
Elie Kawerk Exercises and Problems on Quantum Mechanics

Problem I: Linear Algebra for QM

(a)

Given two vectors written in the {ê1, ê2} basis set :

~A = 7ê1 + 6ê2

~B = −2ê1 + 16ê2
(1)

and given another basis set:

êq =
1

2
ê1 +

√
3

2
ê2

êp = −
√

3

2
ê1 +

1

2
ê2

(2)

• Show that êp and êq are orthonormal.

• Determine the new components of ~A and ~B in the {êq, êp} basis set.

(b)

If the states {|1〉 , |2〉 , |3〉} form an orthonormal basis and if the operator Ĝ has the properties:

Ĝ |1〉 = 2 |1〉 − 4 |2〉+ 7 |3〉

Ĝ |2〉 = −2 |1〉+ 3 |3〉

Ĝ |3〉 = 11 |1〉+ 2 |2〉 − 6 |3〉

(3)

What is the matrix representation of Ĝ in the |1〉 , |2〉 , |3〉 basis?

(c)

Given the matrix:

A =

1 1 1

1 1 1

1 1 1

 (4)

Find the eigenvalues and the normalized eigenvectors of A.

(d)

Find the eigenvalues and the normalized eigenvectors of the Matrix:

A =

1 2 4

2 3 0

5 0 3

 (5)

Are the eigenvectors orthogonal? Comment on this.
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(e)

If the states {|1〉 , |2〉 , |3〉} form an orthonormal basis and if the operator K̂ has the following properties:

K̂ |1〉 = 2 |1〉

K̂ |2〉 = 3 |2〉

K̂ |3〉 = −6 |3〉

(6)

• Write an expression for K̂ in terms of its eigenvalues and eigenvectors (projection operators). Use this

expression to derive the matrix representing K̂ in the {|1〉 , |2〉 , |3〉} basis.

• What is the expectation or average value of K̂, defined as 〈α| K̂ |α〉, in the state:

|α >=
1√
83

(−3 |1〉+ 5 |2〉+ 7 |3〉) (7)

(f)

Given the matrix:

M =

0 1 0

1 0 1

0 1 0

 (8)

• Find the eigenvalues and the normalized eigenvectors of M.

• The projection operator of eigenstate |i〉 is given by P̂i = |i〉 〈i|. Construct the projection operator for

the 3 obtained eigenvalues.

• Verify that the matrix can be written in terms of its eigenvalues and eigenvectors.

(g)

Given the matrix representation of the operators A and B:

A =

1 0 0

0 −1 0

0 0 −1

 , B =

1 0 0

0 0 1

0 1 0

 (9)

• Are A and B hermitian operators?

• Prove that [A,B] = 0.

• Of the sets of operators: {A}, {B}, {A,B}, {A2, B} which form a Complete Set of Commuting Observ-

ables (C.S.C.O.).

(h)

Given the operators A and B defined by:

Aφ1 = φ1 Aφ2 = 0 Aφ3 = −φ3 (10)

Bφ1 = φ3 Bφ2 = φ2 Bφ3 = φ1 (11)

• Write the matrix representation of operators A and B in the {φ1, φ2, φ3} basis.
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• Give the form of the most general matrix representing an operator which commutes with A. Same

question for A2 and B2.

• Do A2 and B form a C.S.C.O.? Give a basis of common eigenvectors.

Solutions

(a)

• The scalar product of êp and êq is given by:

〈êp|êq〉 =
1

2
×

(
−
√

3

2

)
+

√
3

2

(
1

2

)
= −
√

3

4
+

√
3

4
= 0

Similarly: 〈êp|êp〉 = 〈êq|êq〉 = 1

• To obtain ~A and ~B in the basis {êq, êp} we apply the following formulas: ~A = Aq êq + Apêp and
~B = Bq êq +Bpêp, where:

