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MULTIPLE OUTPUTS

o What if we have a vector of d-outputs rather than a single
one, i.e. what if observations X, T are (X, tj)/=1.__.n?

o If we use separate weights for each output dimension,
W = (wj), then the model is

wolyx W) = Wigx) |

— |

\-A_/_/
which is easily seen to factorise in the different outputs, so
that we need to solve (d independent ML problems, giving

~~ \~WML - (¢T¢)-1¢7@]

o Generalise to the case in which some coefficients of W are
shared among outputs (i.e., constrained to be equal).
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REGULARISED MAXIMUM LIKELIHOOD

e One way to avoid overfitting is to penalise solutions with
large values of coefficients w.

@ This can be enforced by introducing a regularisation term
on the error function to be minimised:

i =
° 15?3 is the regularisation coefficient, and governs how

is the penalty.
@ A common choice is
AT

d
Ew(w) :\—w w‘_ Z w?
j

known as ridge regression, with solution
NAA~—
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REGULARISED MAXIMUM LIKELIHOOD

@ A more general form of the penalty term is

1
Ew(w) =5 > Iwl’
i

@ g = 2is the ridge regression, while g = 1 is the lasso regression.

@ Lasso regression has the property that it produces sparse
models as some coefficients tend to be set to zero. However, it
has no analytic solution.
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EXAMPLE: REGULARISED ML
N - Ny ™ ERTATAHERER
@ Let’s consider the sine example, and fit the model of degree
M = 9 by ridge regression, for different A’s.

o If we compute the RMSE on a test set, we can see how the error
changes with 2

1
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TRAIN, VALIDATION, AND TEST DATA

@ The regularisation coefficient A is a method parameter. But how
can we set it?

@ Ideally, we should divide our data in a train set, a test set, and a
validation set, which can be used to set method’s parameters.

@ Often, we do not have all such data, hence we can resort to
cross-validation
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TRAIN, VALIDAIION, AND TEST DATA
— @ ~~— OO
w gmbobers
@ The regularisation coefficient A is a method parameter. But how
can we set it?

@ Ideally, we should divide our data in a train set, a test set, and a
validation set, which can be used to set method’s parameters.

@ Often, we do not have all such data, hence we can resort to
cross-validation

@ n-fold cross-validation: split data set in n blocks, use in turn each
block for validation and the rest for training, average the error on
the nruns.

@ leave one out cross-validation: validate in tuns on a single data
point left out from the training set and average. Lo
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EXPECTED LOSS 1)(\(&\/Ip(kl x) pL)

o If we have a model p(x, t) of input-output, one way to make a
prediction (choose t* given x*) is by minimising an expected loss
functional

E[L] = //{y()fr) —t}?p(x,t) dxdt. (1.87)

@ The solution for the square loss functional is the condltlonal

eg@aﬂon
fp x,t)d
@ /.d\t Eqft|x] (1.89)

@ This can be seen by summing and subtracting E[t|x] inside the
integral, getting LT Wk "\X

g1t = [ (Jo) ~ Bl i) oftt [ (Bl -0 okl 1 o
1
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BIAS VARIANCE DECOMPOSITION

o If we do not have the full model, but only observe a dataset D,
then we can try to find the best approximant to the true
conditional expectation, y(x, D).

@ To test a method, we can try to generate many datasets and
take the average Ep w.r.t. the dataset. After some computations,
calling h(x) the true conditional expectation:

expected loss = (bias)? + variance 4 noise (3.41)

where

(vins)? = [ {Boly(x D)] - h(x))p(ox) dx G42)
+
variance = /ED [{y(x; D) — Eply(x; D)]}ﬂ p(x) dx (3.43)

noise = ‘{h,(x) —t}%p(x,t) dx dt (3.44)
J e\
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

left: solutions for

individual datasets

right: averages
over datasets
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

@ For the sine example, we can compute bias and variance as a

function of the regularisation coefficient. The trade off is evident.

0.15
(bias)2 .
0.12 variance *
(bias)2 + variance
0.09 WL/
0.06 1
0.037 %
O i n
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THE BAYESIAN APPROACH .
{-\}\ﬂ".o >

I CAR?
o Regularisation works by biasing
e One way to bias estimators is to have prior beliefs and
being Bayesian
\e Let's assume the regression weights have a Gaussian prior
\ w ~ N(0, el) and that the bias is zero n
@ The posterior is given by Bayes theorem:/q \M (‘}k ,Q; \

p(HX, W, )¢

lp(tiX, o, B)

p(WIX,t,a.58) =
Y
? (HJR‘\ :\ plt\m,L\Ql>-P(wto(Nw
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THE POSTERIOR DISTRIBUTION

@ Hence, the log posterior is
N~

N

log p(W|X, t, 2, 8) :)—’g Z[tj - wT¢(x,)] —aw’w + const

e As itis a quadratic function in w, it is the log of a Gaussian:

~Y \p(w|x, t,a,B) = (WlmN,SN) M\/OQ

with mea\z and variance \u\ R\ /OL
T e
ﬁgl’)\k’\l - my =SSN 't

T
w‘

o Alternatively: use the formula for the product of two
gaussians.
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THE POSTERIOR DISTRIBUTION

@ In general, we can take a general Gaussian prior
p(wWimg, Sp) = N(wimg, Sg) &—

@ This will result in a Gaussian posterior
p(wiX,t,a,8) = N(wjmy, Sy) with

my = SN[SO_1m0 +,3¢Tt]

SN =S +p0
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POSTERIOR UPDATE

hwis 4 Uy
likelihood prior/posterior data space
1 1 ? [
wi y
0 0
-1 -1
& ) 0z 1

>

O S e

g
S
°
g
S
°
£l




BAYESIAN LINEAR REGRESSION

THE PREDICTIVE DISTRIBUTION

e Given the posterior, one can find the MAP estimate.
However, in a fully Bayesian treatment, one makes
predictions by integrating out the parameters via their
posterior distribution. _ guulsdave L AN

e
\p(nt, @,B) = f Wp(wu, a,ﬂ)dﬂ

e The predictive distribution is still a Gaussian
VP p(tit.a.B) = N(timn" ¢(x), o5(x))

. — L_/_\
with mean my7¢(x) and variance

o) :@« #0x)"Snd(x) |

|
o It can be shown that 0§, (x) < 03,(x) and o%,(x) - ® T
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EXAMPLE
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EXAMPLE
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MARGINAL LIKELIHOOD

e The marginal likelihood p(tla,B), appearing at the
denominator in Bayes theorem, can be used to identify

good a and B, known as hyperparameters.

e Intuitively, we can place a prior distribution over @ and g,
compute their posterior, and use this in a fully Bayesian

treatment of the regression:

W et ¢

o If we assumeithe posterior is peaked around thé@
then we can take the @ as an apprOX|mat|on of the full

posterior for & and B.| If1l he th|s will boil down to
the ML solution.
8 W
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MARGINAL LIKELIHOOD
‘\/\N\_,\_/\/\/\/\-/

@ Hence we need to optimise the marginal likelihood, which
can be computed as:

M N : N

 log p(tia,B) = 5 l0gar+ log /3—5@)—5 log |@1 - log2n
A ~

. ( !

Wlth \>ﬂ A

E(mn) = 3t - omy|? + Zmy"my

e This optimisation problem can be solved with any
optimisation routine, or with specialised methods, see |
Bishop. J



