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1.1 INTRODUCTION

The overall objective of this chapter is to understand macroscopic properties such
as pressure and temperature on & microscopic level. We will find that the pressure
of an ideal gas can be understood by applying Newton’s law to the microscopic
motion of the molecules making up the gas and that a comparison between the
Newtonian prediction and the ideal gas law can provide a function that describes
the distribution of molecular velocities. This distribution function can in turn be
used to learn about the frequency of molecular collisions. Since molecules can react
only as fast as they collide with one another, the collision frequency provides an
upper limit on the reaction rate.

The outline of the discussion is as follows. By applying Newton’s laws to the
molecular motion we will find that the product of the pressure and the volume is
propoitional to the average of the square of the molecular velocity, <v%>, or equiv-
alently to the average molecular translational energy €. In order for this result to be
consistent with the observed ideal gas law, the temperature T of the gas must also
be proportional to <p2> or <<e>. We will then consider in detail how to determine
the average of the square of the velocity from a distribution of velocities, and we
will use the proportionality of 7" with <w2>> to determine the Maxwell-Boltzmann
distribution of speeds. This distribution, F(v) dv, tells us the number of molecules
with speeds between v and v + dv. The speed distribution is closely related to the dis-
tribution of molecular energies, G(e) de. Finally, we will use the velocity distribution
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to calculate the number of collisions Z that a molecule makes with other molecules
in the gas per unit time. Since in later chapters we will argue that a reaction between
two molecules requires that they collide, the collision rate Z provides an upper Hinit
to the rate of a reaction. A related quantity A is the average distance a molecule
travels between collisions or the mean free path.

The history of the kinetic theory of gases is a checkered one, and serves (o dis-
pel the impression tha science always proceeds along a straight and logical path.# In
1662 Boyle found that for a specified quantity of gas held at a fixed temperature the
product of the pressure and the volume was a constant. Daniel Bernoulli derived this
law in 1738 by applying Newton’s equations of motion to the molecules comprising
the gas, but his work appears to have been ignored for more than a century.” A school
teacher in Bombay, India, named John James Waterston submitted a paper to the
Royal Society in 1845 outlining many of the concepts that underlic our current
understanding of gases. His paper was rejected as “nothing but nonsense, unfit even
for reading before the Society.” Bernoulli’s contribution was rediscovered in 1859,
and several decades later in 1892, after Joule (1848) and Clausius (1857) had put
forth similar ideas, Lord Rayleigh found Waterston’s manuscript in the Royal Soci-
ety archives, It was subsequently published in Philosophical Transactions. Maxwell
(lustrations of Dynamical Theory of Gases, 1859-1860) and Boltzmann (Vor-
lesungen tiber Gastheorie, 1896-1898) expanded the theory into its current form.

1.2 PRESSURE OF AN IDEAL GAS

We start with the basic premise that the pressure exerted by a gas on the wall of a con-
tainer is due to collisions of molecules with the wall. Since the number of molecules
in the container is large, the number colliding with the wall per unit time is large
enough so that fluctuations in the pressure due to the individual collisions are immea-
surably small in comparison to the total pressure. The first step in the calculation is to
apply Newton’s laws to the molecules to show that the product of the pressure and the
volume is proportional to the average of the square of the molecular velocity, <v2>.

Consider molecules with a velocity component v, in the x direction and a mass
m. Let the molecules strike a wall of area 4 located in the z-y plane, as shown in
Figure 1.1. We would first like to know how many molecules strike the wall in a
time Az, where A is short compared to the time between molecular collisions. The
distance along the x axis that a molecule travels in the time At is simply v, Ar so
that all molecules located in the volume Av Ar and moving toward the wall will
strike it. Let n” be the number of molecules per unit volume, Since one half of the
molecules will be moving toward the wall in the -+x direction while the other half
will be moving in the —x direction, the number of molecules which will strike the
wall in the time Afis $n"Av, Ar.

The force on the wall due to the collision of a molecule with the wall is given
by Newton’s law: F = ma = mdv/dr = d(mv)/ds, and integration vields FAr =
A(mv). IT a molecule rebounds elastically (without Josing energy) when it hits the
wall, its momentum is changed from +mw, to —mu , so that the total momentum
change is A(mv) = 2my,. Consequently, FAr = 2mu, for one molecular collision,
and FAt = (3n"Av,Af)(2mu,) for the total number of collisions. Canceling A¢
from both sides and recognizing that the pressure is the force per unit area, p = F/A,
we obtain p = n'mo?.

*The history of the kinetic theory of gases is outlined by E. Mendoza, Physics Today 14, 36-39 (1961).
°A translation of this paper has appeared in The World of Mathemarics, 1. R. Newman, Ed,, Vol, 2
(Simon and Schuster, New York, 1956), p. 774.
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B Figure 1.1

All the molecules in the box that are moving toward the z-y plane will strike the wall.

Of course, not all molecules will be traveling with the same velocity v,. We will
learn below how to characterize the distribution of molecular velocities, but for now
let us simply assume that the pressure will be proportional to the average of the
square of the velocity in the x direction, p = n'm<v2>¢ The total velocity of an
individual molecule most likely contains other components along y and z. Since
v =1iv, + ju, + kv, where i, j, and k are unit vectors in the x, 3 and z direc-
tions, respectively, v* = v? + v2 + v2 and <v2> = <p2?> + o>+ v dn
an isotropic gas the motion of the molecules is random, so there is no reason for the
velocity in one particular direction to differ from that in any other direction. Con-
sequently, <v?> = <v2> = <v2> = <2>/3. When we combine this result with
the calculation above for the pressure, we obtain

1l
p=3n m<v*>. (1.1)

Of course, n” in equation 1.1 is the number of molecules per unit volume and can
be rewritten as nN,/V, where N, is Avogadro’s number and 7 is the number of
moles. The result is

1 >
pV = ;nN.\m<U“>. (1.2)

Since the average kinetic energy of the molecules is <e> = im<v®>,
another way to write equation 1.2 is

pV = %nNA<e>. (1.3)

Equations 1.2 and 1.3 bear a close resemblance to the ideal gas law, pV = nRT.
The ideal gas law tells us that the product of p and V will be constant if the tem-
perature is constant, while equations 1.2 and 1.3 tell us that the product will be
constant if <v?> or <e> is constant. The physical basis for the constancy of pV
with <v®> or <e> is clear from our previous discussion. If the volume is

“In this text, as in many others, we will use the notation <x> or ¥ to mean “the average value of x.”
Throughout the text we will use boldface symbols to indicate vector quantities and normal weight
symbols to indicate scalar quantities. Thus, v = Ivl. Note that v2 = v - v = V2
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increased while the number, energy, and velocity of the molecules remain constant,
then a longer time will be required for the molecules to reach the walls; there will
thus be fewer collisions in a given time, and the pressure will decrease. To identify
equation 1.3 with the ideal gas law, we need to consider in more detai] the rela-
tionship between temperature and energy.

1.3 TEMPERATURE AND ENERGY

Consider two types of molecule in contact with one another. Let the average cnergy
of the first type be <Ce>>, and that of the second type be <e>>,. If <e>>| is greater
than <e>,, then when molecules of type 1 collide with those of type 2, energy will
be transferred from the former to the Iatter. This energy transfer is a form of heat
flow. From a macroscopic point of view, as heat flows the temperature of a system of
the type 1 molecules will decrease, while that of the type 2 molecules will increase.
Only when <(e>| = <<¢>, will the temperatures of the two macroscopic systems be
the same. In mathematical terms, we see that T, =T, when <te>>, = <e>, and that
Iy > T, when <e>; > <e>,, Consequently, there must be a correspondence
between <\e>> and T so that the latter is some function of the former: T = T{<e>).

The functional form of the dependence of T on <e> cannot be determined
solely from kinetic theory, since the temperature scale can be chosen in many pos-
sible ways. In fact, one way to define the temperature is through the ideal gas law:
T = pVI(nR). Experimentally, this corresponds to measuring the temperature either
by measuring the volume of an ideal gas held at constant pressure or by measuring
the pressure of an ideal gas held at constant volume. Division of both sides of equa-
tion 1.3 by nR and use of the ideal gas relation gives us the result

_PV 2N,
T = b 3R e >, (1.4
o <e> = *z"kT, (1.5)

where k, known as Boltzmann’s constant, is defined as RIN,. Note that since
<g> == %m<v2>,
3&T

<pfs o= T (1.6)
m

example 1.1

Calculation of Average Energies and Squared Velocities
Objective Calculate the average molecular energy, <e>, and the average
squared velocity, <<v?>, for a nitrogen molecule at T = 300 K.

Method Use equations 1.5 and 1.6 with m = (28 gmole)(1 kg/1000 g)/
(N, molecule/mole) and k = 1.38 % 10-2 J/K.

Solution <e> = 3kI72 = 3(1.38 X 1073 J/K)(300 K)/2 = 621 X 102! J.
ELZ)
m

P> ==
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(1.38 X 1072 J/X)(300 K)
[(28/6.02 %X 10%)]

= 2,67 X 10° (m/s)* = (516 m/s)?,

To summarize the discussion so far, we have seen from equation 1.2 that pVis
proportional to <<v?>> and that the ideal gas law is obtained if we take the defini-
tion of temperature to be that embodied in equation 1.5, Since <e> = jm<v?>,
both temperature and pV are proportional (o the average of the square of the veloc-
ity. The use of an average recognizes that not all the molecules will be moving with
the same velocity. In the next few sections we consider the distribution of molecu-
lar speeds. But first we must consider what we mean by a distribution.

1.4 DISTRIBUTIONS, MEAN VALUES, AND
DISTRIBUTION FUNCTIONS

Suppose that five students take a chemistry examination for which the possible
grades are integers in the range from 0 to 100. Let their scores be §, = 68, §, = 76,
S, = 83, S, = 91, and §; = 97. The average score for the examination is then
. i Ne
. S+ S+ S +85+S8 _ L s. an
NT NT i=1
where N = 5 is the number of students. In this case, the average is easily calcu-
lated to be 83,

Now suppose that the class had 500 students rather than 5. Of course, the aver-
age grade could be calculated in 2 manner similar to that in equation 1.7 with an
index i running {rom 1 to Ny = 500. However, another method will be instructive.
Clearly, if the examination is still graded to one-point accuracy, it is certain that
more than one student will receive the same score. Suppose that, instead of surm-
ming over the students, represented by the index [ in equation 1.7, we form the
average by summing over the scores themselves, which range in integer possibili-
ties from j = 0 to 100. In this case, to obtain the average, we must weight each score
$; by the number of students who obtained that score, N;:

1 100
S = >SN, (1.8)

T f=0

Note that the definition of N, requires that ZN; = Nr. The factor 1/Ny in equation
1.8 is included for normalization, since, for example, if all the students happened
to get the same score §; = § then

I N
<E> = — P GN; = — SN, = 5. (1.9)
Ny 5 Ny 5

Now let us define the probability of obtaining score §; as the fraction of stu-
dents receiving that score:

P, =~ (1.10)
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‘Then another way to write equation 1.8 is

<§> = N SP, (1.11)
J
where 3,P; = 1 {rom normalization.
Equation 1.11 provides an alternative to equation 1.7 for finding the average

score for the class. Furthermore, we can generalize equation 1.11 to provide a
method for finding the average of any quantity,

<Q>= X PO, (112)
J

where P; is the probability of finding the Jth result,

example 1.2

Calculating Averages from Probabilities

Objective Find the average throw for a pair of dice.

Method Lach die is independent, so the average of the sum of the throws
will be twice the average of the throw for one die. Use equation
1.12 to find the average throw for one die.

Solution The probability for each of the six outcomes, 1-6, is the same,
namely, 1/6. Factoring this out of the sum gives <T> = (1/6) &
T, where T, = 1,2,3,4,5,6 for i = 1-6. The sum is 21, so that the
average throw for one die is <77 = 21/6 = 3.5. For the sum of
two dice, the average would thus be 7.

The method can be extended to calculate more complicated averages. Let AQ)
be some arbitrary function of the observation O;. Then the average value of the
function f{Q) is given by

<RQ)> = 2 PAQ). (1.13)
J
For example, if Q were the square of a score, then
L8> = B Pt (1.14)
j

Suppose now that the examination is a very good one, indeed, and that the ta)-
ented instructor can grade it not just to one-point accuracy {a remarkable achieve-
ment in itself!) but (o an accuracy of dS, where dSis a very small fraction of a point.
Let P(S) dS be the probability that a score will fall in the range between S and S +
dS, and let dS become infinitesimally small, The fundarmental theorems of calculus
tell us that we can convert the sum in equation 1.11 to the integral

<§> = f P(5)$ ds, (1.15)
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or, more generally for any observable quantity,

Lo = JP(Q)Q dgo. : (1.16)

Equation 1,16 will form the basis for much of our further work. The probabil-
ity function P(Q) is sometimes called a distribution function, and the range of the
integral is over all values of Q where the probability is nonzero, Note that normal-
ization of the probability requires

JP(Q)dQ = 1. (1.17)

The quantity Iy«(x)i* dx is simply a specific example of a distribution function.
Although knowledge of quantam mechanics is not necessary to solve it, yon may
recognize a connection to the particle in the box in Problem 1.7, which like Exam-
ple 1.3 is an exercise with distribution functions.

example 1.3

Determining Distribution Functions

Objective Bees like honey. A sphere of radius 7, i coated with honey and
hanging in a tree. Bees are attracted to the honey such that the
average number of bees per unit volume is given by Kr 7, where
K is a constant and r is the distance from the center of the sphere.
Derive the normalized distribution function for the bees. They can
be at any distance from the honey, but they cannot be inside the
sphere. Using this distribution, calculate the average distance of a
bee from the center of the sphere.

Method First we need to find the normalization constant X by applying
equation 1,17, recalling that we have a three-dimensional problem
and that in spherical coordinates the volume element for a problem.
that does not depend on the angles is 4772 dr. Then, to evaluate the
average, we apply equation 1.16.

