Thomson, ‘What Achilles should have said to the tortoise’,

Ratio, 1960, vol. 3.
For a different approach see David Miller, Out of Error: Further

Essays on Critical Rationalism, Aldershot, Ashgate, 2006,
chapter 3.
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The Paradox of Interesting Numbers

17 is an interesting number because it is the only prime which
is the sum of four consecutive primes: 17=2+3+5+7. It seems
unlikely, however, that every natural number is interesting.

But every natural number must be interesting, for if 
this were not so there would be a first uninteresting number.
And being the first uninteresting number would make it
interesting.

When the distinguished number theorist G.H. Hardy was visiting
the dying Ramanujan, he told him that his taxi had the apparently
boring number 1,729. Ramanujan replied: ‘No, Hardy! No, Hardy!
It is a very interesting number. It is the smallest number expressible
as a sum of two cubes in two different ways.’ 1,729 = 13 + 123 =103

+ 93. 
‘Interesting’ is a relative term. In the present context does it

mean interesting to ordinary educated people, to mathematicians,
to contemporary mathematicians, or to whom? We shall assume,
for the purposes of the present discussion, that one of these is
chosen and is kept constant. The argument can be reiterated for
most comparison groups. There is no sharp division between the
interesting and the uninteresting, but we shall ignore that here.

If there are any uninteresting numbers there must be a first, and
that it was the first uninteresting number would make it interesting.
Hence the conclusion that every number is interesting.

However, suppose there are uninteresting numbers. In order to
characterize the first of these as interesting, we must first
characterize it as ground-level uninteresting, uninteresting because



it has no remarkable numerical property. Then it is interesting
because it is the first ground-level uninteresting number: call it
2nd-level interesting. 

The next uninteresting number will be the first number that is
not 2nd-level interesting, and thus 3rd-level intersting. And so on.
The 34th of the original ground-level uninteresting numbers will
be 35th-level interesting. The 900th ground-level uninteresting
number, if there is one, will be 901st-level interesting. None of
these seems very interesting. Indeed, being the first nth level
uninteresting number doesn’t seem to be an interesting property
for any n greater than 1. 

And if that is so, we are not forced to the conclusion that 
every number is interesting. The only interesting numbers will be
those that have notable numerical properties (the ground-level
interesting) and the first of those that doesn’t – if it exists, as it
probably does. The first number that Le Lionnais can find with no
remarkable numerical property is 39. Thus, if he’s right, we can
include 39 among the interesting numbers along with all the
ground-level ones. Any others will be uninteresting.

Further reading

G. H. Hardy,  A Mathematician's Apology, Cambridge, Cambridge
University Press, 1969. See the foreword by C. P. Snow added
in this edition.

François Le Lionnais, Les Nombres Remarquables, Paris, Herman,
1983.

Roy Sorensen, A Brief History of the Paradox, Oxford, Oxford
University Press, 2003, pp. 362–63. 
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The Paradox of Jurisdiction

Denise shoots Paul in February 2001 in Texas. The wounded
Paul goes home to New Hampshire, where he dies of his wounds
six months later, in August. Paul is not killed in February in
Texas since he is not dead by then. Nor is he killed in August in
New Hampshire. There doesn’t seem to be any other time or
place to locate the killing. 

But mustn’t he have been killed somewhere and at some
time?

Paul was not killed in February in Texas; otherwise he would 
have been killed six months before he died. But wasn’t the shooting
a killing because it caused the death six months later? No, in
February he was fatally wounded, but not yet dead. The shooting
only became a killing six months later. Similarly he was not 
killed in Texas, since he did not die there. If you’re not dead 
you haven’t (yet) been killed, though you may have been fatally
injured.

But neither was he killed in August, when the shooting became
a killing, for Denise had done nothing further to cause his death
since February. And if Paul was not killed in August, he was not
killed in New Hampshire. Denise was never anywhere near New
Hampshire anyway.

But mustn’t Paul have been killed somewhere and at some
time? And if not in Texas or New Hampshire, it doesn’t seem he
could have been killed anywhere. And if he was killed neither in
February nor in August, then it doesn’t seem there was any time
at which he was killed either. 

But we can certainly say he was killed in 2001 in the US.
Perhaps to go on to ask ‘But when exactly in 2001, and where



exactly in the US?’ is in the circumstances to ask a bogus question.
The facts are simply that Denise fired in February and as a result
the wounded Paul died six months later in another state. There is
no further fact about precisely when he was killed, and so it is a
mistake to look for one.

This type of case is significant for law – hence the name given
here to the paradox. If Denise murdered Paul, then under what
legal jurisdiction is she liable? The answer can make a difference
to the precise law to be applied and her penal liability. For example,
Texas has the death penalty but New Hampshire doesn’t. So courts
have to decide where and when liability is incurred.

The courts vary in the answers they give in different cases. In
an English criminal case in 1971 the court had to decide when and
where liability for demanding money with menaces was incurred,
at the posting of the letter or at its receipt. It settled on the time
and place of the posting. On the other hand, in a 1952 case the
court held that the defendant was liable for a libellous broadcast
where it was heard rather than where it was transmitted. And in
an English libel case in the early nineteenth century the court
decided that liability for a criminal libel arose both where it was
written and where it was published. (These examples are given 
by Alan White at the end of the paper cited below, where full
references for the cases will be found.) If the quietist proposal above
is right, then, although the judges are required to determine how
the law is to be applied, they should not do so by asking precisely
when and where the demand for money really took place, as if this
were a further fact they needed to discover. The facts are already
fully known. What they have to decide is when and where liability
is incurred.

Further Reading

Donald Davidson, Essays on Actions and Events, 2nd edn, Oxford,
Clarendon Press, 2001.
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Ruth Weintraub, ‘The time of a killing’, Analysis, 2003, vol. 63.
Alan R. White, ‘Shooting, killing and fatally wounding’,

Proceedings of the Aristotelian Society, 1979–80, vol. 80.
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The Paradox of Knowability

There are truths that no one will ever know, even though they
are knowable in principle. If p is such a truth, it will be
impossible to know that p is a truth that will never be known,
for otherwise it would be possible that p should be both known
and not known.

This is a paradox only for those – so-called verificationists or anti-
realists – who believe that any truth is knowable in principle. Such
a view is supported by the consideration that the meanings of our
words are determined by the way we use them, so that we must be
able to recognize when they are correctly applied, and in particular
must have the capacity to recognize when our statements are true.

Of course many truths are inaccessible to us for physical or
practical reasons. We will probably never know the exact number
of human births during the present century, for example, but this
is not something that is unknowable in principle. Suppose p is the
relevant truth as to the exact number of twenty-first-century births
in the world, and that no one will ever know the exact number.
Then it is impossible for anyone to know that p is a truth that will
never be known. For in order to know what is expressed by the
italicized phrase you would have both to know and not to know
p. But then the italicized phrase expresses a truth that cannot be
known, contrary to the thesis that any truth is knowable. 

Perhaps the essence of the knowability thesis can be retained
by restricting it to exclude contradictory cases. You could never
know that p was a truth that would never be known, but this does
not mean that p itself is unknowable.

The paradox is due to the logician Frederick Fitch (1963), but
was actually discovered by Alonzo Church.



Further Reading

*Michael Dummett, ‘Victor’s error’, Analysis, 2001, vol. 61.
Roy Sorensen, Blindspots, Oxford, Clarendon Press, 1988, 

pp. 121–30.
*Neil Tennant, ‘Victor vanquished’, Analysis, 2002, vol. 62.
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The Knower

(K) I know this assertion, K, is false.

If K is true it is false, because I know it; so it’s false. But since
I know that, I know it’s false, which means it is true. So it is both
true and false.

I cannot know that Jane is not married unless it is true that she is
not married. And I cannot but know that, if I know Jane is not
married, then she is not married. Anyone who understands what
knowing is knows that what is known is true.

We show that K cannot express a statement, true or false.
Suppose that it does. Then I know K can’t be true, because if it
were then I would know a falsehood. So, if K had a truth-value,
and I knew that it did, I would know that K was false, i.e. that not-
K. But I know that not-K is what K says, and so it would be true
as well. But a statement can’t be both true and false (unless
dialetheism is correct – see The Liar for an explanation of this
term). So K does not express any statement, true or false, and fails
to say anything. 

Notice that, in order to know whether K is true or not, I need
to know whether K is true or not. Its truth value is ungrounded, as
in the case of various liar sentences.

The paradox of the Knower was distilled from The Unexpected
Examination and given its name by Montague and Kaplan in 1960.

A closely related paradoxical sentence is

(B) I believe that not-B. 

In fact, on the view of most, though certainly not all, philosophers
who write about knowledge, B is entailed by K, since they hold that
what is known is believed. 



B is simply a special case of Moore’s Paradox (‘p but I don’t
believe it’, etc.), and can be handled as such. On the Wittgensteinian
construal of Moore’s paradox, for example, to say B would equally
be to say not-B. On the alternative view canvassed in the entry 
on Moore’s paradox, you couldn’t think B sincerely without the
thought undermining itself, and you couldn’t expect to com-
municate anything by the assertion of B since at the same time you
would imply that you were insincere.

See also The Liar, The Paradox of Omniscience.

Further Reading 

Tyler Burge, ‘Buridan and epistemic paradox’, Philosophical
Studies, 1978, vol. 34. As Burge notes, Buridan’s thirteenth
sophism has some similarity to the belief paradox (Jean
Buridan, Sophismata, fourteenth century (undated), translation
in John Buridan on Self-Reference, ed. and trans. G. E. Hughes,
Cambridge, Cambridge University Press, 1982). In this version
B is a proposition written on a wall which Socrates reads and
doubts: ‘Socrates knows that he doubts the proposition written
on the wall’. Replace ‘doubts’ by ‘doesn’t believe’, and you have
the belief paradox.

Tyler Burge, ‘Epistemic paradox’, Journal of Philosophy, 1984, vol.
81, for an alternative approach.

Richard Montague and David Kaplan, ‘A paradox regained’, Notre
Dame Journal of Formal Logic, 1960, vol. 1. Reprinted in
Formal Philosophy, ed. Richmond Thomason, New Haven, Yale
University Press, 1974.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, pp. 115–20.

Roy Sorensen, ‘Epistemic paradoxes’, The Stanford Encyclopedia
of Philosophy (Spring 2012 edition), ed. Edward N. Zalta,
http://plato.stanford.edu/archives/spr2012/entries/epistemic-
paradoxes/.
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The Lawyer (Euathlus)

Protagoras agreed to teach Euathlus law for a fee which was
payable when the pupil won his first case. After the course
Euathlus did not take part in any lawsuits, and the impatient
Protagoras sued for his fee. He reasoned that, if he won,
Euathlus would be obliged by the court to pay his fee; if he lost,
Euathlus would have won a case and so be contractually bound
to pay. Euathlus reasoned that if Protagoras won he would not
be bound to pay, for he did not have to pay until he won a case;
if Protagoras lost, the court would have decided he need not
pay. Who is right?

The court should not find for Protagoras. If they did find for
Protagoras they would perpetrate an injustice, since Euathlus 
has yet to win a case (and would still be in that position after 
that decision). Of course, if they find in favour of Euathlus, as they
should, Euathlus is now contractually bound to pay, since he has
just won a case, and, if he doesn’t pay up, Protagoras can then
bring another suit against him, a suit which must surely succeed.
On this point Protagoras was right. This was the solution urged by
G. W. Leibniz (1646–1716) – to a close variant – in his doctoral
dissertation. He concluded the example was not worthy of being
counted among the paradoxes, presumably since the question was
too easy to answer.

Alternatively, the court may reason that if it decides to find for
Euathlus he will win and be contractually bound to pay the fee,
and so they should decide for Protagoras, but then he won’t be
contractually bound to pay and so they should decide for the pupil,
and so on ad infinitum. In such an unstable state they should
refrain from making any decision. (Their position would be like that



of the pupils in the original Unexpected Examination case.) If the
law allowed them to find for neither party, then Euathlus has still
to win a case and is not contractually bound. In modern Anglo-
American law the court would have to find for the defendant, given
that it cannot find that the claimant has established his case on the
balance of probabilities.

The paradox was first reported by Aulus Gellius (c. 150), and
repeated by Diogenes Laertius (c. 200–50).

It has been said that the paradox has the same structure as The
Bridge, but the latter is much simpler and cannot be treated in the
same way. 

No one knows whether the Euathlus case was anything but
fictional. But, the pattern of argument and mirroring counter-
argument has actually arisen in a legal case in modern times: the
Euathlus story was cited in an American case of 1946 (State v.
Jones, 80 Ohio App. 269), in which the defendant was charged
with performing illegal abortions. For one of the abortions the 
only evidence was that of the woman on whom it was allegedly
performed. Under Ohio law of the time, if Jones had given her 
an abortion she would have been a criminal accomplice, and the
unsupported testimony of accomplices was insufficient for a con-
viction. The prosecution could, it seemed, argue that Jones must
be guilty of this abortion, since, if he were not, the woman would
not be an accomplice and her evidence would therefore be enough
to convict him. But the defendant could argue that he couldn’t be
proved guilty, because, if he were, the woman would have been an
accomplice and her evidence would not suffice to convict him. 

On the face of it the defendant would be right: he is either
unprovably guilty or he is innocent – any finding of guilt must
undermine the basis for the conviction. Nevertheless, Jones was
found guilty of performing the abortion in question. In such cases
it was generally held that, because of the presumption of innocence
– you are innocent until proved guilty – the witness was presumed
not to be an accomplice. This led to the remarkable situation that
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the testimony was admissible and could lead to a conviction,
notwithstanding the fact that the conviction undermined the
probative value of the testimony.

Further Reading 

Peter Suber, The Paradox of Self-Amendment, Section 20, B, at
http://www.earlham.edu/~peters/writing/psa/sec20.htm for the
Ohio case.
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The Liar 
(Epimenides’ Paradox)

If I say that I am lying, am I telling the truth? If I am, I am lying
and so uttering a falsehood; but if I am not telling the truth I
am lying, and so I am telling the truth.

So my utterance is both true and false.

Some Different Forms of the Liar

Simple Liar

The example above is the simplest form of the paradox. To say I
am lying is in part to say that I am making a false statement. This
gives no problem if the statement I am referring to is some other
statement, as it could be (‘I wasn’t unfaithful. No, I have to admit
it. I am lying’). But a problem arises if it is used self-referentially.
The trouble is that the self-referential use gives rise to the
contradiction that my statement is both true and false, since if it
is true it is false and if it is false it is true.

Strengthened Liar

‘This statement is not true’. Here the self-referential use gives rise
to the contradiction that the statement is both true and not true.
There is no need to assume the principle of bivalence, that every
statement is true or false, in order to derive the contradiction,
whereas we do seem to need to assume bivalence to derive a
contradiction from the simple liar. 



The Truth-Teller

‘This statement is true’, taken self-referentially. Although no
contradiction arises in this case, the statement is like an idle cog.
If true it is true, if false it is false, but there is nothing that could
make it either true or false.

A Liar Cycle

Socrates: (S) ‘What Plato is saying is false.’
Plato: (P) ‘What Socrates is saying is true.’

If Socrates is referring to Plato’s utterance P, and Plato to
Socrates’ utterance S, then S is true if and only if it is false. And
so is P. Taken in this way, although neither utterance refers 
directly to itself, both are indirectly self-referential: each refers to
itself implicitly via the other. This is Buridan’s ninth sophism. (For
reference see Further Reading for The Bridge.)

Errors

(S) This sentence, S, has two things wrong it with. [sic]

S has its last two words in the wrong order. If there is nothing else
wrong with S, S is false, in which case it does have something 
else wrong with it, its falsity. But then if it is false, it does have
exactly two things wrong with it, and so must be true.

See also Curry’s Paradox.

Some Proposed Solutions 

Many approaches have been developed, some in great formal
detail. Just three will be mentioned here.

(1) There is a simple and striking way out, developed recently
and christened ‘dialetheism’, which is capable of embracing a
whole range of paradoxes which issue in contradictions. These
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paradoxes are dissolved by allowing contradictions to be both true
and false, and holding that it is rational to accept them. This seems
more paradoxical than the cases it purports to deal with, and to 
do violence to our notions of truth and falsehood. Dialetheism 
has been defended with great ingenuity, though unsurprisingly 
it has yet to win over many logicians. (See Further Reading below.)
In what follows we shall take it for granted that truth and falsity
are mutually exclusive.

(2) One major approach derives from Tarski’s definition of 
truth for formalized languages. Tarski did not think it could be
applied to natural languages, which he thought were inherently
contradictory. It is difficult, however, to accept that it is improper
to talk about truth and falsity in languages like English, and others
have thought Tarski’s approach could be adopted for natural
languages.

The central idea is of a hierarchy of levels. At the bottom level
there are no sentences containing the predicate ‘true’ or related
terms. At level 1 ‘true’ can be applied to sentences of level 0, but
not to sentences of the same level, 1. At each successive level there
is a distinct truth predicate which can be applied only to sentences
at a lower level. ‘Paris is the capital of France’ is true1, ‘ “Paris is
the capital of France” is true1’ is true2 (and true3) and so on. Thus
no sentence can be used to refer to itself, cycles like the Plato/
Socrates example above are impossible, and in Yablo’s Paradox the
derivation of a contradiction fails to go through.

On this approach, far from being univocal, our predicates
‘true’ and ‘false’ are taken to be indefinitely many distinct
predicates. A further problem arises from predicating truth of
sentences themselves without taking account of contingent
features of their context of use. ‘This sentence is true’ is para-
doxical only if the reference of ‘this sentence’ is the sentence itself;
if it is used to refer to some other sentence, say ‘Paris is the capital
of France’, as it could be, it can express a true or false statement
without paradox. 
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Even if modifications of the position could circumvent this,
there are other objections. The hierarchy has no place for a sentence
like ‘Every statement is true or false’, which would be an improper
attempt to say what can only be said with infinitely many different
sentences, one for each level. A sentence like ‘Everything Moore
said was true’ must implicitly use a truth predicate one level higher
than the highest level of truth predicate Moore himself implicitly
used, though we have no idea what that level might be.

For a brief account of an alternative, hierarchical approach
due to Saul Kripke, which seeks to avoid these objections, see
Haack, cited below.

(3) We have seen that there are cases where the same sentence
is used on one occasion to make an unproblematically true or false
statement, but on another its use is liar-paradoxical. This suggests
a need to distinguish these different occasions of use by talking of
token sentences. For a simple example, consider:

(L1) L1 expresses a false statement.
(L2) L1 expresses a false statement.

L1 and L2 are two different tokens of the same (type-)sentence,
but whereas L1 is used self-referentially L2 is not. We have good
reason to deny that L1 succeeds in making any statement at all,
true or false, since there is nothing which could make it true,
nothing to make it false. But L2 is not a self-referential token and
can safely be said itself to express the false statement that the other
token makes a false statement. Similarly 

(L3) L2 expresses a false statement

expresses a truth. But what about the ‘Strengthened’ Liar? Take

(L4) L4 does not express a true statement.

If we deny that L4 expresses any statement true or false, isn’t
what it says true? If so, paradox has returned. But since L4 is
viciously self-referential, it too fails to express any statement. You
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can’t say you are talking nonsense by talking nonsense, since to
talk nonsense is not to say anything. But having talked nonsense,
you can go on to say that it was nonsense, and now you are talking
sense. So

(L5) L4 does not express a true statement

expresses a truth.
The truth-teller and Curry sentences, taken self-referentially,

will also be indicted as failing to express genuine statements.
This approach has the simplicity of dialetheism but does not

require you to accept that there are true contradictions. It avoids
the complexity of different levels of language and does not exclude
sentences which ought to be admissible. It enables us to avoid
paradox by indicting certain token sentences, although, if it is to
be fully satisfying, we need to be able to explain why the sentences
fail to express any statement. The key perhaps lies in their un-
grounded nature: if they expressed statements, then whether they
expressed true statements would depend solely on whether they
expressed true statements. So you could determine their truth value
only by first determining their truth value.

There are some apparently recalcitrant cases, but it is arguable
that they can be handled by this approach. Consider

No use of this very sentence expresses a true statement.

If the sentence above could only be used self-referentially, it
would be paradoxical, but it does have uses which are not self-
referential. The reference of ‘this very sentence’ may be some other
sentence we are discussing, and this is not precluded by using the
intensifier ‘very’. Consequently, if the sentence is used self-
referentially, it expresses a falsehood, since it has non-referential
uses which are true. 

But what if a liar sentence has only a self-referential use? 
Different token sentences of the same type are sentences which

are made up of the same string of words. They are all equiform to
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one another. Suppose that the following token is equiform to the
only sentence on the blackboard.

No sentence equiform to the sentence on the blackboard
expresses a true statement.

Now, as things stand, tokens of this form, including this one,
can be used to refer to other blackboards. However, we could make
the phrase ‘the sentence on the blackboard’ uniquely identifying
in our world by expanding it to include a unique identification of
the blackboard’s location and a time at which it bears the sentence.
To avoid complicating the sentence, however, suppose that we live
in a world in which blackboards have become such obsolete items
that there is only one left in the world, preserved in a museum.
Label the token on it B. It can be shown that all sentences equiform
to B yield contradictions and need to be dismissed as failing to
express statements. 

However, this does not mean that we cannot say that the
equiform sentences do not express truths, that we must accept the
situation as undescribable. Far from it. After all, have we not just
described it? For example, a token of the form ‘No sentence equi-
form to the sentence on the blackboard expresses a statement’ 
will express a true statement, since the omission of the word ‘true’
means that it is not itself equiform to B. We can also say, without
paradox, ‘The sentence on the blackboard does not express a true
statement, nor do any sentences equiform to it’, since that is not
equiform to B. It is no good protesting that this non-equiform
sentence expresses the same statement as the equiform ones, since
they express no statement at all.

To illustrate the failure of the equiform tokens to express
statements with an analogy, imagine that a number of people make
sealed offers to buy a house and that the envelopes containing the
bids are to be opened one after another. They all vainly attempt 
to outbid each other: each offer reads, ‘I bid £10,000 more than the
first offer to be unsealed’. Of course, no one has succeeded in
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making an offer. For the first envelope to be unsealed will contain
a bid which in effect purports to bid £10,000 more than itself,
which is no bid at all. The bids in the other envelopes seek to outbid
that one by £10,000, but cannot outbid it unless it contains a
genuine bid.

But there may be other cases which are not amenable to this
treatment, and some have argued that it forces unpalatable
revisions to classical logic.

Forms of the liar were discussed in ancient and medieval times. The
importance accorded to the paradox in modern times is attested by
the vast literature that has been produced in the wake of it during
the past hundred years. It must be addressed if semantic notions
like truth and implication are to be fully elucidated, just as Russell’s
Paradox had to be addressed in providing set-theoretic foundations
for mathematics. Indeed, given the affinity between the liar and
paradoxes like Russell’s, treatments of them may be mutually
illuminating.

In addition, it is related to Gödel’s proof of his celebrated
incompleteness theorem, which in effect showed that (‘omega-’)
consistent formal systems of logic (systems where it is decidable
whether a formula is a postulate) adequate for Peano arithmetic
cannot capture all arithmetic truths. He showed how to construct
a formula which expresses an arithmetic thesis but which can be
interpreted as in effect saying of itself that it is not provable (‘I am
unprovable’). It cannot be false, for then an arithmetic falsehood
would be provable in the system, which would thereby be incon-
sistent: so it is a truth unprovable in the system. Whereas ‘This
sentence is false’ is paradoxical if uttered self-referentially, Gödel’s
formula, interpreted as the self-referential ‘This sentence is not
provable’, avoids paradox, since it is true.
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Further Reading

J. C. Beall, ed., Revenge of the Liar, Oxford, Oxford University Press,
2008. 

Hartry Field, Saving Truth from Paradox, Oxford, Oxford University
Press, 2008. 

Haim Gaifman, ‘Pointers to truth’, Journal of Philosophy, 1992,
vol. 89.

Patrick Grim, The Incomplete Universe, Cambridge, Mass., and
London, MIT Press, 1991, chapter 1. Pages 25–28 contain a
critique of dialetheism.

Susan Haack, Philosophy of Logics, Cambridge, Cambridge
University Press, 1978, chapter 8.

Graham Priest, In Contradiction, 2nd edn, Oxford, Oxford
University Press, 2006.

Stephen Read, Thinking about Logic, Oxford, Oxford University
Press, 1995, chapter 6.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, chapters 6 and 7. Chapter 7 is a good
brief discussion of dialetheism (more sympathetic than 
Grim’s).

Alan Weir, ‘Token relativism and the liar’, Analysis, 2000, vol. 60.
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The Lottery

Suppose there will be only one winning ticket in a fair lottery
with a million tickets. If you have just one ticket, say number
1,092, it is reasonable to believe that it won’t win. But the same
will be true of every other ticket, although you know that one
of the tickets will win. Then, taken together, your set of beliefs
will be inconsistent.

Although I believe of each ticket that it won’t win, I will not accept
the conjunction of all of those beliefs, nor indeed conjunctions
that include most of them. I won’t believe, for example, that the
winning ticket will not be among the first 900,000 tickets. But 
even if we accept that rationality does not require us to believe all
the logical consequences of our beliefs, we are still left with an
inconsistent set of beliefs. 

Suppose then that I believe of each ticket that it will lose, 
but that I believe that the conjunction of all those beliefs is false,
since I believe that among the tickets one of them will be drawn
as the winner. One of those beliefs must be false: given that 
one of the million will be the winning ticket, there is a false belief
among those of the form Ticket n will not win. However, the other
999,999 beliefs of that form will be true. Since I also believe there
will be a winning ticket, a million out of my million and one beliefs
will be true, which is a high ratio: isn’t the single false belief a low
price to pay for all the true ones? The reasons we give elsewhere
for accepting an inconsistent set of statements in the case of the
simple Preface paradox lend support to this. 

