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MULTIPLE OUTPUTS

What if we have a vector of d-outputs rather than a single
one, i.e. what if observations X,T are (x

i

, t
i

)I=1,...,N?
If we use separate weights for each output dimension,
W = (wij), then the model is

y(x,W) = W

T�(x)

which is easily seen to factorise in the different outputs, so
that we need to solve d independent ML problems, giving

WML = (�T�)�1�T
T

Generalise to the case in which some coefficients of W are
shared among outputs (i.e., constrained to be equal).
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REGULARISED MAXIMUM LIKELIHOOD

One way to avoid overfitting is to penalise solutions with
large values of coefficients w.
This can be enforced by introducing a regularisation term
on the error function to be minimised:

ED(w) + �EW (w)

� > 0 is the regularisation coefficient, and governs how
strong is the penalty.
A common choice is

EW (w) =
1
2

w

T
w =

1
2

X

j

w2
j

known as ridge regression, with solution

w

RR

= (�I +�T�)�1�T
t
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REGULARISED MAXIMUM LIKELIHOOD

A more general form of the penalty term is

EW (w) =
1
2

X

j

|wj |q

q = 2 is the ridge regression, while q = 1 is the lasso regression.
Lasso regression has the property that it produces sparse
models as some coefficients tend to be set to zero. However, it
has no analytic solution.146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w�.
The lasso gives a sparse solution in
which w�

1 = 0.
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For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WT�(x) (3.31)

where y is a K-dimensional column vector, W is an M � K matrix of parameters,
and �(x) is an M -dimensional column vector with elements �j(x), with �0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, �) = N (t|WT�(x), ��1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N � K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, �) =
N�

n=1

ln N (tn|WT�(xn), ��1I)

=
NK

2
ln

�
�

2�

�
� �

2

N�

n=1

��tn � WT�(xn)
��2

. (3.33)
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EXAMPLE: REGULARISED ML

Let’s consider the sine example, and fit the model of degree
M = 9 by ridge regression, for different �0s.10 1. INTRODUCTION
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter � corresponding to ln � = �18 and ln � = 0. The
case of no regularizer, i.e., � = 0, corresponding to ln � = ��, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

�E(w) =
1

2

N�

n=1

{y(xn,w) � tn}2 +
�

2
�w�2 (1.4)

where �w�2 � wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient � governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of ln � = �18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2�x). If,
however, we use too large a value for � then we again obtain a poor fit, as shown in
Figure 1.7 for ln � = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

If we compute the RMSE on a test set, we can see how the error
changes with �

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w� for M =
9 polynomials with various values for
the regularization parameter �. Note
that ln � = �� corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
� increases, the typical magnitude of
the coefficients gets smaller.

ln � = �� ln � = �18 ln � = 0
w�

0 0.35 0.35 0.13
w�

1 232.37 4.74 -0.05
w�

2 -5321.83 -0.77 -0.06
w�

3 48568.31 -31.97 -0.05
w�

4 -231639.30 -3.89 -0.03
w�

5 640042.26 55.28 -0.02
w�

6 -1061800.52 41.32 -0.01
w�

7 1042400.18 -45.95 -0.00
w�

8 -557682.99 -91.53 0.00
w�

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against ln �,
as shown in Figure 1.8. We see that in effect � now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or �). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln � for the M = 9
polynomial.

E
R

M
S

ln �−35 −30 −25 −20
0

0.5

1
Training
Test



LINEAR REGRESSION MODELS BAYESIAN LINEAR REGRESSION DUAL REPRESENTATION AND KERNELS 20 / 41

TRAIN, VALIDATION, AND TEST DATA

The regularisation coefficient � is a method parameter. But how
can we set it?

Ideally, we should divide our data in a train set, a test set, and a
validation set, which can be used to set method’s parameters.

Often, we do not have all such data, hence we can resort to
cross-validation

n-fold cross-validation: split data set in n blocks, use in turn each
block for validation and the rest for training, average the error on
the n runs.

leave one out cross-validation: validate in tuns on a single data
point left out from the training set and average.
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EXPECTED LOSS

If we have a model p(x, t) of input-output, one way to make a
prediction (choose t⇤ given x

⇤) is by minimising an expected loss
functional

46 1. INTRODUCTION

independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) � p(xI,xB|Ck)p(Ck)

� p(xI|Ck)p(xB|Ck)p(Ck)

� p(Ck|xI)p(Ck|xB)

p(Ck)
(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =

��
L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) � t}2. In this case, the expected loss can be written