Solution Recall that, by hypothesis, there is no probability for the bees
being at r < ry, so that the range of integration is from #, to
infinity. To determine K we require

f (Kr~3)darrdr = 1, (1.18)

i

or

o r-—Z
41TKJ Fidr e 1 o= 477‘K('"‘7)

ro

= , 1.
w2 (1.19)

so that

K =10
T o
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Having determined the normalization constant, we now caiculate the
average distance:

o0 ’_2
<r>:J r(—o)r”sé%m“z dr
2

o

(1.20)

i
oy
[=} ¥
f—_
.8
't
(2]
&

1.5 THE MAXWELL DISTRIBUTION OF SPEEDS

We turn now to the distribution of molecular speeds. We will denote the probabil-

ity of finding v, in the range from v, to v, +dv,, v, in the range from vy to v, +

dvy, and v, in the range from v, to v_ + dv, by F(v.v,v,) dv, do, dv,. The object of

this section 1s to determine the function F(v,\.,vy,vz). There are four main points in
the derivation:

1. In each direction, the velocity distribution must be an even function of v.

2. The velocity distribution in any particular direction is independent from and
uncorrelated with the distributions in orthogonal directions.

3. The average of the square of the velocity <v?>> obtained using the distribution
function should agree with the value required by the ideal gas law: <p> =
3kThn.

4. The three-dimensional velocity distribution depends only on the magnitude of
v (i.e., the speed) and not on the direction.

We now examine these four points in detail.

1.5.1 The Velocity Distribution Must Be an Even Function of v

Consider the velocities v, of molecules contained in a box, The number of mole-
cules moving in the positive x direction must be equal to the number of molecules
moving in the negative x direction. This conclusion is easily seen by examining the
consequences of the contrary assuniption. If the number of molecules moving in
each direction were not the same, then the pressure on one side of the box would
be greater than on the other. Aside from violating experiniental evidence that the
pressure is the same wherever it is measured in a closed system, our contmon obser-
vation is that the box does not spontaneously move in either the positive or nega-
tive x direction, as would be likely if the pressures were substantially different. We
conclude that the distribution function for the velocity in the x direction, or more
generally in any arbitrary direction, must be symmetric; i.e., F(v,) = F(—v ). Func-
tions possessing the property that flx) = S—x) are called even functions, while
those having the property that flx) = — f(—x) are called odd functions. We can
ensure that F(v,) be an even function by tequiring that the distribution function
depend on the square of the velocity: F(v) = flv2). As shown in Section 1.5.3, this
condition is also in accord with the Boltzmann distribution law.¢

*Other even functions, for example, ¥ = f{vl) wordd be wathematically acceptable, but would not sat-
isfy the requirement of Section 1.5,3.
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1.5.2 The Velocity Distributions Are Indépendent and Uncorrelated

We now consider the relationship between the distribution of x-axis velocities and
y- or z-axis velocities. In shost, there should be no relationship. The three compo-
nents of the velocity are independent of one another since the velocities are uncor-
related. An analogy might be helpful. Consider the probability of tossing three hon-
est coins and getting “heads” on each. Because the tosses f; are independent,
uncorrelated events, the joint probability for a throw of three heads, P(f, = heads,
t, = heads, #; = heads), is simply equal to the product of the probabilities for the
three individual events, P(f, = heads) X P(t, = heads) X P(r; = heads) =
I x4 X % Inasimilar way, because the x-, y-, and z-axis velocities ate independent
and uncorrelated, we can write that

Flo,v,,0,) = Flu ) F(v,)F(v,). (1.21)

We can now use the conclusion of the previous section. We can write, for exam-
ple, that F{v,) = f(v?) and similarly for the other directions. Consequently,

F(u,.0,,0,) = F)F,)F(v,) = fR)f(0)f ). (122)

What functional form has the property that fa + b + ¢) = Aa)fB)c)7? A lit-
tle thought leads to the exponential form, since exp(a + b + ¢) = e“ebe®. It can be
shown, in fact, that the exponential is the only form having this property (see
Appendix 1.1}, so that we can write

F(uv,) = f(v3) = K exp(*xv?), (1.23)

where K and « are constants to be determined. Note that although x can appear
mathematically with either a plus or a minus sign, we must require the minus sign
on physical grounds because we know from common experience that the probabil-
ity of very high velocities should be small.

The constant K can be determined from normalization since, using equation
1.17, the total probability that v, lies somewhere in the range from —oo {0 +oo
should be unity:

[e.e}
J Flv)dv, = 1. (1.24)
Substitution of equation 1.23 into equation 1.24 leads to the equation
o0 Y
1= KJ exp(—-xvi}du, = K(;) , (1.25)
=00

where the integral was evaluated using Table L.1. The solution is then K = (/)2

1.5.3 <v?> Should Agree with the Ideal Gas Law

The constant « is determined by requiring <v*>> to be equal to 3k7/m, as in equa-
tion 1.6. From equation 1.16 we find

oo 1/2 feo
<pi> = J V2 F(v,)du, = (%) J v2 exp(—«vi)du,. (1.26)

-0 e ¢]

The integral is a standard one listed in Table 1.1, and using its value we find that

P/ N2 w2 1
2 = e | e J— e —
<vi> > ( 77) 3 " (1.27)
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o9 2 o 2
J' e gy = ZJ FemB dy

~00 Y

[ee)
J ¢ dy = PN/
0
oo
J e P dy = 1N/ lgn
0

«Q
[“oetoac = 1t
0

| Integrals of Use in the Kinetic Theory of Gases

oo
Byt
J' xzn-He B dx = ¢

—=0a

[ee]
J xe P dy = {8
o

o L3
J PP dy = 172
0

e a
J xse—'ﬁx'dx . 8"3
0

o PTAY. ~(n41/2) o )
[ erers as = g/ BT [ o8 s = gy
0 0 o

As a consequence, the average of the square of the total speed, <v?> = <p2>
+ <> + <p?> = 3<p2>, is simply
3
<Pt = (1.28)
2k ‘
From equation 1.6 we have that <v?> = 3k7/m for agreement with the ideal gas
law, so that 3kT/m = 3/(2«), or k = m/(2kT). The complete one-dimensional dis-
tribution function is thus :

I RN Coan R
. : : - / 1y RS TS

This equation is known as the one-dimensional Maxwell-Boltzmann distribution for
molecular velocities. Plots of F{v,) are shown in Figure 1.2,

Note that equation 1.29 is consistent with the Boltzmann distribution law,
which states that the probability of finding a system with energy € is proportional
to exp(~e/kT). Since €, = imv? is equal to the translational energy of the mole-
cule in the x direction, the probability of finding a molecule with an energy €,
should be proportional to exp(—e /kT), as it is in equation 1.29, In Section 1.5.1
we ensured 7(v,) to be even by choosing it to depend on the square of the velocity,
F(v,) = f(v?). Had we chosen some other even function, say F(v,) = flu¥), the final
expression for the one-dimensional distribution would not have agreed with the
Boltzmann distribution law, :

Equation 1.29 provides the distribution of velocities in one dimension. In three
dimensions, because F(v,,0,.v,) = F(v )F(v,)F(v,), and because v? = v? + v+ 2,
we find that the probability that the velocity will have components v, between v, and
v, + dv,, v, between vy and vy + dv,, and v, between v, and v, + du,_ is given by

F(vgy,0, ) dv, do,dv, = F{u, )F(v,)F(v,)du, dv,dv,

(1.36
m \7? mu?
= pyserel) LY T dv,dv,dv,.
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B Figure 1.2

One-dimensional velocity distribution for a mass of 28 amu and two temperatures.

1.5.4 The Distribution Depends Only on the Speed

Note that the right-hand side of equation 1.30 depends on v? and not on the direc-
tional property of v. When we have a function that depends only on the length of the
velocity vector, v = ivl, and not on its direction, we can be more precise by saying
that the function depends on the speed and not on the velocity. Since Flu,w,0,) =
f{v?) depends on the speed, it is often more convenient to know the probability that
molecules have a speed in a particular range than to know the probability that their
velocity vectors will terminate in a particular volume. As shown in Figure 1.3, the
probability that the speed will be between v and v + dv is simply the probability
that velocity vectors will terminate within the volume of a spherical shell between the
radius v and the radius v + dv. The volume of this shell is dv, dv, dv, = 4erv*dy, 50
that the probability that speed will be in the desired range is!

TAn alternate method for obtaining equation 1.31 is 10 note that dv, du, duv, can be written as visingd
d6 dh dv in spherical coordinates (see Appendix 1.2) and then (o iniegrate over the angular coordinates. Since
the distribution does not depend on the angular coordinates, the integrals over d6 and dep simply give 4 and
we are left with the factor v2 dv.

oo 172 2
m ny
Flv)dv J J v (2 k‘I‘) cxp( zm,)smﬂ v ddde

=0 “0=0

29 Jwr . ( n )3[2 ( mv? )
= d gl ddl [P — d
Lw b a“osma 0 v o) P\ T app )

32 2
- of m _my
4mu (————217”) exp( WZkT)dv'

A more complete description of spherical coordinates is found in Appeadix 1.2.

11
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Area =4 rp?

B Figure 13

The shell between v and v + dv has a volume of 4702 dy. The thickness of the shell here is
exaggerated for clarity.

Ftw) (107 s/m)
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[ i (=)

=
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o
QCJ

B Figure 1.4

Maxwell-Boltzmann speed distribution as a fanetion of temperature for a mass of 28 amu,

HT.U2

' mo ( ) :
= e b expl - ]du. 131
F(U)(IU darv (27?’.1(]) exp UT v ( )

By analogy to equation 1.29, we will call equation 1.31 the Maxwell-Bolizmann
speed distribution. Speed distributions as a function of femperature are shown in
Figure 1.4,

We often characterize the speed distribution by a single parameter, for exam-
ple, the temperature. Equivalently, we could specify one of several types of
“average” speed, each of which is related to the temperature, One such average 1Is
called the root-mean-squared (yms) speed and can be calculated from equation
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L.6: Cpe = <012 = (3kT/m)'2, Another speed is the mean speed defined by
using equation 1.16 to calculate <lv>>;

'.'.__<v.>-?—"f vF(p)dv R
[l )e- ()
Smm L] —— X [ fecee R G iyl

), T emr) TP} T\ )
where the integral was evaluated using Table 1.1 as described in detail in Example

1.4, Finally, the distribution might also be characterized by the most probable speed,
¢*, the speed at which the distribution function has a maximum (Problem 1.8):

sz(ﬂ) S a3y

I3

example 1.4

Using the Speed Distribution

Objective The speed distribution can be used to determine averages. For
example, find the average speed, <v>.

Method Once one has the normalized distribution function, equation 1.16
gives the method for finding the average of any quantity. Identifying
( as the velocity and P(Q) dQ as the velocity distribution function
given in equation 1.31, we see that we need to integrate vF(v) dv
from limits v = O to v = oo,

o0 3

Solution <p> = J vF)dy = [ 4wv3(-%5)exp(—azvz)dv
o w

¢
(1.34)

4 o
= "m-—[ a*vlexp(—a®v?)dv,
0

N

where a = (m/2kT)"2, We now transform variables by letting x =
av. The limits will remain unchanged, and dv = dx/a. Thus the
integral in equation 1.34 becomes

4 *® 4 1
J xexp(—x*)dx
o

aN ma\/;z

_ 2 (uTYR_ (sar\”
_\/,; m T\ am !

where we have used Table 1.1 to evaluate the integral.

(1.35)

The molecular speed is related to the speed of sound, since sound vibrations
cannot travel faster than the molecules causing the pressure waves. For example, in
Example 1.5 we find that the most probable speed for O, is 322 m/s, while the
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Maxwell-Boltzmann speed distribution for a mass of 28 amu and a temperature of 300 K. The
vertical lines mark ¢*, <v>, and ¢,

ms-

speed of sound in O, is measured to be 330 m/s. For an ideal gas the speed of sound
can be shown to be (ykZ/m)'?, where vy is the ratio of heat capacities, y = C/Cy.
The Mach number is defined as the ratio of the speed of an object in a medium to
the speed of sound through the same medium, so that when an aircraft “breaks the
sound barrier” (or exceeds “Mach 17) it is actually traveling faster than the speed
of the molecules in the medium.

Figure 1.5 shows the shape of the distribution function for T = 300 K and the

locations of the variously defined speeds,

example 1.5

Comparison of the Most Probable Speeds for Oxygen and Helium
Objective Compare the most probable speed for O, to that for He at 200 K.

Method Use equation 1.33 with 7= 200 K and m = 2 amu or m = 32
amu. Note that the relative speeds should be proportional to m~ 2,

Solution c'(He) = QkT/m)'2 = [2(1.38 X 10723 | K"DH(200 K)6.02 %
10% amu/g)(1000 g/kg)/(2 amu)]¥2 = 1290 m/s. A similar cal-
culation substituting 32 amu for 2 amu gives c(0,) = 322 mis.

Comment The escape velocity from the Earth’s gravitational field is roughly
v, = 1.1 X 10% m/s, only about 10 times the most probable speed
for helium. Because the velocity distribution shifts so strongly
toward high velocities as the mass decreases, the fraction of helium
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Various average speeds as a function of mass for 7" = 300 K.

atoms having speeds in excess of v,, while minuscule (about
10731y, is still 1047 times larger than the fraction of oxygen
molecules having speeds in excess of v,! As a consequence, the
composition of the atmosphere is changing; much of the helium
released during the lifetime of the planet has already escaped into
space. A plot of various speeds as a function of mass for T = 300
K is shown in Figure 1.6.

1.5.5 Experimental Measurement of the Maxwell Distribution of Speeds

Experimental verification of the Maxwell-Boitzmann speed distribution can be
made by direct measurement using the apparatus of Figure 1.7, Two versions of the
measurement are shown. In Figure 1.7a, slits (8) define a beam of molecules mov-
ing in a particular direction after effusing from an oven (0). Those that reach the
detector (D) must successfully have traversed a slotted, multiwheel chopper by trav-
eling a distance d while the chopper rotated through an angle ¢. In effect, the chop-
per selects a small slice from the velocity distribution and passes it to the detector.
The speed distribution is then measured by recording the integrated detector signal
for each cycle of the chopper as a function of the angular speed of the chopper.

A somewhat more modern technique, illustrated in Figure 1.7b, clocks the time
it takes for molecules to travel a fixed distance. A very short pulse of molecules leaves
the chopper at time 7 = 0. Because these molecules have a distribution of speeds, they
spread out in space as they travel toward the detector, which records as a function of
time the signal due to molecules arriving a distance L from the chopper.