Indeed the lottery paradox and the paradox of the preface are
sometimes treated as mutual variants. But there are significant
differences:



(1) The statements in the body of a book are likely to be
mutually supportive, unlike the statements about each lottery
ticket.

(2) We know for certain that there is a false belief among those
of the form Ticket n will not win. (So there is no analogue for the
lottery of the strengthened preface paradox.)

(3) If people believed it was absolutely certain that any given
ticket would lose, why would they buy one? It seems that when
they learn the result of the draw, then they will come to know their
ticket has lost – except in the unlikely event of their winning. 
They didn’t know that before (so didn’t reasonably believe it either),
nor did they think they did. Perhaps they believe of each ticket
only that it is virtually (though not completely) certain that it won’t
win. 

But there are other beliefs to which we can’t attach numerical
probabilities and which we don’t feel we need to qualify as not
completely certain, though we would think the chances of their
being false were at least as high as that of the belief about an
individual ticket. Should it make such a difference that there would
be no way of quantifying those chances? For example, Brian
travelled in an aeroplane which was blown up in mid-air, and no
one has reported seeing him since. We believe, reasonably enough,
that he is dead – even though there is a recorded case of a fluke
survival of a mid-air explosion. Equally, it is surely reasonable 
to believe that my keys will be in the drawer in a few seconds’ 
time if I have just put them there. A clever trickster might extract
them from the drawer immediately without my knowledge, but
this is so unlikely in the circumstances as not to make my belief
unreasonable – I do not have to hedge it.

If we order our beliefs in terms of their strength we might be
able to get round this. We could then say that the subjective prob-
ability we should rationally attach to our belief that our ticket 
will lose is less than 1, though still as high as many of the beliefs
we would ordinarily count as knowledge. This is compatible with
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attaching zero probability to the conjunction of one million
conjuncts of the form Ticket n will not win. In consistency we
would then have to treat the preface paradox in a similar way.

We pass on to two further proposals.
(a) The mid-air explosion is causally connected to my belief

that Brian is dead, and my belief that the keys will still be in the
drawer in a few seconds’ time is causally connected to my having
put them there; and in both cases I am aware of these connections.
What causes my belief in each case also causes what I believe. The
explosion kills Brian and putting the keys in the drawer causes
them to be there during the next few seconds. But does the fact that
999,999 tickets will lose, which accounts for my belief that my
ticket will lose, cause my ticket to lose? My ticket’s losing cannot
cause my belief, and it may seem that the loss and the belief do
not have any common cause, since the statistical fact that my
chance of winning is only one in a million is causally inert. So
argues Nelkin, for example, in the paper cited below. But this is a
mistake. The fact that the lottery is set up so that only one of the
million tickets will win is a causal antecedent of the outcome.

(b) There is a currently popular account of knowledge which
extends to reasonable belief, and which offers a neat way of deal-
ing with the lottery paradox. On this view you know a proposition
if it is true in every relevant alternative possibility not eliminated
by your evidence. Whether a possibility is relevant depends on the
context. For example, among the relevant possibilities are those
you are, or ought to be, aware of. Now if I buy a lottery ticket,
knowing that just one of the million tickets will win, my ticket’s
being the winner is a possibility of which I am, or at least ought
to be, aware, and one I am in no position to rule out entirely. It is
relevantly similar to the ticket which will win. So I don’t know, and
it isn’t reasonable for me to believe, that I will lose, though of
course it is perfectly reasonable for me to believe that it is highly
probable that I will lose. But in ordinary contexts the possibility
of Brian’s surviving the mid-air explosion, and the possibility of
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the dextrous trickster immediately extracting my keys, are not
relevant, and I do not need to be able to eliminate them in order
for the beliefs in Brian’s death and the location of the keys in the
near future to be reasonable ones. However, if a sceptic raises these
possibilities then they become relevant, and those beliefs cease to
be reasonable. 

But can knowledge and reasonable belief disappear so easily?
It would be only too easy to undermine any knowledge claim or
reasonable belief by raising a sceptical possibility, just by saying
you could be a brain in a vat, for example, or that you could be
dreaming or hallucinating. 

The paradox is due to Henry E. Kyburg (1961).

Further Reading

John Hawthorne, Knowledge and Lotteries, Oxford, Clarendon
Press, 2004.

David Lewis, ‘Elusive knowledge’, Australasian Journal of
Philosophy, 1996, vol. 74. Reprinted in his Papers in Meta-
physics and Epistemology, Cambridge, Cambridge University
Press, 1999. For the relevant alternatives view.

Dana K. Nelkin, ‘The lottery paradox, knowledge, and rationality’,
Philosophical Review, 2000, vol. 109.

Roy Sorensen, ‘Epistemic paradoxes’, The Stanford Encyclopedia
of Philosophy (Spring 2012 edition), ed. Edward N. Zalta,
http://plato.stanford.edu/archives/spr2012/entries/epistemic-
paradoxes/.

129

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Lottery



130

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Lycan’s Paradox

The probability of (M) ‘Most generalizations are false’, given M
itself, and the fact that it is a generalization, is less than a half.
But the probability of any contingent statement given itself is
1. So 1 is less than a half.

The idea behind this paradox depends on the claim that the
probability of a generalization, given that most generalizations
are false, is less than a half. It doesn’t matter whether M is true or
not: the question is what the probability of a generalization is 
on condition that it is true. The paradox is framed in terms of con-
tingent statements since necessary statements have the probability
1, because they have to be true.

If we take the generalization ‘All machines in motion dissipate
energy’, we have good reason to assign a higher probability than
a half to it. Even given that most generalizations are false, we 
have good reason to think that this is one of the minority which
are true. But the paradox is stated in such a way that any outside
knowledge is precluded from the assessment. We are to give the
probability of M simply given M. However, M is not simply a
generalization, it is the generalization that most generalizations are
false. So, given that it is true, it must be among the true minority.
We therefore have no reason for assigning a probability of less
than a half, and the paradox is dissolved.

William G. Lycan presents the paradox in his short paper ‘Most
generalizations are false’, in Pacific Philosophical Quarterly, 1984,
vol. 65.
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The Paradox of the Many 

Tibbles the cat is sitting on the mat. Tibbles minus any one 
of 1,000 hairs is also a cat. If any one of those hairs had been
missing we should still have had a cat there on the mat. So it
seems we have 1,001 different cats on the mat, for Tibbles has
precisely the hairs he does at the time, and so cannot be
identical with any of the cats with only 999 hairs. 

His hairs are part of what composes Tibbles. But if we say that
Tibbles is made up, in part, of 1,000 hairs, it seems we also have
to admit that there are 1,000 other cats, each made up in part of
999 of the hairs but without one of them. So we have a superfluity
of cats. 

At the time, however, only one of these is Tibbles, since Tibbles
still has all 1,000 of the hairs intact. And all we need to do is to
recognize that the other 999 are merely parts of Tibbles, parts of a
cat. The fact that Tibbles doesn’t lose his identity if he loses one of
the hairs doesn’t mean that the 1,000 hairs are not part of him
now. There is only one cat on the mat. Tibbles minus one of the
hairs would constitute a cat if that hair had already fallen out, but
it hasn’t. And it may fall out in future, in which case the con-
stitution of Tibbles would have changed a little. But then the
constitution of animals and people is constantly changing.

Suppose, however, that Tibbles has moulted and there is a hair
hanging loosely off him. It is indeterminate whether the hair is
part of Tibbles. If Tibbles is to be counted as a vague object because
he has an indeterminate boundary, then we still have just one cat.
But many philosophers regard vagueness as wholly linguistic: 
the world is completely determinate and vagueness, they claim, is
solely a feature of our language. Then we may have a number of



distinct but overlapping collections of molecules, none of which
is determinately named by ‘Tibbles’. In that case we are still not
forced to conclude that Tibbles is many. True we have many distinct
overlapping collections of molecules, but we need not admit that
there are many cats on the mat. Suppose for simplicity that there
are only two cat-like collections of molecules on the mat, which
differ only in that one includes the hanging hair. It is indeterminate
which of these is Tibbles, but you could not properly say that if
there were two Tibbles on the mat.

The puzzle about Tibbles is related to the ancient problem
posed by the stoic philosopher Chrysippus (c. 280–c. 207 BC). Theon
consists of Dion, except for Dion’s left foot. If Dion’s left foot is
amputated, how many men do we have? Two? Dion can survive
the amputation and Theon has been unaffected. Has Theon been
turned from part of a man into a whole man, identical but distinct
from Dion? We can avoid positing two men at the same place by
recognizing that ‘Theon’ was never the name of a man, but of a
physical part of a man, which, together with the left foot, made up
the body of Dion. After the amputation Dion’s body is made up
entirely of the part that was dubbed ‘Theon’.

For more puzzles about identity see Heraclitus’ Paradox and
The Ship of Theseus.

Further Reading

Michael B. Burke, ‘Dion, Theon, and the many-thinkers problem’,
Analysis, 2004, vol. 64.

David Lewis, ‘Many, but almost one’, in J. Bacon, K. Campbell and
L. Reinhardt, eds, Ontology, Causality and Mind, Cambridge,
Cambridge University Press, 1993.

E. J. Lowe, ‘The problem of the many and the vagueness of
constitution’, Analysis, 1995, vol. 55.

Peter Unger, ‘The problem of the many’, Midwest Studies in
Philosophy, 1980, vol. 5.
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The Monty Hall Paradox

There are three doors, with a prize behind just one of them. 
The contestant picks a door but does not open it yet. She knows
that the game host, Monty Hall, knows where the prize is and,
when he opens another door to reveal nothing behind it, that
he has used his knowledge to do so. The host then offers the
opportunity of changing doors. She will double her chances of
winning by accepting this offer.

This paradox simply illustrates popular confusion about prob-
ability, and perhaps would not be worth including if it were not
for the fact that even some academic mathematicians, among them
the great number theorist Paul Erdó́s, at first vehemently refused
to accept that swapping was advantageous. After all, either the
other unopened door conceals the prize or the one first picked does.
Doesn’t that make it equally likely that either of those two doors
has the prize behind it?

It does not. When the contestant first picks a door the chance
that it has the prize is 1⁄3. She knows that the host will be able to
open a door concealing no prize, since at least one of the other
doors must be a loser. Hence she learns nothing new which is



relevant to the probability that she has already chosen the winning
door: that remains at 1⁄3. Since if she swaps she will not choose the
door the host has just revealed to be a loser, the opportunity to
swap is equivalent to the opportunity of opening both the other
doors instead of the one she has picked, which clearly doubles her
chances of winning.

It would be different if another contestant picked a door which
turned out to be a loser. That would raise the chance that her 
door was the winner from 1⁄3 to 1⁄2. By contrast with the host, whose
chance of opening a losing door was 1, since he knew where the
prize was, the other contestant’s chance is only 2⁄3. She would still
have opened it had it contained the prize. The unopened doors are
now equally likely. 

How can this be if in both cases you learn that one of the other
doors is a loser? The contrast with the host’s choice is this. Unless
the contestant has picked the winning door originally, the host has
used his knowledge to isolate the winning door for her by opening
the other empty one. But the other contestant who opens a door
which happens to be a loser has no knowledge of the contents of
the unpicked door to guide her in her choice. So it remains as likely
to be the winner as the one originally picked by the first contestant.
In this case the offer of the swap is not equivalent to having been
offered both the other doors before the other contestant opens a
door. The other contestant may open the winning door and then
it will be too late to offer a swap.

The contrast might be easier to understand if we consider an
array of 100 boxes just one of which contains the prize. The first
contestant picks a door and then the host uses his knowledge of
where the prize is to open 98 losing doors. The contestant has a 
1 per cent chance of having picked the prize door. If she hasn’t, the
host has isolated the prize door by leaving it closed. By accepting
the offer of a swap she increases her chance of winning to 99 per
cent. If, on the other hand, other contestants open 98 doors and
they all turn out losers, the chance that the first contestant has the
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winning door keeps increasing until it is 50 per cent. They cannot
be knowingly isolating the winning door for her, since they don’t
know where the prize is.

What finally persuaded Erdó́s was the use of the Monte Carlo
method, a random computer simulation of repeated trials. Suppose
there are two players in the simulation: Arthur who never switches
and Barbara who always does. If they play 300 times, Arthur will
win around 100, Barbara twice as often, around 200 times, losing
only on the 100 occasions on which her original choice was right.

No doubt some of the resistance to the correct diagnosis of the
Monty Hall paradox was due to failure to appreciate the difference
made by the fact that the contestant knew the host was using his
knowledge to open a losing door.

What if the contestant does not know whether the host knows
the location of the prize (and if so whether he will make use of it)?
Unless she is certain that he doesn’t know or won’t make use of the
knowledge if he does, it still makes sense to swap, since there is
some chance that he has isolated the winner for her. Swapping 
will not double her chance of winning but it will raise it to between
1⁄2 and 2⁄3, which will therefore be greater than the current
probability that she has got the winning door already. 

The Monty Hall dilemma became famous when it was discussed
in the ‘Ask Marilyn’ column of the American magazine Parade in
1990.

Further Reading

Paul Hoffman, The Man Who Loved Only Numbers, London, Fourth
Estate, 1998, pp. 233–40.
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Moore’s Paradox

Although it may be true that Marilyn committed suicide and
that I don’t believe she did, I cannot intelligibly say ‘Marilyn
committed suicide but I don’t believe it’.

Moore’s paradox concerns utterances of the form ‘p but I don’t
believe that p’, as in the example above, and ‘I believe that p but
not-p’. Because both parts of the utterance, for example both p and
‘I don’t believe that p’, could be true, the utterances do not seem
to be self-contradictory. And although my uttering p implies that
I believe it, this is not in virtue of a logical implication, for if p
entailed that I believed that p, it would follow from my not
believing p that it was not the case that p. But clearly it doesn’t
follow from ‘I don’t believe that Marilyn committed suicide’ that
Marilyn did not commit suicide.

Of course, if I uttered ‘Marilyn committed suicide but I don’t
believe it’ seriously, you would probably take me to mean simply
that I found the suicide incredible, or that I don’t believe the official
story that she committed suicide. What we want to explain is the
oddity of the utterance in its literal interpretation. 

Wittgenstein thought that the Moorean utterances came close
to self-contradiction. If I say I believed that p I am reporting a past
belief, and if you say that I believe that p you are reporting my
current belief. But if I say that I believe that p I am not reporting
my belief so much as expressing it. And that is what I am doing if
I simply say that p. Of course I may be lying, I may be insincere,
but expressing my belief is what I am purporting to do. Typically,
if I say ‘I believe that p’ rather than just p, I am evincing a certain
hesitancy. But, Wittgenstein reminds us, ‘Don’t regard a hesitant
assertion as assertion of hesitancy’ (Philosophical Investigations,



IIx, p. 192e). So, in effect, in uttering ‘p but I don’t believe it’ I am
saying ‘p but maybe not-p’, which does come close to self-
contradiction.

Wittgenstein was struck by the asymmetry between ‘I believe
that p’ and ‘You believe that p’. I know what you believe by
listening to what you say and watching how you behave, but I do
not need to observe myself before I can express my beliefs. If asked
why I believe Marilyn did not kill herself, I will not normally talk
about myself but about Marilyn. If I have any reasons for that
belief and don’t just hold it as a hunch, my reasons for believing
that she did not kill herself will be reasons why she didn’t kill
herself. I will not have separate reasons for the suicide and for my
belief in it.

It was Wittgenstein, in fact, who was responsible for naming
this problem after Moore, regarding it as Moore’s greatest insight
because of what it revealed about believing. The asymmetry
between first-person and second-person uses is incompatible with
logical behaviourism about belief, the view that to believe that 
p is simply to behave as if p. For, if logical behaviourism were
correct, I would be reporting a behavioural disposition in saying
that I believed that p. Logical behaviourism is widely rejected
today, and has been replaced in popularity by functionalism, which
construes mental states in terms of their causal relations to sensory
inputs, behavioural outputs and to each other. 

Consider a simple optical illusion, like the Ponzo illusion
illustrated above. The appearance of the upper stick (A) being
longer than the lower (B) does not change when we discover they
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are really equal in length. Suppose I continue to behave as if the
upper one is longer, picking it up if I want a stick longer than the
lower one, for example. On both the behaviourist and functionalist
views I can say ‘I believe A is longer than B, but it isn’t’. But if 
this were the right way to describe the case, the utterance would
not be self-defeating. If this is right it constitutes a criticism of
behaviourism and functionalism. 

There is an affinity between the utterance ‘I believe that p’ and
what have been called ‘performative utterances’. For example, the
utterances ‘I say that Marilyn killed herself ’, ‘I warn you to keep
away’, and ‘I promise to keep away’ make explicit that they are
respectively an assertion, a warning and a promise. To utter the first
sentence is to say that Marilyn killed herself, to utter the second
is to warn you to keep away, and to say that you promise to keep
away is, in appropriate circumstances, to promise to keep away. 
But you can make the assertion, the warning and the promise with-
out making the force of your utterance explicit. You can just say
‘Marilyn killed herself ’, ‘Keep away!’, and ‘I will keep away’. In his
fourth sophism Buridan asked whether the utterance ‘I say that
man is a donkey’ was true or false. His view was that the speaker
is quite literally speaking the truth, since he is saying that a man
is a donkey. But wouldn’t it be more natural to count it as false, as
an assertion (that a man is a donkey) whose assertive force is made
explicit? Uttering Buridan’s sentence about man is equivalent to
just asserting, ‘A man is a donkey’, though perhaps asserting it
with greater emphasis. In a similar way saying ‘I believe that
Marilyn killed herself’ would be equivalent to saying ‘Marilyn
killed herself’, while hedging your utterance a little.

On the other hand there are self-ascriptive uses of ‘believe’ that
do seem to be about the speaker. Consider the exchange: ‘You don’t
believe me, do you?’ ‘Yes, I do. I believe that Marilyn committed
suicide’, which may be concerned with my state of mind rather
than with Marilyn’s death. And we cannot divorce ‘I believe’ com-
pletely from ‘I believed’ and ‘You believe’. For example, if today 
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I say that I believe that p and tomorrow deny that I believed that
p, I am surely contradicting myself.

For these cases, where ‘believe’ is taken at its face value, we
need an alternative approach. Now, it is not just that you cannot
intelligibly and literally assert a Moorean sentence, you can’t
consciously think it either. Of course you can think the words to
yourself, but what can you make of them? If you think that p but
don’t believe it (perhaps because you believe that not-p) then either
you are guilty of self-deception or you have an unconscious 
belief. You won’t be conscious of not really believing that p if you
have deceived yourself into believing that p or if you believe that
not-p unconsciously. In that case the thought that p is something
you don’t believe will not be consciously available to you at the
time.

But this does not explain why you can’t intelligibly assert a
Moorean sentence. For it is perfectly possible to assert something
which you don’t think: inveterate liars do it all the time. So we need
to explain the oddity of making the assertion. 

When we assert p to tell someone something, we are doing it
to let them know. True, p may not be the case. We may be wrong,
but we still think we are letting our audience (the hearer or reader)
know. Or we may be lying; but we are still purporting to let the
audience know. Now the audience is not going to believe us if 
she doesn’t think we believe what we are saying. You cannot have
an intention to do something you realize you have no hope of
achieving. Sometimes, however, assertions are made to let the
audience know we know that p, as in a quiz. But again, we can’t
hope to convey this message if we deny that we believe that p.
Sometimes assertions are confessions, in which the utterer admits
that she has done something, ordinarily something bad. But her
confession is obviously stultified if she goes on to deny that she
believes she did it, since she is saying her admission is insincere.

Not all utterances are communicative in intention. Sometimes
there is no audience present, as in soliloquies and inscriptions in
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private diaries. But these secretive activities would not be possible
if we didn’t use utterances in a communicative way at all. The
possibility of using sentences in this private way is parasitic on 
the possibility of using them to communicate. And if there is no
hope of using Moorean sentences literally to communicate, then
they cannot be used in these private ways either.

Moore first discussed his paradox in 1942.
See also The Placebo Paradox, The Unexpected Examination.

Further Reading

Thomas Baldwin, G. E. Moore, London and New York, Routledge,
1990, chapter VII, section 5. (See also for remarks on the
provenance of the paradox in Moore’s writings. The paradox
is discussed by A. Duncan-Jones and A. M. McIver in Analysis,
1938, and presented to Moore by C. H. Langford in The
Philosophy of G. E. Moore, ed. P. A. Schilpp, Chicago and
Evanston, Ill., Northwestern University Press, 1942.)

Michael Clark, ‘Utterer’s meaning and implications about belief’,
Analysis, 1975, vol. 35.

Ludwig Wittgenstein, Philosophical Investigations, 2nd edn,
Oxford, Basil Blackwell, 1958, Section IIx.
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Moral Luck

It is irrational to praise or blame people for what is not wholly
within their control: ‘ought implies can’. But since our actions
stem from our characters, circumstances and causal factors
beyond our control, and their outcome is often unpredictable,
luck appears to play a large part in determining our character
and conduct, for both of which we are morally accountable. 

So we are morally responsible for what we can’t properly
be held morally responsible for.

The seminal discussion of this paradox appeared in the papers cited
below by Bernard Williams and Thomas Nagel.

There are various ways in which our characters and actions are
constrained. Whether people have admirable or vicious characters
depends a lot on their genetic inheritance; some people are born
with friendly and helpful temperaments, others with malicious and
selfish ones. Their inclinations and social values depend heavily
on their upbringing. People brought up in a criminal sub-culture
are likely to see the world differently from those brought up in
more auspicious surroundings, and to behave accordingly, yet 
they did not choose to be born into those circumstances. The situa-
tion in which people find themselves determines whether they 
have opportunities to behave heroically or commit great evils:
many of those living in Nazi Germany had opportunities to do
good or ill which would not have been available to them else-
where. Our choices are constrained by causal factors not under 
our control, and the outcome of our actions is not always
predictable. As Williams says, ‘anything that is the product of the
will is surrounded and held up and partly formed by things that
are not’.



The role of moral luck is well illustrated in two examples of
Nagel’s. You rush back to the bathroom, realizing you have left the
bath water running with the baby in it. If the baby has drowned
you have done something awful, and will deserve severe moral
condemnation; if the baby has not drowned, you have simply 
been careless and got away with it. A lorry driver fails to check his
brakes, and, if shortly afterwards he runs over a child because his
brakes fail, he will rightly blame himself for the death, although if
the incident had not occurred he would merely be guilty of minor
negligence.

Critics of Williams and Nagel claim that, although our reactions
and judgements do not always discount the element of luck, this
is merely a fact of human psychology, and that if we are to be
wholly rational we should discount that element. When people are
‘simply careless’ we often do not know that they have been; but
when a child dies through human negligence the tragedy usually
gets plenty of publicity, and our moral reactions are fuelled by
anger and distress. Negligence, they argue, is equally bad whether
or not it has a tragic outcome, because once we have been
negligent it is usually a matter of chance whether it has a terrible
outcome, and it is irrational to hold someone more accountable
because of chance factors. 

The problem is that, if we try to discount all those elements not
wholly under our control, there will be very little, if anything, left
to judge.

If we recognize the role of luck in morality, the predominant
Kantian conception of morality, which excludes all elements of
luck, must be radically revised, and any sharp distinction between
the moral and the non-moral called into question. 
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Further Reading

I. Kant, Groundwork of the Metaphysics of Morals, ed. and trans.
M. Gregor, Cambridge, Cambridge University Press, [1784]
1998.

Thomas Nagel, ‘Moral luck’, in his Mortal Questions, Cambridge,
Cambridge University Press, [1976] 1979.

Dana K. Nelkin, ‘Moral luck’, The Stanford Encyclopedia of
Philosophy (Fall 2008 edition), ed. Edward N. Zalta, http://
plato.stanford.edu/archives/fall2008/entries/moral-luck/.

Brian Rosebury, ‘Moral responsibility and “moral luck”’, Philo-
sophical Review, 1995, vol. 104. A critique of the views of
Williams and Nagel.

Bernard Williams, ‘Moral luck’, in his Moral Luck, Cambridge,
Cambridge University Press, [1976] 1981.

Bernard Williams, ‘Postscript’, in D. Statman, ed., Moral Luck,
Albany, NY, State University of New York Press, 1993.
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The Paradox of the Muddy Children

A father tells a group of children that at least one of them has
a muddy face. ‘Step forward if you have a muddy face’, he says,
and repeats this request at intervals until those with muddy
faces step forward. If there are n muddy children, the n will
step forward after the nth request. 

But if the father doesn’t tell them at the outset that at
least one has a muddy face, this will not happen, This will not
happen even if there is more than one muddy face, so that
everyone can see there is at least one, and knows what the
father doesn’t tell them.

First scenario. The children at a party have been out to play and
on returning the father, their host, says that at least one of them
has a muddy face. ‘Step forward if you have a muddy face.’ He
repeats this request at intervals until all and only those with muddy
faces step forward.

They can all see all the others’ faces but not their own. 
As perfect reasoners able to represent others’ knowledge and
ignorance they are a charming mixture of naive playfulness,
unimpeachable honesty and logical acuity.  And they all know this
is true of the others.

Suppose just one has a muddy face. Then that child will know
her face is muddy, since she will see that no one else’s is. So she
will step forward. Each of the others will see her muddy face, and
not knowing whether their own face is muddy will stand fast.

Suppose two have muddy faces. Then at the first request to
step forward no one will know whether their face is muddy. Some
will see two muddy faces. Two of them will see one, but all they
know is that at least one has a muddy face, so they themselves may



or may not have one. When no one has stepped forward after the
first request, they all know there is more than one muddy face.
The two that see just one other muddy face will conclude that their
faces must be muddy too; the others will see two muddy faces and
will not know about their own faces. So the two then step forward,
and the others stand fast.

