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MARGINAL LIKELIHOOD

The marginal likelihood p(t|↵, �), appearing at the
denominator in Bayes theorem, can be used to identify
good ↵ and �, known as hyperparameters.
Intuitively, we can place a prior distribution over ↵ and �,
compute their posterior, and use this in a fully Bayesian
treatment of the regression:

p(↵, �|t) / p(t|↵, �)p(↵, �)

If we assume the posterior is peaked around the mode,
then we can take the MAP as an approximation of the full
posterior for ↵ and �. If the flat is prior, this will boil down to
the ML solution.
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MARGINAL LIKELIHOOD

Hence we need to optimise the marginal likelihood, which
can be computed as:
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This optimisation problem can be solved with any
optimisation routine, or with specialised methods, see
Bishop.
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BAYESIAN MODEL COMPARISON

ConsiderM1 andM2 two different models, which one is
the best to explain the data D?
In a Bayesian setting, we may place a prior p(Mj) on the
models, and compute the posterior
p(Mj |D) = p(D|Mj )p(Mj )P

j p(D|Mj )p(Mj )
.

As we typically have additional parameters w, the term
p(D|Mj) is the model evidence/ marginal likelihood.
The ratio p(D|M1)/p(D|M2) is known as Bayes Factor.
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BAYESIAN MODEL COMPARISON

In Bayesian model comparison, we can take two
approaches.
We can compute the predictive distribution for each model
and average it by the posterior model probability

p(t|D) =
X

j

p(t|Mj ,D)p(Mj |D)

Alternatively, we can choose the model with larger Bayes
Factor. This will pick the correct model on average. In fact,
the average log Bayes factor (assumingM1 is the true
model) is Z

p(D|M1) log
p(D|M1)

p(D|M2)
> 0
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DUAL REPRESENTATION

Consider a regression problem with data (x
i

, yi), and a
linear model w

T�(x).
We can restrict the choice of w to the linear subspace
spanned by �(x

1

), . . . ,�(x
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), as any w? othogonal to this
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a are known as the dual variables
By defining the kernel k(x
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Where K

i is the i th column of the Gram matrix K,
Kij = k(x

i

,x
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DUAL REGRESSION PROBLEM

In the dual variables, we have to optimise the following
regression equation

Ed(a) + �EW (a) =
NX

i=1

(ti � a

T
K

i)2 + �aT
Ka

By deriving w.r.t a and setting the gradient to zero, we
obtain the solution

â = (K + �I)�1
t

At a new input x

⇤, the prediction will then be

y(x⇤) = k⇤
T (K + �I)�1

t

with k⇤
T = (k(x⇤,x
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THE KERNEL TRICK

The dual objective function depends only on the scalar
product of input vectors
We can replace the Euclidean scalar product with any
(non-linear) scalar product
This is usually obtained by giving directly a non-linear
kernel function k(xi ,xj) (kernel trick)
This enables us to work with more general set of basis
functions, even countable. See Gaussian processes.
The same dual procedure applies to other algorithms,
notably linear classification and SVMs

The computational cost to solve the primal problem is
O(M3), while the dual costs O(N3). They can be both
prohibitive is N and M are large. In this case, one can
optimise the log likelihood directly, using gradient based
methods.
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INTRODUCTION

Data: xi, ti . Output are discrete, either binary or multiclass
(K classes), and are also denoted by yi . Classes are
denoted by C1, . . . ,CK .
Discriminant function: we construct a function
f (x) 2 {1, . . . ,K } associating with each input a class.
Generative approach: We consider a prior over classes,
p(Ck ), and the class-conditional densities p(x|Ck ), from a
parametric family. We learn class-conditional densities
from data, and then compute the class posterior.

p(Ck |x) =
p(x|Ck )p(Ck )

p(x)

Discriminative approach: we learn directly a model for the
class posteriori p(Ck |x), typically as p(Ck |x) = f (w�(x)).
f is called an activation function (and f�1 a link function).
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ENCODING OF THE OUTPUT

For a binary classification problem, usually we choose
tn 2 {0,1}. The interpretation is that of a “probability” to
belong to class C1.
In some circumstances (perceptron, SVM), we will prefer
the encoding tn 2 {�1,1}.
For a multiclass problem, we usually stick to a boolean
encoding: tn = (tn,1, . . . , tn,K ), with tn,j 2 {0,1}, and tn is in
class k if and only if tn,k = 1 and tn,j = 0, for j , k .