16
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Two methods for measuring the Maxwell-Boltzmann speed distribution.

Analysis of the detector signal from this second experiment is instructive, since
it introduces the concept of flux. Recall that the distribution F(v) dv gives the fraction
of molecules with speeds in the range from v to v -+ dv; it is dimensionless. If the
number density of molecules is #”, then n"F(v) dv will be the number of molecules
per unit volume with speeds in the specified range. The flux of molecules is defined
as the number of molecules crossing a unit area per unit time, It is equal to the den-
sity of molecules times their velocity: flux (number/m?*/s) = density (number/m?) X
velocity (m/s).2 Thus, the flux J of molecules with speeds between v and v + dv is

Tdv = vn'Flv)dv. (1.36)

We will consider the flux in more detail in Section 4.3.2 and make extensive use of
it in Chapter 4.

~ We now return to the speed measurement. Most detectors actually measure the
number of molecules in a particular volume during a particular time duration. For
example, the detector might measure current after ionizing those molecules that
enter a volume defined by a cross-sectional area of A and a length €. Because mol-
ecules with high velocity traverse the distance £ in less time than molecules with
low velocity, the detection sensitivity is proportional to 1/v. The detector signal S(r)
is thus proportional to JAL dvfv, or to n”A€F(v) dv, where n” is the number density
of molecules in the oven. Assuming that a very narrow pulse of molecules is emitted
from the chopper, the speed measured at a particular time 7 is simply v = L/t. We
must now transform the velocity distribution from a speed distribution to a time
distribution. Note that dv = d(L/f) = —L d/i%, and recall from equation 1.31 that
F(v) dv o v2%exp(—pBuv?) dv « (1/Aexp(—BLYANLIA). We thus find that S() «
exp(— BLY?). Figure 1.8 displays an arrival time distribution of helium measured

#8irictly speaking, the flux, J, is a vecter, since the magnitude of the flux may be different in dlffexeni
directions. Here, since the direction of the flux is clear, we will use just its magnitude, J.
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Time-of-flight measurements: intensity as a function of flight time.

From J. F. C. Wang ard H. Y. Wachman, as illustrated in . Q. Goodman and H. Y. Wachman, Dynamics of Gas-
Surface Scattering (Academic Press, New York, 1976). Figure from “Molecular Beams” in DYNAMICS OF
GAS-SURFACE SCATTERING by E O, Goodman and H. Y. Wachmann, copyright © 1976 by Academ:c
Press, reproduced by permission of the publisher. ANl rights or reproduction in any form reserved.

using this “time-of-flight” technique. The open circles are the detector signal, while
the smooth line is a fit to the data of a function of the form expected for S(#). The
best {it parameter gives a temperature of 300 K.

1.6 ENERGY DISTRIBUTIONS

It is sometimes interesting fo know the distribution of molecular energies rather
than velocities. Of course, these two distributions must be related since the molec-
ular translational energy e is equal to 1mv?. Noting that this factor occurs in the
exponent of equation 1,31 and that de = mv dv = (2me)"? dv, we can convert
velocities to energies in equation 1.31 to obtain

4 (2&)( " )3:,.2 ( 'e) de e
W m %TkT exP) kT, '\/_Zme_ -
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The function G(e) de tells us the fraction of molecules which have energies in the
range between ¢ and € + de. Plots of G(e) are shown in Figure 1.9,

The distribution function G(e) can be used to calculate the average of any func-
tion of € using the relationship of equation 1.16. In particular, it can be shown as
expected that <e> = 3kT/2 (see Problem 1.9).

Let us pause here to make a connection with thermodynamics. In the case of
an ideal monatomic gas, there are no contributions to the energy of the gas from
internal degrees of freedom such as rotation or vibration, and there is normally very

s
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Energy distributions for two different temperatures. The fraction of molecules for the 300 K
distribution having energy in excess of € is shown in the shaded region.

little contribution to the energy from excitation of electronic degrees of freedom.
Consequently, the average energy U of n moles of a monatomic gas is simply nN,
times the average energy of one molecule of the gas, or

3 3
U= nNAE kT = EnRT. {1.38)

Note that the heat capacity at constant volume is defined as Cy = (8U/3T)y, so that
for an ideal reonatomic gas we find that

Cy = —nkR. (1.39)
2
This result is an example of the equipartition principle, which states that each term
in the expression of the molecular energy that is quadratic in a particular coordinate
contributes kT to the average kinetic energy and 4R to the molar heat capacity.
Since there are three quadratic terms in the three-dimensional translational energy
expression, the molar heat capacity of a monatomic gas should be 3R/2.

It is sometimes useful to know what fraction of molecules has an energy greater
than or equal to a certain value €, In principle, the energy distribution (&) should
be able to provide this information, since the fraction of molecules having energy in
the desired range is simply the integral of G(e) de from € to infinity, as shown by
the hatched region in Figure 1.9. In practice, the mathematics are somewhat curm-
bersome, but the result is reasonable. Let fe™) be the fraction of molecules with
kinetic energy equal to or greater than €”. This fraction is given by the integral

32 poo
e mzw( ! ) zf \/ECXp(-é;)de. (1.40)

kT
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The fraction of molecules having energy in excess of €" as a function of €*/kT,

Problem 1.10 shows that this integral is given by

fle) = i ae™ + erfc(a), (1.41)

Va

where a = (¢'/kT)"? and erfc(a) is the co-error function defined in Appendix 1.3. A
plot of f(e") as a function of €"/kT is shown in Figure 1.10. Note that for
€' > 3kT. the function f{e") is nearly equal to the first term in equation 1.41,
2V (€' /wkT)exp(—€"/kT), shown by the dashed line in the figure. Thus, the frac-
tion of molecules with energy greater than €” falls off as Ve exp(—e'/kT), provided
that €* > 3kT.

1.7 COLLISIONS: MEAN FREE PATH
AND COLLISION NUMBER

One of the goals of this chapter is to derive an expression for the number of colli-
sions that molecules of type 1 make with molecules of type 2 in a given time. We
will argue later that this collision rate provides an upper limit to the reaction rate,
since the two species must have a close encounter to react.

The principal properties of the collision rate can be easily appreciated by any-
one who has ice skated at a local rink. Imagine two groups of skaters, some rather
sedate adults and some rambunctious 13-year-old kids. If there is only one kid and
one adult in the rink, then the likelihood that they will collide is small, but as the num-
ber of either adults or kids in the rink increases, so does the rate at which collisions
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will occur. The collision rate is proportional to the number of possible kid-adult
pairs, which is proportional to the number density of adults times the number den-
sity of kids.

But the collision rate depends on other factors as well, If all the skaters follow
the rules and skate counterclockwise around the rink at the same speed, then there
will be no collisions. More often, the kids will skate at much faster or slower
speeds, and they will rarely move uniformly. The rate at which they collide with the
adults is proportional to the relative speed between the adults and kids.

Finally, consider the dependence of the collision rate on the size of the adults
and kids. People are typically about 40 cm wide. What would be the effect of
increasing or decreasing this diameter by a factor of 10?7 If the diameter were
decreased to 4 cm, the number of collisions would go down dramatically; if the
diameter were increased to 4 m, it would be difficult to move around the rink at all.
Thus, simple considerations suggest that the collision rate between molecules
should be proportional to the relative speed of the molecules, to their size, and to
the number of possible collision pairs.

Let us assume that the average of the magnitude of the relative velocity between
molecules of types 1 and 2 is <v, > and that the molecules behave like hard spheres;
there are no attractive forces between them, and they bounce off one another like bil-
liard balls when they collide. Let the quantity b, shown in Figure 1.11, be defined
as the distance of a line perpendicular to the each of the initial velocities of two col-
liding molecules, one of type [ and the other of type 2. This distance is often referred
to as the impact parameter. If the radii of the two molecules are r; and r,, then, as
shown in Figure 1.11, a “collision” will occur if the two molecules approach one
another so that their centers are within the distance b, = r, + r,. Thus, b, is the
maximum value of the impact parameter for which a collision can occur. From the
point of view of one type of molecule striking a molecule of the ather type, the tar-
get area for a collision is then equal to 7(r, + r,)? = wb?

max*

! bmax

{
!
|
1

B Figure 1.11

A collision will occur if the impact parameter is less than b, ,,, the sum of the two molecular
radii.

"We consider only the relative velocity between the molecufes. Appendix 1.4 shows that the totei veloc-
ity of each molecule can be wrilten as a vector sum of Lhe velocity of the center of mass of the pair of mole-
cules and the relative velocity of the molecule with respect to the center of mass. The forces between mole-
cules depend on the relative distance between them and do not change the velocity of their center of mass,
which must be conserved during the cellision.
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Moilecule 1 sweeps out a cylinder of area wb?,,,. Any molecule of type 2 whose center is within

the cylinder will be struck.

Consider a molecule of type 1 moving through a gas with a speed equal to the
average magnitude of the relative velocity <v,>. Figure 1.12 shows that any mole-
cule of type 2 located in a cylinder of volume 7757, <<v, = At will then be struck in the
time Az} If the density of molecules of type 2 is n3, then the number of collisions one
molecule of type 1 will experience with molecules of type 2 per unit Hime is

Zy = bl <u,> n,. (1.42)

Of course, for a molecule of type 1 moving through other molecules of the same type,

Zy = owhl <o n) = wdt<v >y, ' {1.43)
where b2, has been replaced by d° since ry + r, = 2r; = d. The quantity 7b2,, is
known as the hard-sphere collision cross section. Cross sections are generally given
the symbol o

Equation 1.42 gives the number of collisions per unit time of one molecule of
type 1 with a density n; of molecules of type 2. The tofal number of collisions of
molecules of type I with those of type 2 per unit time and per unit volume is found
simply by multiplying by the density of type 1 molecules:

Ziy = Zon; = whi, <US> iy, (1.44)

Note that the product njn; is simply proportional fo the total number of pairs of col-
lision partners.

By a similar argument, if there were only one type of melecule, the number of
collistons per unit time per unit volume is given by

2y = %ZlnT = —;jfrrb,?‘m,x <v,>{m ¥ (1.45)

The factor of 3 is introduced for the following reason. The collision rate should be
proportional to the number of pairs of collision partners. If there are n molecules,
then the number of pairs is n{n — 1)/2, since each molecule can pair with n — 1
others and the factor of 2 in the denominator corrects for having counted each pair
twice. If » 1s & large number, then we can approximate n(n — 1) as r?, and since the
number of molecules is proportional to the number density, we see that the number
of pairs goes as (n))%2.

It remains for us to determine the value of the relative speed, averaged over the
possible angles of collision and averaged over the speed distribution for each mole-
cule. One way to arrive quickly at the answer for a very specific case is shown in

iBecause of the collisions, the motecule under consideration will actually travel along 2 zigzag path, but
the volume swept out per unit time will be the same.
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In a hypothetical collision where two molecules each have 2 speed equal to the average <u>>,
the relative velocity between two molecules, averaged over all collision directions, is \V/2<p>.

Figure 1.13. Suppose that the two types of molecules have the same mass, m. Let us
assume for the moment that we can accomplish the average of the speed distribution
by assuming that the two molecules each have a speed equal to the average of their
distribution. Since the two molecules are assumed to have the same mass (and tem-
perature), they will also have the same average speed, <v>>. We now coasider the
average over collision angles. If the molecules are traveling in the same direction,
then the relative velocity between them will have zero magnitude, v, = (), while if
they are traveling in opposite directions along the same line the relative velocity will
have a magnitude of v, = 2<p>, Suppose that they are traveling at tight angles to
one another. In that case, which is representative of the average angle of collision,
the relative velocity will have a magnitude of v, = <p, > = V2 <p>, Recalling
from equation 1.32 that <p> = (8&TVarm)'2, we find that

gETN2 QT 1/2 - LT\ (1'46)

- VE(ATY L (B (wryn 04

) Nwlmf2) ) TR

where we have introduced the reduced mass, #, defined as w = mymy/(m, + Fily).
When the masses m,; and m, are the same, # = m2m = mi2. If the masses are dif-
ferent, then the mean velocities will not be the same, and the simple analysis of Fig-
ure 1.13 is not adequate. However, as shown for the general case in Appendix 1.4 and

Problem 1.12, the result for <v,~> Is the same as that given in equation 1.46. The
appendix also shows why the definition of y as myy/(my + my) is a useful one.

example 1.6

The Collision Rate of NO with 0O,

L <oz = Va2

Objective Find the collision rate of NO with O, at 300 K if the abundances at
[ atm total pressure are each 0.2 ppm and if the molecular diameters
are 300 and 375 pm, respectively. Reactive collisions between these
two species are important in photochemical smog formation.
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Miethod Use equation 1.44, remembéring to convert the abundances to
numbetr densities at 300 K and calculating the average relative
velocity by use of equation 1.46.

Solution First find the total number density »” at [ atm: n* = (W/V)N, =
(p/RTIN,, = (1 atm}(6.02 X 10% molec/mole)/[(0.082 L atm mol ™!
K300 K)] = 2.45 X 10?2 molec/L.. Next determine the number
densities of NO and O,, each being the total density times 0.2 X
1076 #*(NO) = n"(04) = (0.2 X 1078)(2.45 X 10°?) = 4.9 X 10
molec/L.. The average relative velocity is <v,> = (8kT/wp)l? =
[8(1.38 > 1072 J K300 K)6.02 X 10% amu/g)(1000 g/kg)/
(w(48 X 30/78) amu)]¥*= 586 m/s. The average diameter is
(300 - 375 pm)/2 = 337.5 pm. Then Z;, = w(337.5 X 10~12 my?
(586 m/s}4.9 X 10 molec/L)(t L/107% m?)? = 5.0 X 104
collisions s™! m™3, If every collision resulied in a reaction, this
would be the number of reactions per unit second per cubic meter.

23

A quantity related to Z, is the mean free path, A. This is the average distance a
molecule travels before colliding with another molecule. If we divide the average
speed <<v>> in meters per second by the collision number Z; in collisions per sec-
ond, we obtain the mean free path in meters per collision:

:/\_<v>_“--' <v> I
4 mdN <say
S, aw

V2 wdn, ‘

Nofte that the mean free path is inversely proportional to pressure. The mean free path
will be important in Chapter 4, where we will see that the transport of heat, momen-
tum, and matter are all proportional to the distance traveled between collisions.

example 1.7

The Mean Free Path of Nitrogen

Objective Find Z, and the mean free path of N, at 300 K and 1 atm given that
the molecular diameter is 218 pm.