If just three have muddy faces, then no one will have stepped
forward at the first two requests, because everyone will see at least
two muddy faces. So they all know that more than two of them are
muddy. The three who are will see just two others and know their
own face must be muddy; the rest will stand fast. 

So, if there is one muddy face, that child will step forward after
the first request, if two, the two will step forward after the second,
if three the three will step forward after the third. In general, we
can show by induction, generalizing on the argument above, that
if there are k muddy children, the k will step forward after the kth
request. 

Second scenario. Imagine now that there is more than one muddy
child, so that they all know there is at least one. The father,
however, does not tell them that at least one child has a muddy
face. Then, surprisingly, no children will ever step forward, even
though what they all know is the same as what the father told them
in the original example. 

Now suppose there are exactly two muddy faces. Then no one
will step forward at the first request. Nor at the second, since the
fact that no one stepped forward at the first will no longer mean
that there was more than one muddy face. The argument will never
get going.

Why should this be? The answer is that there is no common
knowledge in the second scenario. For example, in the case of two
muddy-faced children, Angela and Brian, neither knows whether
their own face is muddy. At the second request, Angela cannot
reason that Brian didn’t step forward at the first because she saw
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that Angela’s face was muddy, so she cannot reason that there are
just two muddy ones when she sees only one other which is muddy.
There is universal knowledge that there is one muddy face, because
each knows it, but there isn’t common knowledge. For common
knowledge that p, everyone must know that everyone knows that
everyone knows . . . that p. And common knowledge cannot be
achieved in the second scenario. It was achieved in the first
scenario because the father’s statement that there was at least one
muddy child was a public one that they all heard and knew they
all heard.

In the first scenario the children, who are finite in number, do
not need infinite common knowledge. If there are exactly k muddy
children, then the common knowledge required is that everyone
knows that everyone knows . . . that at least one child has a muddy
face, with ‘everyone knows that’ iterated k times. In other words,
k muddy children require common knowledge of degree k. 

For a simple illustration of common knowledge, suppose we
both know which road to take for Dover, but neither of us knows
whether the other does. In this little case there is universal
knowledge of which road, but not common knowledge. You then
ask me whether that is the road for Dover and I say Yes. Now there
is common knowledge: both know which road and that the other
knows which road too. 

The notion of common knowledge has been thought to have
very wide application. Traffic lights work only because there is
common knowledge that people will stop at red. It is not enough
for me to know that red means stop if I am not confident that other
people know this, and know that other people know this, and that
they know those others know this, etc. Universal knowledge is not
sufficient. Everyone could know the meaning of traffic lights, but
they need to know that others know, etc. . . . Similarly, money
could not function for exchange if people weren’t confident that
others knew its function, and that they knew that that those others
knew that others knew, and so on. Why should I accept £100 in
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notes unless I know that others will accept the notes in payment,
which they will do only if they are confident that others will accept
them, and so on? It has even been argued that common knowledge
is required for the use of language. 

These claims are highly controversial, and accounts that do
not appeal to common knowledge are defended by many. In
particular, it is not clear why common belief is not enough. But
common knowledge is one of the contenders. Admittedly, the
logical presuppositions of common knowledge are far too strong
to make it always possible. It requires, for example, that, if we
don’t know something, we know that we don’t know it, which is
plainly often false. But common knowledge may be realizable in
specific situations and approximated in many more. (For example,
bank notes do not become unusable as money if a few foreigners
do not recognize them as money.)

The muddy children paradox is a variant of a puzzle discussed
in J. E. Littlewood’s book A Mathematician’s Miscellany (Methuen,
1953). The precise notion of common knowledge goes back to
David Lewis and the idea can be traced to the eighteenth-century
Scottish philosopher David Hume.

Further Reading

* R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi, Reasoning about
Knowledge, paperback ed., Cambridge, Mass., MIT Press, 1995,
2003. For a fuller account of the puzzle, see pp. 4–7.

David Lewis, Convention, Cambridge, Mass., Harvard University
Press, 1969.
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Murder

In Thabo Meli (South Africa, 1954) a gang hit their victim’s
head with an instrument. Believing him to be dead, they rolled
him over a cliff to make his death appear accidental. But the
victim actually survived the assault, dying from exposure at
the foot of the cliff. In their defence, the gang argue that the
initial assault was merely attempted murder, and that in rolling
him over the cliff they did not intend to kill him, since they
thought he was dead already. Are they nevertheless not guilty
of murder?

You commit murder if you cause death with ‘malice aforethought’.
The mens rea, malice aforethought, doesn’t actually require malice
(euthanasia can be murder) nor premeditation, though both seem
to apply in this case. Nowadays, the mens rea is intention to cause
death or GBH. The actus reus is an act which causes death within
a certain time. Now although the four accused intended to kill with
their initial assault, the Privy Council considering the appeal
accepted that the accused believed that the victim died from the
assault. The second act, rolling him over the cliff, did lead to death,
but since they thought he was already dead they can’t have
intended to kill him in this way. So the act which caused death was
not accompanied by the mens rea for murder. The defence claimed
that for the initial assault they were at worst guilty of attempted
murder. For rolling the victim over the cliff they would presumably
be guilty of attempting to mishandle a corpse. 

Nevertheless, ‘it appears to their Lordships’, said the appeal
judges, ‘impossible to divide up what was really one series of acts
in this way. . . . It is much too refined a ground of judgement to say
that, because they were under a misapprehension at one stage . . .
they are therefore to escape the penalties of the law.’
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And surely they are right about this. The accused intended to
kill, and what they did, assaulting their victim and rolling him
over the cliff, killed him. Suppose, for example, that D shoots to
kill P. He thinks he has succeeded when he has actually missed, yet
he continues to fire at P out of rage. Some of these bullets hit P
and kill him. It seems a matter of common sense (as it is a matter
of law) that D is guilty of murder.

Murder
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Newcomb’s Problem

Before you are two boxes: a transparent one containing €10,000
and an opaque one which contains €1,000,000 or nothing. You
have a choice between taking the opaque box alone or taking
both of them. A Predictor with a highly successful record
predicted whether you are going to take both boxes or just one.
If he predicted that you will take just the opaque box he has
put a million in it: if he predicted you will take both boxes he
has left the opaque box empty. And you know this. Should you
take one box or two?

Newcomb’s problem is a challenge to the use of utility maxi-
mization, which is central to standard decision theory, a powerful
tool employed by economists, statisticians and policy formers.

At first sight it looks as if you are being offered an easy chance
of enriching yourself. The temptation is to take one box to get the
million. If you follow the principle of maximizing utility, that is
what you will do. For, if you take one box, won’t the Predictor
have anticipated your choice and put the million in that box? The
expectation from the alternative, two-box choice, is a mere ten
thousand. 

But there is a powerful argument against this policy. The
Predictor has already made his prediction and determined the
contents of the box. Whatever you do now will not change that –

10,000€1,000,000€

0€or

?



you cannot change the past. If you take both boxes you will get
€10,000 more than if you take just the opaque box, and this is so
whether it is empty or contains the million. If the opaque box 
is empty, one-boxers get nothing and two-boxers get €10,000. If
it has money in, one-boxers get €1,000,000, two-boxers get
€1,010,000. Either way, two-boxers get more. The two-box choice
is said to dominate the one-box choice.

The predominant but by no means unanimous view among
philosophers is that you should take both boxes, and follow the
dominance principle. Suppose you do this. Then it is not true that
you would have been a millionaire if you had taken only the
opaque box. For you would have acquired nothing. 

But the one-boxer will retort that if you had taken just one box
you would be richer, since the Predictor would have predicted your
choice and filled the box accordingly. 

Suppose I say, ‘If you had lit a match in that room you would
have caused an explosion, because the room was full of gas.’ 
You reply, ‘No I wouldn’t, because I am a very careful person and
I would only light a match in a place that was not full of gas. If I
had lit a match the room would not have been gas-filled.’ But it is
what I say, not what you say, that is relevant to deciding whether
to light a match in a gas-filled room. Not everyone rules out the
possibility of backwards causation, but, if we do so, then similarly
we must regard the contents of the opaque box as already fixed;
the only counterfactual sentence relevant to the choice between
one and two boxes is the two-boxer’s: ‘If I had taken only one box
I should be €10,000 worse off.’ 

But what if you knew that the Predictor was infallible? If you
knew the Predictor was infallible, you would know there were only
two possible outcomes. You would either get the million in the
opaque box from your predicted choice of one box, or €10,000
from choosing both boxes. The possibilities of getting €1,010,000
and of getting nothing drop out, because these would only be
realized if you falsified the prediction. If you choose the opaque
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box, there is no point in regretting that you didn’t choose both
and get €10,000 more, because in that case the Predictor wouldn’t
have been infallible – contrary to what you know. But then it 
might seem rational in this case to take just one box; and if it is
rational here, why does it cease to be rational if it is just highly
probable that the Predictor is right? (It is not to the point to object
that we never could know that the Predictor was completely
infallible. All we need to get this argument going is the claim that
if the Predictor were known to be infallible, two-boxing would not
be rational.)

Suppose that, nevertheless, rationality does dictate the two-box
option. And suppose that the transparent box contains just one
euro. Then, although I believe it is rational to take both boxes, I
know there are distinguished one-boxers, including those con-
vinced by the argument of the last paragraph, which suggests that
I might have got it wrong. I can easily afford to lose a single euro
on the off chance that I have got it wrong. That may seem a
reasonable thing to do, but, if I haven’t got it wrong after all, does
it make it the more rational?

Of course, as a two-boxer I could wish I had thought it more
rational to be a one-boxer, in which case the Predictor would
probably have put money in the opaque box. But I can’t bring that
about by changing my mind and taking just one box, because the
contents of the box are already determined. It might be a good
idea to keep rereading advocates of one-boxing in the hope that I
might come to agree with them. If the ploy were successful, then
when I next faced the choice the Predictor would have anticipated
my one-box decision and put money in the opaque box. If the ploy
is successful I will now have a reason for one-boxing which I once
thought bad but now think is good. The trouble is that even the
one-boxer has more to gain from choosing both boxes, so that I
now have an irrational belief. 

But was it irrational to get myself into that position? No: it can
be quite rational to cause yourself to act irrationally. Suppose a
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burglar is threatening to torture me unless I open my safe to let him
steal my valuables, and I take a drug which makes me temporarily
irrational. He starts to torture me, and while complaining about
how much it hurts I encourage him to go on. He realizes his threats
can no longer influence me and that his best recourse is to flee. In
the circumstances it was perfectly rational to make myself
irrational. (Compare Derek Parfit in his Reasons and Persons,
Oxford, Clarendon Press, 1984, pp. 12–13.)

Newcomb’s problem may seem to be a purely academic puzzle.
After all, isn’t the Predictor a fiction unlikely to exist in real life?
But look at the discussion of the Prisoner’s Dilemma, which has
been seen (at least in its standard version) as a Newcomb problem.
For another example, suppose a certain disease were shown to
have a genetic cause, and that the same genetic component dis-
posed people to choose a certain career. Should you avoid that
career? This is a Newcomb type of problem, since the genetic
makeup and chance of getting the disease are not affected by career
choice, and avoiding that career will not lessen your chance of
contracting the disease.

There is also an important example of the problem in contem-
porary economics. Economists have found that people’s economic
expectations are generally fulfilled, so the citizens themselves play
the role of the Predictor. Economists believe that the way to
decrease unemployment is to expand the money supply. However,
if people expect such an expansion they will act to counter its
advantages, and inflation will ensue. It emerges that the possible
situations together with their payoffs are:

Money supply expanded: 
If expansion is predicted, inflation ensues (third best).
If constancy is predicted, unemployment falls (best).

Money supply kept constant:
If expansion is predicted, recession ensues (worst).
If constancy is predicted, no change (second best).
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Apparently there is a consensus among economists that
governments should expand the money supply, on the ground that
people’s expectations are already formed (just as it is already
determined whether there is money in the opaque box). If people
expect expansion then expansion will produce inflation, which 
is preferred to recession; if they expect constancy, expansion 
will increase employment, which is preferred to no change. In other
words, the economic consensus favours the analogue of two-
boxing. 

‘One-boxers’ would be those who argued that there were two
choices to consider:

Keep the supply constant: then people will expect the supply to
stay constant and there will be no change.

Expand the supply: then people will predict expansion and
inflation will ensue.

Since no change is supposed to be preferable to inflation, they opt
to keep the supply constant. But they have failed to take account
of the fact that expectations have already been formed and can no
longer be determined by the choice between the two options.

The paradox is named after its inventor, the physicist William
Newcomb, and was first published by Robert Nozick in 1969. The
economic example is reported by John Broome in ‘An economic
Newcomb problem’, Analysis, 1989, vol. 49.

Further Reading

*Richmond Campbell and Lanning Sowden, Paradoxes of
Rationality and Cooperation, Vancouver, the University of
British Columbia Press, 1985. An anthology of papers which
shows the complexity and range of this problem and of the
related Prisoner’s Dilemma.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, chapter 4, section 1.
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The Numbered Balls

From infinitely many numbered balls, those numbered with the
labels ‘1’ and ‘2’ are thrown into a room at half a minute before
noon and ball number 1 is thrown out. At a quarter of a minute
before noon, balls 3 and 4 are thrown in and number 2 taken
out. At an eighth of a minute before noon, 5 and 6 are thrown
in and number 3 taken out. And so on ad infinitum.

How many balls are in the room at noon? 

(1) None, since every numbered ball has been taken out.
Give the number of any ball and we can calculate when
before 12 it was thrown out. 

(2) Infinitely many, since for every ball taken out two have
been thrown in. So at each stage there is one more ball in
the room. 

Suppose that we have denumerably many balls, numbered by the
positive integers in sequence: 1, 2, 3, . . . , n, . . . . As described
above, at half a minute to noon, balls 1 and 2 are thrown into the
room and 1 taken out. Then at a quarter of a minute to noon 3 and
4 are thrown in, and 2 removed. At each stage we move half way
in time towards noon from the last stage, throw in the next two
balls and remove the lowest numbered ball.  So every numbered
ball gets removed at some stage. But at each stage there is one
more ball in the room than there was before. 

Balls left in room
Stage 1, throw in 1, 2, take out 1: 2
Stage 2, throw in 3, 4, take out 2: 3, 4



Stage 3: throw in 5, 6, take out 3: 4, 5, 6
Stage 4: throw in 7, 8, take out 4: 5, 6, 7, 8
And so on.

Ball number n gets thrown out at stage n: thus each of the infinitely
many balls gets thrown out at some stage. So it seems that at noon
there should be no balls left in the room. On the other hand, at each
stage n balls numbered 2n–1 and 2n are thrown in, so there is a
net increase of one ball. Since there are infinitely many stages,
infinitely many balls should end up in the room.

So which is it? This is essentially the same problem as that of
the supertask involved in Thomson’s Lamp (see Achilles and the
Tortoise). Although noon is approached asymptotically, each of
the numbered balls which is thrown out is thrown out before noon,
and replaced by two other balls before noon. The infinite series
does not include noon itself, and therefore the state at the limit,
noon, is not determined.

But mustn’t the state immediately after the last stage of the
supertask be spatio-temporally continuous with it? No, this does
not make sense. For the supertask continues at a faster and faster
speed and has no last stage. 

Further Reading 

*Robert Black, ‘Solution of a small infinite puzzle’, Analysis, 2002,
vol. 62.

Ruma Falk in Theory and Psychology, 1994, vol. 4, who mentions
the puzzle.
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The Paradox of Omniscience

No one, not even a deity, could know everything.

No human being knows everything. But isn’t it possible in principle
that someone should know all truths, isn’t it at least logically
possible a deity should be omniscient? 

However, for this to be possible there would surely have to be
a set of all truths. Patrick Grim uses Cantor’s theorem, that the
power set of a set S is always larger than S, to show that there
cannot be – see Cantor’s Paradox.

Suppose there were a set T of all truths, {t1, . . . , ti, ti+1, . . .}.
The power set of T is the set of all its subsets; that is, all the sets,
including the null set and T itself, that can be formed out of the
members of T. Consider the truth t1. It will belong to some of the
subsets (e.g. the subset {t1, t2}) but not to others (e.g. the null set
�, {t2, t3}). For each of the subsets s in the power set there will 
be a truth of the form t1 belongs to s or t1 does not belong to s. But
since the power set of T is larger than T there will be more of 
those truths than there are truths in T. So T cannot be a set of all
truths.

Grim also offers a direct argument for the impossibility of total
knowledge, which is a version of The Knower.

Perhaps the notion of the totality of truths should be treated
as an indefinitely extensible concept (for an explanation see
Russell’s Paradox). Then we could treat an omniscient being as one
who could extend indefinitely the set of truths she knew. The initial
totality of tis is enlarged by adding each of the truths ti belongs/
does not belong to s. From the power set of the enlarged totality
are generated all the further truths of the latter form for each
member s of the new power set, and those are added in. And so on



indefinitely. Any truth will be included in the expanding totality
after finitely many operations of this sort.

Further Reading

Patrick Grim, The Incomplete Universe, Cambridge, Mass. and
London, MIT Press, 1991, pp. 91–94. (*Chapter 2 for the direct
argument and discussion of possible ways out; and *chapter 4
for the Cantorian argument and discussion of possible ways
out.) 

See also *J. C. Beall in Analysis, 2000, vol. 60.
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Paradox

What is a paradox?

Many paradoxes fit the pattern offered by Mark Sainsbury, for
whom a paradox is ‘an apparently unacceptable conclusion derived
by apparently acceptable reasoning from apparently acceptable
premisses’ (Paradoxes, p. 1). For example, take The Heap:

A pile of 10,000 grains is a heap.
For any number n greater than 1, if a pile of n grains is a heap

then so is a pile of n – 1 grains.
So one grain is a heap.

Here both the premisses are apparently acceptable but the conclu-
sion that apparently follows from them seems obviously false.
Etymologically the paradoxical is what is contrary to (para) received
opinion or belief (doxa). On Sainsbury’s construal it would be the
conclusion of the argument that would be contrary to received belief.

The most likely move in resolving the heap is to reject the
second premiss. The other possibilities would be (i) to deny that 
the conclusion really followed, or (ii) to show that the conclusion
was acceptable after all. A case for (i) cannot be excluded, but 
(ii) seems ruled out here. A sceptic about vague terms would not
even let the argument get started. 

With other paradoxes, however, faulty reasoning from 
premisses to conclusion is more likely to be the culprit: in The
Arrow paradox, the arrow cannot move in the place where it is,
but it doesn’t follow, as Zeno argued, that it cannot move. Further
examples will be found in The Barber Shop, Bertrand’s Box,
Gentle Murder, Heraclitus’ and the Two-envelope paradoxes,
among others. These paradoxes are fallacies.

A genuine example of (ii), in which the conclusion is true 
after all, is provided by Galileo’s Paradox: there really are, as its



conclusion states, as many squares of whole numbers as there are
whole numbers. Another case where a similar diagnosis is attrac-
tive is The Paradox of Preference, where it is arguable that
intransitive preferences can be rational after all. And in the hospital
example of Simpson’s Paradox it really is safer to undergo surgery
in Mercy Hospital, even though the overall survival rate is worse
than at the other hospital.

But what, you might ask, counts as ‘acceptable’ and ‘unaccept-
able’? (Un)acceptable to whom? Isn’t Sainsbury’s account too
vague? No, on the contrary the vagueness in that account is an
advantage, since what counts as contrary to received opinion will
vary with that opinion. What once seemed paradoxical may cease
to seem so. Thus, although Quine treats Gödel’s first incompleteness
theorem as a paradox, it is not usually counted as one nowadays,
since we have got used to distinguishing truth from proof. 

The so-called semantic paradoxes like Berry’s and The Liar,
and the set-theoretic paradoxes like Cantor’s and Russell’s, typi-
cally yield a contradiction. Of course you can produce an argument
with a contradictory conclusion in the other cases by adding the
received opinion as a premiss: add ‘One grain is not a heap’ as a
premiss to the heap argument above, and it follows that one grain
both is and is not a heap. But nothing is gained by this move. In
the case of the semantic and set-theoretic paradoxes it would seem
as though the conclusion, being self-contradictory, is totally un-
acceptable and beyond redemption: something is probably wrong
with the premisses or other underlying assumption. But even this
is challenged by dialetheists (see The Liar).

Not all paradoxes naturally exemplify the Sainsbury pattern,
however. In some paradoxes we are faced with a dilemma. Which
of the two ships, for example, is identical with Theseus’ original
ship – the ship with its planks replaced or the ship reconstituted
from the old planks? (See The Ship of Theseus.) Here there is a
conflict between competing criteria. Of course, you could produce
an argument using one of the criteria which yielded a conclusion

160

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Paradox



which involved a conflict with the other criterion. But on the
Sainsbury model one of the criteria would have to be treated as
apparently acceptable and the other as apparently unacceptable,
in which case it would not be clear why we had a paradox.

The same objection applies to trying to fit paradoxes like The
Lawyer, The Two-envelope Paradox and The Sleeping Beauty
into the Sainsbury pattern. In The Lawyer, should Protagoras 
win his case against his pupil, Euathlus, or should the court declare
for Euathlus? There are comparable arguments for either verdict.
When The Sleeping Beauty is first woken on Monday, should her
credence in Heads be 1⁄2 or 1⁄3? Again, there are arguments for each
alternative. In The Two-envelope Paradox there are parallel and
equally compelling arguments that you gain by swapping and that
you would have gained by swapping if you had picked the other
envelope first. 

Sorensen has claimed that Sainsbury’s definition is too broad,
because it is satisfied by what he calls ‘jumble arguments’, of which
the following is an example. He believes that any conjunction of
10,000 of the first 10,001 assertions in his book is inconsistent (see
The Preface). Any argument that has 10,000 of the 10,001 as
premisses and the negation of the remaining assertion as conclusion
is a jumble argument that fits Sainsbury’s definition. For he believes
each premiss and thinks the conclusion is false, since he believes
every assertion in his book. The conclusion follows from the
premisses, since classically anything follows from jointly
contradictory premisses. (See The Paradox of Entailment.) But such
cases are easy to recognize, and Sainsbury can exclude them.

But we can’t simply say there is a paradox whenever there 
are arguments for incompatible conclusions, or every matter of
controversy would be a matter of paradox. What is distinctive
about such paradoxes is the fact that the arguments for the com-
peting conclusions mirror one another, which makes the dispute
seem especially puzzling. They are instances of what is known 
as an antinomy. (Quine calls those cases in which contradictions
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are derived, like The Liar, ‘antinomies’, but it is not helpful to
stretch the meaning of the term in that way.)

Sometimes a paradox offers more than two options. In
Bertrand’s (Chord) Paradox, for example, we are offered three
equally compelling reasons for different answers to the question
about the chance of a random chord being longer than the side of
an inscribed equilateral triangle, 1⁄3, 1⁄2 and 1⁄4, and indefinitely many
contrary answers could be defended. It may be that the question
is really illicit, though in this case it turns out to be incomplete,
failing to specify a method of random selection. Since there are
indefinitely many different methods of random selection, there
will be different answers to different questions.

There is (at least) one example discussed in this book, the so-
called Paradox of Blackmail, which is not really a paradox at 
all, since it rests on an evidently false assumption, namely that
blackmail is nothing more than a request or demand plus a threat,
an assumption which omits what is crucial to blackmail, that the
blackmailer backs up the demand by the threat, which undermines
any appearance of paradox.

Further Reading

*Irving M. Copi, The Theory of Logical Types, London, Routledge,
1971, chapter 1. 

William Lycan, ‘What, exactly, is a paradox?’, Analysis, 2010, vol. 70.
Graham Priest, In Contradiction, 2nd edn, Oxford, Oxford

University Press, 2006.
W. V. Quine, ‘The ways of paradox’, in his Ways of Paradox and

Other Essays, New York, Random House, 1966, pp. 3–20. 
R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge

University Press, 2009, Introduction (pp. 1–3). 
Roy Sorensen, Blindspots, Oxford, Clarendon Press, 1988.
Roy Sorensen, A Brief History of the Paradox, Oxford, Oxford

University Press, 2003.

162

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Paradox



163

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Parrondo Paradox

There are pairs of losing games which if played one after the
other become a winning combination. Whereas you would
expect the combination of two losing games in sequence  always
to tend to lose. 

Here is a simple game where the player always calls Heads and will
tend to lose:

Simple game: starting with nothing, toss a biased coin which lands
tails with a probability of 0.505. Heads wins £1, Tails loses £1.
Clearly a losing game.

Here is another, more complex, game, also with Heads winning
£1, Tails losing £1. Again the player calls Heads every time and will
also tend to lose.

Complicated game: 
• if your capital is a multiple of 3, toss a coin that lands Tails with

a probability of 0.905;
• otherwise toss a coin with a probability of 0.745 of landing

Heads.

So we have another losing game, though the second part alone
is winning.  (Contrary to first appearances, in the first part of the
complicated game we use the bad coin more than a third of the
time.)

However, we get a game which we will tend to win by
combining the losing games in a certain way.

Winning game: Start with the simple game, and after each game
choose the simple or complicated game to follow randomly by



tossing a fair coin. (The demonstration of the winning outcome is
mathematically rather complicated, and so will not be given here.)

It is essential that the two games be linked, so that the capital
at the end of one is carried over to the next.

The winning tendency from mixing the two games arises
because on average the mildly bad simple game rescues you from
more of the cost of the bad side of the complicated game than it
costs you of the benefit of the good side.