E[L] =

��
{y(x) � t}2p(x, t) dx dt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

�E[L]

�y(x)
= 2

�
{y(x) � t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

�
tp(x, t) dt

p(x)
=

�
tp(t|x) dt = Et[t|x] (1.89)

The solution for the square loss functional is the conditional
expectation

46 1. INTRODUCTION

independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) � p(xI,xB|Ck)p(Ck)

� p(xI|Ck)p(xB|Ck)p(Ck)

� p(Ck|xI)p(Ck|xB)

p(Ck)
(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =

��
L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) � t}2. In this case, the expected loss can be written

E[L] =

��
{y(x) � t}2p(x, t) dx dt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

�E[L]

�y(x)
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y(x) =

�
tp(x, t) dt

p(x)
=

�
tp(t|x) dt = Et[t|x] (1.89)

This can be seen by summing and subtracting E[t |x] inside the
integral, getting

1.5. Decision Theory 47

Figure 1.28 The regression function y(x),
which minimizes the expected
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).

t

xx0

y(x0)

y(x)

p(t|x0)

which is the conditional average of t conditioned on x and is known as the regression
function. This result is illustrated in Figure 1.28. It can readily be extended to mul-
tiple target variables represented by the vector t, in which case the optimal solution
is the conditional average y(x) = Et[t|x].Exercise 1.25

We can also derive this result in a slightly different way, which will also shed
light on the nature of the regression problem. Armed with the knowledge that the
optimal solution is the conditional expectation, we can expand the square term as
follows

{y(x) � t}2 = {y(x) � E[t|x] + E[t|x] � t}2

= {y(x) � E[t|x]}2 + 2{y(x) � E[t|x]}{E[t|x] � t} + {E[t|x] � t}2

where, to keep the notation uncluttered, we use E[t|x] to denote Et[t|x]. Substituting
into the loss function and performing the integral over t, we see that the cross-term
vanishes and we obtain an expression for the loss function in the form

E[L] =

�
{y(x) � E[t|x]}2 p(x) dx +

�
{E[t|x] � t}2p(x) dx. (1.90)

The function y(x) we seek to determine enters only in the first term, which will be
minimized when y(x) is equal to E[t|x], in which case this term will vanish. This
is simply the result that we derived previously and that shows that the optimal least
squares predictor is given by the conditional mean. The second term is the variance
of the distribution of t, averaged over x. It represents the intrinsic variability of
the target data and can be regarded as noise. Because it is independent of y(x), it
represents the irreducible minimum value of the loss function.

As with the classification problem, we can either determine the appropriate prob-
abilities and then use these to make optimal decisions, or we can build models that
make decisions directly. Indeed, we can identify three distinct approaches to solving
regression problems given, in order of decreasing complexity, by:

(a) First solve the inference problem of determining the joint density p(x, t). Then
normalize to find the conditional density p(t|x), and finally marginalize to find
the conditional mean given by (1.89).
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BIAS VARIANCE DECOMPOSITION

If we do not have the full model, but only observe a dataset D,
then we can try to find the best approximant to the true
conditional expectation, y(x,D).
To test a method, we can try to generate many datasets and
take the average ED w.r.t. the dataset. After some computations,
calling h(x) the true conditional expectation:

3.2. The Bias-Variance Decomposition 149

inside the braces, and then expand, we obtain

{y(x; D) � ED[y(x; D)] + ED[y(x; D)] � h(x)}2

= {y(x; D) � ED[y(x; D)]}2 + {ED[y(x; D)] � h(x)}2

+2{y(x; D) � ED[y(x; D)]}{ED[y(x; D)] � h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
�
{y(x; D) � h(x)}2

�

= {ED[y(x; D)] � h(x)}2

� �� �
(bias)2

+ ED
�
{y(x; D) � ED[y(x; D)]}2

�
� �� �

variance

. (3.40)

We see that the expected squared difference between y(x; D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x; D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =

�
{ED[y(x; D)] � h(x)}2p(x) dx (3.42)

variance =

�
ED

�
{y(x; D) � ED[y(x; D)]}2

�
p(x) dx (3.43)

noise =

�
{h(x) � t}2p(x, t) dx dt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2�x). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

left: solutions for
individual datasets

right: averages
over datasets

150 3. LINEAR MODELS FOR REGRESSION
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter �, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln � (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).
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EXAMPLE: BIAS VARIANCE DECOMPOSITION