Method Use equation 1.46 to calculate <<v >, equation 1.43 to calculate
Z,, and equation 1.47 to calculate A.

Solution We start by calculating <v,> = (8kT/wu)'?, where p = 28 X
28/(28 + 28) = 14 amu.

8(1.38 X 107 T K~')(300 K)(6.02 X 10% amu/g)(1000 g/kg) |~

<p,> =
(3.1415 X 14 amu)

r

(1.48)
= 673 m/s.
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Next, we calculate Z, noting that the density

. P (1 atm)(6.02 X 10® molec/mole)
"7 RT T (0082 L atm mole~! K-1)(10°° m¥/L)(300 K)
(1.49)

= 2.45 X 10% molec/m’.

Then, Z, = (218 X 10~ m)A673 m/s)(2.45 X 10% molec/m?) =
246_% 10° collision/s. Finally, <u,>/(V22,) = (673 m/s)/
(\/E X 2.46 X 10° collision/s) = 1.93 X 10~ " m.

1.8 SUMMARY

By considering the pressure exerted by ideal gas molecules on a wall, we deter-
mined that, for agreement with the observed ideal gas law, the average energy of a
molecule must be given by

<g> = %kT. {1.5)

To learn how to perform averages, we discussed distribution functions of a continu-
ous variable. The average of some observable quantity (¢ was found to be given by

<@>= JP(Q)Q dg, (1.16)

where P(()) is the distribution function for the quantity Q. We then made the fol-
lowing observations about the molecular speed distribution: (1) the speed distribu-
tion must be an even function of v, (2) the speed distribution in any particular direc-
tion is independent from and uncorrelated with that in orthogonal directions, (3) the
value of <v?> must be equal to 3kT/m to agree with the ideal gas law, and (4) the
distribution depends only on the magnitude of v. These four considerations allowed
us to determine the Maxwell-Boltzmann distribution of speeds:

m \? ( mv2>
Flv)dv = 4qp? —— . 31
(v)dv = dav (Z'm’cT) exp\ ~ 57 dv (1.31)
Calculations using this distribution gave us an equation for the average speed of a
molecule,
T 1/2
<> = (&) , (132)
T
and the most probable speed,
L 2KT\M?
¢ (——~) . ‘ (1.33)
m

A simple transformation of variables in the speed distribution led to the Maxwell-
Boltzmann energy distribution:

iz .
Gle)de = 2w(—~5~) Ve exp(—i> de. (1.37)

kT kT

Finally, for molecules behaving as hard spheres, we determined the collision rate,
Zy = Wh <U > my, (1.42)
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the relative velocity,
- BT\
<u> = V2<u> = (;ﬁu) , (1.46)

and the mean free path,

<o> 1
A=l (1.47)
Zy \/ifrrdzn]

These concepts form the basis for further investigation into ransport properties and
chemical reaction kinetics.

appendix 1.1

The Functional Form of the Velocity Distribution

We demonsirate in this appendix that the exponentiai form used in equation 1.23
is the only function that satisfies the equation fla + b + ¢) = fla)Ab)f{¢). Consider
first the simpler equation

fz) = fa)f (b)), (1.50)

whete z = a -- b. Taking the derivative of both sides of equation 1.50 with respect
to a we obtain

W) dz
et fa)f(b). (1.51)
dz da
On the other hand, taking the derivative of both sides of equation 1.50 with respect
to b, we obtain

df{z) dz

o ap @) .

)

= 1) = ey ). (153

Division of both sides of the right-hand equality by fla)f(5) yields

fla) _ £
fla) S

Now the lefi-hand side of equation 1.54 depends only on @, while the right-hand
side depends only on b. Since a and b are independent variables, the only way that
equation 1.54 can be true is if each side of the equation is equal to a constant, *x,
where « is defined as nonnegative:

(1.54)

o = i —= m g {1.55)
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Solution of these differential equations using x to represent either a or b leads to

%%l =*g  or (jigj;) = i dx. (1.56)

Integration shows that

flx) = Ke™, (1.57)

where K is related to the constant of integration. Equation 1.23 is obtained by
replacing x with v2,

appendix 1.2

Spherical Coordinates

Many problems in physical chemistry can be solved more casily using spherical
rather than Cartesian coordinates. In this coordinate system, as shown in Figure
1.14, a point P is located by its distance r from the origin, the angle 6 between the
z axis and the line from the point to the origin, and the angle ¢ between the x axis
and the line between the origin and a projection of the point onto the x-y plane. Any
point can be described by a value of r between 0 and cs, a value of @ between 0 and
, and a value of ¢ between 0 and 2. The Cartesian coordinates are related to the
spherical ones by the following relationships: x = r sin @ cos ¢, y = r sin 6 sin ¢,
andz = rcos 6.

The volume element in spherical coordinates can be calculated with the help
of Figure 1,15, As the variable @ is increased for fixed # the position of the point
described by (r,8,¢) moves along a longitudinal line on the surface of a sphere,
while if ¢ is increased at fixed 7 the position of the point moves along a latitudi-
nal line. Starting at a point located at (,8,¢), if r is increased by dr, # is increased
by df, and ¢ is increased by de, then the volume increase is the surface area on the

rsing

¥y

B Figure 1.14

Spherical coordinates.
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"'N Figure 1.15

The velume element in spherical coordinates.

sphere times the thickness dr (for clarity, the thickness dr is not shown in the dia-
gram). The surface area is given by the arc length on the longitude, r d0, times the
" arc length on the latitude, r sin @ d¢b. Thus, the volume element is dV = rsin 6 d6

dep dr.

appendix 1.3

The ¥rror Function and Co-Errvor Function

it often occurs that we need to evaluate integrals of the form of those listed in
Table 1.1 but for limits less than the range of O to infinity. For such evaluations it
15 useful to define the error function: '

2 ("
= 1. (1.58)
From Table 1.1 we see that for x = o=, the value of the integral is \{//1;2, s0 that

erf(s0) == 1, Note that if we “complement” the error function by 2/ ar times the
integral from x to e, we should get unity:

X . 2 (o] ﬁuz i 2 00 2
_l"J e du '_'"J e " du = erf(x) + -————J e du
o "

(1.59)
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B Figure 1.16

Values of the error function.

Consequently, it is also useful to define the co-error function, erfc(x), as the com-
plement to the error function:

2 (*
erfo(x) = 1 — erf(x) = —= j e du. (1.60)

Var

Tables of the error function and co-error function are available, but the pervasive
use of computers has made them all but obsolete. For calculational purposes, the
integrand in equation 1.58 or equation 1.60 can be expanded using a series,

) oo (__l)ann-H
Vi Ehn! (2n + 1)’

and then the integration can be performed term by term. Figure 1.16 plots erf(x) as
a function of x.

erf(x) = (L.61)

appendix 1.4

The Center-of-Mass Frame

We show in this appendix that the total kinetic energy of two particles of veloc-

ities v, and v, is given by 3p0? + IMv?, | where v, = v, — v,, and where Veoms

the vector describing the velocity of the center of mass, is defined by the equa-
tion (m; + my)V,, = mvy + myv,,'and M = my + my. Figure 1.17 shows the
vector relationships,
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Va

g

B Figure 1.17

Vector diagram for center-of-mass conversion,

The virtue of this transformation is that the total momentum of the system p =
my ¥y + myv, s also equal to the momentum of the center of mass, defined as Mv .
Because we assume that no external forces are acting on the system, ¥ = Ma_ =
(dp,,,/dr) = 0, so that the momentum of the center of mass does not change dur-
ing the inferaction between the two particles.

Note that since (m,/M) + (m,/M) = 1 we can write

my My
Vo ™ Yeom T —ﬂ_f + ﬂ_/,f_ Y2 = Veom

(1.62)
i { My
=V, T Ve T Veons
Mt M7
However,
vyt vy = My, (1.63)
s0 that
v, MY,
WWWMW" = 7  Veom-
Consequently,
iy Hy
Vo = Veom = A_d'vl - Evi
(1.64)
Nty
IZ e vl
M
In a similar way, we find that
¥y
Vo — ¥y = “ﬁ‘/}“’r- (L.65)

We now note an important point, that the velocities of the particles with respect to
the center of mass are just given by the two pieces of the vector v, u, = —(my/M)v,,
and @, = (m/M)v,, as shown in Figure 1.18. Note also that in the moving frame of
the center of mass, there is no net momentum for the particles; that is, myu, + mu, =
0. This important property enables us to calculate the velocity of one particle in the
center-of-mass frame given just the mass and the velocity of the other particle.
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0y =~y /Mv,

2 g

B Figure 1.18

Vector diagram for center-of-mass conversion, showing the relative velocities in the center-of-
mass frame for the two particles.

We can rearrange equations 1.64 and 1.65 to get

iy
Veom — E}Vr = ¥y,

1.66
m, (1.66)
Veom T Evr = Vs

The total energy is then
1 I I m, Y 1 my
Em;vf‘ + ~2—m2v§ = EmI (Vcom - }EV") + 57?12 Veom + “]Evr
I 3 2mm,, s »
= Emlvcom - M Vi Veom I ¥y
1 2mpnn, ot
+ 5’”2"3mn + *2}‘}* Vit Veom ZM{ V% (1.67)
1 mia M
= EMVgom + WM V?

1 1
= EMUgom + EJ'-LUJZ
It will often be useful to consider collisions in the center-of-mass frame. For
example, we will make extensive use of this view in talking about molecular scat-

tering in Section 8.4. Problem 1.12 shows how this result can be used to calculate
the average relative velocity,
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Problems

problems

1.1

12

1.3

1.4

1.5

1.6

1.7

18

1.9

1.10

1.11

1.12

Molecules all of mass m and speed v exeit a pressure p on the walls of a ves-
sel, If half the molecules are replaced by ones of another type all with mass
%m and speed 2v, will the pressure (a) increase, (b) decrease, (c) remain
constant?

Suppose the probability of obtaining a score between 0 and 100 on an exam
increases monotonically between O and 1.00. Is the average score on the
exam (a) greater than 50, (b) equal to 50, (c) less than 507

Suppose some property g of a gas is proportional to (0.326 $* m~*u} + (7
s” m™?)p?. What is the average value of g7

Without referring to any formula, decide whether at constant density the
mean free path (a) increases, (b) decreases, or (c) stays constant with
increasing temperature and explain your answer.

Consider a deck of cards. With aces valued at one and jacks, queens, and
kings valued at 11, 12, and 13, respectively, calcuiate the average value of
a card drawn at random from a full deck.

The distribution of the grades § (where 0 = § = 100) for a class contain-
ing a large number of students is given by the continuous function P(§) =
K(50 — IS — 50D, where Ixl is the absolufe value of x and K is a normaliza-
tion constant. Determine the normalization constant and find out what frac-
tion of the stndents received grades greater than or equal to 90,

A pair of dancers is waltzing on a one-dimensional dance floor of length L.
Since they tend to avoid the walls, the probability of finding them at a posi-
tion x between walls at x = 0 and x = L is proportional to sin?(7x/L). What
is the normalized distribation function for the position of the waltzers?
Using this distribution function, calculate the most probable position for the
waltzers. Calculate the average position of the waltzers. (Hins: The integral
of y sin®y dy is [y¥4] — [(y sin 2y)/4] — [{cos 2y)/8]; this is also the proba-
bility for finding a particle in 2 box at a particuiar position.)

By setting the derivative of the formula for the Maxwell-Boltzmann speed
distribution equal to zero, show that the speed at which the distzibution has
its maximum is given by equation 1.33.

Show using equations 1,16 and 1.37 that the average molecular energy is
3kT72.

Prove equation 1.41 from equation 1.40. Integration can be accomplished
by making the following change of variable. Let € = kTx?, so that de =
kT d(x?) and €2 = (kT)"2x. Substitute these into equation 1.40 and inte-
grate by parts, recalling that since d(uv) = wdv + v dy, then [d(uv) =
fudv + Judu, so that [udv = (uv) |y =~ fvds, where the notation
{,imits indicates that the product (v} should be evaluated at the limits used
for the integrals.

The Maxwell-Boltzmann distribution may not be quite valid! Caiculate the
fraction of N, molecules having speeds in excess of the speed of light.

The object of this problem is to show more rigorously that <v > =
(8kT/ar u)V?, where p, the reduced mass, is defined as p = mym,/(m; + m,).
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We have already learned in Appendix 1.4 that the total kinetic energy of two
particles is given by 3 uv? + §Mv2,,, where v, = v, — v, and Voo the
center-of-mass velocity vector, is defined by the equation (m, + )V
My vy oy, and M = my + m,,

com

a. Consider the probability of finding two molecules, one with velocity v,
and one with velocity v,. Using equation 1.30, we see that this proba-
bility is given by

FQ01) F(01)F(01,) F(02,) F(03,) F(vy,) vy, dvy; dv,, vy, dvy, doy,

NES Ty
2mkl)  \ 2mkT P\ 20 )P\ T

X dvy,dvy, dvy, Aoy, vy, do,,.

Use the result from Appendix 1.4 to show that this probability can also
be written as '

Fo ) F(v, Y (0, YF(U o (Vcomy) F(Ceome

>< dvl.l dv]‘y dvrz dvcomx dvc()l'lly dUCOmZ

= ( my )3/2( "y )3/28}( (MMV30111)eX (__ MV?)
2mk?) \o2mir) TP\ o JEP\ T o

X dvrx dvry dvrz dvcoxm‘ dvcomy dUcomz .

b, Now transform the Cartesian coordinates to spherical ones and show by
integration over all coordinates that the average relative velocity <, >
is given by (8kT/wu)¥2.

1.13 What is the ratio of the probability of finding a molecule moving with the
average speed to the probability of finding a molecule moving with three
times the average speed? How does this ratio depend on the temperature?