Here is the result of a simulation:

The top line plots the results of 100 games with A and B
alternating, the line just below it plots A and B played in random
order. Both of these are clearly winning games. The lower 
lines plot game A only and game B only, and emerge as losing
games.
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The Parrondo Paradox

Capital
+3

–3

Games
100

Game A only

Game B only

A & B, alternating

A & B, randomly

Modulus (2–5)

3

Alternation (1–50)

2

Epsilon (0.0–0.095)

.005

Trials (1–50000)

1000

Run

From http://www.cs.wisc.edu/~langton/Parrondo/ (accessed 2.7.06).



An apt comparison has been made with the fact that both
sparrows and insects can eat all the crops. However, if there is a
certain combination of sparrows and insects, a healthy crop
survives, in part because the sparrows eat some of the insects.

The paradox was discovered by the Spanish physicist, Juan
Parrondo, while investigating Brownian motion in thermo-
dynamics. He devised games to illustrate the flashing Brownian
ratchet. Compare how the combined game ratchets up to win:
imagine you are in the middle of a long staircase, and go up one
step on winning and down one on losing. The combined game
should take you to the top, whereas if the first game is played
repeatedly you end up at the bottom – and similarly with the
second.

There are possible applications of this extraordinary result in
engineering, biology, economics and population genetics. But you
won’t make a fortune in the casinos.

Further Reading

Derek Abbott and Greg Harmer in Nature, 1999, vol. 402, 23/30
Dec., p. 864.

165

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Parrondo Paradox



The Pasadena Paradox

A fair coin is tossed until it lands Heads. The pay-offs are given
by an infinite sequence which alternates between positive and
negative values (rewards and penalties). Should you play?

As in the St. Petersburg Paradox the Pasadena game, introduced
by Nover and Hájek in 2004, also involves tossing a fair coin until
it lands Heads. Pasadena is a serious threat to decision theory, 
since the expected utility, as we shall show, appears to be quite
undefined.

The pay-offs for each outcome are written on a sequence of
cards in a stack, a positive value meaning we gain that amount, a
negative value meaning we pay the amount:

Top card. If the first Heads is on toss #1, the pay-off is +$2
2nd  card. If the first Heads is on toss #2, the pay-off is –$2
3rd  card. If the first Heads is on toss # 3, the pay-off is +$8/3
4th card. If the first Heads is on toss #4, the pay-off is –$4

.

.

.
nth card. If the first Heads is on the nth toss, the pay-off is 
$(–1)n–12n/n
and so on.

The expected utility is the sum of the utilities in an infinite
series obtained by taking each term to be 2n/n (i.e. 2/1, 22/2, 23/3,
24/4…) multiplied by the probability that heads falls first on the
nth toss, 1/2n, (i.e. 1⁄2, 1⁄4, 1⁄8, 1⁄16 . . .), with the signs alternating
between + and –. This gives 1–1⁄2+1⁄3–1⁄4. . . . The series converges to
loge2 (the natural logarithm of 2), which is roughly 0.69. In this
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case we expect to gain. (On convergence and limits see Achilles
and the Tortoise, pp. 1–2.)

If the negative terms are changed to positive ones, the series
1+1⁄2+1⁄3+1⁄4 . . . diverges to + �, while the original series converges.
It is conditionally convergent. Riemann’s Rearrangement Theorem
for such alternating series says that for any real number its terms
can be rearranged to give a series which sums to that number.

So if the cards are dropped and picked up and stacked in a new
order, the game has not changed. Suppose the cards are now
stacked as follows:

Top card. If the first Heads is on toss #1, the pay-off is +$2
2nd card. If the first Heads is on toss #2, the pay-off is –$2
3rd card. If the first Heads is on the toss # 4, the pay-off is 

–$4
4th card. If the first Heads is on toss #6, the pay-off is –$64/6
5th card. If the first Heads is on the toss # 8, the pay-off is –$32
6th card. If the first Heads is on toss #10, the pay-off is

–$1024/10
7th card. If the first Heads is on toss #3, the pay-off is +$8/3
8th card. If the first Heads is on toss #12, the pay-off is

–$4096/12
.
.
.

One positive card is followed by five negatives, ad infinitum.
The infinite series which sums the utilities (1 –1⁄2 –1⁄4 –1⁄6–1⁄8–1⁄10+1⁄3–1⁄12

. . .) converges to loge2+ 1⁄2 loge1/5, which is roughly –0.11, a
negative expected utility. In this case we expect to lose.

The Rearrangement Theorem means that any value, including
+� and –�, can be obtained by a suitable rearrangement. So the
expected value of the Pasadena game is undefined. For the game
is defined by the sequence of instructions, not the particular
sequence of cards. To determine in standard decision theory

The Pasadena Paradox
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whether we should choose an action we should need to know only
the probabilities and pay-offs of that action.

Nevertheless, Pasadena is obviously worse than the St. Petersburg
game. Worse too than the Altadena game, a variant of Pasadena in
which each pay-off is increased by $1. As Nover and Hájek say
‘decision theory goes silent where we want it to speak’. They believe
that a revised decision theory with new axioms is needed.

One approach that has been offered, by Kenny Easwaran, is
in terms of what he calls the weak expectation. Let Xi be the
payoff from the ith playing of the Pasadena game. We consider
the sum of the payoffs from n playing Sn = X1+ . . . +Xn. Sn/n is
the average pay-off of n plays. The weak expectation for the
Pasadena game is that unique number x, if it exists, which
satisfies:

for all ε, the limit as n tends to infinity of P(|Sn/n –x|<ε)=1 

The vertical brackets are used for the absolute value, so that
|+2|and |–2|, for example, are both +2. x=loge2 satisfies this
equation and so is Easwaran’s weak expectation for the Pasadena
game.

Suppose a player repeats the game. What the weak expectation
tells us is that the more times they play it the more likely their
average pay-off will be close to loge2. For very high numbers of
plays, the average pay-off per play is almost certain to be very
close to loge2. So a player who keeps playing at a price less than
this weak expectation is very likely to gain. (Alexander, Sprenger
and Heesen argue against using weak expectation for a single play.)

Further Reading

*J. M. Alexander for criticism of weak expectations for single plays;
J. Sprenger and R. Heesen for defence of weak expectations,
Mind, 2011, vol. 120.
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Kenny Easwaran, ‘Strong and weak expectations’, Mind, 2008, vol.
117, pp. 633–41.

Alan Hájek and Harris Nover, ‘Complex expectations’, Mind, 2008,
vol. 117, pp. 643–64.

Harris Nover and Alan Hájek, ‘Vexing expectations’, Mind, 2004,
vol. 113, pp. 237–49.
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Pascal’s Wager

If you don’t already believe in God, then it is rational to
acquire the belief, since if God does exist you can expect an
infinity of heavenly joy, whereas atheists are punished in hell.
Provided the probability of God’s existence is finite and
greater than 0, by however tiny an amount, the expected value
is infinite, since any finite fraction of infinity is itself infinite,
and so is bound to be greater than any finite good the atheist
experiences.

It is true that you cannot just will to believe. Just try believing at
will that London is the capital of France. Pascal himself was aware
of this. He says you should bring yourself to believe by 
first acting as if you did: immerse yourself in Christian culture, 
take holy water, have masses said, mix with Christians, and so on.
Eventually you will really believe.

However, there are many different possible gods, each with a
finite chance of existing, however minute, who might grant those
who believe in them infinite paradise. It was Diderot (1751–65)
who provided the seed of this objection: ‘An Imam,’ he wrote, ‘could
reason just as well this way [i.e. like Pascal]’. Since there are
indefinitely many such possible gods, indeed infinitely many, this
makes the chance of a god’s existing infinitesimal, and if you
multiply the infinite by the infinitesimal you get a value of 1, i.e.
a pretty small finite value. 

Even if we ignore this objection and remain with the Christian
God, He might not regard those who believed from the selfish
motive of seeking infinite joy. (The point was made by William
James, the novelist Henry’s brother.)

Pascal’s argument may not be sound (valid with true pre-
misses), but most commentators regard it as nevertheless valid.



But it is not. This can be shown by the possibility of a mixed
strategy like the delayed strategy offered by Bradley Monton
(Analysis 72: 645). You decide to remain an unbeliever for many
years, say fifty. As long as there is a positive probability that you
will still be alive then, the expected utility is infinite. Yet you may
well be dead by then and never have to believe in God. In this case,
even if the premisses are true, the conclusion – that you can expect
infinite joy – remains false. So the argument is invalid.

A more devastating objection comes from those who think the
notion of the Christian God is incoherent, or at least inconsistent.
Why incoherent? The Christian God is supposed to be all-good,
omnipotent and omniscient. What is it that is supposed to have
these properties – a being. But what is a being? Is being not too
abstract for the properties to get a grip? And even if it isn’t, the
‘being’ is supposed to be immaterial (ignoring His incarnation in
Jesus), and an immaterial being cannot causally interact with the
physical, so it can’t create the material universe and sustain it. If
the notion of the Christian God is not incoherent, it is arguably
inconsistent. A perfectly good Creator of the Universe would not
be omnipotent, since an omnipotent and completely beneficent
deity would not create and sustain a world like ours with so 
much misery and suffering. If that is so, then the argument for the
Wager doesn’t get going in the first place, because the probability
of God’s existence is 0, and Pascal’s argument requires it to be
positive by however small a finite amount.

Further Reading

Ian Hacking, ‘The logic of Pascal’s Wager’, American Philosophical
Quarterly, 1973, vol. 10.

Alan Hájek, ‘Pascal’s Wager’, The Stanford Encyclopedia of
Philosophy (Summer 2011 edition), ed. Edward N. Zalta, http://
plato.stanford.edu/archives/sum2011/entries/pascal-wager/.
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The Placebo Paradox

Although it may be true that this pill will cure me, and also
true that it will cure me only because I believe it will, I cannot
believe that it will cure me only because I believe it will. 

A placebo is effective if it makes me better simply because I believe
it will. But if I realize it is a placebo, I can no longer believe that
it will work because of any of its pharmaceutical properties. If my
belief that I will get better makes me better, then it is the belief, not
the pill, that cures me. The pill drops out of the picture. If a placebo
works, it works via a false belief that it has intrinsic therapeutic
properties. Realizing how it is supposed to work defeats the 
object of taking the placebo. So I can say, ‘The pill will cure him
just because he believes it will’, but I cannot sincerely say, ‘The pill
will cure me just because I believe it will’. Though I can, of course,
realize later that I have benefited from a placebo effect, and so say
that the pill cured me simply because I believed it would. 

There is something intrinsically odd about believing that my
own belief is self-fulfilling, that it is true simply because I believe
it is true. If asked why I believe I’ll get better, the correct answer
would have to be ‘Only because I believe I’ll get better’. But how
could that be a proper reason?

Suppose I already believe I’ll get better. Not for any specifiable
reason, I’m just an optimistic sort of person. I know that optimism
about the course of one’s illness can help cure you; so when asked
why I think I will get better I can allude to my belief that I will. 
I may not be able to offer any other reasons. But this does not
mean that I have the belief only because I have it. I may not be able
to explain why I had it in the first place, and it may not have been
acquired rationally, but acquired it was, and not just because I had



it. I would have had to acquire the belief before I acquired it in
order for it to be true that I believed it only because I believed it.

I owe this paradox to Peter Cave.
See also Moore’s Paradox.

Further Reading

Peter Cave, ‘Too self-fulfilling’, Analysis, 2001, vol. 61.
*Raymond Smullyan, Forever Undecided, Oxford, Oxford University

Press, 1988, sections 15–17.
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The Paradox of Plurality 
(Extension)

A line segment can be divided, at least in thought, ad infinitum,
by halving it, halving the halves, and so on without end. So it
must be made up of infinitely many parts. What is the size of
these parts? If it is zero the line would have no length, if it is
some non-zero finite size, however small, the segment would
have to be infinitely long.

This is another of Zeno’s paradoxes, rather less easy to handle than
the others. 

Read Galileo’s Paradox first.
Since we are considering dividing the segment not physically

but in thought, this is a paradox about the abstract geometrical
line. Each halving of a part of a finite line determines a shorter
interval, so that denumerably many halvings can determine a nest
of intervals which have only one point in common.

The number of points on a continuous line segment is non-
denumerable, that is, uncountably infinite (see note below). So
how can a continuous line segment be composed of uncountably
many points?

Because the line is finitely long, each point must have zero
length, since if there were infinitely many points of equal positive
length, however short, the whole line would be infinitely long. But
how can the line have a finite length if its constituent points each
have zero length? Intuitively the sum of many zeros must be zero,
and this is certainly true if they are finitely many, and even if they
are countably infinite. But there is no defined sum of uncountably
many lengths, whether they are positive or all zero: the sum of
uncountably many zeros is no more defined than is division by
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zero. So it doesn’t follow that the line has zero length. Indeed the
length of a segment must be independent of the number of points
in it, since there are continuum-many points in every segment –
a one-millimetre line has as many points as a one-metre line (see
Technical Note below). Thus even if uncountable sums were
defined they could not give us the lengths. 

So we can hold on to the idea that a finite line is composed of
uncountably many points of zero length by recognizing that it
would be a mistake to extend the definitions of finite and de-
numerable sums to non-denumerable sums. It would be a mistake
because to do so would prevent us from formulating a consistent
theory of measure – a consistent theory of length, areas and
volumes.

Nowadays this is handled mathematically by what is called
‘measure theory’, which deals with sets of points, ‘point sets’, rather
than individual points. And the halvings mentioned above are
really operations on point sets. An interval is a set, and when we
halve an interval we halve it into two sets. 

Technical Note: the Continuous Line

The real numbers (reals) in the half-open interval (0, 1], for
example, are all correlated one-to-one with the distinct points on
a finite continuous line. Each of these reals can be represented by
a non-terminating infinite fraction. Suppose that they are
expressed in binary notation – strings of ones and zeros – and that
each is encoded by a set of integers such that integer i belongs to
the set if and only if the ith digit in the binary expansion is 1. For
example, 0.10101 . . . 01 . . . will be encoded as the set of odd
numbers. Then the set of reals in (0, 1] is represented by the set of
all infinite subsets of positive integers. This is what you get if you
drop all the finite sets from the power set of the positive integers,
which is said to have ‘continuum-many’ members – dropping the
finite sets does not affect its cardinality (size).
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Above, we said that denumerably many successive halvings of
a line segment can determine nests of segments each with a single
point in common. Suppose the segment is one unit long. Then the
real number associated with a point, expressed as an infinite binary
fraction, is determined by the halvings in the following way. Each
time a segment is halved, if the point is in the left-hand segment
the next digit of the binary fraction associated with it is a ‘0’, if in
the right-hand segment, a ‘1’. If the point is itself the point at which
the segment was halved it is to be included in the left half. Thus
each denumerable sequence of segments obtained from such a
halving process associates a unique infinite binary fraction with
the unique point that belongs to every member of that sequence.
Likewise, it can be shown that each successive non-terminating
binary fraction determines a unique nest of intervals in which each
interval is a proper subset of its predecessor, so that their
intersection is a unique unit point set (because the lengths tend to
zero). So each of the uncountably many (non-terminating) infinite
permutations of ‘0’s and ‘1’s after ‘0.’ both determines and is
determined by one of the sequences of nested intervals. 

This again proves the non-denumerability of the line segment.
However, it is worth noting that most mathematicians would
regard the mathematical line and the set of real numbers not
merely as isomorphic but as the very same object.

The way the paradox was initially propounded may suggest
that repeated divisions yield shorter and shorter intervals until we
reach an interval which is indivisible because it is made up of a
single point. We can now see that this is a mistake. Each interval
in one of the nests described above is made up of continuum-many
points, but there is a single point, p, that belongs to them all. For
any point q distinct from p there is some interval in the nest
(infinitely many, in fact) that does not include q. And it should not
be imagined that the halving procedure generates a list of points,
since there are non-denumerably many of them and they cannot
all be enumerated. 
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Further Reading

*Adolf Grünbaum, ‘Zeno’s metrical paradox of extension’, chapter
3 of his Modern Science and Zeno’s Paradoxes, London, Allen
& Unwin, 1968, most of which is reprinted in Wesley C. Salmon,
Zeno’s Paradoxes, Indianapolis, Ind., Bobbs-Merrill, 1970.

Wesley C. Salmon, Space, Time and Motion, Enrico, California and
Belmont, California, Dickenson Publishing Co., Inc., 1975,
chapter 2, pp. 52–58.
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The Poison Hypothetical

While Arthur is travelling in a desert, Brian slips a fatal dose of
poison into his water keg. Later, Chris steals the water keg
before Arthur starts drinking from it. Arthur dies of thirst. Who
kills Arthur? 

This famous hypothetical is due to McLaughlin (1925–26). There
are four possible answers. 

(1) Brian. If Arthur had drunk the poisoned water, he would
certainly have caused the death. But a new intervening
cause broke the chain from poisoning to death, which
surely rules him out as the cause.

(2) Chris, who prevented Brian from causing Arthur’s 
death, helped Nature to kill Arthur through thirst. Mackie
(p. 46), for example, argues that the concrete event which
was the traveller’s death was his death from thirst, and
that was caused by the theft of the keg. Although, 
to assuage the doubts of lawyers about identifying Chris
as the killer, he distinguishes facts from events and allows
that the fact that he died was not caused by the theft.     

It is true that causing death normally involves short-
ening life, and Chris actually postpones the death.
However, if someone postpones a death, does that preclude
causing it? Suppose A is eating in a restaurant and B slips
poison into his food. A feels ill, and leaves the restaurant
for home. A few minutes later terrorists set off a bomb
which kills outright all those sitting near the seat A
occupied. B himself would have died immediately if he
had stayed. He dies from the poison next day. His death
has been postponed by B, but surely B has caused it.
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(3) Neither Brian nor Chris. Not Brian, because as observed
above in (1), Chris broke the causal chain from poisoning
to death. Nor Chris either, since, as Hart and Honoré claim
(p. 241), depriving Arthur of lethally poisoned water
cannot itself amount to killing. This is surely a powerful
point (though Honoré has since changed his mind about
it). If they intended to kill, no doubt they are both guilty
of attempted murder, but that is another matter.   

(4) Both. But if Brian didn’t kill Arthur, then it follows that
they didn’t both kill him, which rules out this fourth
possibility.

The competition, it seems, is between (2), Chris and not Brian,
and (3), neither of them. Given the contemporary controversy
about causation with its various competing views, it is not
surprising that there is disagreement here.

Further Reading

H. L. A. Hart and Tony Honoré, Causation in the Law, 2nd edn,
Oxford, Clarendon Press, 1985, pp. 239–41. 

J. L. Mackie, The Cement of the Universe, Oxford, Clarendon Press,
1980, pp. 44–46.
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The Prediction Paradox

If all events are governed by causal laws, then every event can
in principle be predicted. But if that is so, it will be possible to
falsify predictions about our own actions by opting not to do
something that was predicted. Then they wouldn’t be correct
predictions after all.

The conclusion you might be tempted to draw from this is that
causal determinism – the view that all events are subject to casual
laws – is false. But this would be a mistaken inference. (Cf.
Buridan’s Ass.) 

Predicting events which are under our control would be an
extraordinarily complex matter. Perhaps no one ever will predict
such an event and falsify it. However, it is enough that it would 
be possible to make such a prediction and falsify it: the mere 
possibility of a contradiction is enough for the argument. A con-
tradiction would be involved in predicting, for example, that I will
go on holiday to Venice next year and then refraining from doing
so. If I don’t go to Venice then I won’t have predicted correctly. 
But is self-prediction of this sort even possible? Maybe predicting 
a future action of mine on the basis of present conditions and
causal laws is beyond my intellectual capacity. Of course I may
predict that I will do so because I have already decided to go there,
but that is a different matter. We are talking about predicting 
on the basis of current physical conditions and physical causal
laws. That sort of prediction is certainly way beyond us at the
moment, despite our increasing knowledge of the human brain.
Without any reason to think such predictions would be humanly
possible, the paradox has little bite. It may be a necessary condition
for controlling our actions that we are not capable of making
predictions we could frustrate.



Note that the very different paradox of The Unexpected
Examination is sometimes called the ‘prediction paradox’.

Further Reading

Michael Levin, Metaphysics and the Mind–Body Problem, Oxford,
Clarendon Press, 1979, chapter 7, sections 6–7.

181

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Prediction Paradox



182

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Preface

Authors frequently write in their prefaces that there will
inevitably be errors in the body of the book – I have done so
myself in the preface to this book. If what they write is true,
there will be at least one false statement in the book; otherwise
the prefatorial claim is false. Either way they are committed to
a falsehood, and must be guilty of inconsistency. Yet the claim
in the preface seems a perfectly reasonable one to make.

So extensive is our experience of human fallibility that we have
very good reason to expect that no book which makes a large
number of statements will be totally free of error. The author does
not, of course, know which of the statements are false, and she may
have good reason to believe each of the statements in her book. In
any case she is committed to each of them. So the chances are that
she is already committed to at least one falsehood. If this is so, to
add the statement in the preface is to add a truth, and thereby
increase the number of truths she states. ‘He is always right’, goes
the Spanish proverb, ‘who suspects he is always making mistakes’.
Falsehood is unlikely to be avoided by omitting the preface. So 
we have a case where it is perfectly rational to commit oneself 
to each of a set of inconsistent beliefs, even though one knows
they are jointly inconsistent and so cannot all be true. What the
paradox shows is that we need to give up the claim that it is always
irrational to believe statements that are mutually inconsistent.

A self-referential version of this paradox gives it an affinity to
The Liar. Suppose the preface contains the sentence ‘At least one
of the statements in the book is false’, where it is understood that
the preface itself is included in the book. If there is a false statement
elsewhere in the book, this concession would, it seems, be true.



But if all the other statements are true, we have a problem. In that
case, if the preface statement is false, all the book’s statements,
including this one, are true; but then it can only be true by being
false. So if all the other statements are true, this one is true if and
only if it is false – which is a contradiction. Compare Moore’s
negative answer when Russell asked him whether he always told
the truth: if all Moore’s other utterances were true his reply was
true if and only if false. (Russell must have been joking when he
said that he thought this was the only falsehood Moore had ever
told.) 

The self-referential version of the preface paradox is very
similar in form to the Pauline version of the liar: Epimenides the
Cretan says, ‘The Cretans are always liars.’ (Paul’s Epistle to Titus,
1: 12). Actually many people are liars, but that doesn’t mean they
utter nothing but falsehoods. We can sharpen the example by
rewriting the critical sentence as ‘Cretans utter nothing but
falsehoods.’ It would apparently be false if some other Cretan utters
a truth; if no other Cretan utters a truth, it is false if true, and true
if false – a contradiction again. We can treat this in the same way
as we treat liar sentences in the section on The Liar above (solution
3). When all other Cretan utterances are false, Epimenides’ sentence
does not express a true statement because it does not express a
statement (true or false) at all. So one could also say that, when all
the other declarative sentences in the book express truths, the
prefatorial sentence does not express a truth or a falsehood. 

Two problems now arise: (1) The prefatorial sentence does not
refer just to the tokens in a single copy of the book but to all the
sentences in all the copies, in other words to certain sentence types
rather than specific tokens. But perhaps this can be circumvented
by construing statement as applying to each of a set of corres-
ponding tokens in the different copies of the book. 

(2) The self-referential sentence of the preface cannot express
a truth. Can a sentence which cannot express a truth express a
falsehood? If it can, then, if we did not know whether it was true,
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we should not know whether it expressed a statement. Some
philosophers have subscribed to a principle of significant negation
according to which any sentence which can express a truth must
also be capable of expressing a falsehood if negated. In which case
we would have to say that the sentences in question do not express
a statement, whatever the truth or falsity of the other statements
in the book (or uttered by Cretans). But perhaps these examples
show that the principle of significant negation is not correct.

The paradox in its original form is due to D. C. Makinson (1965)
and in its strengthened version to Arthur Prior (1971).

Compare The Lottery.

Further Reading

J. L. Mackie, Truth, Probability and Paradox, Oxford, Clarendon
Press, 1971, chapter 6.

D. C. Makinson, ‘The paradox of the preface’, Analysis, 1965, vol.
26.

A. N. Prior, Objects of Thought, Oxford, Clarendon Press, 1971,
chapter 6.
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The Paradox of Preference

If offered a choice between flying a glider accompanied by an
experienced pilot and driving a Grand Prix car around a racing
track, you would choose to fly the glider; but, if offered a choice
between driving the racing car and flying a glider solo, you
would choose to drive the car. If you are rational, then, given
that you prefer the accompanied glider flight to the car 
drive and the drive to flying solo, you should choose to fly
accompanied in preference to flying solo. To choose to fly solo
in preference to flying accompanied would therefore be
irrational.

But it is not irrational, when offered a choice between flying
accompanied and flying solo, to choose to fly solo because you
do not want to appear cowardly.

So it is both irrational and not irrational to choose the solo
over the accompanied flight.

This is a problem for rational decision theory (compare Newcomb’s
Problem, the Prisoner’s Dilemma), which is important for eco-
nomic theory. Rationality seems to require that our preferences be
transitive; that is, if we prefer a to b and b to c, we prefer a to c.
We can express this symbolically as: if Pab and Pbc, then Pac. If
preference is transitive then it is like height: if a is taller than b and
b is taller than c, then a is taller than c. Transitivity is built into
the very meaning of ‘taller than’. Despite what has been claimed,
this cannot be the case with preference, though, since there is no
logical contradiction involved in the example above. But does
rationality nevertheless require that preference be transitive?

One argument used to support an affirmative answer is the
‘money pump’ argument. Suppose you have a ticket which entitles



you to fly a glider solo. Since you prefer the car drive to the solo
flight, I should be able to give you a ticket for the drive in return
for your ticket and some money. After that I should be able to give
you a ticket for an accompanied flight in return for your ticket to
drive the car and some money. But if your preferences are not
transitive, and you would choose the solo flight in preference to
the accompanied one, I can give you back the ticket for the solo
flight in return for your ticket for the accompanied one and some
money. If I keep doing this, I get money from you indefinitely, and,
even if it has cost me money to acquire the tickets for the
accompanied flight and the car drive in the first place, their cost
will soon be covered.