Aq = 〈êq| ~A〉 = 7×
(

1

2

)
+ 6×

(√
3

2

)
=

7

2
+ 3
√

3

Ap = 〈êp| ~A〉 = 7×

(
−
√

3

2

)
+ 6×

(
1

2

)
= 3− 7

√
3

2

Bq = 〈êq| ~B〉 = (−2)× 1

2
+ 16×

(√
3

2

)
= −1 + 8

√
3

Bp = 〈êp| ~B〉 = (−2)×

(
−
√

3

2

)
+ 16×

(
1

2

)
= −
√

3 + 8

(b)

The matrix elements of operator Ĝ (which we shall note Gij) on the basis of states {|1〉 , |2〉 , |3〉} are given

by Ĝij |j〉 =
∑
i

|i〉Gij so that the expansion coefficients of the transformed basis vector |j〉 make the jth

column of matrix G:

G =

 2 −4 7

−2 0 3

11 2 −6


In the case of an orthonormal basis we have also: Gij = 〈i| Ĝ |j〉. Hereby we briefly illustrate how to

compute the first few elements. We should keep in mind that any vector of the basis satisfies the relations:

〈i|i〉 = 1 and 〈i|j〉 = 0 for i 6= j. The first element is given by:

〈1| Ĝ |1〉 = 〈1| (2 |1〉 − 4 |2〉+ 7 |3〉) = 2 〈1|1〉︸︷︷︸
=1

−4 〈1|2〉︸︷︷︸
=0

+7 〈1|3〉︸︷︷︸
=0

= 2× 1 = 2

Proceeding the same way for the second element, we get:

〈1| Ĝ |2〉 = 〈1| (−2 |1〉+ 3 |3〉) = −2 〈1|1〉+ 3 〈1|3〉 = −2× 1 = −2
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(c)

Let us first solve the characteristic equation of matrix A: det|A− λI| = 0∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1

1 1 1− λ

∣∣∣∣∣∣ = 0

=⇒ (1− λ)[(1− λ)2 − 1] + (−1)[(1− λ)− 1] + 1[1− (1− λ)] = 0

=⇒ (1− λ)(−λ)(2− λ) + λ+ λ = 0

=⇒ −λ[(λ− 1)(λ− 2)− 2] = −λ[λ2 − 3λ+ 2− 2] = 0

=⇒ −λ2(λ− 3) = 0

This means that the eigenvalues of matrix A are given by: λ1 = λ2 = 0 and λ3 = 3. We turn now to the

evaluation of the eigenvectors. For λ3 = 3, we have: (A− Iλ3) |3〉 = (A− 3I) = 0. By taking:

|3〉 =

ab
c


we can write: −2 1 1

1 −2 1

1 1 −2

ab
c

 =

0

0

0


this leads to the system: 

−2a+ b+ c = 0 (1)

a− 2b+ c = 0 (2)

a+ b− 2c = 0 (3)

Substracting equation (2) from equation (1) leads to: a = b and replacing this equality in (3) we get:

c = a. However |3〉 is normalized so that: a2 + b2 + c2 = 1 =⇒ a =
1√
3

. Finally we get:

|3〉 =
1√
3

1

1

1


Now let’s consider the case λ1 = λ2 = 0 with eigenvectors |c1〉 and |c2〉, the characteristic equation in this

case is: (A− 0I) |c1/2〉 = A |c1/2〉 = 0. This leads to:1 1 1

1 1 1

1 1 1

ab
c

 =

0

0

0


=⇒ a + b + c = 0. In this case we could choose a and b and from the obtained equation, c could be

determined. As an example:

a = 1, b = 0 =⇒ c = −1 =⇒ |c1〉 =
1√
2

 1

0

−1


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and choosing:

a = 0, b = 1 =⇒ c = −1 =⇒ |c2〉 =
1√
2

 0

1

−1


The obtained eigenvectors aren’t orthonormal:

〈c1|c2〉 =
1

2
(1.0 + 0.1 + (−1)(−1)) =

1

2

We could obtain orthonormality by the Schmidt orthogonalization method:

|c̄2〉 = |c2〉 −
1

2
|c1〉 =

1√
2

 0− 1/2

1

−1 + 1/2


Finally, by normalizing |c̄2〉 we get:

|c̄2〉 =
1√
6

−1

2

−1


We note that the choice of constants a, b and c is completely arbitrary and will lead to vectors which are

linear combinations of the vectors determined here.