For the sine example, we can compute bias and variance as a
function of the regularisation coefficient. The trade off is evident.3.2. The Bias-Variance Decomposition 151

Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln � = �0.31, which is close to the
value that gives the minimum error
on the test data.

ln �

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15
(bias)2

variance

(bias)2 + variance
test error

fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient � that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which � is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1

L

L�

l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1

N

N�

n=1

{y(xn) � h(xn)}2 (3.46)

variance =
1

N

N�

n=1

1

L

L�

l=1

�
y(l)(xn) � y(xn)

�2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of ln � in Figure 3.6. We see that small
values of � allow the model to become finely tuned to the noise on each individual
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THE BAYESIAN APPROACH

Regularisation works by biasing
One way to bias estimators is to have prior beliefs and
being Bayesian
Let’s assume the regression weights have a Gaussian prior
w ⇠ N(0,↵I) and that the bias is zero
The posterior is given by Bayes theorem:

p(w|X, t,↵, �) = p(t|X,w,↵, �)p(w|↵)
p(t|X,↵, �)
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THE POSTERIOR DISTRIBUTION

Hence, the log posterior is

log p(w|X, t,↵, �) = ��
2

NX

j=1

[tj �w

T�(x
j

)]2 � ↵wT
w + const

As it is a quadratic function in w, it is the log of a Gaussian:

p(w|X, t,↵, �) = N(w|m
N

,S
N

)

with mean and variance

m

N

= �S
N

�T
t

S

N

�1 = ↵I + ��T�

Alternatively: use the formula for the product of two
gaussians.
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THE POSTERIOR DISTRIBUTION

In general, we can take a general Gaussian prior

p(w|m
0

,S
0

) = N(w|m
0

,S
0

)

This will result in a Gaussian posterior
p(w|X, t,↵, �) = N(w|m

N

,S
N

) with

m

N

= S

N

[S
0

�1
m

0

+ ��T
t]

S

N

�1 = S

0

�1 + ��T�
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POSTERIOR UPDATE 3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.
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THE PREDICTIVE DISTRIBUTION

Given the posterior, one can find the MAP estimate.
However, in a fully Bayesian treatment, one makes
predictions by integrating out the parameters via their
posterior distribution.

p(t |t,↵, �) =
Z

p(t |t,w,↵, �)p(w|t,↵, �)dw

The predictive distribution is still a Gaussian

p(t |t,↵, �) = N(t |m
N

T�(x),�2
N(x))

with mean m

N

T�(x) and variance

�2
N(x) =

1
�
+ �(x)T

S

N

�(x)

It can be shown that �2
N+1(x)  �2

N(x) and �2
N(x)! 0
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2�x) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.9 Plots of the function y(x,w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.

If we used localized basis functions such as Gaussians, then in regions away
from the basis function centres, the contribution from the second term in the predic-
tive variance (3.59) will go to zero, leaving only the noise contribution ��1. Thus,
the model becomes very confident in its predictions when extrapolating outside the
region occupied by the basis functions, which is generally an undesirable behaviour.
This problem can be avoided by adopting an alternative Bayesian approach to re-
gression known as a Gaussian process.Section 6.4

Note that, if both w and � are treated as unknown, then we can introduce a
conjugate prior distribution p(w, �) that, from the discussion in Section 2.3.6, will
be given by a Gaussian-gamma distribution (Denison et al., 2002). In this case, theExercise 3.12
predictive distribution is a Student’s t-distribution.Exercise 3.13
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MARGINAL LIKELIHOOD

The marginal likelihood p(t|↵, �), appearing at the
denominator in Bayes theorem, can be used to identify
good ↵ and �, known as hyperparameters.
Intuitively, we can place a prior distribution over ↵ and �,
compute their posterior, and use this in a fully Bayesian
treatment of the regression:

p(↵, �|t) / p(t|↵, �)p(↵, �)

If we assume the posterior is peaked around the mode,
then we can take the MAP as an approximation of the full
posterior for ↵ and �. If the flat is prior, this will boil down to
the ML solution.
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MARGINAL LIKELIHOOD

Hence we need to optimise the marginal likelihood, which
can be computed as:

log p(t|↵, �) = M
2

log↵+
N
2

log ��E(m
N

)�1
2

log |S
N

�1|�N
2

log 2⇡

with
E(m

N

) =
�

2
||t ��m

N

||2 + ↵
2

m

N

T
m

N

This optimisation problem can be solved with any
optimisation routine, or with specialised methods, see
Bishop.