It might be more accurate to say that if offered a choice between
accompanied flight and car drive you would choose the accom-
panied flight; as between car drive and solo flight you would choose
the car drive, but as between accompanied and solo flights
you would choose the solo flight. If the italicized restrictions are
inserted, then they have to be the same restrictions if transitivity
is to be preserved, and the symbolic formulation in the first
paragraph above was not understood as incorporating these
restrictions. We can make them explicit by means of something
like: if Paab and Pbbc, then Paac, where ‘Pxxz’ stands for a three-
place predicate, ‘S prefers x when offered a choice between x and
y’, which is not the same as the predicate for which ‘Pxy’ (‘S prefers
x to y’) stands in the simpler formulation in the first paragraph.

But even if your preferences are restricted in the way described,
it looks as if you are still vulnerable to the money pump.

Yet would a rational person really be that vulnerable? Once the
subject finds that she is back with the ticket for the solo flight, but
with a lighter purse, she is not likely to continue to trade. And if
she has complete information from the start, and knows about her
preferences and their sensitivity to the image she wants to project,
then she is not going to let herself be cheated of her money if she
is rational. 
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If this is right, then it is possible to have intransitive preferences
without being irrational, and the paradox is resolved.

See also Quinn’s Paradox.

Further Reading

P. Anand, Foundations of Rational Choice under Risk, Oxford,
Oxford University Press, 1993, chapter 4.

Sven Ove Hansson and Till Grüne-Yanoff, ‘Preferences’, The
Stanford Encyclopedia of Philosophy (Fall 2011 edition), ed.
Edward N. Zalta, http://plato.stanford.edu/archives/fall2011/
entries/preferences/.
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Prisoner’s Dilemma

We have been arrested for a serious offence and put in separate
cells, and we both know that our fate will be determined in the
following way:

If one confesses while the other stays silent, the confessor
goes free and the other is sentenced to ten years.

If both confess we both get seven years.

If both stay silent, we both get a year for a lesser offence.

Assume that we both want to minimize our sentences and
that we are both rational. Then I will confess. For, if you confess
then I had better do so since otherwise I get ten years, and if
you stay silent I will go free if I confess. So whatever you do 
I am better off confessing. Since, given the assumption of
rationality, you will decide in the same way, we will both confess
and get seven years each. Yet we would both have been better
off if we had stayed silent and only got a year each.

The dilemma is set out in the following matrix:

Second and third best for you are the same as for me, whereas
the best outcome for me is the worst for you, and vice versa.

You confess You stay silent

I confess 7 years each 0 for me, 10 years for you

[3rd for me] [Best for me]

I stay silent 10 years for me, 0 for you 1 year each 

[Worst for me] [2nd for me]



Since I am rational I can see that if we both stay silent the out-
come will be better for both of us; and since you are rational so can
you. In that case won’t we both decide the same way and both opt
for silence? No, because if I think you are going to stay silent I can
do even better by confessing. In any case, since you can too, I have
no reason to think you won’t confess after all. So we’ll both confess.

Under the assumptions, it is impossible to achieve the full
benefits of cooperation unless both parties take a foolish risk. If
that seems paradoxical, we just have to swallow it. The full benefits
of cooperation require mutual agreement and mutual assurance.
As things stand, even if we had come to an agreement before being
separated I cannot trust you to keep it.

This may seem an artificial case, of a sort unlikely to arise
much in the real world. But this is not so. For example, it has the
same structure as the following very realistic sort of case. Suppose
two sides make a disarmament agreement which it is only too easy
for each to evade by secretly retaining their weapons:

From the point of view of realpolitik we will both break the
agreement and risk war, since whatever one side does the other is
better off if it reneges on the agreement. Yet it would be better for
both of us if there were no war. 

In any case there are many circumstances calling for multi-
party cooperation, for example, reining in the proliferation of
nuclear weapons, using public transport rather than private cars,
or limiting wage demands.
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Prisoner’s Dilemma

They break the They disarm

agreement

We break the Risk of war They are at our mercy

agreement [3rd for us] [Best for us]

We disarm We are at their mercy No war

[Worst for us] [2nd for us]



How can we secure the mutual agreement and assurance
required to achieve cooperation? To some extent this is secured by
law: our system of property, for example, is both created and
supported by law, with criminal sanctions against those who steal
and civil compensation for those who renege on contracts. But 
our legal system would not function unless its officials accepted
its norms and were disposed to enforce it impartially. And without
general public support law cannot be enforced without terror. 
The best guarantee for cooperative enterprises is to inculcate and
develop moral attitudes generally, to build on the degree of innate
altruism to be found in most people, and to foster social pressures 
to keep agreements and cooperate fairly. Law can then function 
as a backup. (But that is not to say that this gives a solution to
Prisoner’s Dilemma within its own terms of individualistic rational
self-interest.)

In real life, decisions about cooperation are not always 
one-off matters, but recur. If there are repeated choices then what
you choose each time can be expected to affect the choice of the
other party. If I risk sacrificing my immediate self-interest by
cooperating, then you are more likely to trust me and take the same
risk next time, and these decisions will be mutually reinforcing. On
the other hand, if I find you don’t act cooperatively I will not do
so in future, since I cannot then reap the benefits of cooperation
and I lay myself open to exploitation. This ‘tit for tat’ pattern of
responses turns out to be the most prudent course of action in 
what is called ‘iterated Prisoner’s Dilemma’, a claim which has
been verified empirically by computer simulations. There is reason 
to think that it is part of our evolutionary legacy to be disposed to
reciprocate in this way – as the human inclinations to express
gratitude and seek revenge testify: we are naturally inclined to
repay favours and to retaliate against those who harm us.

In the case where both parties know the other will behave
rationally, iterated Prisoner’s Dilemma gives rise to an additional
paradox. Neither party can act cooperatively in the hope of
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inducing cooperation from the other because a backward induction
shows that the dominant choice of defection will be made every
time. There will be no ‘tit for tat’ to be expected when the last
choice is made, so it will be made selfishly. But then the same will
apply to the choice before that, and so on backwards to the first
choice. (For another example of this type of argument see The
Unexpected Examination.) However, for the backward induction
to get started, the parties need to be sure they will recognize the
last choice when they come to it, and that is not commonly how
things are in real life. Nor, indeed, in real life are we generally
confident that others will always act rationally.

Prisoner’s Dilemma has been regarded as a Newcomb Problem.
Just as two-boxers will argue that I am better off if I take both
boxes, whether or not the opaque box has money in it, so I am
better off if I confess, whether or not the other prisoner does. In
both cases one option is said to ‘dominate’ the other.

Prisoner’s Dilemma was devised around 1950 by a social
psychologist and an economist to test a theorem in game theory. 

See also Newcomb’s Problem.

Further Reading

*Richmond Campbell and Lanning Sowden, Paradoxes of
Rationality and Cooperation, Vancouver, the University of
British Columbia Press, 1985. An anthology of papers which
shows the complexity and range of this problem and of the
related Newcomb’s Problem.

D. Parfit, Reasons and Persons, Oxford, Clarendon Press, 1984,
chapters 2–4.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, pp. 82–8. 
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The Prosecutor’s Fallacy

Sally Clark was convicted of killing two of her babies. The
prosecution expert claimed that the chance she was innocent
was one in 73 million, got by squaring the chance of one baby
dying without known physical cause. But the chance of her guilt
was well below the threshold for proof beyond reasonable
doubt. How can this be so?

It was claimed that, since the chance of one baby dying of sudden
infant death syndrome (SIDS) is 1 in 8,544, the chance of two such
deaths in the same family was 1 in 73 million. This was arrived at
by squaring 8,544 (just as, if a fair coin is tossed twice, the chance
of its landing Heads twice is 0.5 � 0.5 = 0.25). However, this
assumes that the two deaths are independent. But once one baby
has died of SIDS, the chance of a second is not 1 in 8,544 but much
less, 1 in 200. So the chance of two unexplained dying in the same
family would not be 1 in 73 million but 1 in (8,544 � 200), i.e. 
1 in 1.7 million. This still looks very incriminating, of course. 

That is before the fallacy is committed. Given that we have
two unexplained baby deaths in the same family, we need to
consider the competing explanations: SIDS and murder. The
chance of two murders of babies in the same family is 1 in 2.2
billion. Even allowing for the additional evidence of haemorrhages
in the brains and eyes which are five times more likely in murder
than in SIDS, we get a chance of murder in this case of around 
5 in 1299 (about 1 in 260). Rather than her chance of innocence
being 1 in 73 million, as claimed in court, it was actually nearer
259 in 260 – a probability of innocence of 99.6%! (Even if the 
two deaths were independent and 1 in 73 million was correct, with
these figures the probability of her innocence given the evidence,
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including blood in eyes multiplier, is 86%!) The court considered
the probability of two baby deaths in one family given that the
defendant was innocent instead of the probability of innocence
given that a mother had two dead babies. 

What in general is going wrong here is that the low probability
of the evidence makes it seem as if the probability of guilt is very
high. But that appearance arises from the fallacy of confusing 
two conditional probabilities. What we want is the probability of
the hypothesis of innocence given the evidence, but what we have
is the probability of the evidence given the hypothesis of inno-
cence. This is what generates the paradox. What seems a very high
probability of guilt can turn out to be a low one just because at
one and the same time the probability of the evidence given
innocence can be low and the probability of innocence given the
evidence can be high. 

A similar mistake was made in the case of the Birmingham 
Six (found guilty of bombing two public house and killing 21
people). Swabs from the hands of two them showed they had nitro-
glycerine on them, from which it was concluded that it was 
99% certain they had handled explosives. The men claimed they
had been playing cards and they could have caused the swab
results. It was later shown that even soap could cause such results.
The forensic results were accepted as discredited in the appeal in
1991, which released the Six.

Detecting the fallacy is evidently of great importance, since it
has led to serious miscarriages of justice.

Further Reading

Bernard Robertson and G. A. Vignaux, Interpreting Evidence,
Chichester, Wiley, 1995, esp. pp. 91–3.

Royal Society of Statistics on Sally Clark case: http://www.
sallyclark.org.uk/RSS.html

The Prosecutor’s Fallacy
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The Paradox of the Question

Is the question, ‘What is one of the most useful pairs of question
and answer?’, together with its answer, one of the most useful
question and answer pairs? Suppose it is given as the question
part of its own answer. Then it is an incorrect answer because
it is so uninformative. But since all the correct answers will be
highly useful, it is a highly useful question to ask after all. So
it is correct to give it as part of its own answer only if it isn’t
correct; and, if it isn’t correct to do so, it is.

There are some questions whose answers would be of great value
to us if we had them. For example, How can nuclear war be avoided?
What is the solution to world poverty? How can democracy be
safeguarded from erosion? (We are to imagine that we may put our
questions to an angel who is able to answer them.) Such questions
might appear in correct answers to the question

(Q) What is an example of a question and answer where the
question is one of the best we could ask?

But isn’t this question itself one of the best we could ask? It has
correct answers like What is the solution to world poverty? together
with a statement of the solution (assuming, as we shall for the sake
of argument, that there is one). So let us ask whether the answer

(A) That question Q and this answer A.

is a correct answer to Q. If it is a correct answer, its uselessness
makes it an incorrect answer to Q. But if it is incorrect, all the
correct answers will be so useful that this answer will be correct
too. In other words, it is a correct answer if and only if it is not, a
contradiction which makes the very question Q paradoxical.



It gives further support to the approach in terms of token
sentences in our treatment of The Liar above to note that it can be
used to handle this paradox too. If ‘questions’ in Q means ‘token
questions’ and ‘that question’ in the answer refers back to the token
Q, then the answer is straightforwardly false, since its answer 
fails to be highly informative. (In general, any token Q′ equiform
to Q which gets an answer whose first member is Q′ will have
received a false answer.) Other tokens equiform to Q may elicit
more informative answers, as in the world poverty example in the
previous paragraph. A more complex example would be

(Q′) What is an example of a question and answer where the
question is one of the best we could ask? 

Answer: 

Q′, (Q′, (‘What is the solution to world poverty?’, [the solution to
world poverty])).

The phrase in square brackets is schematic. If we could replace
it by the actual answer, it would add considerably to the value of
this book.

Whether an equiform token of the type in question is one 
of the best questions depends on what answer it gets (if any): some
are among the best questions, others are not. The derivation of a
contradiction has been blocked and the paradox has disappeared.

Perhaps it will be objected that this treatment is a cheat: wasn’t
the paradox about question types, not tokens? Doesn’t it ask for a
question type whose tokens induce highly informative answers?
But, if it is construed in this way, the answer <Q, this answer> 
is, once again, straightforwardly false, since not all tokens of Q 
get informative answers, as this particular answer shows. So the
paradox has not reappeared.

This paradox is a recent one, introduced in the pages of the
journal Analysis in 1997. In its original form it asked for the best
question to ask, together with its answer. For a non-paradoxical
answer to this one, see the Further Reading below.
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Further Reading 

*Alexander D. Scott and Michael Scott, ‘The paradox of the
question’, Analysis, 1999, vol. 59.

*Achille Varzi,  ‘The best question’, Journal of Philosophical Logic,
2001, vol. 30.
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Quinn’s Paradox 

You are offered money to accept a mildly painful stimulus, and
more money each time the stimulus is increased. There is a
degree of pain from the stimulus so great no amount of money
would induce you to accept it. But each single increment 
is undetectable. So there is no point at which it is rational for
you to call a halt: you will always find it advantageous to accept
the next degree of pain for more money, since it will be
indistinguishable from the last.

Although there is a degree of agony that you would refuse to suffer
no matter how much you were paid to do so, let us suppose that
there is a tolerable range of pain that you would probably be
prepared to accept for attractive enough payments. But it is surely
irrational to stop at any point: if you were prepared to accept money
for the last increment, you should be prepared to accept money for
the next, since it will not increase your felt pain. But then you
would never stop, and the pain would grow inordinately!

Your preferences in this case are not transitive. (See The
Paradox of Preference.) For the money makes you prefer degree 1
to degree 0, 2 to 1 and so on, though not, say, 1,000 to 1. But the
paradox is not resolved by admitting the rationality of intransitive
preferences. For we still haven’t found a point at which it is rational
to stop.

In addition to the intensity of the pain there is its cumulative
effect. For the sake of simplicity, we shall ignore the cumulative
effect and regard the threshold of tolerance as a function solely 
of the pain’s intensity. The cumulative effect could probably be
eliminated by having a period of rest between each episode of pain.

Doubtless you will stop accepting the money at some point. If



you go on long enough and reach a point where you wish you had
stopped earlier, you will certainly stop then. But, if you do stop
before that point is reached, it seems irrational to forgo extra
money by refusing an increase in the stimulus which does not
noticeably increase your pain.

Since it is irrational to continue to a point where the extra
money you have accepted is not worth the extra pain, it may be
that the most rational course would be to decide to stop one
increment after the point where you first think that detectably
greater pain is not worth the money, and resist the temptation to
proceed further, even though that too seems irrational. Perhaps we
have to accept that there is no fully rational solution to this
problem, and that we have to live with the paradox. Alternatively,
we need to revise our notion of rational choice to accommodate
this sort of case, which is the moral drawn by Warren Quinn, who
devised the problem. 

This paradox is not simply a theoretical academic puzzle. It
arises in everyday life. One more drink will not significantly affect
our health, but many will; one more minute in bed will not make
us significantly later for work, but many minutes will. 

Compare The Heap and The Indy Paradox.

Further Reading

Warren S. Quinn, ‘The puzzle of the self-torturer’, Philosophical
Studies, 1990, vol. 59.

198

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Quinn’s Paradox



199

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

The Racecourse 
(Dichotomy, The Runner)

[Progressive form] Achilles cannot reach the end of the
racecourse, since he would have to traverse infinitely many
intervals. He would have to reach the half-way point, and then
successively reach the half-way point of each distance
remaining, traversing an infinite sequence of intervals.

[Regressive form] Before he can get to the end of the course
Achilles must first cover the first half, and before he does that
he must cover the first half of that, i.e. the first quarter, and
before that the first eighth, and so on. He cannot get anywhere
beyond the start without first having traversed infinitely many
intervals.

The progressive version of the Racecourse is essentially the same
as Achilles and the Tortoise. Indeed, it is slightly simpler, in that,
instead of having to catch a moving tortoise, Achilles has only to
reach the stationary end of the course; but that makes no essential
difference to the paradox or its resolution. Achilles can traverse the
infinitely many intervals in a finite time because each successive
interval is half as long as the last. The sum of these intervals is the
sum of the infinite series

1⁄2 + 1⁄4 + 1⁄8 + 1⁄16 + . . . + 1⁄2n + 1⁄2n +1 + . . . ,

which is 1. (This is briefly explained in the entry on Achilles and
the Tortoise.) 

The regressive version introduces a further paradoxical feature.
Achilles seems to be prevented from even starting to run, since he
cannot move beyond the start without having first traversed



infinitely many intervals. And in any case there is no first interval
for him to run. The sequence of intervals he needs to run is given
by taking the terms in the series displayed above in the reverse
order: 

. . . , 1⁄2n, 1⁄2n –1, . . . , 1⁄16, 1⁄8, 1⁄4, 1⁄2.

But if Achilles can get to the end of the course in the pro-
gressive version above, he can get to any point after the start by
traversing an infinite sequence of intervals. For example, he can
get 1⁄64 of the way by traversing intervals which can be represented
in a series which sums to 1⁄64. However short the distance from the
start, he will have traversed infinitely many of these intervals, but
they will always have a sum. It is true that in the sequence 
of ever-increasing intervals there is no first interval. But all this
means is that we should avoid analysing his run in terms of a
sequence with no first term. There are plenty of other ways of
analysing it so that the question makes sense, either using finite
sequences or infinite sequences with a beginning. 

Further Reading

Wesley C. Salmon, Space, Time and Motion, Enrico, California and
Belmont, California, Dickenson Publishing Co., Inc., 1975,
chapter 2.
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The Rakehell

It is better to feel shame about something shabby you have
done than to act shamelessly. But if you feel good about feeling
ashamed, that detracts from your feeling of shame.

A man creeps back home after an adulterous assignation, ‘feeling a
tremendous rakehell, and not liking myself much for it, and feeling
rather a good chap for not liking myself much for it, and not liking
myself at all for feeling rather a good chap’ (Kingsley Amis, That
Uncertain Feeling, London, Victor Gollancz, 1955). (‘Rakehell’ is 
an archaic term for a debauchee or rake.) The paradox has been
extracted from Amis’s novel by Richard Moran (see Further Reading
below).

If you feel appropriate shame you can reflect on it later and feel
good that you were not shameless; and someone else can approve
of your feeling. So why can’t you feel good about yourself at the
time without undermining the original feeling? Because you are
now thinking of your feeling of shame rather than simply of your
disreputable act, and the discomfort you feel from your shame is
mitigated by your feeling of complacency. That is why Amis’s
adulterer ends up ‘not liking [himself] at all for feeling rather a
good chap’, though he’d better not feel good about that!

The phenomenon is not peculiar to moral feelings. To the
extent that attention to the object of a feeling is necessary to it,
any introspection of that feeling is likely to weaken it. If I am
apprehensive about a forthcoming interview, then reflection on
my feelings can help to take my mind off the interview. If a woman
puzzles about why she feels so jealous of a colleague’s success,
she ceases to concentrate exclusively on that success and the
jealous feeling will tend to weaken. This is why it helps to talk



about your feelings if you suffer disappointment or grief, whereas
people who are overjoyed from success or in the throes of love are
not usually keen to analyse their feelings. 

And it is not just feelings of which all this is true. If I start
monitoring the attention that I pay when I am driving, I am no
longer attending fully to the road and its motoring hazards. But 
I can reflect later on my level of attention, or someone else can
monitor it at the time, without affecting that attention.

Further Reading

Richard Moran, ‘Impersonality, character, and moral expressivism’,
Journal of Philosophy, 1993, vol. 90.
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The Paradox of the Ravens
(Confirmation)

(R) ‘All ravens are black’ is logically equivalent to (R–) ‘Nothing
which is not black is a raven’. A white pen confirms (R–), but
surely it does not confirm (R), although (R) says the same as
(R–).

To say that (R) is logically equivalent to (R–) is to say that in every
possible situation in which one is true so is the other. (R–), which
is known as the ‘contrapositive’ of (R), has the same content as 
(R), at least in all respects which are relevant here. A generalization
like (R) ‘All ravens are black’ is supported by finding confirming
instances of black ravens. And accordingly it would seem that (R–)
‘Nothing which is not black is a raven’ is supported by confirming
instances of things which are neither black nor ravens, like white
pens. But a white pen does not seem to support ‘All ravens are
black’. Most of the things we see are neither ravens nor black. Does
each of them really add to our support for this generalization?

One response, that of Carl Hempel who devised the paradox
(first published in Mind in 1945), is to insist that a white pen does
confirm (R) in that it gives it some support: ‘confirmation’, as the
term is used in confirmation theory, is not understood in terms 
of conclusive, or even strong, evidence, it is merely a matter of
support. The trouble is, it seems, that a white pen should confirm
(R–) to the same extent as it confirms (R), and at first sight it does
not. But consider how best to find support for (R–). Looking at
things which are not black will not get you very far, since they are
so numerous and varied. Compare ‘Nothing which doesn’t have
two legs is a man’. You could look at thousands of things without
two legs without coming across a one-legged man, despite the fact
that there are men with one leg. The best way to confirm (R–) would



be to look for ravens and see what colour they were, since there
are far fewer ravens than non-ravens.

So the assumption that the best way to confirm generalizations
of the form ‘All As are B’ is always to find confirming instances,
instances of As which are B, is untenable. This is particularly
obvious in a case like ‘All ravens live outside Rutland’. Far from
confirming this statement, the sighting of ravens outside Rutland,
particularly in adjoining counties with similar climate and
environs, would tend to disconfirm it. Unless we find some special
reason for excluding them from Rutland, the more pervasive their
presence in surrounding areas the less likely they are to be absent
from that tiny English county. The unreliability of enumerative
induction was dramatically illustrated by Bertrand Russell with 
his example of the chicken whose neck is wrung. We can imagine
the chicken fed day after day by the farmer. As the days go by the
chicken’s expectation that it will be fed every day grows firmer –
until one day the farmer comes and wrings its neck.

In short, confirmation is not a simple matter of enumerative
induction, that is, the mere accumulation of confirming instances.
In particular, we need to take account of other background know-
ledge. In the case of ravens’ colour, this background knowledge 
will include the fact that birds’ plumage serves to protect their
species by camouflaging them – otherwise they would have been
killed off in the struggle for survival. So it is more important to look
for ravens in different environments – temperate, tropical, snowy
– than to accumulate more evidence about ravens in our own
environment. If we just look at ravens in our own part of the world,
then for all we know the species might be dimorphous and come
in two different colours: black in temperate regions, white in polar
ones. And, once relevant background knowledge is taken into
account, any apparent difference in confirmation between (R) and
its contrapositive will tend to disappear.

See also Grue. 
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Further Reading 

Carl Hempel, Aspects of Scientific Explanation and Other Essays
in the Philosophy of Science, New York, the Free Press, [1945]
1965.

Bertrand Russell, Problems of Philosophy, Oxford, Oxford
University Press, [1912] 1959. The chicken example appears in
chapter 6, p. 35.

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, pp. 95–8.

Richard Swinburne, An Introduction to Confirmation Theory,
London, Methuen, 1973.
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The Red Taxi Paradox

While Mrs Smith is driving at night a taxi comes towards her
and she has to swerve to avoid it. Her legs are broken as a result
of hitting a parked car. The town has only two taxi companies,
the Red Company with red cabs and the Green Company with
green cabs. 60% of the taxis are red. Mrs. Smith saw that 
she was hit by a taxi but not which colour it was. She sues the 
Red company. We assume the two companies have equally
competent drivers, and that on the evening in question the
journeys of both red and green taxis are distributed evenly
through the city and the 60/40 proportion applies.

In order to win, the claimant must establish the guilt of the
defendant on the balance of probability. But although 60%
satisfies this criterion, it is doubtful that she should succeed in
this case (and in Anglo-American law would not succeed).

The hypothetical is inspired by the case of Smith v. Rapid Transit,
Inc. Mass. (1945). Betty Smith was driving at night when a bus
forced her to swerve and hit a parked car. She sued Rapid Transit,
Inc. for damages for the injury it caused her. The bus didn’t stop
and, while trying to avoid the collision, she saw only that it was a
bus. Rapid Transit was the only company licensed to operate on
that street. But it was held that there was no ‘direct’ evidence that
the bus belonged to that company, and Mrs Smith lost her case.  

The problem involved is more clearly illustrated by the
hypothetical. Is this like the case where I have one lottery ticket out
of 1,000? Arguably I don’t know that I will lose, though I know it
is 99.9% probable that I will. Similarly the jury don’t know the
taxi was red. But then all they need to know is that it is more likely
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than not that the Red Company is at fault, and it seems they know
it is 60% probable. So what is missing in Red Taxi for those who
doubt Mrs. Smith should succeed? Thomson claims that what is
needed is not statistical but ‘individualized’ evidence that the taxi
is red, evidence which requires a causal connection. There is no
evidence that causally relates the colour of the taxi to the evidence
Mrs Smith is able to present, and it would be a matter of luck for
the claimant that it was red. It would have been different if she had
seen the colour, say, or if the taxi had grazed her car and left a red
patch on it.

Other considerations also count against awarding damages to
Mrs Smith. The jury may not fix their subjective probability of its
ownership by the Red Company simply according to the 60%
proportion. They may think the claimant would have had better
evidence in the circumstances.