• Try the choice a = b = 1 then a = −b = 1. Show that the obtained vectors are linear combinations

of the ones obtained previously.

(d)

The characteristic equation for matrix A is:

det|A− λI| =

∣∣∣∣∣∣
1− λ 2 4

2 3− λ 0

5 0 3− λ

∣∣∣∣∣∣ = 0

=⇒ (1− λ)(3− λ)2 + (−2)(2)(3− λ) + 4(−5)(3− λ) = 0

=⇒ (3− λ)[(1− λ)(3− λ)− 4− 20] = 0

=⇒ (3− λ)(λ2 − 4λ− 21) = (3− λ)(λ+ 3)(λ− 7) = 0

The eigenvalues are given by: λ1 = 3, λ2 = −3 and λ3 = 7.

Let us find the eigenvector of eigenvalue λ1 = 3.

A |1〉 = λ1 |1〉 = 3 |1〉

with

|1〉 =

ab
c

 (12)

We could write: 1 2 4

2 3 0

5 0 3

ab
c

 = 3

ab
c


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Which we could write as a system: 
−2a+ 2b+ 4c = 0

2a+ 0.b+ 0.c = 0

5a+ 0.b+ 0.c = 0

which give: a = 0 and b = −2c. Since the eigenvectors must be normalized to 1 we have:

〈1|1〉 = 1 =⇒ (a∗b∗c∗)

ab
c

 = a2 + b2 + c2 = 1

(−2c)2 + c2 = 1 =⇒ c =
1√
5

=⇒ |1〉 =
1√
5

 0

−2

1


(13)

Similarly for |2〉 one can write: A |2〉 = λ2 |2〉 = −3 |2〉 =⇒ :1 2 4

2 3 0

5 0 3

ab
c

 = −3

ab
c



=⇒


4a+ 2b+ 4c = 0

2a+ 6b = 0

5a+ 6c = 0

From these equations one can write: b = −a/3 and c = −5/6a. By applying normalization we get:

〈2|2〉 = 1 =⇒ a2 + b2 + c2 = 1

=⇒ a2 + (−a/3)2 + (−5/6a)2 = 1 =⇒ a =

√
324

585
=

6√
65

Finally we get: |2〉 =
1√
65

 6

−2

−5

.

Similarly for |3〉 we find: |3〉 =
1√
45

4

2

5

.

One can notice that: 〈1|2〉 =
−1√
325
6= 0 , 〈1|3〉 =

1√
225
6= 0 , 〈2|3〉 =

−5√
2925

6= 0

This is OK since A is not hermitian and therefore its eigenvectors needn’t to be orthonormal.

(e)

• Using the closure relation
∑
c

|c〉 〈c| = 1, we can write:

K̂ =
∑
c

K̂ |c〉 〈c|

= K̂ |1〉 〈1|+ K̂ |2〉 〈2|+ K̂ |3〉 〈3|

with:

K̂ |1〉 = 2 |1〉 K̂ |2〉 = 3 |2〉 K̂ |3〉 = −6 |3〉
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Any matrix representing an operator written in its basis of own eigenvectors is diagonal with the eigenvalues

on the diagonal =⇒ :

K =

2 0 0

0 3 0

0 0 −6


Let’s verify this by first computing |1〉 〈1|, |2〉 〈2| and |3〉 〈3|:

|1〉 〈1| =

1 0 0

0 0 0

0 0 0


|2〉 〈2| =

0 0 0

0 1 0

0 0 0


|3〉 〈3| =

0 0 0

0 0 0

0 0 1


which gives:

K = 2

0 0 0

0 1 0

0 0 0

+ 3

0 0 0

0 1 0

0 0 0

− 6

0 0 0

0 0 0

0 0 1

 =

2 0 0

0 3 0

0 0 −6


• In order to evaluate 〈K〉α = 〈α| K̂ |α〉 we proceed by matrix multiplication:

〈α| K̂ |α〉 =
1√
83

(
−3 5 7

)2 0 0

0 3 0

0 0 −6

 1√
83

−3

5

7


=

1

83

(
−3 5 7

)−6

15

42

 = −201

83

-We could also apply the following formula: 〈K〉α =
∑
i

| 〈i|α〉 |2αi , where αi is the component of

state α on the basis vector i. We first compute the probabilities:

| 〈1|α〉 | =
∣∣∣∣ −3√

83

∣∣∣∣2 =
9

83

| 〈2|α〉 | =
∣∣∣∣ 5√

83

∣∣∣∣2 =
25

83

| 〈3|α〉 | =
∣∣∣∣ 7√

83

∣∣∣∣2 =
49

83

which gives:

〈K〉α = 2× 9

83
+ 3× 25

83
− 6× 49

83
=
−201

83
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(f)

• |M − λI| = 0 therefore: ∣∣∣∣∣∣
−λ 1 0

1 −λ 1

0 1 −λ

∣∣∣∣∣∣ = 0

−λ(λ2 − 1)− 1(−λ) = λ(λ2 − 2) = 0

The eigenvalues of M are therefore: λ1 = 0 λ2 =
√

2 λ3 = −
√

2

The eigenvectors are found as usual:

|1〉 =

 1

0

−1

 , |2〉 =

 1√
2

−1

 , |3〉 =

 1

−
√

2

−1


• The projection operators are:

P̂1 = |1〉 〈1| = 1√
2

 1

0

−1

× 1√
2

(
1 0 −1

)
=

1

2

 1 0 −1

0 0 0

−1 0 1



P̂2 = |2〉 〈2| = 1

2

 1√
2

1

× 1

2

(
1
√

2 1
)

=
1

4

 1
√

2 1√
2 2

√
2

1
√

2 1



P̂3 = |3〉 〈3| = 1

2

 1

−
√

2

1

× 1

2

(
1 −

√
2 1

)
=

1

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1


One can clearly observe that:

M = λ1P̂1 + λ2P̂2 + λ3P̂3

or:

M = 0P̂1 +
√

2P̂2 −
√

2P̂3
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(g)

• Generally a matrix C is hermitian if: transpose(C∗) = C, where C∗ is the complex conjugate of C.

The matrices A and B are real, therefore we only have to check if transpose(A) = A and

transpose(B) = B. Since A and B are symmetric this implies that transpose(A) = A and

transpose(B) = B =⇒ A and B represent hermitian operators.

• [A,B] = AB −BA

AB =

1 0 0

0 −1 0

0 0 −1

1 0 0

0 0 1

0 1 0

 =

1 0 0

0 0 −1

0 −1 0



BA =

1 0 0

0 0 1

0 1 0

1 0 0

0 −1 0

0 0 −1

 =

1 0 0

0 0 −1

0 −1 0


=⇒ AB −BA = 0 =⇒ [A,B] = 0

• Let us find the eigenvalues of matrices A and B first. Since A is diagonal the elements of the diagonal

represent its eigenvalues =⇒ λA1 = 1, λA2 = λA3 = −1. Matrix B is block diagonal, from the

B11 block we see b1 = 1 with the same eigenvector |1〉 =

1

0

0

 as A. For the 2 × 2 block Bij with

i, j = 2, 3 , we obtain:∣∣∣∣−λ 1

1 −λ

∣∣∣∣ = 0 =⇒ λ2 − 1 = 0 =⇒ λB2 = 1, λB3 = −1

The relative eigenvectors are: |2〉 =
1√
2

(
1

1

)
and |3〉 =

1√
2

(
1

−1

)
.

These are still eigenvectors of A (you can try to prove it). Let’s keep in mind that a complete set

of commuting observables (CSCO) is a set of commuting operators whose eigenvalues completely

specify the state of a system. We turn now to check which of the 4 cases constitutes a C.S.C.O. .