L.14  You are caught without an umbrella in the rain and wish to get to your dorm,
1 km away, in the driest possible condition, Should you walk or run? To
answer this question, calculate the ratio of the rain drop collisions with your
body under the two conditions. Assume that the cross section is independent
of direction (i.e., that you are spherical), that you run at 8 m/s, you walk at
3 m/s, and that the rainfall is constant with a velocity of, say, 15 mys.

115 Calculate the root-mean-squared deviation of the speed from its mean value:
[<(v — <u>)>17,

1.16  Find <v*> for a gas of molecular weight M at temperature 70

1.17 A very expensive gas is sold by the molecule, and the price is proportional
to the velocity of the individual molecule: price in $ = v/<p>. If I buy a
buib of these gaseous molecules, what is the average price per molecule, and
does the price depend on the temperature of the bulb? '




1.18

1.19

Problems

In a group of molecules all traveling in the positive z direction, what is the
probability that a molecule will be found with a z-component speed between
400 and 401 my/s if m/(2kT) = 5.62 X 107¢ s2/m?? (Hint: You need to find
and normalize a one-dimensional distribution function first!)

We will see in Chapter 3, equation 3.4, that the rate constant for a reaction as
a function of temperature is given by the average of o(e v, over the thermal
energy distribution G(e,), where €, = §muv? and o(e,) is the energy-depend-
ent ¢ross section for the reaction. The the1ma1 relative kinetic energy distri-
bution G(e,) has the same functional form as the kinetic energy distribution
G(e) given in equation 1.37, except that all energies € = muv? are replaced
by relative kinetic energies ¢, = Luv?.

a. Suppose that for a particular reaction o(¢,) = ceZ, where c is a constant.
Calculate (1),
b.  Suppose that for another reaction o(e;) = c/e; calculate k(7).
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Chapter Outline

4.1 Introduction

4.2 The Functional Form of the Transport Equations
4.3 The Microscopic Basis for the Transport Laws
4.4 Thermal Conductivity

4.5 Viscosity

4.6 Diffusion

4.7 Time-Dependent Transport

4.8 Summary

Appendix 4.1 The Poiseuille Formula

4.1 INTRODUCTION

The goal of this chapter is to understand such properties as thermal conductivity,
viscosity, and diffusion on a microscopic level. For gases, we can attain this under-
standing by application of the kinetic theory developed in the last chapter, Although
an exact treatment is mathematically cumbersome, simple physical ideas can be
used to derive approximate formulas that have the correct dependence on molecu-
lar parameters and differ from the exact formulas only by numerical constants of
order unity. Thus, our approach focuses on the underlying physics of the process
rather than on obtaining exact results.

The outline of the approach is as follows. After briefly discussing the general
functional form of the transport equations, we will make four simplifying assump-
tions that will enable us to easily apply kinetic theory to transport phenomena in
gases. The basic theme is that the properties transported, namely, energy, momen-
tum, or concentration, are carried by the motions of molecules. We know something
about this motion from our discussions of the Maxwell-Boltzmann distribution.
The first step in a general treatment of transport is to calculate the flux of mole-
cules, i.e., the number of molecules that cross an area per unit time. The second step
is 1o calculate how far the molecules travel in a particular direction between colli-
sions. This distance is clearly related to the mean free path, but it is slightly different.
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The third step is to combine these two results {o calculate a transport equation for
an arbitrary property carried by the gas molecules. We will see that the transport
always moves the property in a direction opposite to a gradient, or spatial deriva-
tive, in the property, and that the proportionality constant is related to the mean
velocity of the molecules, the mean free path, and other properties of the molecules.
For gradients that are independent of time, it is then relatively straightforward to
apply the general equation in turn to thermal conductivity, where energy is trans-
ported; to viscosity, where momentum is transported; and to diffusion, where the
molecules themselves are transported. For gradients that are not constant in time,
the treatment is somewhat more complex but can again be understood using a sim-
ple model, as shown in the final section of this chapter.

4.2 THE FUNCTIONAL FORM OF
THE TRANSPORT EQUATIONS

The principal features of all transport equations can be appreciated by considering the
flow of a liguid through a tube, Figare 4.1 displays the important parameters. For the
fiquid under consideration and for a particular choice of diameter, the tube has an
inherent conductivity C. Suppose that a pressure differential Ap = p, — p) = 018
placed across the tube so as to force the liguid to flow from Jeft to right. We expect
from common experience that the rate of liquid volume that crosses a unit area ori-
ented perpendicular to the flow will depend linearly on both the pressure differential
and the conductivity. The flow of a quantity per unit time per unit area is called the
flux and has dimensions of (quantity) s™! m™2 In this case, the quantity is the volume
of liquid and the linear proportionalities can be expressed by the equation

= ~C—, a.
L==C @.1)

an equation known as Poiseuille’s law. In the example above, dp/dz is simply
— Apl€ and is called the gradienr of the pressure. Strictly speaking, since the gra-
dient can have different values in different direciions, equation 4.1 should be writ-
ten in vector form: J == —CVp, where V is the vector id/dx + jd/dy + ko/oz and i,
j, and k are unit vectors in the x, y, and z directions, respectively. To keep the nota-
tion simple, we will focus on the z component of the flux, while remembering that
similar equations can be written for the other directions. Note in equation 4.1 that
the gradient dp/dz is negative since the pressure decreases as z increases, but that
the flux is positive because of the negative sign incorporated in equation 4.1.

B Figure 4.1

The flow of liquid through a tube.
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Transport Equations

Quantity Transported Equation Naie

Fluid J, = —C(aploz) Poiseuitle’s law
Heat {thermal conductivity) J, = —x(8T/0z) Fourier’s law
Momentum J, = —n{év Joz) Viscosity
Particles (diffusion) J, = ~D(An*19z) Fick’s law
Electrical charge J, = ~(Upy(ad/az) Ohm’s law

From dimensional analysis we see that the units of the conductivity C are volume
st m™* pressure™!. While we note here that C is inversely proportional to the vis-
cosity, we defer discussion of the relationship between the conductivity and molec-
ular properties until Section 4.5.

All transport equations have the form of equation 4.1; the only differences
involve the form of the gradient and the quantity that flows counter to the gradient.
The examples of greatest interest are described in Table 4.1,

In the case of thermal conductivity, the quantity carried is heat or energy, and
it is carried in the direction opposite to the temperature gradient; i.¢., heat flows in
the positive z direction if the temperature decreases as z increases. The proportion-
ality constant, «, is called the coefficient of thermal conductivity. Similarly, in the
case of diffusion, the quantity carried is the particle itself, and it is carried counter
to a density gradient. The proportionality constant, I3, is called the diffusion coef-
ficient. Viscosity is at {irst a bit confusing. The quantity carried is the x component
of momentum, but it is carried in the z direction against a gradient of momentum,
as discussed in detail in Section 4.5. The proportionality constant is called the vis-
cosity coefficient. Olm’s law concerns the transport of electricity through a con-
ductor against a gradient in electrical potential, as discussed in Example 4.1.

Ohm’s Law

Objective Determine Chm’s law for the flux of clectrons through a wire,
given that its conductivity is 1/p (p is called the resistivity) and
that the potential decrease across the wire is V volts per m. Show
that the result leads to the common form of Ohm’s law: V = IR,

Method The charge flux will have the units of charge per cross-sectionat
area of the wire per second. It should be proportional to the con-
ductivity of the wite and to the gradient of the electrical potential
that pushes the clectrons along the wire.

Solution Since the electrons flow from a region of high potential ¢ to one
of low potential, the gradient in the direction of flow is negative;
the potential decreases with increasing z, where z is the direction
of electron flow. Assuming a linear variation in voltage across the
wire, the gradient is thus d¢/dz = -~ V/€, where £ is the length of
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the wire. The flux of electrons is thus J, = —(1/p)(d¢/dz). Writ-
ing the flux of electrons as the current, [, per unit area and substi-
tuting for the gradient, we obtain /A = Vip€, or V = IR, whete
R = pf/A is the resistance of the wire.

Comiment The units of I are amperes (one coulomb of charge per second),
while the units of R are ohms. A 1-volt drop in potential across a
resistance of one ochm causes a current flow of 1 ampere. The units
of the resistivity, p, are ohm m.

4.3 THE MICROSCOPIC BASIS FOR
THE TRANSPORT LAWS

4.3.1 Simplifying Assumptions

1t is clear from Table 4.1 that the transport laws all have the same basic form,
namely that the flux of some quantity is proportional to and in the opposite direc-
tion of a gradient. In the case of transport in gases, the explanation of this common
form is based on the kinetic theory outlined in Chapter 1. As realized very early by
Maxwell and by Boltzmann and later expanded by Enskog and by Chapman,* the
property transported by the flux must be transported by the individual particles
comprising the gas, namely, by molecules subject to the Maxwell-Boltzmann dis-
tribution law. In the case of thermal conductivity, the property carried is the energy,
e = mu?/?2. In the case of viscosity, the property carried is the momentum rmv,. Dif-
fusion involves the flux of the molecules themselves. While a rigorous theory of
gransport properties involves both complicated mathematics and physics, the basic
form of the answer can be derived from kinetic theory and a few simple assump-
tions. We will follow this latter route, recognizing that while we expect to capture
the basic taste of the argument, the seasoning of our dishes may not be perfect.
Most of the equations we derive will show the correct dependence on molecular
parameters but will have numerical factors that are not guite correct.

We make the following simplifying assumptions: (1) the molecules behave as
rigid spheres with no attractive forces; (2) they all travel with the same speed, equal
to the average speed <v>>, and traverse the same distance, equal to the mean free
path A, between coilisions; (3) the molecules taken collectively have an isotropic
angular distribution; and (4) each collision results in complete equilibrium with
respect to the interchange of the propezty ¢ which is being transported.

The first assumption is obviously a drastic oversimplification, since we know that
it is the forces, both attractive and repulsive, between gas molecules that account for
the deviations from ideal gas behavior. The second assumption is more than merely a
matter of convenience. It is certainly easier to deal with the average behavior rather
than performing each calculation as a function of velocity and finally integrating over
the velocity distribution. But this procedure hides the fact that some of the properties
we want to transport depend on velocity, g = g(v), so that the rate of transport of this

"D, Enskog, Kungliga Svenska Vetenskopsekademiens Handlingar 63, No. 4 (1922) (in German); S.
Chapmaz and T, G, Cowling, The Mathemaiical Theory of Non-uniform Gases (Cambridge University Press,
Cambridge, Engiand, 1939).
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property is proportional to vg(v). By considering only the average velocity we are in
effect replacing <wg(v)> by <v><g(v)>, an approximation whose accuracy.
depends on the exact nature of the distributions. The third assumption turmns out to be
particularly weak. When molecules collide, they do not completely forget their orig-
inal direction of motion, so their motion in the presence of a gradient is not likely to
be isotropic. The approximation ignores the fact that the gradient affects the velocity
distribution. The fourth assumption is likewise a source of error. It may be true for
transfer of infinitesimal amounts of the property ¢ per collision, but it will certainly
fail when the gradients become large. In view of these approximations, it should be
no surprise that the derivations below will introduce incorrect numerical factors.
Nonetheless, the essential physical picture is unchanged by these approximations; the
property ¢ is carried by molecules whose motions over a wide range of conditions are
not too different from those predicted by kinetic theory,

We begin by considering gradients that are stable in time; i.e., gradients that are
established by some external means so that the transport of heat, momentum, or
concentration does not change the gradient with time. For example, we might hold
the ends of a tube of gas at fixed, but different, temperatures by using two large heat
baths. Heat would then be transferred through the gas from one bath to another
without appreciably changing the gradient.

In the remainder of this section we will first develop an equation for the molec-
ular flux. We will then use this equation to determine two quantities; the fiux of a
property through a plane and the vertical distance between planes where collisions
have occurred. We will finally develop a general flux equation that can be used in
subsequent sections to relate the coefficients of thermal conductivity, viscosity, and
diffusion to molecular properties such as diameter, speed, heat capacity, and mass.

4.3.2 The Molecular Flux

The first step in a microscopic explanation for transport properties is to recognize
that, if molecules are carrying the quantity in question across a unit area in a upit time,
we need to know the rate at which the molecules themselves cross the area. Equation
1.30 and Figure 4.2 can help in this exercise. How many molecules cross the area A
in the indicated plane per urit time? We treat the problem in spherical coordinates,

S
\

-

B Figure 4.2

The flux of molecules through a plane.
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whete v ranges from 0 to o, ¢ from 0 to a7, and ¢ from 0 to 27, The relationship
between spherical and Cartesian coordinates is discussed in Appendix 1.2, Consider
for each possible value of v, 6, and ¢ a cylinder of slant height vA: tilted at angles ¢
and ¢ with respect to the z axis, where the slant height is chosen so that all molecules
within the cylinder with velocities centered on v, 8, and ¢ will cross area A in the time
At, The volume of the cylinder depends both on the slant height, vA# and on cos
V = AvAt cos 0, The number of molecules crossing A in At is then given simply as
the number of molecules in the cylindrical volume times the probability that a mole-
cule will have a velocity v centered on angles 8 and ¢, The number of molecules in
the volume is "V = n*AvAr cos 6, while the probability of having the given velocity
is (2mkT)¥2 X exp(—mu¥2kTYwsin 6 a6 d¢p dv.® Thus,

umb "AvAtc 6( i )3/—ex ( mvz) %sin 6 46 dep dv.  (4.2)
- = B 08 ——— e . .
number = 7 os Bl o—~ pl —57 Vs v

The number of molecules in the cylinder with velocities centered on (v,0,¢) that
cross a unit area of the plane in a unit time is then the flux distribution function:

b .
JHv8,4)v’sin 0 6 dp dv = number
AQY “3)

*:ﬁ( . )m x ( ”w?') cos 6 sin 0 d0 d¢ d
=7 — ! — S ST .
okt ) P\ T

Equation 4.3 is evidently a distribution function giving the probability that a
molecule with a speed in the range v — v + dv and direction in the range 6 — 6 +
d6, ¢ ~» ¢ + d¢p will pass through the plane in a unit time. We can use it to calcu-
late two important quantities.