If the Red Company is held liable in this case, it should in
consistency be held liable in similar cases. This is surely unfair 
to the defendants, who would probably only be at fault in about
60% of the cases. Admittedly companies will insure against such
claims, but the Red Company’s premiums are likely to be higher
than the Green Company’s in these circumstances, and that is
unfair.

If Green Company is never held liable in such cases but the 
Red Company is, the Green Company would be less concerned to
ensure their men drove carefully, so that there would be more
traffic incidents involving taxis (as Richard Posner argues). But
this is a consequentialist side-effect.

More importantly, tort law seeks corrective justice: one of 
its main functions is to compensate for harm, and it is unfair if
claimants never get compensation in such cases. One solution
would be to award damages proportionately, so that the claimant
gets 60% from the Red Company and 40% from the Green. Indeed,
the proportions reflect the relative risk to which the companies
have exposed the public. 

The Red Taxi Paradox
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Further Reading

Judith Jarvis Thomson, ‘Liability and individualized evidence’, 
in William Parent, ed., Rights, Restitution, and Risk, Cambridge
Mass. and London, Harvard University Press, 1986.

See also pp. 1378–83 of Charles Nesson, ‘The evidence or the
event? On judicial proof and the acceptability of verdicts,’
Harvard Law Review, 1985, vol. 98.

208

The Red Taxi Paradox

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34



209

1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Richard’s Paradox 

The set of real numbers definable in a finite number of words
is denumerable. But then we can describe in finitely many words
another real number formed from an enumeration of the
members of this set. So there is a real number that is defined
in the enumeration if and only if it isn’t.

This paradox was published by Jules Richard in 1905.
A set is denumerable if and only if its members can be paired

off one-to-one with the positive integers – for an explanation see
Galileo’s Paradox.

The finitely definable reals (decimal fractions) are enumerable,
that is, they can be ordered so that there is a first one, a second, a
third, . . . , and in general after each number there is a next. Their
definitions can, for example, be grouped according to the number
of words used, in ascending order, and ordered alphabetically
within each group. Then, in terms of the enumeration of the num-
bers defined, it is possible to define another real number which is
not already included, by means of a procedure due to Cantor which
is known as ‘diagonalization’. The new number is defined by saying
that its nth digit differs from the nth digit of the nth number 
by replacing it with the next digit up, or by ‘0’ if it is ‘9’. So if, for
example, the 23rd digit of the 23rd number in the enumeration 
is ‘7’ then it is replaced by ‘8’. Since this number differs from each
of the numbers in the enumeration at one decimal place, it must
be distinct from each of them. 

Poincaré (1854–1912), one of the pioneer intuitionists, resolved
Richard’s paradox by means of his ‘vicious circle principle’, which
he thought solved similar paradoxes too, and which came to be
espoused by Bertrand Russell. The principle does not allow you to



define a totality in terms of itself. The total definable reals cannot
therefore include a number defined in terms of that total, and
paradox is avoided.

The vicious circle principle has not been generally accepted,
however. Gödel pointed out that in classical mathematics there are
real numbers definable only in terms of all the real numbers, and,
since Gödel thought of the totality of reals as existing indepen-
dently of us, he saw nothing wrong with such definitions. The
totalities are already there to be referred to, so to speak. 

If real numbers existed only as human constructions, then
there could be no totality which included a member which already
presupposed the existence of that totality, since then we would
have to have constructed it before we could construct it! We 
can, however, define the new number and form another total,
which includes all the numbers in the original enumeration and the
new number formed by diagonalization. Finitely definable real can
then be treated as an ‘indefinitely extensible’ notion rather than
one which is determinate and fixed from the start. (Compare
Dummett’s approach to Russell’s Paradox.)

It was thinking about Richard’s paradox that actually led Gödel
to his celebrated incompleteness theorem (see the final paragraph
of the entry on The Liar), via realizing that truth could not be
defined in arithmetic. 

See also Berry’s Paradox.

Further Reading

*Peter Clark, ‘Poincaré, Richard’s paradox and indefinite
extensibility’, Proceedings of the Philosophy of Science
Association, 1994, vol. 2.
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Russell’s Paradox

Most of the sets (classes) you are likely to think of will not be
members of themselves: the set of whole numbers is not a whole
number, the set of nations is not a nation and the set of
Frenchwomen is not a Frenchwoman. But the set of everything
which is not a Frenchwoman is a member of itself, since it is
not a Frenchwoman; so is the set of sets, since it is a set.
However, the set of those sets which are not members of
themselves is both self-membered and not self-membered.

A set or class is a collection of elements. Those elements belong to
the set and are known as its members, and those members may
themselves be sets. Clearly the set of Frenchwomen is not a member
of itself: what determines this is whether or not the set has its
defining property, the property of being a Frenchwoman. The set
of sets, on the other hand, does seem to be a member of itself, since
it is a set. 

Now is the set of the non-self-membered sets – call it R – a
member of itself? It cannot belong to R, since then it would not be
non-self-membered. But since it does not belong to itself it must
belong to the set of non-self-membered sets, R. So it both belongs
to R and does not belong to R. Contradiction.

What should determine whether R is a member of itself or not
is whether R has its own defining property, which is a matter of
whether it is a member of itself. So there would be no independent
ground for its (non-)self-membership. And, although the set of 
the self-membered sets doesn’t generate a contradiction in the
same way, it is equally ungrounded; whether it belongs to itself
depends on whether it belongs to itself. All we can do is put the
same question again – ad infinitum: the set is ungrounded, because
there is no independent factor to determine its status.



So there can be no such sets. But we can’t stop there, since it
now becomes problematic what a set is, if the unqualified compre-
hension principle, according to which every predicate determines
a set (such and such a set consists of those things of which ‘F ’ 
may be predicated), has to be rejected. And for Frege (1848–1925),
who was trying to provide logical foundations for arithmetic, the
discovery of the paradox was quite traumatic. ‘What is in question
is not just my particular way of establishing arithmetic’, he wrote
in a letter to Russell, ‘but whether arithmetic can possibly be given
a logical foundation at all’.

The Cumulative Hierarchy of Sets

Bertrand Russell (1872–1970) discovered the paradox in 1901,
originally formulating it in terms of predicates rather than sets. He
struggled hard for several years to find a way of rebuilding the
foundations of mathematics free of contradiction, and eventually
settled for a complicated ‘theory of types’. But a more elegant and
natural approach was incorporated in an axiom system by Ernst
Zermelo, who had independently discovered Russell’s paradox. It
was subsequently refined by Abraham Fraenkel and called ZF, 
and is today the most popular form of axiomatic set theory. In 
effect it axiomatizes what is known as the ‘cumulative hierarchy’
or ‘iterative conception’ of sets. We can gain some understanding
of this conception without having to go into what an axiomatic set
theory is or into the details of the axioms.

Let an individual be anything which is not a set – a person, a
plate, a city, a dog, and so on. Stage 0 sets are all the possible sets
of individuals. They will include the set of all individuals, probably
an infinite set, and all its subsets, including the null set. (The null
set is the empty set, the set with no members. See the entry on
Cantor’s Paradox for further explanation.) To qualify as a member
of a Stage 1 set an element must be either an individual or a Stage
0 set: so Stage 1 sets include all the Stage 0 sets as well as many
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more. To qualify as a member of a Stage 2 set an element must be
an individual, a Stage 0 set or a Stage 1 set: so Stage 2 sets include
all those from Stage 1 and many more. In general a stage includes
all the sets from previous stages and admits further sets which 
may have among their members sets of the last stage. (Actually, set
theorists prefer to work with a more abstract version of the hier-
archy, which omits the individuals; but we may ignore that here,
since it is irrelevant to the resolution of the paradox.)

Stage 0 . . . sets of individuals
Stage 1 . . . sets all of whose members are individuals or Stage 

0 sets
Stage 2 . . . sets all of whose members are individuals, Stage 

0 sets, or Stage 1 sets
:

Stage n . . . sets all of whose members are individuals, Stage 0 
sets, Stage 1 sets, . . . , or Stage n–1 sets

:

Although the full hierarchy goes on up into mind-boggling
‘transfinite’ stages, it is enough to consider these simpler stages 
to see that you will never get a set which belongs to itself. And
although as you go up the stages the sets can get more and more
comprehensive, since no set can belong to itself you will never get
a set of all the sets, nor will you ever get a set of all the non-self-
membered sets.

Hypersets

The standard ways of coping with Russell’s paradox, type theory
and the cumulative hierarchy, exclude all self-membered sets. On
these approaches you cannot say of a set that it belongs to itself
or that it does not: such assertions are dismissed as having no
sense. At first sight this might seem attractive. We have a primitive
idea of taking some things and forming a collection of them, but
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the idea that the collection itself might be one of the things we 
are collecting together seems bizarre. However, the considerations
of the two opening paragraphs above do not rule out all self-
membered sets. Since the notion of a set can be refined mathe-
matically in various different ways, it is perhaps largely a matter
of convenience and elegance which approach we choose, and in
these respects ZF is generally regarded as winning out. However,
if we want to get to the root of the paradox, it may be a mistake
to contend that it stems simply from allowing sets to belong to
themselves, just as it is a mistake to think that The Liar paradox
stems solely from acknowledging sentences that refer to them-
selves. And indeed the notion of set can be developed in such a 
way as to admit self-membered sets (among what are called ‘hyper-
sets’) without admitting the contradictory Russell set of all non-
self-membered sets. The axiom of ZF which bars self-membered
sets, the axiom of foundation, is replaced in the version of set
theory that admits hypersets by its negation, but the other axioms
remain. 

The approaches covered so far may banish Russell’s paradox,
but can we be sure that no other subtler set-theoretic paradox does
not import a contradiction somewhere? No, we cannot prove
mathematically that this is not so; rather, belief that contradiction
has been totally banished is a matter of faith based on happy
experience. Gödel showed that it is not possible formally to prove
within that system that a formal system (a system where it is
decidable whether a formula is a postulate) rich enough for the
development of arithmetic is free of contradiction, but it has been
shown that the alternative theory admitting hypersets is free of
contradiction if ZF is. 

An Intuitionist Approach

Michael Dummett calls the discovery of paradoxes like Russell’s
‘one of the most profound conceptual discoveries of all time, fully
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worthy to rank with the discovery of irrational numbers’ (The Seas
of Language, p. 440).

Dummett’s claim arises from an intuitionist approach, which
has its source in Poincaré (1906). What the set-theoretic paradoxes
(which also include Cantor’s and Richard’s) are supposed to show
is that there are ‘indefinitely extensible concepts’. Cantor’s proof
showed that there was no denumerable totality of real numbers
(since there are as many real numbers in the interval (0, 1], say, as
there are members of the power set of integers – see The Paradox
of Plurality for a proof). But on the intuitionist view this does not
mean that there is a non-denumerable totality of all the real
numbers. We can go on to construct more and more real numbers,
but this is an indefinitely extending collection. Similarly, we can
start with a class, C1, none of whose members belong to themselves,
which cannot, on pain of contradiction, contain itself. But then 
we can go on to form a class, C2, containing all the members of
the first class and C1 itself. C2 is not contradictory. Neither is C3,
which contains C2, and all the members of C2. And so on. On this
so-called constructivist picture we can construct a set of all the
non-self-membered sets already constructed, but until it is ‘con-
structed’ it is not available to be a member of a set itself. When it
is, it is to other sets that it will belong. Non-self-membered sets do
not, as it were, already exist to belong to a set of all the non-self-
membered sets there are.

As Dummett himself acknowledges, ‘the adoption of this
solution has a steep price, which most mathematicians would be
unwilling to pay: the rejection of classical methods of argument
in mathematics in favour of constructive ones’ (p. 442). However,
it may be possible to construe indefinite extensibility in a non-
constructivist way.

See also Cantor’s Paradox, Richard’s Paradox, as well as those
in the liar group: The Liar, Curry’s Paradox, Yablo’s Paradox,
Heterological, Berry’s Paradox.

Russell’s Paradox
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Further Reading

*George Boolos, ‘The iterative conception of set’, in Paul Benacerraf
and Hilary Putnam, eds, Philosophy of Mathematics, 2nd edn,
1983, reprinted in his Logic, Logic, and Logic, Cambridge,
Mass., Harvard University Press, 1999. 

*Michael Dummett, The Seas of Language, Oxford, Clarendon Press,
1993, pp. 440–45. 

*R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, section 1.

For a good introductory account of constructivism, see *Stephen
Read, Thinking about Logic, Oxford, Oxford University Press, 1995,
chapter 8.
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The St Petersburg Paradox

A fair coin is tossed until it lands Heads up. If this happens on
the nth throw the bank pays the player £2n. The expected or
average gain is therefore infinite, and, whatever sum the player
pays to play she has the advantage.

This needs some explanation. Suppose you are the player: if 
Heads comes up on the first throw you get £2, if it comes up on
the second throw you get £4, on the third £8, and so on. For each
successive throw the payout doubles. The chance of heads on 
the first throw is 1⁄2; the chance that heads comes up first on the
second throw is the chance of Tails on the first × 1⁄2, that is, 1⁄4; the
chance that Heads comes up first on the third throw is 1⁄2 × 1⁄2 × 1⁄2,
and so on. For each successive throw the chance halves, just as 
the payout doubles. The expected gain from the first toss is £2 ×
the probability that it is Heads (1⁄2), that is, £1; from the second
throw it is £4 × 1⁄4 = £1; from the third £8 × 1⁄8 = £1, and in general
for the nth throw it is £2n × 1⁄2n = £1. Since there is no limit to the
possible number of throws before Heads comes up, the sum for 
the expected gains, 1 + 1 + 1 + . . . goes on for ever and the expec-
tation is infinite. Yet would you pay any sum, however large, to
participate?

(1) Any real bank has finite resources. But this evades the theo-
retical challenge to the notion of expectation. Anyway, we can
still consider what the bank owes and count that as to the player’s
credit.

(2) It was to explain away the St Petersburg paradox that Daniel
Bernouilli devised the notion of diminishing returns. 

Suppose you start off earning £700 a month, and in successive
months get a rise of £100 a month. At first the rise has considerable



value for you, but a few years later when you are earning £8,000
a month the extra £100 is of much less value to you: the returns
from the £100 increments diminish as you get more and more of
them.

So it appears that, owing to diminishing returns, a gain of £2
billion will not have twice the utility of a gain of £1 billion. When
you already have £1 billion, what can you spend your second
billion on that will add to your life as much as the first billion? But
we can set aside diminishing returns in the St Petersburg game by
construing utility more broadly. When you win more than you can
spend for your own personal consumption there remains unlimited
scope for philanthropy. As Bertrand put it, ‘Does there exist no
family that [you] may enrich or no misery [you] may relieve, are
there no great works that [you] may create or cause to be created?’

In any case, there is a way of strengthening the paradox so that
the payouts allow for diminishing returns while the expected
utility, even construed selfishly, is still infinite.

(3) A third response to the paradox explains our unwillingness
to pay a huge stake in terms of risk aversion. It is rational to stake
£10 for a 20 per cent chance of winning £100, but some people are
not prepared to risk losing their money: they are risk-averse. (Those
addicted to gambling tend to be the opposite, and to be attracted
to unprofitable risks.) But is risk aversion rational? 

A case can be made for risk aversion in certain cases – cases
where we are practically certain to lose, no matter how favourable
the expected utility. Would you stake £10,000 for one chance in 
a million of £20 billion (i.e. twenty thousand million)? You are
almost certain to lose your £10,000, and, unless you are very rich
and would not notice the loss, it would seem a foolish gamble. If
you would take that risk, would you risk £10,000 for a one in a
billion chance of £20,000 billion? A one in a billion chance is so
tiny that you might as well discount it completely. For the bank
there is a risk attraction, since it will happily accept your £10,000
if its risk of ruin is so tiny as to be ignored. The ‘Sure Loss Principle’
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advises players not to take the risk of any significant loss if that
loss is almost certain, however great the expected utility of taking
it. Here is a decision principle, then, which clashes with the prin-
ciple of maximizing expected utility. (See Jordan, cited below.) 
But even if the Sure Loss Principle were not rationally defensible,
its appeal would provide a psychological explanation of our
unwillingness to pay a huge stake in the St Petersburg game. (See
Allais’ Paradox under (4).)

We can distinguish two aspects of the paradox. One is the fact
that there are huge sums that no one would pay despite the infinite
expected utility for the player. This paradox does not depend on
the infinite expectation, since as seen above it arises in cases where
the finite expectation is large because there is a tiny chance of an
enormous win. 

The other aspect is the impossibility of a fair game, and this
does depend on the infinite expectation. For it remains the case 
that there is no ‘fair’ single St Petersburg game, nor is there a fair
sequence of games if the stake is the same for each game and is
not a function of the number of games. But if every time you play
a new game the fee for each of the games you have played rises
according to a certain formula, the player’s advantage disappears,
and with it the paradox. (The formula and its proof are given in
Feller, pp. 251–53.) A single St Petersburg game or a multiple St
Petersburg game where the stake per game does not vary according
to the number of games is paradoxical, and, bewildering though
it may seem, no such game can be fair. This seems to be one of
those paradoxes which we have to swallow.

The paradox was discovered by Nicolaus Bernouilli, and
acquired its name because it was first published in an article by
Daniel Bernouilli in the St Petersburg Academy Proceedings in 1738.
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Further Reading

Jeff Jordan, ‘The St. Petersburg paradox and Pascal’s Wager’,
Philosophia, 1994, vol. 23.

Maurice Kraitchik, Mathematical Recreations, London, Allen &
Unwin, 1943, pp. 135–39.

For fair multiple games see: *William Feller, An Introduction to
Probability, New York, John Wiley, 1968, pp. 251–53.
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The Self-Amendment Paradox

If a constitutional rule provides for the amendment of the
constitution in accordance with certain specified conditions, it
would seem to be impossible to amend the rule itself legiti-
mately. Yet this is surely contrary to accepted legal practice. 

Consider Article V of the US Constitution:

The Congress, whenever two thirds of both Houses shall
deem it necessary, shall propose Amendments to this
Constitution, or, on the Application of the Legislatures 
of two thirds of the several States, shall call a Convention
for proposing Amendments, which, in either Case, shall 
be valid to all Intents and Purposes, as Part of this
Constitution, when ratified by the Legislatures of three
fourths of the several States, or by Conventions in three
fourths thereof, as the one or the other Mode of Ratification
may be proposed by the Congress . . .

The Article partly refers to itself, since it is part of the Constitution
for which it is providing conditions of amendment. The
Scandinavian legal realist Alf Ross argues that partial self-
reference in propositions is no better than total self-reference,
which he thinks deprives them of meaning. Such an article may
not be amended by the legal process it prescribes, since partial
self-reference renders it meaningless in so far as it is self-
referential.

In self-referring instances of ‘This proposition is false’ or ‘This
proposition is true’ there is contradiction or vacuity. ‘This sentence
expresses a false proposition’, if it said anything, would be false if
and only if true, and ‘This sentence expresses a true proposition’
has nothing to determine whether it is true or false – it is an idle



cog.  In the latter case we would need to determine whether it was
true before we could determine whether it was true. (See the Liar.)
Hart regards (2) in the list

(1) Grass is green, 
(2) Every statement in this list is true including this one, 

as unobjectionable. But (2) can be consistently regarded as false
as well as true, and so there is nothing to determine its truth value.
In this respect it is like the self-referential instance of ‘This
proposition is true’. It may well be that partially self-referring
propositions which ascribe nothing but truth or falsity are always
problematic.  

Nevertheless, propositional self-reference is sometimes
admissible. Consider, for example, an informal interpretation of the
famous Gödelian formula:

(G) This proposition, G, is not provable in Peano Arithmetic,

which is true if Peano Arithmetic is consistent. 
But there is no good reason why Article V cannot itself be

amended on application of two thirds of the States and ratification
by three quarters of them. Ross argues that, if it were meaningful,
then the new amendment arising out of the provisions of the article
would be logically contrary to the article itself. Indeed, it couldn’t
be otherwise if the original article is being amended. But this
provides no difficulty, because there is no logical contradiction in
a situation in which the article applies until it is amended and a
new, amended article applies after that.

Ross also considers an alternative explanation: that any
amendment of a partially self-referring provision is simply the
‘outcome of socio-psychological fact’ (p. 18). He rightly rejects this
on the grounds that it does not genuinely reflect legal practice.

He thinks we need to add a basic norm N0. Applied to the
Article V it would read: ‘Obey the authority instituted by Art. V,
until this authority itself points out a successor; then obey this
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authority, until it itself points out a successor; and so on indef-
initely’ (cf. p. 24). But this basic norm is unnecessary. Just as the
rules for an institution do not need to have an additional rule,
‘Obey these rules’, to make them binding, Article V does not need
Ross’s basic norm in order to be applicable to itself. It authorizes
its own amendment without such assistance.

Further Reading

H. L. A. Hart, ‘Self-referring laws’, 1964, repr. in his Essays in
Jurisprudence and Philosophy, Oxford, Clarendon Press, 1983.

Alf Ross, ‘On self-reference and a puzzle in constitutional law’,
Mind, 1969, vol. 78.

Peter Suber, ‘The paradox of self-amendment in constitutional law’,
Stanford Literature Review, 1990, vol. 7, pp. 53–78. 
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Self-deception

I can be a victim of another’s deception but I can also be a
victim of self-deception. You cannot succeed in deceiving 
me if I know what you are up to. So how can I deceive myself?
Won’t I know what I am up to, and won’t this necessarily
undermine the self-deception?

This paradox has led some philosophers into denying that there is
such a phenomenon as self-deception, but human self-deception
is so undeniably a feature of human life that one is tempted to say
they are deceiving themselves in the interests of philosophical
simplicity.

If I deliberately deceive you, then I intentionally mislead you.
So how can I deceive myself? Won’t I know what I am up to, and
won’t that defeat the attempt to deceive? Belief is not directly under
the control of the will: I can’t just voluntarily change my belief.
So how can I trick myself into believing otherwise? Can I do so only
by leaving false clues for myself in the hope that they will mislead
me later? It doesn’t seem that ordinary cases of self-deception are
like that.

It is commonplace that our desires and emotions influence our
beliefs without the mediation of intention. Thus, if I am in a good
mood I will tend to be optimistic, to believe that things will turn
out well; and when my wife is angry she will tend to notice my
faults rather than my virtues. Someone disappointed because her
son has been rejected for a coveted position may become more
alive to the drawbacks of the job and less to its advantages (‘sour
grapes’). Of course, the emotions are often produced by beliefs, but
that does not mean that emotions do not themselves induce beliefs,
as our experience constantly attests. Extraordinarily, it has been



claimed that emotions and moods can be produced by beliefs but
not vice versa. But this is belied by the way in which highly
optimistic attitudes and beliefs are produced by drug-induced
euphoria, and deeply pessimistic ones by drug-induced depression.

‘Fere libenter homines id quod volunt credunt’, wrote Caesar.
(‘In general people willingly believe what they want to.’) For
example, according to a recent survey, 94 per cent of American
academics considered themselves more competent than their
average colleague. Some self-deception seems to be a form of
wishful thinking. Nor do we need to form a plan to trick ourselves:
our desires and emotions, our self-esteem, impel us to look partially
and dishonestly at the evidence that presents itself. A mother
knows her young son was burnt through her negligence in leaving
him unsupervised for a while, but would rather think she was 
not responsible for it. The mother concentrates on how short a
time the child was alone. She was in the kitchen and was keeping
an eye on her son through the door, wasn’t she? You can’t be
watching a child every second, these accidents are impossible to
avoid, and the burn wasn’t really that extensive. She bandages it
up and doesn’t look at it too closely. She lets her neighbour comfort
her, hearing how the neighbour’s child has just fallen and broken
its leg. Negligence is lack of reasonable care, and she exercised
reasonable care, didn’t she?

It is common enough, in any case, for people to draw hasty
conclusions from imperfect evidence, to misinterpret evidence, 
to attend to it selectively through ignorance or impatience. The
definition of a human being as a rational animal was always over-
optimistic. Add strong motivation, a deep reluctance to face certain
facts, and a fervent desire to protect or enhance our self-esteem,
and we are all the more prone not to accept what may be staring
us in the face unless it suits us to do so. So a belief may be formed
dishonestly or a pre-existing belief may be dishonestly retained.

Not all self-deception is a form of wishful thinking, however.
Sometimes we are self-deceived in believing what we fear, as when
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a possessive lover is inclined too readily to believe the loved one
is unfaithful. It is understandable that he should pay especial
attention to signs of possible infidelity, and this sensitivity may
help him to take measures against the realization of his fear. Or the
self-deception may simply be a symptom of low self-esteem, 
just as wish-fulfilling self-deception may sometimes be a symptom
of excess of it.

Some writers claim that an appeal to intention is necessary 
to explain why some desires and fears lead to self-deception and
others do not. And no doubt there are also other forms of self-
deception in which we really know what in another part of our
mind we refuse to accept. Perhaps I know unconsciously or sub-
consciously that my business is failing and, through subconscious
mechanisms, have induced at the fully conscious level a belief that
it is not. Much has been hypothesized on these lines, some of it
inspired by Freud. It would be a mistake to assume in advance 
of investigation that there is only one type of self-deception: 
the existence of self-deception of the sorts sketched above does not
preclude another species of self-deception involving some sort of
mental compartmentalizing.