Since A and B have both a degenerate eigenvalue (1 for A and -1 for B) they are therefore not a

C.S.C.O. . However if we examine simultaneously the set of common eigenvectors {|1〉 , |2〉 , |3〉} of

A and B in which each vector is characterized by a set of eigenvalues (λA, λB), we obtain:

|1〉 = |1, 1〉 , |2〉 = |−1, 1〉 , |3〉 = |−1,−1〉

Which are distinct from one another. This means that each common eigenvectors of A and B is

characterized by a unique combination (λA, λB). We can deduce from that that {A,B} constitutes

a C.S.C.O.. The condition [A,B] = 0 is necessary but not sufficient so that A and B constitute a

C.S.C.O. . Even though
[
A2, B

]
= 0, the last set {A2, B} does not constitute a C.S.C.O. since the

eigenvalues of A2 are λA21 = λA22 = λA23 = 1. This means that the state of the system cannot be

determined unambiguously by examining the set of eigenvalues (λ2A, λB)
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(h)

•

A =

1 0 0

0 0 0

0 0 −1

 ;B =

0 0 1

0 1 0

1 0 0



A2 =

1 0 0

0 0 0

0 0 1

 , B2 =

1 0 0

0 1 0

0 0 1


these matrices are real and hermitian, they can be diagonalized and they therefore represent observ-

ables.

• -Let M be an operator commuting with A. M cannot have any non-null matrix elements between |φ1〉
and |φ2〉, |φ2〉 and |φ3〉 as well as |φ1〉 and |φ3〉. The matrix representing M is therefore diagonal:

[M,A] = 0 ⇐⇒ M =

m11 0 0

0 m22 0

0 0 m33


We will demonstrate this by taking two eigenvalues a1 and a2 of Â with a1 6= a2:

Â |ψ1〉 = a1 |ψ1〉

Â |ψ2〉 = a2 |ψ2〉

Since [M,A] = MA−AM = 0 =⇒ 〈ψ2|MA−AM |ψ1〉 = (a2 − a1) 〈ψ2|M |ψ1〉 = 0

however a2 6= a1, which gives finally:

〈ψ2|M |ψ1〉 = 0

-Let N be an operator which commutes with A2. The matrix representing N can have elements

between |φ1〉 and |φ3〉 (eigenvectors of A2 with the same eigenvalue) but none between |φ2〉 and |φ1〉
or |φ3〉, therefore:

[N,A2] = 0 ⇐⇒ N =

n11 0 n13
0 n22 0

n31 0 n33


- Since B2 is the identity operator any 3× 3 matrix commutes with B2.

• Let ’s evaluate [A2, B] = A2B −BA2:

A2B =

1 0 0

0 0 0

0 0 1

0 0 1

0 1 0

1 0 0

 =

0 0 1

0 0 0

1 0 0



BA2 =

0 0 1

0 1 0

1 0 0

1 0 0

0 0 0

0 0 1

 =

0 0 1

0 0 0

1 0 0


=⇒ [A2, B] = 0 =⇒ A2 and B could form a C.S.C.O. if by specifying simultaneously the

eigenvalues of operators A and B one can determine a unique common eigenvector.
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Note that |φ2〉 =

0

1

0

 is a common eigenvector of A and B with eigenvalues 0 and 1 respectively

(Âφ2 = 0φ2 and B̂φ2 = 1φ2).

Since the {|φ1〉 , |φ3〉} subspace is degenerate for A2 we can diagonalize B in it with the corresponding

matrix given by:

(
0 1

1 0

)
and eigenvalues ±1. The corresponding eigenvectors are:

|u1〉 =
1√
2

(
1

1

)
, |u2〉 =

1√
2

(
1

−1

)
So that each the 3 common eigenvectors (|u1〉 , |u2〉 , |φ2〉) has a distinct set of eigenvalues. This means

that A and B share a common eigenvector basis in which each basis vector is characterized by a unique

set of eigenvalues (λA2 , λB).
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