We would first like to know the flux of molecules J, that cross the plane from
below regardless of their velocity and direction, To find this quantity, we simply
need to infegrate equation 4.3 over ail the variables, but the range of integration for
8 should be from 0 to 7/2 (see Figure 4.2) since we want only those molecules
moving upward through the plane, Thus,

(TR L m N mv’
Jzzn'L J;. J; v Tk exXpl ~ 5 cos 6 sin @ d6 d¢p dv. (4.4)

The integration over v (with an additional factor of 4ar) was performed in equation
1.31: the answer here is simply /{49 <v>>). The integration over ¢ gives a factor
of 27r. Thus,

w2
- .
J, = n——<p> ZWJ cos 8 sin 0 d6
dar o
) (4.5)
.1 2 .1 sin’6 17
= HE<U>L sinf d(sin8) =n -2—<v>|: H; L ,

or

Note that integration of the probability over the angles would give a factor of 4ar, so that the probabil-
ity would be identical to that given in equation 1.31.
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where we recall from Chapter 1 that <v>> = (8kT/mm)"2, where m is the mass of
the gas molecules. This important equation gives the flux of molecules in a partic-
ular direction. Of course, for an isotropic gas, the flux of molecules has the same
value in any direction, a conclusion that is clear from the fact that the right-hand
side of equation 4.6 does not depend on direction.

Suppose now that the molecules each carry an amount g of some property.
Then the flux of that property will be simply the flux of molecules times the amount
of the property each carries. In particular, for the +z direction,

1 ,
J, = Z<v>n'q. 4.7)

4.3.3 The Vertical Distance between Collisions

The next question we consider is the distance in the z direction traveled by the aver-
age molecule between collisions, Although the total average distance is the mean
free path A, the distance in the z direction will be somewhat shorter, since molecules
with positive z component velocities move at a variety of angles 0 with respect to
the z axis. The second result that we will derive from equation 4.3 is that the aver-
age z distance between collision planes is 2A/3.

Let the slant ength of the cylinder in Figure 4.2 be vAr = <v>/Z, = A.
Then the vertical distance between the indicated plane and the plane in which the
molecule last had its collision is A cos 6. We wish to find the average of this guan-
tity. Since equation 4.3 gives the flux probability, the average of A cos 6 will
simply be

J/\ cos 8 J(v,0,¢)dr
<Acos > =

JJ(U,B,d))d’r
4.8)

#/2 3 /2
J cos%0 sin @ 40 { SPEE}
0 3 ¢ 2

= e
00:3219}7’/2 3

= A /2
JO cos @ sin @ 4@ [ 3

A,

0

where the volume element abbreviated as dr is equal to v’sin @ d8 d¢p dv and where
the integral in the denominator is used for normalization. Conseguently, we see that
the average distance traveled in the z direction between collisions is 2A/3.

43.4 The General Flux Equation

To caleulate the flux of the property g it is convenient to consider a plane located
perpendicular to the direction of the gradient. Let the gradient be in the z direction,
and let the plane be located at the arbitrary position z,. As shown schematically in
Figure 4.3, we calculate the net flux into the plane at z, as the flux due to the
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— zp+2A/3
— 2

2= 2AM3

B Figure 4.3

Transpors between layers separated by the mean free path.

upward motion of molecules that made their fast collision in the plane at z, ~ 2A/3
and due to the downward motion of molecules that made their last collision in the
plane at z, + 2A/3. From equation 4.7, the flux from a plane at z is given by J, =
Ln*g<v>, where n”, g, and <v> are evaluated at the position z. While assumption
2 enables us to treat <> as constant, in principle both n” and g can vary between
planes. Introducing temporarily the notation p,(z) as n'q evaluated at location z,
the upward flux of the propesty ¢ is then given by J., = ﬁ<v>,oqr(z0 — 2Af3),
where p, (z) — 2A/3) is the value of p, = n'q for upward traveling molecules that
had their last collision in the plane at z, — 2A/3. Similarly, the downward flux of
the property is given by J.., = %<v>pq(zo + 2Af3). The net flux in the upward
direction is then

LS (.9)

1 27 2A
= Z<U> Pk 2= ) Pol 20 T Ewit

If the gradient is constant or if its change is small over dimensions corresponding
(o the mean free path, then we may approximate p,(z, = 2A/3) by the first two
terms in a Taylor series expansion about the position zy:

I\ 2 dp
Pq(Zo * "7,:) =~ PG(ZO) * "":;(T)f) (4.10)

Substitution of equation 4.10 into equation 4.9 and replacement of p, by n'q yields

“The Taylor series expansion for y(x, + Ax) is given as ¥(x, + Ax) = y(xg) + Ax(dyfdy) + %(/_\x)2
(cZy/dx®y + - - -, where the derivalives are evaluated atx = Xo. ¥ (dyfdx) is nearly constant over the range of
Ax, then (d2y/dx®) will be small and only the first few terms in the expansion will be needed.
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e

Equatien 4.11 will form the basis for much of our further discussion. At this
point it is worthwhile to make two conunents. First, the result does not depend on
having a gradient that is independent of position. If the gradient is constant every-
where in space, then equations 4,10 and 4,11 are exact, but even if the gradient
changes as a function of position, equation 4,11 will give an excellent approxima-
tion to the flux through the plane at 7 as long as the change in the gradient is small
over distances within roughly one mean free path of z,. Second, equation 4.11 sug-
gests that a nonzero flux will result from either a gradient in the molecular density,
n’, or a gradient in the property ¢, or both. In our discussions of thermal conduc-
tivity and viscosity below, we will assume that there is no net movement of the mol-
ecules; that only the property ¢ = ¢ for thermal conductivity or ¢ = muv, for vis-
cosity changes with position. In this case, since the number density does not change
with position, we see that 6(n"y) = n"3g. In the case of diffusion, however, the
property in flux is the number density itself, so ¢ = 1 and §(n’g) = an",

4.4 THERMAL CONDUCTIVITY

A fundamental observation in the development of the second law of thermody-
namics is that heat flows from a hot body to a cold one. The phenomenological
description of this flow was discussed in Section 4.2 and is embodied in the equa-
tion called Fourier’s law; J, = —k(dT/az), where J, is the flux of heat (energy) in
the z direction and « is the coefficient of thermal conductivity. Since the units of the
flux are energy per area per time, we se¢ that Fourier's law has dimensions (I m™2
s71) = x (K m™"), or that the dimensions of x are 2 HEKm™)=Im 5!
K~ Since 1 J of energy per second is also equal to 1 watt of power, alternative
units for « are W m™" K1, Table 4.2 gives some values for .

PR Thermal Conductivity Coefficients, «, for Various
B Substances at 273 K and 1 atm

Substance kK (Jm g 1KY

Cu 400

Fe 80

He 0.144

Ar 0.0162

N, 0.0237

H, 0.174

0, 0.0240
o, 0.0142
CcH, 0.0300

“Kappa, i, is used here for the therma conductivity coefficient and should not be confused with the
isothermal compressibility coefficient, which sometimes also uses this symbol.
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example 4.2

The Heat Flow through Fiberglass Insulation

Objective Calculate the rate of heat ioss through a wall insulated with fiber-
glass. Let the wall be 3 m X 4 m, ignore the conductivity of any
other wall materials, and take the thickness of the insufation to be
15 cm, the temperatore difference between the inside and outside
of the wall to be 10 K, and the coefficient of thermal conductivity
for fiberglass tobe 5 X 1072 W m~  K~L

Method According to Fourier’s law, the flux of energy is given by J, =
—1(8T/3z). The flux is the heat per unit time, so that the total heat
loss in watts (joules per second) is the area times the flux: AJ.

Solution The gradient is —(10 K)/0.15 m), so that the total heat loss is
BmX4m)5 X 1072Wm™ s7H(0 K)/(0.15 m) = 40 W,

Of course, thermal conductivity is not the only method for heat transport. Heat
is also transferred by radiation, as from the sun to Earth, or by convection, as in
winds that move weather fronts. In our consideration of thermal conductivity, we
will sepatate these processes and analyze the flow of heat (energy) in the absence
of net movement of either photons or matter. To be sure, even in conduction the heat
is transported by the movement of particles, usually by the motion of molecules,
but, in metals, also by the motion of electrons. However, we will assume that there
is no nef molecular motion in conductivity. Thus, the conducted heat moves like the
baton in a relay race; it is passed from one particle to another. This view is true, and
the macroscopic equations valid, for heat flow through solids, liquids, or gases. In
the latter case, however, we can easily come to a microscopic understanding of the
coefficient of thermal conductivity.

The kinetic theory that we have developed describes the collisions that provide
the opportunity for gases to exchange energy, so that equation 4.11 should predict
the essential features of thermal conductivity in gases, sabject to the simplifying
assumptions made in the last section. The propesty transported by the molecules is
their energy, €, and by assumption 4, this energy is equilibrated at every collision.
If we assume no net motion of the molecules, then d(n"q) = ' 0q. If the energy per
mole is g = U/N, = €, equation 4,11 then becomes

i, 5
J, = —gn';\<u>(—£). (4.12)

Recalling from Chapter 1, Section 1.6, that (aU/aT), = Cy, the constant vol-
ume molar heat capacity, we write the gradient (8¢/9z) as

ge 18U
9z N, oz
18U aT
e e 4.13
N, T 9z (413)
Cy oT
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Chapter 4 Transport Properlies

Thus,
I . Cy[eT
Jz == wgn /\<U>R]“;\“<"£>. (4_14)
Comparison of equation 4,14 with Fourier’s law vields
1, ¢
K= E-n )L<v>ﬁz~. 4.15)

This expression for the thermal conduciivity coefficient may be simplified by
using equation 1.47, repeated here for use with a single component so that ny=n’
and b, = 4, the molecular diameter:

A S 4.16)

- \/E"n‘dgn* -

Substitution of equation 4.16 into equation 4,15 yiekds

s B S gy
SR 3\/—217‘(!3NA ' e

Note that the result for « is independent of pressure because the n* dependence
in the general expression for the fiux and the 1/n" dependence of the mean free path
exactly cancel one another. A qualitative explanation for the cancellation is that,
while there are fewer molecules crossing a given area per unit time at low pressure,
they travel a longer distance between collisions. Although it is found experimen-
tally that « is independent of pressure over most pressures of interest, this inde-
pendence breaks down at very high pressures where the molecules no longer
behave like an ideal gas and at very low pressures where the mean free path reaches
macroscopic dimensions. In the latter case, truncation of the Taylor expansion used
in equation 4.10 is no longer valid after two terms. At extremely low pressures, the
mcan free path is limited only by collision at the cold surface or the hot surface, and
the thermal conductivity coefficient is then directly proportional to n’,

It is important to comment that the heat capacity for a real molecule is larger
than that for a monatomic ideal gas: Cy > 3R/2. The reason, of course, is that yeal
molecules have rotational and vibrational degrees of freedom in addition to trans-
lational ones. While many vibrational motions are of high enough frequency not to
contribute to the heat capacity, the rotational degrees of freedom contribute R per
mole for diatomic molecules and 3R/2 per mole for polyatomic ones.

|
|

The Thermal Conductivity Coefficient of N, at 273 K and 1 atm

Objective Estimate the thermal conductivity coefficient of N, at 1 atm and
273 K, given that the molecular diameter of N, is 370 pn.

Method Use equation 4.17 recalling that Cy, =~ 5R/2.

Solution First calculate <v> ="(8kT/mm)"2:
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<> = (8kT/mm )

3 {8(1.38 X 1072 TK™H(273 K)(6.02 X 102 amu/g)(1000 g/kg)}l/z
- [3.1415 (28 amu}]

= 454 m/s (4.18)
Then evaluate Cy = SR/2 = 5(8.314 J mol™' X712 = 208 ]
mol™1 K1
Finally,

(454 m/s)(20.8 J/mol)
K = —
3V247(6.02 X 10% molec/mol )(370 X 1072 m)?

(4.19)
=859 %X 1073 Tm™ s KL

Comment Note that the information that the pressure is 1 atm is irrelevant to
ihe solution. Since we used approximations in atriving at equation
4.17 and in evaluating the heat capacity, the answer is not exactly
equal to the measured value listed in Table 4.2,

45 VISCOSITY

Most people are familiar with the viscous drag of water impeding a swimmer or air
impeding a plane. What are the causes of these forces and how can we understand
them at a molecular level? Consider two plates of area A separated by a distance in
the z direction and immersed in a {fuid, as shown in Figure 4.4, If the upper plate is
drawn through the fluid with a velocity v, while the lower plate is stationary, then
there will be a force exerted on the lower plate in the x direction due to the frictional

Y &
—

/

...)}
B Figure 4.4

The viscous force on a stationary plate exerted by a moving one.
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drag of the fluid; an equivalent force in the negative x direction will have to be
applied to hold the lower plate stationary. The force transmitted downward to the sta-
tionary plate will be proportional to the area A and is given by Newton’s law of vis-
cosity: F, = —mA(8v,/0z), where the constant 7 is called the coefficient of viscos-
ity. From Newton’s law we recall that F = ma = dp/dt, where p is the momentur,
so that the force transferred per unit area is the same as momentum transferred per
unit time per unit area, or momentum flux. Thus, the gradient in velocity (or the pro-
portional gradient in momentum) between the two plates causes a flux of momen-
turn that is transmitted by the fluid. Note that, while the momentum and force are in
the x direction, the flux of momentum is in the z direction; J, = F /A = —n(dv,/oz).

The units of the flux are momentum per second per area or, equivalently, force
per area, so that the flux equation has dimensions (force/area) = 7 (distance/
time)/distance. Thus, the units of 1 are (force/area)/( /time) or N m™? s, A pascal
of pressure is also a N m™?, so that equivalent units for 7 are Pa s. In older texts,
one often encounters the cgs unit for » called a poise; 1 poise = 1 dyne cm™2 s =
lgmem™ s =01 Nm-2s,

Table 4.3 provides some viscosity coefficient data for a few materials. Note
that both liquids and gases obey the macroscopic viscosity equation. We will focus
first on gases and return to the frictional forces in liquids later in this chapter.