There are cases, then, where selective attention induced by our
desires and fears enables us to hide from ourselves what we are up
to, so that our self-deception is not undermined. If in addition
there is unconsciously motivated self-deception, then it is in 
the nature of the case that what we are up to is hidden from us.
But if there are cases of self-deception in which we have intentions
to deceive ourselves that are not unconscious, then these will be
generally more difficult to explain, though no doubt selective
attention will play an important part in these too.
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Further Reading

J. Bermúdez, ‘Self-deception, intentions, and contradictory beliefs’,
Analysis, 2000, vol. 60.

T. S. Champlin, Reflexive Paradoxes, London, Routledge, 1988.
Jean-Pierre Dupuy, ed., Self-deception and Paradoxes of

Rationality, Stanford, California, CSLI Publications, 1998. 
Alfred R. Mele, Self-deception Unmasked, Princeton, NJ, and

Oxford, Princeton University Press, 2001.
David Pears, Motivated Irrationality, New York, OUP, 1984.
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Self-fulfilling Belief

If I believe that I am believing this, where ‘this’ refers to that
very belief, my belief necessarily makes itself true. But I cannot
hold this as a belief, since it has no genuine content.

Some beliefs are self-fulfilling – true because they are believed. It
is in virtue of such beliefs that placebos work: I believe the pills 
I have been prescribed will cure me, and that very belief effects the
cure, since the pill itself is pharmacologically inert. If shareholders
believe that share prices are going to rise, they will buy shares in
the hope of selling them later at a profit, thereby raising share
prices and making their belief true. 

Of course, unwitting belief about placebos and beliefs in bull
markets do not always fulfil themselves. But it might be thought
that there is one belief that you can have that is bound to make
itself true, namely the belief that you are believing, that is, the
belief (B) that you are believing B. Such a belief would be self-
verifying, just as saying ‘I am speaking English’ makes itself true
by the very utterance of the words.

The trouble is that the beliefs that the pill will make you better
or that shares will rise have a content: there is something that 
you believe. But does B have a genuine content? In the other 
cases believing is not the same as what you believe, but in the 
case of B the believing is its own content. What is this B you are
believing? we may ask. The answer that I am believing B may 
seem no answer at all. At the very least we have a degenerate case
of belief, if it can count as a case of belief at all. And if we don’t
have a case of genuine belief here, B is not a case of self-fulfilling
belief after all.

Putative belief in B is like saying (S), ‘This is a statement’,



where ‘this’ is meant to refer to S itself, or asking (Q) ‘Is this a
question?’, where Q is meant to refer to Q itself. Arguably the first
is not a genuine piece of stating, since there is nothing it states,
unless it is taken to mean that the utterance has the grammatical
form of an assertive sentence. Similarly, you fail really to ask
anything in asking whether (Q) is a question, unless this is taken
as asking whether the sentence has the interrogative form in
grammar. 

For a paradox of self-frustrating belief see The Placebo
Paradox.

Further Reading

Peter Cave, ‘Too self-fulfilling’, Analysis, 2001, vol. 61.
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The Ship of Theseus

Over a period of years, in the course of maintenance a ship has
its planks replaced one by one – call this ship A. However, the
old planks are retained and themselves reconstituted into a ship
– call this ship B. At the end of this process there are two ships.
Which one is the original ship of Theseus?

This is another famous puzzle about identity and material
constitution. It was discussed by the great seventeenth century
political philosopher Thomas Hobbes (1588–1679) in his De
Corpore (Part 2, Chapter 11, section 7). The history of Theseus’ ship
was originally recounted by Plutarch (c. 46–c. 120).

If the old planks had been discarded or just left in a pile, we
should have had only one ship. And despite its changing con-
stitution it would have retained its identity: Theseus’ ship would
have remained continuously in existence. If a mere change of a
plank meant that the ship had been replaced by another one, very
few things would last more than a split second. We wouldn’t, for
example, since our molecular constitution is constantly changing
little by little. Even a major change like the loss of both legs need
not destroy a person or that person’s body. 

But what if we have the reconstituted ship, B, as well? Until it
is largely reconstituted we still have only one ship, which does not
suffer any break in its continuity. If the reconstituted ship is
identical with the original, when did A, the ship which had its
planks replaced, cease to be the original ship? Did the original ship
suddenly switch to becoming the reconstituted one or was there a
break in continuity? These problems are not, however, an insuper-
able difficulty for the option that B is the same as the original 
ship, A. For there need be no determinate time at which the switch



occurs, any more than there is any determinate time, except in
law, at which a child becomes an adult. As for discontinuity, if I
completely dismantle my car and then put it together again, I still
have my original car. Even so, it seems more natural to identify A
with Theseus’ original ship in the situation we have described. 

However, a context can be described in which it would be more
natural to make this claim for B. Suppose Theseus’ original ship is
getting rather dilapidated and needs a thorough overhaul. He
decides to take each plank out, repair it, and put the planks together
again to restore his ship: this will be B. But it takes time, because
he cannot afford much help. Nor can he afford to be without
marine transport. So when he takes a plank out he replaces it with
a cheap piece of wood, so that he continues to have some sort 
of ship to travel in for temporary use: this is A. At the end of this
process would it not then be more natural to regard B as his
original ship, now newly restored and fully seaworthy?

Perhaps there is no right answer to this question of identity. In
some contexts one answer may seem more compelling or con-
venient, in others the other answer. But there is no mystery about
what has happened. So perhaps it does not really matter whether
it is A or B that we identify with Theseus’ original ship. 

However, appealing as it may seem, this quietist approach 
has its problems. Suppose Theseus had insured his ship before the
planks were replaced. Which ship is insured after the reconsti-
tution: A or B? Is the insurance company now liable for accidental
damage to ship B? Some would say that there is no determinate
answer to this question until a court of law has pronounced on it.
Yet if an appeal court makes a judgment on the matter it will claim
to be ruling on what the law is, rather than to be legislating anew;
legislation is the job of Parliament, not the judiciary.

See also Heraclitus’ Paradox.
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Further Reading

David Wiggins, Sameness and Substance Renewed, Cambridge,
Cambridge University Press, 2001.
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Simpson’s Paradox

Although one hospital has better overall survival rates for
surgery for a given condition than another, it doesn’t follow that
you will improve your chances of survival by choosing to go to
the one with the better overall record.

Here are comparative data for surgery for a particular condition at
two hospitals:

If you had the condition in question, which hospital would
you prefer for surgery? Charity seems the obvious choice. But now
look at the figures when they are disaggregated to take into
account whether patients are in good condition or bad condition
before surgery:

For patients initially in good condition the results are:

For patients initially in bad condition the results are:

Survived Died Total Survival rate

Mercy Hospital 750 250 1000 75%

Charity Hospital 840 160 1000 84%

Good condition Survived Died Total Survival rate

Mercy Hospital 490 10 500 98%

Charity Hospital 810 90 900 90%

Bad condition Survived Died Total Survival rate

Mercy Hospital 260 240 500 52%

Charity Hospital 30 70 100 30%



Whether you are in good condition or bad, your prospects now
seem better at Mercy Hospital.

How could this be? The critical factor is your prior condition.
As you would expect, if it is good, then your prospects are much
better than if it is bad. If a hospital’s success rate is higher for those
in good condition than those in bad, as it is for both of the hospitals
in the example above, then the higher the proportion of those it
treats who are in good condition the higher its overall success rate.
The proportion of patients in good condition who undergo surgery
at Charity Hospital is 90 per cent compared with 50 per cent at
Mercy. This explains why, on the figures above, the overall success
rate of Charity is higher than that of Mercy: it has the easier cases.
But its success with both the patients in good condition and those
in bad is worse. Go to Mercy rather than Charity if you have the
choice.

If the proportion of patients in good condition is the same in
both hospitals, then the aggregated table will show more success
for Mercy. Given a table of the first sort and overall success rates
for patients in good and bad condition respectively you can get 
a more reliable idea of which hospital is more successful for 
either kind of patients by ‘normalizing’ the figures to make the
proportions the same in each hospital.

The following chart shows how the overall survival rate in
Charity Hospital varies with an increasing proportion of patients
in good condition: from 30 per cent if everyone starts off in bad
condition to 90 per cent if everyone is in good condition to start
with. 

The chart also helps to bring out an affinity with The
Xenophobic Paradox (The Medical Test), though the latter does not
involve disaggregation in the same way and so is simpler.

Disaggregation with respect to the patients’ prior condition
may not be the end of the matter. There may be other factors which
affect survival prospects: age, sex, smoking, exercise, genetic
constitution and so on. The problem in investigations of this sort
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is to know how finely to break down the aggregated figures, and
to do that we need to know which factors are causally relevant to
the ailment. Much further investigation may be needed.

The example given above is of course merely one instance 
of Simpson’s paradox, which covers many different sorts of cases
where aggregation misleads. Just as The Xenophobic Paradox has
many variants, like the medical test, so does Simpson’s paradox.

The paradox dates back to Yu (1903), was introduced to
philosophers by Cohen and Nagel in 1934, and discussed in a paper
by Simpson in 1951. (See Malinas below for details.)

See also The Xenophobic Paradox.

Further Reading

*Maurice H. DeGroot, Probability and Statistics, Reading, Mass.,
Addison-Wesley, 1989.

*Gary Malinas, ‘Simpson’s paradox and the wayward researcher’,
Australasian Journal of Philosophy, 1997, vol. 75.
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The Sleeping Beauty

On Sunday Beauty learns she is going to be put to sleep for the
next two days, and be woken briefly either once or twice. 
A fair coin is tossed: if it lands Heads she will be woken just on
Monday, if Tails on both Monday and Tuesday. If she is woken
just on Monday, she is put back to sleep with a drug that makes
her forget that waking. Beauty knows all this, so that when 
she wakes on Monday she doesn’t know which day it is. 
On waking, what probability should she assign to the coin
having landed Heads?

(1) A half, because it was a fair coin and she’s learned nothing
new relevant to how it fell.

(2) One-third, because if the trial were repeated week after
week, she should expect twice as many Tails-wakings as
Heads-wakings. For every time the coin lands Tails she is
woken twice, as compared with once when it lands Heads.

At first sight the argument in (2) appears suspect. Consider a similar
case where the chance of multiple wakings is much higher. Suppose
that Rip van Winkle is treated like the Sleeping Beauty except 
that if the coin lands Tails he is woken on 999 rather than just 
two successive days. Then, arguing as in (2), on waking on Monday
not knowing which of the 999 days it is, his probability for Heads
should be one in a thousand. Can this be right?

When we talk here of the probability you should assign to an
event, we mean the degree of belief you should have in it, which
is known as your credence.

The Sleeping Beauty’s credence in Heads when first waking on
Monday is the same as her credence in The coin landed Heads and



it’s Monday, because she knows that if it is now Tuesday the coin
must have landed Tails. Express this credence as ‘P(HeadsMonday)’.

Now if her credence in Heads should be 1⁄2, her credence in Tails
should also be 1⁄2, not 2⁄3 as the second answer would have it. Then,
if the coin landed Tails, as far as she is concerned it is as likely 
to be Monday as Tuesday, so her credence in It’s Monday and 
the coin landed Tails [P(TailsMonday)] should be the same as her
credence in It’s Tuesday and the coin landed Tails [P(TailsTuesday)].
So P(TailsMonday) = P(TailsTuesday) = 1⁄4.

Whichever answer is correct, the effect of going on to tell
Beauty that it is Monday, before she is put to sleep again with the
drug, should be that her credence in Heads rises. Call it now ‘P+’.

In the figure above, the shaded part is excluded when she 
is told it is Monday, so that her credence for P+(HeadsMonday) +
P+(TailsMonday) = 1.

On being woken up on Monday she knew that it was

HeadsMonday or TailsMonday or TailsTuesday.

Let P(HeadsMonday) be her credence in Heads in that situation. 
When told it is Monday, she knows it is HeadsMonday or TailsMonday,
and her credence in Heads should rise to P(HeadsMonday)/
(P(HeadsMonday) + P(TailsMonday)). For example, if P(HeadsMonday) was
1⁄2, since P(TailsMonday) = P(TailsTuesday) = 1⁄4 her credence in Heads
should rise to 1⁄2 divided by (1⁄2 + 1⁄4), which is 2⁄3. If the competing
view that P(HeadsMonday) is 

1⁄3 is right, it should rise from 1⁄3 to 1⁄3
divided by (1⁄3 + 1⁄3), that is, to 1⁄2.

The problem, which is presented by Adam Elga in the paper
cited below, is relevant to decisions under uncertainty, for example
in economics. He offers an argument for P(HeadsMonday) = 1⁄3,
whereas David Lewis, in the reply cited below, argues for
P(HeadsMonday) = 1⁄2, on the ground that on first waking up on
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The Sleeping Beauty

P+(HeadsMonday) P+(TailsMonday) P+(TailsTuesday)



Monday she has learned nothing new relevant to how the coin has
landed. On the other hand, when she is told it is Monday she
acquires information about the future, ‘namely that she is not now
in it’, which should modify her credence in Heads, ignoring the
known chances of Heads = 1⁄2 and Tails = 1⁄2.

However, there is a competing consideration, which speaks in
favour of Elga’s view ((2) above). Suppose that whenever she is
woken Beauty is offered even odds on the coin having fallen Heads.
Then, if immediately on being woken Beauty has a policy of betting
on Heads, she is more likely to lose than to win.

The Sleeping Beauty is a variant produced by R. Stalnaker from
an example devised by Arnold Zuboff. (See Inquiry 1990.) Related
problems have been discussed in the literature on game theory.

Further Reading

Adam Elga, ‘Self-locating belief and the Sleeping Beauty problem’,
Analysis, 2000, vol. 60.

David Lewis, ‘Sleeping Beauty: reply to Elga’, Analysis, 2001, 
vol. 61.
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The Paradox of Soundness

(A) This argument, A, is unsound

Therefore this argument, A, is unsound

If A is sound, then it is a valid argument with a true premiss;
but if its premiss is true it is unsound.

If A is unsound its premiss is true and A is invalid; but it
cannot be invalid, since its form is that of the trivially valid 
‘p, therefore p’. So it must be sound.

Therefore A is both sound and unsound.

This paradox, due to Dale Jacquette, has an obvious affinity with
The Paradox of Validity in its various forms.

The same type of reason as given in the entry for that other
paradox can be given for treating constituent statements of A 
as failing to say anything. A (one-premiss) argument is sound in
the sense relevant here when its premiss is true and its conclusion
follows from that premiss. So to assess the argument for soundness
we have to determine whether the premiss is true and whether the
argument is valid. But in order to determine whether the premiss
is true we have to determine whether the argument is sound. We
cannot determine whether it is sound without first determining
whether it is sound. So arguably we cannot properly attribute either
soundness or unsoundness to the argument, and its constituents
are ungrounded. And, if we are not really confronted with a genuine
argument, the paradox disappears.
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The Spaceship

A spaceship travels in a straight line. It doubles its speed after
half a minute, doubles it again after another quarter of a
minute, and continues successively to double it after half of
the last interval. Where is it at one minute? It is neither
infinitely far away, nor at any finite distance either.

It is not infinitely far away, since there is no such place. But it can-
not be at any finite distance from its start after one minute, since
that would involve an inexplicable spatio-temporal discontinuity
in its existence. For in that minute it could not trace a continuous
straight-line path through space and time to any point a finite dis-
tance from its start if it were to satisfy the description above: any
finite distance from the start, however far, is reached before the
minute is up.

The only way to avoid this incoherence would be for it to
shrink gradually into nothing, say by halving every time it doubled
its speed. In any case, if it did not shrink like this, it would have
to be travelling infinitely fast at one minute. So the only admissible
answer is: nowhere. (If, on the other hand, you allow it to be spatio-
temporally discontinuous, it could be anywhere.)

The paradox is an invention of Benardete’s.

Further Reading

A. W. Moore, The Infinite, 2nd edn, London and New York,
Routledge, 2001, chapter 4.
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The Toxin Paradox

You are offered a million dollars to form the intention of
drinking a vile potion which, though not lethal, will make you
unpleasantly ill. Once you have formed the intention the money
is handed over, and you are free to change your mind. The
trouble is that you know this, and it will prevent you from
forming the intention, since you cannot intend to do what you
know you will not do.

We suppose that you are not allowed to arrange that you be bound
or forced to fulfil the intention. Nor do you have any other reason
to drink once you have the money. So although you had good
reason to form the intention, you have no reason to drink the
potion once the money is yours. How then can you form the
intention? ‘I intend to drink the potion but I won’t drink it’ is as
self-defeating a belief or utterance as one of the form ‘p but I don’t
believe it’ (see Moore’s Paradox). Normally your reasons for
forming an intention to do A are your reasons for doing A; but in
this case they come apart.

There may seem to be no way out here. However, David
Gauthier argues that it is rational to adopt a policy of forming
intentions and fulfilling them if you will be better off as a result
than if you hadn’t formed the intentions. What matters here is not
whether he is right but whether you can convince yourself of this
enough to adopt the policy. If you believe he is right, you can form
the intention to drink the toxin and then drink it. You will suffer
the unpleasant illness but get the million dollars, which is better
than avoiding the illness and not getting the money. If you are not
sufficiently persuaded of the merit of the policy to take it on, you
will be unable to form the intention, even if Gauthier is right about
the rationality of the policy.

241



Compare the Indy and Deterrence Paradoxes, which are
effectively extensions of this one.

Further Reading

David Gauthier, ‘Assure and threaten’, Ethics, 1994, vol. 104.
Gregory Kavka, ‘The toxin paradox’, Analysis, 1983, vol. 43.
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The Paradox of Tragedy 
(Horror)

‘It seems an unaccountable pleasure, which the spectators [of
works of tragedy] receive from sorrow, terror, anxiety, and other
passions, that are in themselves disagreeable and uneasy. The
more they are touched and affected, the more are they delighted
with the spectacle . . . They are pleased in proportion as they 
are afflicted, and never so happy as when they employ tears,
sobs and cries to give vent to their sorrow.’ 

(David Hume, ‘Of Tragedy’)

How can this be? For one thing, Hume is too ready to assert 
that the negative emotions are disagreeable. Many people enjoy a
certain amount of danger and risk and the frisson of anxiety 
and fear they produce (why else scale mountains or race cars as an
amateur?) and there are those who derive a certain satisfaction
from sorrow, grief and pity.

But deep sorrow, paralysing terror and obsessive anxiety are
highly unpleasant. When the objects are merely fictional, however,
these emotional states can be absorbing and gratifying and do 
not cause the same distress as when their objects are real. We need
to distinguish the emotional feelings from the objects of those
feelings. The misery or misfortune in the object of pity will not
necessarily be reflected in our feelings towards it. When we believe
the object is real, natural human sympathy is more likely to make
the pity an unpleasant experience, but if the object is known to 
be fictional we can derive satisfaction from the feeling without
lacking sympathy for our fellow human beings. Disgust, on the
other hand, is more likely to be unpleasant, even when its object
is known to be fictional.



Many people derive aesthetic satisfaction from tragic drama.
The interest in the unfolding of a tragic plot is heightened by the
emotions, and our attention can be held by both our emotional and
our intellectual absorption. And we can even derive comfort from
tragedies through imagining people far worse off than we are. 
It is relevant to the parallel paradox about our responses to works
of horror – a genre unknown in Hume’s day – that many are
fascinated by Gothic weirdness in horror stories and films. All this
goes some way towards explaining why tragedy and horror play
such a large part in human entertainment.

Those, like Kendall Walton, who resolve the paradox of fiction
by regarding our affective responses to fictional objects as quasi-
emotions, on the ground that we must believe in the existence 
of the objects of our genuine emotions, may claim that we can
derive satisfaction, even pleasure, from these responses to works
of tragedy and horror because those responses are not the true
emotions of sorrow, terror, pity or anxiety. Yet, even if we recognize
quasi-emotions, that does not of itself provide a resolution of the
paradoxes of tragedy and horror, merely a way of restating them,
since it will have to be admitted that quasi-emotions feel very
much like genuine ones. In any case the entry on The Paradox of
Fiction offers good reasons for rejecting the view.

Unlike the paradox of fiction, the paradoxes of tragedy and
horror are not resolvable in purely philosophical terms but require
an appeal to human psychology, which is more complex than the
paradox suggests.

See also The Paradox of Fiction.

Further Reading

Noël Carroll, The Philosophy of Horror, New York and London,
Routledge, 1990.
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The Tristram Shandy

Tristram Shandy takes two years to cover his first two days in
his autobiography. He can continue at the same rate and still
finish it if he never dies.

Read Galileo’s Paradox first.
Even at a constant rate of two years for two days the epony-

mous hero of Laurence Sterne’s novel can cover his whole life 
if he lives for ever. For each successive pair of days can be paired
off exhaustively with each successive pair of years: each two-day
period will have its own matching two-year period in which the
events of the two days can be written up – though his memory 
will need to stretch back further and further without end. For
example, days 101 and 102 will be written up about a century later
in years 101 and 102, and days 1001 and 1002 written up nearly a
millennium later.

The paradox is due to Bertrand Russell, who draws an analogy
with Achilles and the Tortoise. See also the essentially similar
Hilbert’s Hotel.

Further Reading

Bertrand Russell, The Principles of Mathematics, London, Allen &
Unwin, [1903] 1937, pp. 358–60.
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The Trojan Fly

Achilles travels at 8 mph but the tortoise manages only 1 mph.
So Achilles has given it a start. At the point where Achilles
catches the tortoise he draws level with a fly which proceeds to
fly back and forth between them at 20 mph. After another hour
Achilles is 7 miles ahead of the tortoise, but where is the fly?

It looks as if it should be possible to calculate its position
and determine its direction. But the answer is that it could be
anywhere, facing either direction.

To see that the fly could be anywhere, imagine the event run
backwards. If the fly is placed at any point between the two, facing
either direction, and the motions of Achilles and the tortoise are
exactly reversed, they will all end up together at the point where
Achilles originally overtook the tortoise.

How can the fly get started, since any distance it flies from
either Achilles or the tortoise at 20 mph must take it beyond 
them? But, as with the regressive version of The Racecourse, there
can be no first interval that the fly travels. There will have to be
infinitely many distinct ways in which the fly can proceed, since
there are infinitely many distinct destinations it could reach after
one hour by flying backwards and forwards between the two
runners at 20 mph.

One bizarre feature of the example is that the fly must change
direction infinitely often. Indeed, for any moment after the start,
however short, it must have changed direction infinitely often.
And the example is unreal in assuming that every time the fly
changes direction it does so instantaneously.

After A. K. Austin of Sheffield, Mathematics Magazine, 1971,
adapted by Wesley Salmon.



Further Reading

Wesley C. Salmon, Space, Time and Motion, Enrico, California and
Belmont, California, Dickenson Publishing Co., Inc., 1975,
chapter 2.
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The Trojan Fly



The Trolley Problem

A trolley’s brakes have failed and it is careering towards five
workmen on the track ahead; a bystander can avert their death
by pulling a lever and diverting the trolley to a spur that forks
off to the right, though only at the expense of killing a workman
on the spur. Should he turn the trolley?

While it may be permissible, even mandatory, to divert the
trolley, it is not in general right to sacrifice one to save many.
For example, five patients dying from organ failure can be saved
from death only by transplanting organs from a sixth, healthy
individual. Should he be sacrificed to save the other five? Surely
not. But why not?

A well-known example from the Second World War seems morally
akin to Trolley. When rockets started falling on densely populated
London, a proposal was made to deceive the Germans into thinking
they had overshot, so that they would change their aim and make
most of them land on the less densely populated areas of the home
counties. Although Herbert Morrison rejected the proposal, saying
it would be playing God, scientists implemented it with some
success. (See R. V. Jones, chapter 44.)

Transplant

Most people feel intuitively that the driver may divert the trolley,
and some of us feel that he ought to, whereas few feel that the
surgeon may transplant organs from the healthy patient. Moreover
those of us who have these intuitions feel them very strongly,
particularly in the case of Transplant. Even if the five patients only
needed a transfusion of blood from the sixth we would not allow
the blood to be extracted without the consent of the donor: it would
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constitute a criminal assault. Why, then, do we feel that it is
permissible to sacrifice the single workman in Trolley when we
regard it as wholly indefensible to sacrifice the patient in Trans-
plant? How do we ground the difference?

Even if we should not ‘play God’, even if diverting the trolley
to save the five is impermissible, we still have the problem, since
the sacrifice in Transplant is very much worse. 

In the trolley case we have to decide instantaneously, whereas
the surgeons have a little time to think. But, in the rocket analogue,
there was time to consider whether the Germans should be deceived
about the rockets. 

In Transplant the doctors would be breaking their Hippocratic
oath, whereas there is nothing similar in the trolley and rocket
cases. But why would we be so averse to modifying the oath to
permit sacrifice in Transplant?

Utilitarian Approach

The side effects of a transplant practice will undermine confidence
in hospitals, causing many people to forgo treatment: and this will
outweigh the benefit of transplants. But: this can’t fully explain the
moral revulsion to Transplant: it still would be morally wrong if
the side effects didn’t occur.

Kantian Approach

‘Never use people solely as means but also treat them as ends in
themselves.’

Transplant involves using the healthy individual solely as a
means to saving the others. Trolley does not involve using the
single workman to save the others: it would be better if he weren’t
there or could jump out of the way.

A counter-example was provided by Philippa Foot: the five
can be saved only by releasing a gas, which will kill the sixth;

The Trolley Problem
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moving the sixth would be fatal, so he would succumb to the gas.
He is neither being used as a means, nor is Double Effect infringed,
since the intention is to save the five. 

Rational Contractors

This does not exhaust such attempts to distinguish the two; there
has, for example, been appeal to rational contractors. The claim 
is that we would all, if rational, agree to be the single victim in
Trolley, since we are more likely to be among the five saved; but
that we wouldn’t agree to be a sole victim sacrificed in Transplant.
But if we wouldn’t hypothetically consent in Transplant, why 
not? That still needs explaining. And if there were a culture in
which people did, would it not still be wrong? We need a different
approach.

An Alternative Approach

Suppose the trolley ploughs into the five, and they are taken to
hospital needing transplants if they are to be saved, with the sixth
man, who is temporarily in shock, but happens by extraordinary
coincidence to have just the right genotype to supply the needed
organs for the five. The trolley should have been diverted, perhaps,
but now it is too late morally to sacrifice anyone. Why?

