COMPUTATIONAL STATISTICS
LINEAR REGRESSION

Luca Bortolussi

Department of Mathematics and Geosciences
University of Trieste

Office 238, third floor, H2bis
luca@dmi.units.it

Trieste, Winter Semester 2015/2016



BAYESIAN LINEAR REGRESSION 33/41

MARGINAL LIKELIHOOD P (Dlw\ P(w\)ciw 7 MARZ(NAL
Pl [P
L D) | P E)6 w0 S BV P Lol V) P D)oo bt
e The marginal likelihood p(tla,B), appearing at the
denominator in Bayes theorem, can be used to identify
good a and 3, known as hyperparameters.
e Intuitively, we can place a prior distribution over @ and g,
compute their posterior, and use this in a fully Bayesian
treatment of the regression: e Josws
N~

p(a.Bit) o (a,ﬁ) |

o If we assume the posterior is peaked around the mé@:w
then we can take the as an approximation of the full
posterior for @ and g. If the flat is prior, this will boil down to
the ML solution. FUA PAWLR =5 LA t05T « [Of, LIME(+ (T
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@ Hence we need to optimise the marginal likelihood, which
can be compuyted as: :
1 = e v \/
%\Iﬁ)g p(tla,B) = g log a/—i—ﬂ Iog,B—E(mN)—% log ISy~ |—%I log 27
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e This optimisation problem can be solved with any

optimisation routine, or with speciali methods, see

Bishop.
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BAYESIAN MODEL COMPARISON
_\/\’__A/\/__/\/\/\_/.

° Consider@ and@two different models, which one is
the best to explain the

data D? &~
o In a Bayesian setting, we may place a priorj\p(M,-) on the

models and compute the posterior \
DIOMIP)—7 |akRONSL 0™
pM)ID) = m PP 21 peet!
o As we typically have additional parameters the term J

p(DIM;) is the model evidence/ marginal lik |hood

e The ratio[p(Z)l/\/h )/p(Z)lMg)Ys known as Bayes Factor.
4 N———
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BAYESIAN MODEL COMPARISON

@ In Bayesian model comparison, we can take two
approaches.

e We can compute the predictive distribution for each model
and average it by the posterior model probability

A pID) = > p(tIM;, D)p(M)ID) /
; il il (,\

e Alternatively, we can choose the model with larger Bayes
Factor. This will pick the correct model on average. In fact,
the average log Bayes factor (assumlng My is the true
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DUAL REPRESENTATION )

e Consider a regression problem with data (x;, y;), and a
linear model w'$(x).

@ We can restrict the choice offw\to the linear subspace
spanned by ¢(X1),...,#(Xn), as any W \othogonal to this
subspace will give a contribution w, " @(x;) = 0 on input

points:

j_
m
oéare known as the dual ,_\;,/
e By defining the P(Xj T¢(x,){ we can write

w ¢J— a@ W%U“\ﬂ/
: 2 .
Where K' is the ith column of thq@ %“’"f

Ay K,'j = k(Xi,Xi). o
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DUAL REGRESSION PROBLEM

o In the dual variables, we have to optimise the following
regression equation

N l \
w  Ea(@)+ 1Ew(a) = > (ti- TK')2 4 /larKa
1 S

- »
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e By deriving w.r.t a and setting the gradient to zero, we
obtain the solution

vy A= (K+a)t

o At a new input x*, the prediction will then be

M{y()‘(*) @K a7t

withk*T:&k X7) KX X
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THE KERNEL TRICK

@ The dual objective function depends only on the scalar
product of input vectors

o We can replace the Euclidean scalar product with any
(non-linear) scalar product

Ay (@) This is usually obtained by giving directly a non-linear
kernel function k(X;,X;) Lgkernel trick)

e )

@ This enables us to work with more general set of basis
functions, even countable. See Gaussian processes.

o The same dual procedure applies to other algorithms,
notably linear classification and SVMs
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THE KERNEL TRICK

@ The dual objective function depends only on the scalar
product of input vectors

o We can replace the Euclidean scalar product with any
(non-linear) scalar product

@ This is usually obtained by giving directly a non-linear
kernel function k(X;,X;) (kernel trick)

@ This enables us to work with more general set of basis
functions, even countable. See Gaussian processes.

o The same dual procedure applies to other algorithms,
notably linear classification and SVMs

@ The computational cost to solve the primal problem is
~~ \O(M?), while the dual costs @ They can be both
prohibitive is N and M are large. In this case, one can
optimise the log likelihood directly, using gradient based
methods.
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INTRODUCTION

e Data: x;, t;. Output are discrete, either binary or multiclass
(K classes), and are also denoted by y;. Classes are
denoted by Cy,...,Ck.

@ Discriminant function: we construct a function

~7 f(x) € {1,..., K} associating with each input a class.

o Generative approach: We consider a prior over classes,
p(Ck), and the class-conditional densities p(x|Ck), from a
parametric family. We learn class-conditional densities
from data, and then compute the class posterior.

0- C
1 Cklx L

( c:.w] o' Discriminative a groach we Iearn directly a model for the

9 class posterlon[ (Ck|x! typically as p Cklx = Aw@(\_

fis called an a function (and -1 a link’ functlon)
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ENCODING OF THE OUTPUT

o For a binary classification problem, usually we choose
tn € {0, 1}. The interpretation is that of a “probability” to
belong to class C;.

e In some circumstances (perceptron, SVM), we will prefer
the encoding t, € {-1,1}.

e For a multiclass problem, we usually stick to a boolean
encoding: th = (th1,...,thk), with t,; € {0, 1}, and t, is in
class k if and only if t,x = 1 and ,; = O, for j # k.
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