In the case of gases and under the assumptions listed in Section 4.3.1, the trans-
fer of momentum must be described by the general flux equation 4.11, with g =
mv,. We again assume that there is no net transport of molecules, so that 8(n"q) =
n'dq. Substitution of ¢ = mw, leads to ‘

1. Ju..
J, = "—é-n' <v>/\m(a—;), . (4.20)

0 that

Note that since A is proportional to 1/n%, the viscosity coefficient will be indepen-
dent of pressure. This prediction was one of the early triumphs of the kinetic theory

Viscosity Coefficients at 273 K for Various .
| Substances s e

Substance 1 (Pa s)
Glycerol 0.95

Qlive oil 0.08

Water, liquid, 298 X 0.9 x 1073
He 18.8 X 1076
H, B.4 5 |08
Ar 222 % 10™°
0, 19.2 % 1076
CO, 13.8 X 1076
N, 16.6 % 1076
NH, 9.2 X 1076

CH, 10.3 % 1076
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of gases. An alternative formulation of equation 4.21 recognizes that the density p
is equal to the product of the number density n" and the mass m, so that

1
1= §p<v>)t. (4.22)

Again, while the numerical factors in these equations are incorrect, the functional
form is correct. However, little is gained by using the correct hard-sphere numbers
since real molecules do not behave like hard spheres.

Equations 4.21 and 4.22 provide a convenient method for estimation of molecu-
lar diameters. Substitution of equation 4.16 info equation 4.21, for example, leads to

1.
gn <v>m
7 =, (4.23)
\/i’frd?‘n' .
or :
. d - ( <v>m )1/2 : ﬁ:.'_:.' o (42:4)

Example 4.4 illustrates this calculation.

example 4.4

Finding Molecular Diameters from Viscosity Coefficients

Objective Given that the viscosity coefficient for argon at 298 K is 22.2 X
1075 Pa s, calculate its molecular diameter.

Method Use equation 4.24 after calculating <v>.

Solution First, calculate <v> = (8kTimm)V%:
<y = (8KT/7rm)*
_[8(1.38 X 1072 JK™")(298 K)(6.02 X 107 amu/g)(1000 g/kg) |2

(740 amu)
= 397 m/s. 4.25)
Then calculate d:
J= <yzm |
(3V/2mm)
— (397 m/s)(40 amu) 172
3V2m(6.02 X 10% amu/g)(1000 g/kg)(22.2 X 107 N s m™?)

i

299 pm. {4.26)
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Alihough there are other methods for measuring the viscosity coefficient of a
fluid, one convenient technique is to determine the volume of the fluid that passes by
a unit area of a tubing per unit time; i.e., the volume flux. We have already seen in the
opening section of this chapter that this flux is proportional to the product of the pres-
sure gradient and a conductivity coefficient: J, = —C(dp/dz), where C depends on the
nature of the fluid and the size of the tubing. The dependence on the nature of the fluid
comes about because, while the fluid has a finite velocity in the center of the tube, the
molecules in contact with the edges of the tube must have zero velocity. Conse-
quently, C should be inversely proportional to the viscosity coefficient of the fluid. A
detailed calculation shows that C = a8, where a is the radius of the tube. The vol-
ume of liquid passing through the tube per unit time is given simply by the volume
flux times the area of the tube: J,A = dV/dt = — CA(8p/3z) = —(ma*/8n)(dp/dz). This
last expression, whose complete derivation is given in Appendix 4.1, is perhaps the
most useful form of the Poiseuille formula describing the laminar flow of a liquid:

dv wat [

L (i{) @27
dr 8n \ dz

It enables determination of the viscosity coefficient from a measurement of the rate

of volume change. An alternative form of the Poiseuille formula is obtained by mul-
tiplying both sides of equation 4.27 by the liquid’s density, p:

dm  wd'p (6;))
b 8y \ag /) (4.28)

Using the Poiseuille Formuia

Objective Find the viscosity coefficient of a liquid flowing through a tube
0.1 cm in radins and 50 cm in length. When the pressure drop
across the tube is 0.1 ati, the volume of liquid emerging from the
tube is 1 cm¥s.

Method Since we know the flow rate and the pressure gradient, we can use
Poiseuille’s formula, equation 4.27, to calculate the viscosity
coefficient,

Solution The flow rate is dV/dr = 1 em® 57! = 1076 m® s~1. The pressure

gradient is (0.1 atm)/(0.50 m) = (.2 atm m~!. Then from the
Poiseuille formula, % is
_ L7r/8){op/ez)
(dV/de)
(0,001 m)*(0.2 atm/m)(101.3 X 10° Pa/1 atm)
8(107%m* s 1)

(4.29)

=796 X 107*Pas.
The liquid might very well be olive oil (See Table 4.3).
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While equations 4.27 and 4.28 are useful for liquids, where the density is
rather insensitive to pressure, for gases the density changes dramatically with pres-
sure: p = Mp/RT, where M is the molecular weight of the gas. Substitution for p
and recognition that n = m/M gives

dn  wa' ap)
dr  8nRT (p z) 4.30)

Because the number of moles of gas crossing any area per unit time, dn/dt, is constant,
it must also be true that p(dp/dz) is a constant. If we call the constant B, then p dp =
Bdz. Integration gives p> = 2Bz + C. Applying this equation to pressures p, at z, and
P, at z, yields two equations: p} = 2Bz, + C and p} = 2Bz, + C, where C is a con-
stant of integration. Subtraction gives B = (p5 — p?)/2(z, — z,), so that for gases

dn _art (P?. —p%) 43D
dr 169RT\ 2, — 21 )" )

4.6 DIFFUSION

Anyone whose nose is in working order can attest to the fact that diffusion is an
important process. The kitchen smells that woke us in the morning as children or the
fragrance from an opened bottle of perfume reach us even if there are no convective
currents in a room. The mixing process is spontaneous, but the rate of interdiffusion
of two substances has yet to be discussed. Experimental observation shows that dif-
fusion in fluids against a gradient obeys Fick’s law, whose form is by now quite
familiar: J, = —D(dn'/dz), where J, is the flux of molecules, (dn'/dz) is the gradient
in number density, and D is the diffusion coefficient. Dimensionally, the equation is
(number time ™! area™!) = D X (number/volume)/distance, so that the dimensions of
D are thus distance? per unit time, or m? s~ 1. Because the diffusion of one substance
into another can depend on the properties of each substance, it will be useful to add
subscripts to D. Let D, be the coefficient describing the diffusion of type 1 into mol-
ecules of type 2 and let D, be the diffusion coefficient for diffusion of molecules of
type 1 into other molecules of the same type. One might well wonder how the latter
coefficient could be measured; indeed, it cannot. But D, can be approached quite
closely by studying the diffusion of one isotope of a substance in another isotope of
the same substance. Table 4.4 lists some typical diffusion coefficients.

1Y\ - B Diffusion Coefficients at 273 K and 1 atm
for Various Substances

Substances D orD;, (m*s™h)
H,H, 1.5 X 1074
0,0 1.9 X 1075
N,-N, 1.5 X 1073
00,00, 1.0 X 105
Xe-Xe 5.0 %1076
0,-N, 1.8 X 1075

00, 1.4 X 105
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The Number of O, Molecules Crossing an Area per Second While
Diffusing through N,

Objective Find the number of O, molecules diffusing through N, molecules
and crossing a 0.2 m? area at 273 X if the concentration gradient
is 40 torr per centimeter and the diffusion coefficient is that given
in Table 4.4.

Method Use the diffusion equation, J, = —D(dn"/dz), to calculate the flux.
The number crossing the given area is then the flux times the area.

Solution The diffusion coefficient for O,-N, is D = 1.8 X 107° m? 7%
Since p = nRT/V, we can convert the pressure gradient to a num-
ber density gradient by dividing the pressure by RT. The gradient
is thus caleulated to be

an’
dz

(40 torr/em){1 atm/760 torr Y100 em/m)(6.02 % 10% molecules mole™ H{10° L/ 1 m™)
(0.082 L atm mole™" K™')(273 K)

= 1,42 X 10% (molecules/m}m™, (4.32)
Thus, the flux is
J,= =(1.8 X 1077 m?s™")[1.42 X 10% (molecules/m*) m™]
= ~2.55 X 10* molecules s™" m™*. (4.33)

The number crossing the area of 0.2 m* per unit time is then the
flux times the area, or (0.2 m2}(2.55 % 102 molecules s~ m™2) =
5.10 X 10% molecules/s,

Like thermal conductivity and viscosity, diffusion in gases can be under-
stood by the application of kinetic theory. In this case, however, we must focus
on the motion of the molecules themselves. Because their number density changes
with position we cannot bring n" out of the differential a(n"q) in equation 4.11,
and because it is the molecules themselves that are being transported, g = 1 and
the flux is the flux of molecules. Equation 4.11 then becomes

I ( an’ )
Jp= g2 AL}, (4.34)
3 9z

and comparison with Fick’s fivst law, J, = ~D(an"/0z), shows that

R Ll R C )

As might be expected from the severity of the approximations made in Sec-
tion 4.3.1, the numerical factor in equation 4.35 is incorrect, even for hard
spheres, but our understanding of the underlying science is enhanced little by
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correcting it. It is worth noting, however, that the value of the mean free path
depends on whether we are considering the diffusion of a molecule of type 1 into
other molecuies of type 1 or into molecules of another type, 2. For so-called self-
diffusion, the mean free path is given by equation 4,16, since this equation
describes how far a molecule travels before colliding with another of the same
type. For one molecule of type 1 diffusing through molecules of type 2, however,
we must review the derivation of presented in Section 1.7 just prior to equation
1.47. If the mean free path for a type 1 molecule in molecules of the same type is
A = ¢/Z,, then the mean free path for a type 1 molecule in molecules of type 2
should be A = ¢/Z, = ¢/[mwbl,vot;]. Note that although the calculation of ¢
involves the mass of molecules of type 1, the calculation of v, involves the reduced
mass. Furthermore, b, is the average of the diameters of molecules of type 1 and
2. Thus, the mean free path will depend on the properties of both types of mole-
cules. In real systems, molecules of type 1 will diffuse both through others of the
same type and through those of type 2, so that the mean free path is somewhat
more complicated than that in either of the above calculations; it depends inversely
on the total number density, not just on the number density of type 2 molecules,
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example 4.7

Calculating the Diffusion Coefficient for N,

Objective Approximate the diffusion coefficient of N, in N, at 300 K and
1 atm given that the molecular diameter is 218 pm (see Exam-
ple 1.7).

Method Use equation 4.35, noting that under these conditions we have
calculated in Example 1.7 the meau free path of N, as 3.87 X 1077
m and the average velocity as 673 my/s.

Solution D = (173w = (1/3)(673 m/s}(3.87 X 1077 m) = 8.68 X 107
1

m? s

Comment That this value is higher than that listed in Table 4.4 is due only
partly to the fact that v and A are higher at 300 K than at 273 K.
Becaunse we have made several simplifying approximations, equa-
tion 4.35 is not expected to be numerically accurate.

4.7 TIME-DEPENDENT TRANSPORT

We have assumed in the preceding sections that the gradient of temperature,
momentu, or concentration was steady in time, For example, in the case of diffu-
sion we see from J, = ~-D(dn"/dz) that if the gradient of concentration is steady in
time then the flux of particles will also be steady. We now address the situation in
which the gradient changes in time, as it might, for example, if a drop of one mate-
rial were introduced into another or if heat were momentarily applied to one end of
a rod of conductive material. In both cases we see that the gradient is large imme-
diately after the perturbation, but that the diffusion of molecules or the flow of heat
tends to cause the gradient to diminish as time progresses.
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To be able to describe these processes, we introduce a notation that recognizes
that the flux can depend both on position and on time, J = J(z,£). The time depen-
dent flux can be related to the gradient by considering two surfaces of area A sepa-
rated by a distance Az, as shown in Figure 4.5. Suppose that molecules are diffus-
ing in the positive z direction. What is the change of concentration in the volume
AAz per unit time? The concentration is increased by the number of molecules that
flow into the volume from below. Because J(z,f) is the number of molecules per unit
time per unit area that cross the plane located at z, the change in concentration is
given by J(z,0) times A divided by the volume: n"(z,0)/dt = J(z, DAIAAz = J(z,0)/Az,
where the dependence of n” on z and ¢ is made clear by the notation n"(z,). Simi-
larly, the concentration is decreased by the molecules that flow out of the volume
to regions above; the change is given by an™(z, 009t = —J(z + Az, DAIANZ =
=J(z + Az, DIAz. Thus, the net rate of concentration change is

am'(zt)  JHzp) = Jz + Az 1)

o Az (4.36)

In the limit when Az is very small, the quantity on the right-hand side of equation
4.36 is simply —aJ(z,0/dz, so that

5rf:(z,t)d _ aJ(z.,1) 437
at 87 )

At any time £, however, the flux is related to the number density gradient, as we
have seen in the previous section:

an'(z,1)

Py (4.38)

Hzt) = =D

Jz+ Az D

/ — 2+ Az

B Figure 45

The change in flux with time,
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If we take the partial derivative of both sides of equation 4.38 with respect to z,
we obtain

(z1) 8 ‘
iz mD el (z.1). (4.39)

Finally, using equation 4.37 we see that equation 4.39 can be rewritien as

- dn (4,1) a°
. 5)1

Equation 4.40 is known as the time-dependent diffusion equation or as Fick’s sec-
ond law.

Consider the diffusion of N molecules that start at z = z; at # = 0 in the cross-
sectional area A of a tube of infinite length. How will this distribution change in space
as a function of time? The solution to equation 4.40, as shown in Problem 4.16, is

. 2
exp[~gz——4~b—?)%} (4.41)

R v

Figure 4.6 displays the concentration profile predicted by equation 4.41 for dif-
ferent values of Dt With increasing time, the concentration spreads over larger dis-
tances. In fact, if we normalize the right-hand side of equation 4.41 (which amounts
to multiplication by A/N) we will obtain a function that gives the probability that a
molecule will be found at a position z at a time . This function is thus a distribution
function for the position at a particular time, and we can use it to calculate average
positions. Of course, because the distribution function is symmetric around zq. the
average distance that a molecule has traveled from that position after a time ¢ is zero.
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n* (z,£) (Arbitrary concentration scale)

by b e

e

0.0 kst I e =T
-2 -1

Distance 2 -z ([D11¥?)