In civil law the initial liability principle requires loss and
misfortune to lie with the victim unless there are compelling
reasons to shift it to others. Doesn’t the principle hold in morality
too?

In Trolley, misfortune, though imminent, has yet to strike; in
Transplant they have already suffered misfortune, since vital
organs have been damaged and they are close to death. 

This makes it easy for us to regard the turning of the trolley as
the deflection or diversion of impending misfortune from many to
one and the transplanting of the healthy organs as the shifting of
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a misfortune from several victims to another. The world we inhabit
is full of risks, and bad luck is an ineluctable ingredient of human
life. Once it has befallen us we do not think it right to transfer that
bad luck to others without special justification. In cases where this
would involve death the justification has to be very considerable.

There will be other cases in which sacrificing one to save many
does not involve shifting bad luck and are nevertheless morally
wrong, for example pushing someone off a bridge to halt the
trolley. There are ways of treating people which are not admissible
come what may.

Further Reading

William J. Fitzpatrick, ‘Thomson’s turnabout on the trolley’,
Analysis, 2009, vol. 69.

Philippa Foot, Virtues and Vices, Oxford, Blackwell, 1978.
Philippa Foot, ‘Morality, action and outcome’, in Ted Honderich,

ed., Morality and Objectivity, London, Routledge and Kegan
Paul, 1985.

R.V. Jones, Most Secret War, London, Hamilton, 1978. 
Warren S. Quinn, ‘Actions, intentions, and consequences: the

doctrine of doing and allowing’, in A. Norcross and B.
Steinbock, eds, Killing and Letting Die, 2nd edn, New York,
Fordham University Press, 1994. (Originally published in
Philosophical Review, 1989, vol. 98.)

Judith Jarvis Thomson, ‘Killing, letting die and the trolley problem’,
in W. Parent, ed., Rights, Restitution, and Risk: Essays in Moral
Theory, Cambridge, Mass., Harvard University Press, 1986.

Judith Jarvis Thomson, ‘Turning the trolley’, Philosophy and Public
Affairs, 2008, vol. 36.

Bernard Williams, Ethics and the Limits of Philosophy, London,
Fontana Press, 1985.
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The Two-envelope Paradox 
(The Exchange Paradox)

You are presented with two sealed envelopes, A and B, and you
know that one of them contains a cheque for twice as much
money as the other. You are allowed to select one of them at
random. You are then offered the chance to swap and take the
other instead. If your selected envelope contains x, and your
swap is lucky, you get 2x, but if you are unlucky you get 0.5x.
So your expected utility if you swap is 2x/2 + 0.5x/2, which is
1.25x. So it looks as if you should swap.

However, exactly the same argument would have been
available if you had picked the other envelope in the first place.
But there can’t be an expected gain from swapping A for B as
well as an expected gain from swapping B for A.

What is an expected gain? Consider a simple case where you 
have two sealed envelopes, one with a cheque for a hundred euros
in it and the other with a cheque for five hundred euros, but 
you do not know which is which. You select one of the envelopes
at random. You have a 50% chance of picking the envelope with
the hundred-euro cheque in and a 50% chance of picking the other
one. Your expected utility is then half of €100 plus half of €500,
i.e. €300.

In the case of the paradox, however, you know only that one
envelope contains twice as much as the other. Assuming you want
as much money as possible, do you have an interest in swapping
when you have selected an envelope from the pair in which one
contains twice as much as the other? What is the expected utility
of swapping? If you swap, it seems you are as likely to end up with
the higher sum as the lower. If your selected envelope contains x,



and your swap is lucky, you get 2x, but if you are unlucky you get
1⁄2x. So your expected utility if you swap is a half of 2x plus a 
half of 0.5x, which is 1.25x, i.e. more than the x you got before
swapping. For example, suppose your selected envelope has €1,000
in it. It seems that if you swap you stand to gain another €1,000,
ending up with €2,000, or to lose €500, ending up with €500.

But, if you had selected the other envelope, the same argument
for swapping would be available. What has gone wrong?

What has gone wrong is that the argument is fallacious. If you
had been given a sealed envelope containing a cheque and offered
a chance of doubling or halving it at the toss of a fair coin, there
would indeed be an argument for accepting the offer. For you
would then know that, if you accepted the offer, the probability of
getting the higher sum was the same as the probability of the lower.
If the envelope you have been given contains a cheque for x, then
accepting the offer gives you 50% chance of 2x and a 50% chance
of 0.5x, i.e. an expected utility of 1.25x.

So why does the argument for swapping fail in the original
two-envelope case? When you first choose one of the two
envelopes, you are as likely to pick the one with the smaller sum
in it as the one with the larger. But it doesn’t follow that, when you
have picked one of them, and are offered the chance to swap, the
other is just as likely to be worth twice yours as it is to be half. Yet
it is difficult to see how it can fail to follow until you consider an
example. Suppose the smallest cheque an envelope can contain is
for €1. Then if your sealed envelopes happen to contain cheques
for €1 and €2, you are as likely to pick the €1 envelope as the €2
one. Suppose you happen to pick the €1 envelope. Then it is not
equally likely that the other one has €0.5 as €2: it must have a
cheque for €2 inside. And if there is a finite limit to the value of a
cheque, as there must be in the real world, in which there is not an
infinite amount of money, then, if one of your envelopes happens
to contain the maximum possible, it is obvious that it is not equally
likely that the other has twice that maximum as a half.
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The Two-envelope Paradox



However, you do not know whether you have one of these
special cases. Couldn’t the probabilities be such that the average
expected utility of swapping was positive? No, if there is a finite
limit to the amount in an envelope, this is not possible.

To see this, consider an especially simple example in which
the minimum value is 1 and the other possible values are 2, 4 and
8. Let the probability that the envelopes have 1 and 2 be 2p0, that
they have 2 and 4 be 2p1, and that they have 4 and 8 be 2p2. Then,
for example, the probability of picking an envelope with 2 will be
p0 + pi (it is either one of 1 and 2, or one of 2 and 4).

Gain Probability
Swap 1 for 2 1 p0

Swap 2 for 1 –1 p0

Swap 2 for 4 2 p1

Swap 4 for 2 –2 p1

Swap 4 for 8 4 p2

Swap 8 for 4 –4 p2

The probability in the third column is the probability of the
values in the first column: for example, p0 is the probability that
you have 1 in your envelope and 2 in the envelope you swap it for.

The average expected gain is calculated by calculating the
weighted average of the gains in the different cases, which we do
by multiplying each gain by its probability and then adding them
together. Suppose a generous friend sells you an expensive lottery
ticket for £1. The ticket gives you a one in a hundred chance of
winning £200, and one in a thousand chance of winning £5,000.
Then your expected gain from the £1 purchase is £200/100 +
£5,000/1,000 less the £1 you paid, which comes to £6.

Doing this calculation for the envelopes we get: p0 – p0 + 2p1

– 2p1 + 4p2 – 4p2 = 0. And however large the maximum sum is,
the weighted sum is always going to be 0, so the average expected
gain from swapping is always zero. So, if there is a finite limit to
the amount an envelope can contain, the paradox disappears.
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But what if we remove the maximum limit, so that your
envelope can contain a cheque for any amount, however large?
Then it is possible to show that, if the average expectation for an
envelope is nevertheless finite, the average expected gain is still
zero. However, this is not invariably the case where the average
expectation for an envelope is infinite. (For a simple example of
an infinite expectation see The St Petersburg Paradox.) There are
certain cases with no finite average expectation for a selected
envelope where the probability distributions are such that the
average expected gain is positive if it is calculated in the way
described above. These are the interesting and genuinely para-
doxical cases. There are three different ways of getting the average
expected gain and they give different results in these cases:

(i) What’s the average expected gain from swapping given
the amount in my envelope? Positive: a net gain.

(ii) What’s the average expected gain given the amount in
the other envelope? Negative: a net loss.

(iii) What’s the average expected gain given the total in the
two envelopes? Zero.

Whatever can be said in favour or against (i) can be said for
or against (ii), and since only one can be right it must be (iii). But
we knew that already. The problem is to explain why. One attempt
to do this will be found in the paper cited below.

The paradox was introduced by Edmund Landau in 1912.

Further Reading

*Michael Clark and Nicholas Shackel, ‘The two-envelope paradox’,
Mind, 2000, vol. 109.

For a non-probabilistic version of the paradox, see R. Smullyan,
Satan, Cantor and Infinity, Oxford, Oxford University Press, 1992,
pp. 189–92. 
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The Unexpected Examination 
(The Surprise Examination, 

The Hangman)

A reliable teacher announces there will be a surprise exam on
one weekday of the following week. The pupils reason that it
can’t be on Friday, since if it hasn’t come by Thursday evening
they will expect it the following day, and then it won’t be
unexpected. If it hasn’t come by Wednesday evening, they will
rule out Friday for the reason just given: but then it won’t be a
surprise on Thursday and so that day is ruled out too. And so
on backwards through the week. So the teacher’s announcement
cannot be fulfilled.

But surely there can be a surprise exam.

The argument that there can be no surprise exam is an example of
a backward induction argument. Despite this argument, a surprise
exam is obviously a possibility, and not simply for pupils deficient
in rationality or memory. We must suppose the pupils are com-
pletely rational and not suffering from any defects of memory, 
and that they know they are rational and have good memories.
There is no paradox otherwise. That the unintelligent and the
forgetful can be surprised gives rise to no logical puzzle but is a
psychological commonplace.

But does the backward induction argument really get started?
They know that on Thursday evening they will think, ‘So either
there will be an exam which I expect or there will be no exam. But
in that case I can no longer be sure there’ll be an exam, since the
teacher’s announcement cannot be fulfilled. So it could be a
surprise after all. But then I must expect it, so it won’t be a surprise.’
This could go on round and round indefinitely. In such an unstable



position the pupil cannot be sure there will be an exam, so that if
an exam does take place it will be unexpected. In consequence, the
argument doesn’t get started. There can be a surprise exam even
on Friday.

Suppose, however, the pupils can be certain there will be an
exam. It is an exam which has taken place for years and it is
unthinkable it will be cancelled this year. Suppose too that they 
still have good reason to trust the teacher and to accept it will be
a surprise, although an expected exam is not as unthinkable as no
exam at all. In this case the exam cannot be a surprise on Friday,
because if there has been no exam by Thursday evening they will
know it must occur on the final day. So the argument does get
started this time, but it doesn’t get very far. On Wednesday evening
they will think, ‘Since Friday is ruled out, there is only one possible
day for the exam, tomorrow. But then we shall expect an exam
tomorrow. If the teacher’s word is not going to be fulfilled and the
exam will be no surprise, there are still two days on which it may
be held, and we have no way of choosing between them. But then
it can be a surprise tomorrow, though not on Friday. But then we
should expect it tomorrow, so it won’t be a surprise.’ This reasoning
can continue indefinitely: ‘But if the teacher’s word is not going
to be fulfilled and the exam will be no surprise, there are still two
days on which it may be held . . . ’. In such an unstable position they
cannot be sure the exam will occur on Thursday, so they can be
surprised if it is given then. After that it is too late.

In another variation the teacher says not that there will be an
exam but that there will be no evening on which they will believe
that if there is an exam it will come the next day. Reasoning
parallel to that in the last paragraph shows that this cannot be
fulfilled if there is no exam before Friday, but that it can be satisfied
by an exam on any of the previous days.

The puzzle has been traced back to a wartime radio broadcast
in Sweden in which a surprise civil defence exercise was
announced for the following week.
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The Unexpected Examination



The paradox has been assimilated to various other paradoxes.
(For full details see Sorensen, cited below.) For example, self-
reference has been detected as its source, since the teacher’s
announcement is construed as: ‘You will get an unexpected exam
and won’t be able to deduce its date from this announcement and
background information.’ The one-day version, ‘You will have an
exam tomorrow and will not know the date in advance’, is a
Moorean proposition, since though not self-contradictory – it
could be true – it is self-defeating in the same way as ‘It is raining
but I don’t believe it’. (See Moore’s Paradox.) As Sorensen shows,
however, the paradox can be disentangled from self-referential
and other paradoxes.

See also The Designated Student, The Indy Paradox and
Moore’s Paradox.

Further Reading

R. M. Sainsbury, Paradoxes, 3rd edn, Cambridge, Cambridge
University Press, 2009, chapter 5, sections 2 and 3.

Roy Sorensen, Blindspots, Oxford, Clarendon Press, 1988, chapters
7, 8 and 9, and references there. Sorensen calls it ‘the prediction
paradox’; this name is used above for quite a different paradox.
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The Paradox of Validity
(Pseudo-Scotus)

(A) This argument, A, is valid

Therefore, 1 + 1 = 3

Suppose the premiss is true: then the argument is valid. Since
the conclusion of a valid argument with a true premiss must 
be true, the conclusion of A is true. So, necessarily, if the premiss
is true, the conclusion is true, which means that the argument
is valid.

Since the argument is valid and its premiss is true, its
conclusion must be true too: 1 + 1 = 3.

This is a variant of a paradox found in the fourteenth century
writings of Albert of Saxony and of a medieval logician called
Pseudo-Scotus, so called because at first his writings were wrongly
attributed to John Duns Scotus. (It was the genuine Duns Scotus
whose name gave rise to our term ‘dunce’: during the Renaissance
there was a reaction against what was regarded unfairly as the
hair-splitting of such medieval logicians.)

One way of dealing with this paradox exactly parallels the
third approach mentioned in the discussion of The Liar. Any
argument that includes among its premisses or conclusion a claim
about its own validity or invalidity is defective, for the sentence
trying to express that claim fails to express any statement. The
constituent sentences, construed as referring to the argument in
which they occur, fail to express any statement, true or false.

A (one-premiss) inference is valid when there is no possible
situation in which its premiss is true and its conclusion is false. So,
in order to know whether A is valid or not, we need to know
whether there is any possible situation in which it is true that it is



valid and false that 1 + 1 = 3. This amounts to knowing whether
A is possibly valid, which amounts to knowing whether it is valid,
since it cannot be a mere matter of fact that it is valid. It is an a
priori matter whether it is valid or not, so it is either necessary 
that it is valid or impossible that it should be. This means that, if
it is possible that it should be valid, it is valid. So we cannot know
whether it is valid without first knowing whether it is valid: there
is no grounding for its validity or invalidity. The purported
inference is not a genuine one, and the sentence which is its
conclusion fails to express anything.

The conclusion of A did not have to be a necessary falsehood
in order to generate the paradox. We could take any contingent
falsehood as conclusion.

Consider:

(B) This argument, B, is valid

Therefore, Paris is not the capital of France

Suppose the premiss is true. Then the argument is valid, so that
its conclusion follows from its premiss. So it follows that Paris is
not the capital of France.

In the paragraph above we have deduced B’s conclusion from
the truth of the premiss. So B is valid. Since the conclusion of a
valid inference with a true premiss must be true, Paris is not the
capital of France.

Pseudo-Scotus gives the paradoxical example: God exists.
Therefore this argument is invalid, taking its premiss to be without
question a necessary truth.

See also Curry’s Paradox, The Liar.

Further Reading

W. and M. Kneale, The Development of Logic, Oxford, Clarendon
Press, 1962, pp. 287–88.

Stephen Read, ‘Self-reference and validity’, Synthese, 1979, vol. 42.
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The Paradox of Voting

It is very rare for a single vote to make any difference at all. The
chance of an election being drawn or won by one vote is
negligibly small, in which case the effort of voting seems a
wasted one. And yet, socially and politically aware citizens are
expected to vote, and assumed not to be wasting their time in
doing so.  

Votes in elections are rarely so close that a single vote is critical.
If there is reason to think that the vote will be close, or that apathy
is leading to very poor turnouts and you should set a good
example, then there is obviously good reason to vote. Moreover 
if there is some major issue at stake which will make a huge
difference to people – nuclear policy, or massive redistribution 
of wealth, for example – even a very small chance of causing such
a huge difference will be worth taking: a one in a million chance
of saving millions should be embraced. But the differences between
contestants are often not so dramatic, and may be more a matter
of rhetoric than substance.

Suppose a candidate you vote for wins by a majority of
thousands. Your own vote may seem insignificant, but are you not
as responsible for the victory as everyone else who voted for that
candidate? Nevertheless, each of these voters bears only a tiny
responsibility for the victory, and that may not seem enough to
make it worthwhile to take the effort to go to the polling booth.

But what if everyone failed to vote? We can argue that if it is
permissible for me to refrain from voting without good reason,
then it is permissible for everyone else. But it can’t be permissible
for everyone to refrain if democracy is to be possible. Perhaps we
should allow that you may refrain if you know that there will be



a large-enough turnout to maintain the democratic system. Then
the principle on which you act would be, ‘You ought to vote unless
you know that enough people will vote anyway . . . ’.

In voting you are expressing your political allegiance, and 
this may be thought worthwhile irrespective of the electoral
consequences of voting. The moral significance of such expression
is evident – in a negative way – in a case where someone votes for
a neo-Nazi party. But voting on its own will not be a sincere
expression of your political stance unless you have political
allegiances, in which case you are likely to express them in other
ways too. However, given strong allegiances it would normally be
anomalous not to exercise your vote. Whether it has the same
significance when you vote for a party that differs only in degree
on major issues from its rivals is another matter. 

What if you have no interest in politics? You are consumed,
for example, by your work as a composer or an artist, and the work
you produce is unrelated to politics. Unless widespread apathy
threatens or a major issue is at stake, it may be acceptable for you
not to take the trouble to vote. It is, after all, normally better that
those who are interested and knowledgeable – provided their
motives are not evil – should vote rather than those who are
ignorant or indifferent.

Further Reading

G. Brennan and L. Lomasky, ‘Toward a democratic morality’, and
Alvin Goldman, ‘A causal responsibility approach to voting’,
both reprinted in D. Estlund, Democracy, Oxford, Blackwell,
2002.

Jonathan Glover, ‘It makes no difference whether or not I do it’,
1975, reprinted in P. Singer, Applied Ethics, Oxford, Oxford
University Press, 1986.
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Wang’s Paradox

0 is small

If n is small, then so is n + 1

So every number is small

At first sight the argument certainly seems paradoxical. Numbers
like one billion are scarcely small. But any natural number has
only finitely many predecessors and infinitely many successors, 
so there is a sense in which every number is indeed small.
Nevertheless, understood in the ordinary way the conclusion is
false.

This paradox is really the same as the paradox of The Heap.
The argument above is paralleled by:

If there are no grains there is no heap.
If n grains do not make a heap then neither do n + 1 grains.
So no quantity of grains makes a heap.

This is simply Argument II in the entry on The Heap, given in
reverse, except that it starts with 0 instead of 1. For discussion, see
that entry.

See also Quinn’s Paradox.

Further Reading

*Michael Dummett, ‘Wang’s paradox’, reprinted in Rosanna 
Keefe and Peter Smith, eds, Vagueness: A Reader, Cambridge,
Mass. and London, MIT Press, 1997.
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The Xenophobic Paradox 
(The Medical Test)

In a town where only one person in ten is black, a man claims
he was mugged by a black person. In re-enactments of the scene
under comparable lighting with different people playing the
assailant, he identified the assailant’s race correctly 80% of the
time. Members of either race are equally likely to mug.

But his chance of being right about the race of the assailant
who mugged him is less than one in three.

It is natural to think that, if the man has an 80% chance of having
correctly identified the colour of his assailant, and claims he was
mugged by a black man, he is more likely to be right than wrong.
But, on the contrary, he is more likely to be wrong than right, for
his chance of being right is only 4⁄13. That is the probability that the
assailant was black given that he was identified as black.

This is because the chance that an assailant should be black 
and correctly identified as such is only 80% multiplied by 10%
(the proportion of blacks), or 0.8 × 0.1 = 0.08. The chance that the
assailant is white but identified as black is 0.2 × 0.9 = 0.18. So
blacks are identified on 26% of occasions, but only correctly on
8% of them. (We are assuming for the sake of simplicity that the
chance of correctly identifying an individual’s colour is the same
for both whites and blacks, 80%.)

In a representative sample of 100 there will be 10 blacks. Two
of these will be misidentified as white; 18 of the remaining 90 will
be misidentified as black. Since 8 of the 10 blacks will be identified
correctly but 18 whites will be wrongly identified as black, the
probability that the assailant is black, given that he is identified as
black, is only 8⁄26, or little over 30%.



The point is that the higher the proportion of whites, the greater
the chance of misidentifying whites as black, as is evident from the
table below, which shows how the chance of being right that the
assailant is black rises with the proportion of blacks. Indeed if the
community is 100% black the identification of the assailant as
black is bound to be right: he couldn’t be anything else.

The same applies with the proportion of whites, of course. If
they are in the minority they will be misidentified more often.

Comparing this table with the similar table for Simpson’s
Paradox brings out an affinity with it, albeit that the structure of
the latter is more complex, involving as it does misleading
aggregation.

It is easy to see how xenophobia may be induced by misinter-
preting figures for minority ethnic groups. The misinterpretation
is very common and not at all obvious at first sight.

The paradox comes in many guises. Here is an exactly parallel
medical example, where for simplicity we keep the same figures.

Let the incidence of a certain disease be 10%. Medical tests for
it are 80% accurate: so that 20% of the positive outcomes are false
positives and 20% of the negative outcomes false negatives.
(Assume for the sake of simplicity that the incidence is the same
for those tested. In any case, all that matters for the present
discussion is the incidence among those tested. So if you want to
make the example more realistic you can allow that the incidence
in the general population is lower.)
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The Xenophobic Paradox

Accuracy of identification of blacks rises with increasing proportion of blacks 

Proportion 

of blacks    (%) 0.00 0.10 1.00 10.00 20.00 25.00 50.00 75.00 100

Blacks correctly 

identified   (%) 0.00 0.40 3.88 30.77 50.00 57.14 80.00 92.31 100

80% of identifications correct. Formula to compute proportion of blacks identified correctly:

0.8 × proportion of blacks/(0.8 × proportion of blacks + 0.2 (1 – proportion of blacks)).



Your doctor tells you that you have tested positive and that the
test is 80% accurate. What is the chance you have the disease?
Extraordinarily, it’s not at all as high as you might think: it’s not
80%, it’s little more than 30%! In a representative sample of 100,
where the incidence is 10%, there will be 10 with the disease. If all
are tested, 8 of the diseased 10 will get a correct positive result; 18
of the remaining 90 will get a false positive result. That makes 26
positives, of which 8 are correct. So the probability that you have
the disease, given that your test is positive, is 8⁄26 = 30.77%.

As we can see from the table above, if the incidence of the
disease is only 1% (a more usual sort of figure) a positive test means
you have less than 1 chance in 25 (less than 4%) of having the
disease. And if the incidence is 1 in 1,000 (perhaps even more
usual) the chance is 1 in 250. If not only you but also your doctor
think the chance is 80%, you may agree to possibly hazardous
treatment which would not be warranted by a 0.4% chance. And
yet in a survey the majority of medical doctors and nurses gave
the wrong answer for a similar example.

See also Simpson’s Paradox.

Further Reading

Scientific American, March 1990, p. 119.
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Yablo’s Paradox

Imagine an infinitely long sequence of sentences:

(YI) All the following sentences are untrue.
(Y2) All the following sentences are untrue.

:
(Yn) All the following sentences are untrue.

:

You will find that you cannot consistently assign the values
‘true’ or ‘false’ to the members of this sequence.

One of the examples of The Liar paradox given above, Buridan’s
ninth sophism, is cyclical, and so indirectly self-referential:

Socrates: (S) ‘What Plato is saying is false.’
Plato: (P) ‘What Socrates is saying is true.’

We can generalize this to produce longer indirectly self-referential
loops:

(S1) The following sentence is untrue.
(S2) The following sentence is untrue.
(S3) The following sentence is untrue.

:
(Sn) The first sentence is true.

These will have to be alternately true and false: TFTF . . . or
FTFT . . . Since S1 has to be true if Sn is true, and false if Sn is
false, we get a paradox in the cases where n is even, since in those
cases S1 and Sn will have different truth values. (If n is odd, the
list is paradoxical in the way the truth-teller is, since there is no
way of choosing between the two alternative assignments. But set
those cases aside here.)



Stephen Yablo’s paradox involves an infinite sequence of
sentences:

(Y1) All of the following sentences 
are untrue  

(Y2) All of the following sentences are
untrue.

(Y3) All of the following sentences are
untrue.

:
:

Yablo claims that, unlike other versions of the liar, this paradox
does not involve self-reference, since each sentence is about those
following it and no sentence is about itself. But each sentence
seems to be implicitly self-referential, since ‘all of the following
sentences’ has in each case to be understood as ‘all the sentences
following this one’. (Yablo actually refers to the following sentences
by ‘for all k > n’, where n is the current subscript to Y, but self-
reference is still arguably implicit there.)

But, whether self-referential or not, we clearly have a paradox
here. See the entry on The Liar for possible resolutions: on the
third approach canvassed there, none of the sentences in the
infinite sequence can be allowed to express a statement.
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Yablo’s Paradox

← Suppose true. Then all the
sentences from Y2 onwards
are untrue, which is
impossible.

← Suppose false. Then at
least one of the following
sentences is true. Every
sentence following that one
will have to be untrue, which
is impossible.



Further Reading

J. C. Beall, ‘Is Yablo’s paradox non-circular?’, Analysis, 2001, 
vol. 61.

Stephen Yablo, ‘Paradox without self-reference’, Analysis, 1993,
vol. 53.
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Zeno’s Paradoxes

See Achilles and the Tortoise, The Arrow, The Paradox of
Plurality, The Racecourse.

See also The Trojan Fly, The Paradox of the Gods, The Numbered
Balls.
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