Problem I: Linear Algebra for QM

(a)

Given two vectors written in the $\{\hat{e}_1, \hat{e}_2\}$ basis set :

$$\vec{A} = 7\hat{e}_1 + 6\hat{e}_2 \vec{B} = -2\hat{e}_1 + 16\hat{e}_2$$
(1)

and given another basis set:

$$\hat{e}_q = \frac{1}{2}\hat{e}_1 + \frac{\sqrt{3}}{2}\hat{e}_2$$

$$\hat{e}_p = -\frac{\sqrt{3}}{2}\hat{e}_1 + \frac{1}{2}\hat{e}_2$$
(2)

- Show that \hat{e}_p and \hat{e}_q are orthonormal.
- Determine the new components of \vec{A} and \vec{B} in the $\{\hat{e}_q, \hat{e}_p\}$ basis set.

(b)

If the states $\{|1>, |2>, |3>\}$ form an orthogonal basis and if the operator \hat{G} has the properties:

$$\hat{G}|1 > = 2|1 > -4|2 > +7|3 >$$

$$\hat{G}|2 > = -2|1 > +3|3 >$$

$$\hat{G}|3 > = 11|1 > +2|2 > -6|3 >$$
(3)

What is the matrix representation of \hat{G} in the $|1\rangle$, $|2\rangle$, $|3\rangle$ basis?

(c)

Given the matrix:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
(4)

Find the eigenvalues and the normalized eigenvectors of A.

(d)

Find the eigenvalues and the normalized eigenvectors of the Matrix:

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 0 \\ 5 & 0 & 3 \end{pmatrix}$$
(5)

Are the eigenvectors orthogonal? Comment on this.

(e)

If the states $\{|1>, |2>, |3>\}$ form an orthonormal basis and if the operator \hat{K} has the following properties:

$$\hat{K}|1> = 2|1>$$

 $\hat{K}|2> = 3|2>$ (6)
 $\hat{K}|3> = -6|3>$

- Write an expression for \hat{K} in terms of its eigenvalues and eigenvectors (projection operators). Use this expression to derive the matrix representing \hat{K} in the $\{|1 >, |2 >, |3 >\}$ basis.
- What is the expectation or average value of \hat{K} , defined as $< \alpha |\hat{K}| \alpha >$, in the state:

$$|\alpha\rangle = \frac{1}{\sqrt{83}}(-3|1\rangle + 5|2\rangle + 7|3\rangle) \tag{7}$$

(f)

Given the matrix:

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
(8)

- Find the eigenvalues and the normalized eigenvectors of M.
- The projection operator of eigenstate $|i\rangle$ is given by $\hat{P}_i = |i\rangle \langle i|$. Construct the projection operator for the 3 obtained eigenvalues.
- Verify that the matrix can be written in terms of its eigenvalues and eigenvectors.

(g)

Given the matrix representation of the operators A and B:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
(9)

- Are A and B hermitian operators?
- Prove that [A, B] = 0.
- Of the sets of operators: $\{A\}, \{B\}, \{A, B\}, \{A^2, B\}$ which form a Complete Set of Commuting Observables (C.S.C.O.).

(h)

Given the operators A and B defined by:

 $A\phi_1 = \phi_1 \qquad \qquad A\phi_2 = 0 \qquad \qquad A\phi_3 = -\phi_3 \tag{10}$

$$B\phi_1 = \phi_3 \qquad \qquad B\phi_2 = \phi_2 \qquad \qquad B\phi_3 = \phi_1 \tag{11}$$

- Write the matrix representation of operators A and B in the $\{\phi_1, \phi_2, \phi_3\}$ basis.
- Give the form of the most general matrix representing an operator which commutes with A. Same question for A^2 and B^2 .
- Do A² and B form a C.S.C.O.? Give a basis of common eigenvectors.