B Figure 4.6

Plot of n*(z,f) following diffusion from a starting condition where all molecules are at z = 0 at
t =0
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It is useful, however, to calculate the root-mean-squared distance, z,. = <(z —
7>V, Using Table 1.1 to evaluate the integzal, this distance is given by

° 1 (z = 2)°
zrms"“:J 2= 7o) ex [*%(&
(Zoms A__OO( o) Vvl T
11
= 2=\ @{4Dr)** 4.42
a4 ¥ ) 4
= 2Dt
so that
@D @y

We thus see that the root-mean-squared distance that a molecule diffuses is propor-
tional to the square root of the diffusion coefficient and to the square root of the fime.

example 4.8

The rms Distance Traveled by a Molecule in a Day

Objective Find the rms distance that a molecule of naphthalene travels by
diffusion in 1 day through the atmosphere assuming the diffusion
coefficient is 1.5 X 107% m? ™!, Naphthalene is the principal
component in moth balls,

Method Use example 4.43, but recognize that this is a three-dimensional
problem and not merely a one-dimensional one.

Solution Note that the square of the distance from the center of a three-
dimensional object is 12 = x* 4+ y2 + 72, g0 that <23 = <y
<y 4 <> = 3<?>. One day is (24 ho}(60 min/hr)(60
s/min) = 8.64 X 10% s, Thus (z,,,)% = (2D5) or {r, J* = (6D1) =
[6(1.5 X 107 m®s™!)(8.64 X 10%s)] = 0.78 m2 or r,,, = 0.88 m.

Comment Note that molecules do not travel far in a day by diffusion. Con-
vection is more often the mode of transport.

We can gain some physical insight into diffusion by considering a process known
as the one-dimensional random walk. Consider a molecule constrained to move in
the z direction in steps of length £, and suppose that after each step the molecule
has no memory of which direction it traveled in previous steps; its choice of direc-
tion for the next step is completely random. On average, what will be the root-
mean-squared position of the molecule with respect to its original position after it
has taken N steps?

While this problem can be solved mathematically in closed form, the solution
is somewhat complex (see Problem 4.18). It is far easier to write a simple computer
program to predict the position. Given a position of z, after the ith step, the position
after the ( + 1)th step is given by

Zir = 2; + €sign[RND( ) —~ 0.5), 4.44)
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where RND{ ) is a random number between 0-and 1 and sign[ | is a function that is
equal to -+ 1 if the argument is nonnegative and —1 otherwise. .
Figure 4.7 displays the results of six random walks starting at a position z,. Note
that the positions of the particles spread out with increasing number of steps. If we
run, say, 1000 trajectories we can compute an accurate average for the root-mean-
squared displacement from z, as a function of the number of steps. This average for
a typical calculation is shown in Figure 4.8, which demonstrates that the roof-mean-
squared displacement in units of £ is equal to the square root of the number of steps.
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Random walks: the position ag a function of the number of steps for six one-dimensional san-
dom walks.

S S A 0 S I

23

20

15

((Z _ 20)2)”2."6

10

T W NI I 0 O T A 0 S 0 T A 0 0 N B

L B B L N e

ol Ly b e b v v b s
0 5 io 13 20 25

(Number of St{:ps)”2

a3
[a]

B Figure 4.8

Root-mean-sqguared distance traveled as a function of the square root of the number of steps for
a one-dimensional random walk.
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What we learn from this computer experiment (or from the more rigorous
closed-form solution derived in Problem 4.18) is that molecular diffusion is just
like a random walk in one dimension. Let the total time for N steps be equal to N
times the average time per step, 71 1 = Nz or N = t/7. The observation from our
computer experiment is that (z,,,.)> = N2, or (z,,,)* = €(£/7)t. The expression

Zms = (821/7)1/2 (4.45)

is known as the Einstein-Smoluchowski equation.® We can interpret it as follows.
Note that £/7 = <v>>, the average velocity, so that 7., = [£<v>>#]"2. If we take the
step size in the z direction to be that calculated in equation 4.8, we find that z,,,, =
[(2/3)A<v>{]"?, or, using equation 4.35, 7. = [2Df]V2. This last equation is
exactly what we have calculated in equation 4.43,

In refrospect, it should come as no surprise that the one-dimensional random
walk agrees with our diffusion calculation, Assumption 4 in Section 4.3.1 made the
approximation that complete equilibrium is attained after every collision. When
applied to the moetion of molecules, this assumption means that there should be no
preferential direction for the velocity after any collision. Thus, the assumption that
leads to equation 4.43 and the assumption of a random walk are equivalent. Both
age slightly in error when compared to the real situation, but both capture the essen-
tial physical situation.

4.8 SUMMARY

By assuming that the motion of molecules is responsible for the transport of prop-
erties such as heat, momentum, and concentration in gases, we have found how the
constants «, 7, and D in the flux equations for these properties depend on micro-
scopic molecular properties. The refationships were found by making four simpli-
fying assumptions in Section 4.3.1 and by treating the motion of molecules using
the kinetic theory developed in Chapter 1. We found that the flux of molecules
across a surface is given by

1.
J, = 7 iUz 4.6)

and that the average vertical distance between collisions is 2A/3. Armed with these
equations, we showed that when the gradient is constant in time, the flux of a prop-
erty g in the vertical direction is given by

1 an’
7=t 20D, (4.11)
: 3 oz

Use of this equation with g equal to €, p,. or 1 gave equations for the following
coefficients:

Thermal Conductivity:

1. C <p>C
e = —n A<y == Y (4.17)

3 No  3VowdN,

“A. Einstein, Ann, d. Physik 17, 549 (1905); 19, 371 (1906}; M. v. Smeluchowski, Ann. d. Physik 21,
156 (1906).
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Viscosity:
1.
M = gn'<v>)\m, {4.21)
and Diffusion.

1
D= —§<u>)\. (4.35)

It is important to remember that, although these equations capture the essential fea-
tures of transport properties, the numerical coefficients are not quite correct. Those
seeking more accurate formulas are referred to one of the texts listed in the reading
list at the end of this chapter.

When the gradient is not constant in time we found, using diffusion as an
example, that the derivative of the quantity with time was proportional to the sec-
ond derivative of the quantity in space:

an’lzt o
—(—E-r—)— = Di—g—n"’(z,z). (4.403

For a starting condition in which all the molecules have a specified z component
at time zero, the root-mean-squared distance traveled as a function of time is
given by

Zums = (2D0)2, (4.43)

Diffusion of molecules in a gas is analogous to a one-dimensional random walk.
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appendix 4.1

The Poiseuille Formula

Consider the flow of a fluid through a cylindrical tube of radius ¢ whose axis is
coincident with the x direction and which is subject to a pressure gradient along its
length. The velocity of the fluid will be a function of the radial position r from the
center of the tube. Molecules at » = o will be in contact with the surface of the tube
and will have zero velocity in the x direction, while those in the center of the tube
at r = (0 will have the largest velocity. The volume V of fluid passing 4 cross-
sectional area of the tube per unit time is given by integrating the area of coaxially
conceniric shells of thickness dr times the velocity in each shell:

d‘/ L4

= J v {r(2mr)dr, (4.46)

ds !
where 29rr dr is the area of the shell and v {r) is the velocity in the x direction as a
function of r To perform the integration, we first need to determine v (r).

To evalnate the radial dependence of the velocity, consider a small cylindrical
volume element of the fluid coaxial with the x axis, as shown in Figure 4.9, The
cross-sectional area of the cylinder is 772, and the length is dx. The pressure on the
feft side of the volume is p, while that on the right side is p — dp. When the pres-
sure differential is constant in time, the velocity of the fhuid through the cylinder will
be constant; its acceleration will be zero. From Newton’s law, zero acceleration
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B Figure 4.9

The force due to the pressure differential is equal and opposite 1o the force due to the viscous drag.

means that the total force on the fluid is zero. A fluid in the volume will thus accel-
erate its flow in the -+x direction until the force in the —x direction due to its vis-
cous drag is exactly equal to the force due to the pressure differential. The force due
to the pressure differential is the area times dp: F,., = 72 dp. The force in the —x
direction can be calculated from the flux of momentum in the r direction, J, =
—n(dv/or), sothat F, = J A = —n(8v,/ory2mr dx, where A = 24rr dx is the sur-
face area of the outside of the cylinder. Thus

24 rrdn Sl
ar o= qarrax -,
p = -7 ”

447
o, __rdp @4
ar 2n dx’
This equation can be integrated to give
r dp
v, = == 4.48
4m dr (4.48)

where C, the constant of integration, can be evaluated by the boundary condition
that the velocity is zero at the wall of the cylinder: v {a} = 0. The result is

Uy = e (4.49)

2a

B Figure 4.10

The velocity distribution of a fluid in & cylindrical tube.
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We now substitute equation 4.49 into equation 4.46 and integrate:

av f ‘a> —rdp
dt b

B 2—7.‘,.9!3{&2?2 ﬁ]r{

Tdqdxl 2 4

0

ma’ dp

8n dx’

(4.50)

This last equation is simply the Poiseuille formula given in equation 4.27 with the
pressure gradient in the x direction rather than the z direction.
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problems

4.1 The coefficient of viscosity does not depend on the number of molecules per
unit volume. Explain why not.

4.2 The transport coefficients «, n, and 12 all increase as the square root of the tem-
perature, and decrease as the square of the average molecular diameter. Explain
why without reference to any formula. Of the three transport coefficients, « and
D vary as 1\/1—1;, whereas 7 varies as V. Why?

4.3 The rate of a certain surface catalyzed reaction is proportional to the rate at
which molecules hit the surface. The rate will increase with an increase in
which of the following properties? (a) the mass of the molecules, (b) the
velocity of the molecules, (c) the heat capacity of the molecules, {d) the num-
ber density of the molecules, (e) the area of the surface.

4.4 Consider a thought experiment in which horses are transported by molecules
and suppose that the number of horses is proportional to the number of bushels
of oats: H = kO. The transport coefficient relating the flux of horses to the
gradient of oats depends on which of the following parameters? (a) the weight
of the horse, (b) the velocity of the molecule, (¢) the proportionality constant
k, (d) the mean free path, (e) the speed of the horse.
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4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

415

4.16

Why is the coefficient of thermal conductivity larger for helium than that for
argon? Why is the coefficient of thermal conductivity for N, larger than that
for argon?

The viscosity coefficient of O, is greater than that of CO,. Which molecule
has the greater molecular diameter?

How does the root-mean-squared distance traveled by a diffusing molecule
vary with temperature? (a) not at all, (b} increases (¢} decreases. How does
it vary with pressure? (a) not at all, (b) increases, (¢) decreases.

Two bugs each execute a one-dimensional random walk with the same step

size, but the second bug takes steps twice as often as the first. After a given

time the second bug will be (a) twice as far from the origin as the first, (b)
2 timues as far, (c) the same distance,

In a tube of infinite length, consider the diffusion of molecules that start at
z = zg at ¢ = 1y The concentration of molecules at a location different than
Zp (@) increases monotonically with time, () stays the same, (¢) decreases
monotonically, (d) increases then decreases, or () decreases then increases.

If thermal conductivity is independent of number density, why is it advanta-
geous to evacuate the region between the walls of a dewar flask?

The thermal conductivity of silver is about 4 J K7 cm~! s~!, Calculate the
heat flow in watts through a silver disk 0.1 cm in thickness and having 2 cm?
area if the temperature difference between the two sides of the disk is 10 K.

The heat capacity of N, is about 20 J K~! mol™! and its diffusion coeffi-
cient is 1.5 X 107° m? s™!. How much heat will be conducted in 1 s across
a 1-cm space between two parallel plates 2 m? in area if the plates differ in
temperature by 5 X and the space between the plates is filled with nitrogen
at 1 atm and 300 K? You may assume that the ideal gas law holds under
these conditions,

a. Calculate the coefficient of thermal conductivity for nitrogen at 303
K. Assume that 7d? for Ny is 7 X 107 m? and C,,, = (5/2)R.

b, In a double glazed window the panes are separated by 5 cim. What is
the rate of heat transfer in watts from a warm room at 323 X to the
cold exterior at 283 X through a window of area 1 m*? Assume that
air has the coefficient of thermal conductivity calculated in part (a).

c. To approximately what pressure in torr would one have fo evacuate
the space between the two windows before xk would be decreased
appreciably for the value calculated in part (a)?

The self-diffusion coefficient of COis D = 175 X 107 m? s ' at 273 K
and 1 atm. The density of CO under these conditions is 1.25 kg m™2. Cal-
culate the molecular diameter,

The heat capacity of N, is 20.9 J K™ mol~!, and its viscosity at room temper-
ature is 1.7 X 1074 poise (1 poise = 1 g cm™ s™1). How much heat will be
conducted in 1 s across a 1-mm space between two parallel plates 10 em X
10 em in size if the plates differ in temperature by 5 K and if the space
between the plates is filled with N, at 1 atm?

Show by direct differentiation that equation 4.41 is the solution to equa-
tion 4.40,




4.17

4.18

Problems

Write and test a computer program to-verify the general result, presented
in Figare 4.8, that the root-mean-squared distance traveled in a one-
dimensional random walk: is proportional to the square root of the number
of steps.

The computer experiment on the random walk showed that the root-mean-
squared distance traveled in a random walk is proportional to the square root
of the number of steps taken. This result can be shown more rigorously by
consideration of the following problem.

a.

Suppose a drunken sailor leaves a bar at closing time and executes a one-
dimensional random walk in the z direction along the sidewalk. Enu-
merate all the possible sequences of steps for which, after six steps each
of length £, she could be at distances ~6€, —4€, —2¢, 0, 2€, 4¢€, or 6¢
from the doorway of the bar.

Show that the probabilities obtained in part (a) agree with the following
formula, which can be used to calculate the absolute value of the sailor’s
distance from the bar:

I3
[1/2(n + )P [1/2{n — s)]1 2"

where n is the nomber of steps, s = z/£, and N! = NN — 1)(N — 2)
(D

A very accurate approximation to N! for large N is given by Stirling’s
approximation.

Pz} =

InN! = (N + -12—)InN -~ N + In(27)"?

Use this approximation to show that

[Hint: You will need to approximate In(1 + x) = x ~ x%2.]
Substitute s = z/€, and let the number of steps n be given by the total
time divided by the time per step: n = /7, to show that

27\ 12 s
P(zt) = (;T—T) pr(*‘—z?f—z .

Finally, compare the above equation with equation 4.41, letting z, = 0,
to derive the Einstein-Smoluchowski relationship, equation 4.45.
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