COMPUTATIONAL STATISTICS LINEAR CLASSIFICATION

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

> Office 238, third floor, H2bis luca@dmi.units.it

Trieste, Winter Semester 2015/2016

OUTLINE

2 LOGISTIC REGRESSION

3 LAPLACE APPROXIMATION

BAYESIAN LOGISTIC REGRESSION

5 CONSTRAINED OPTIMISATION

6 SUPPORT VECTOR MACHINES

LINEAR DISCRIMINANT CLASSIFIER

×

• $y(x) = w^T x + b$, decode to class 1 iff $y(x) > 0$, and to class 0 if $y(x) < 0$.

• Typically here we use the encoding scheme $t_n \in \{0, 1\}$, but also $t_n \in \{-1, 1\}$ works (different solutions, though).

 \bullet The method can be extended to *k* classes (see next slide), but performs poorly in general, because it tries to approximate a probability in [0, 1] with a real number.y (y) = 0

LINEAR DISCRIMINANT - EXAMPLE

- Idea: project data linearly in one dimension, so to separate as much as possible the two classes. The projection is \overline{f} $y(x) = w'$ **x**. \mathbf{v}
	- Choose the projection that (a) maximises the separation between the two classes, either by maximising the projected class means distance, or by maximising the ratio between between-class and within-class variances.

\n- \n
$$
m_i = 1/N_i \sum_{j \in C_i} x_i, m_j = \frac{w^T m_i \text{, class means.}}{w^T S_B w}
$$
\n
\n- \n $S_B = (m_2 - m_1)(m_2 - m_1)$ \n
\n- \n W within-class variance\n $W^T S_W w$ \n
\n- \n $S_W = \sum_{j \in C_1} (x_j - m_1)(x_j - m_1)^T + \sum_{j \in C_2} (x_j - m_2)(x_j - m_2)^T$ \n
\n- \n W_L \n
\n- \n W_L \n
\n

FISHER'S DISCRIMINANT

• Maximise the ratio

$$
J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S_B w}}{\mathbf{w}^T \mathbf{S_w w}} \begin{matrix} \frac{1}{\sqrt{2\pi}} & \frac{1}{\sqrt{2\pi}} \\ \frac{1}{\sqrt{2\pi}} & \frac{1}{\sqrt{2\pi}} \end{matrix}
$$

- Deriving and setting the derivative to zero, we get $\mathbf{w} \propto \mathbf{S_w}^{-1}(\mathbf{m_2} - \mathbf{m_1})$. \mathbf{w}
- Choose the best (y_0) that separates the projected data. Classify to C_1 if $y(x) \geq y_0$. Idea: approximate the projected class distributions *p*(*y*|C*^k*) as Gaussians and then find *y*⁰ $\mathsf{such that}\ p(y_0|C_1)p(C_1) = p(y_0|C_2)p(C_2).$

THE PERCEPTRON ALGORITHM

THE PERCEPTRON ALGORITHM

OUTLINE

LINEAR CLASSIFIERS

2 LOGISTIC REGRESSION

3 LAPLACE APPROXIMATION

BAYESIAN LOGISTIC REGRESSION

⁵ CONSTRAINED OPTIMISATION

6 SUPPORT VECTOR MACHINES

LOGIT AND PROBIT REGRESSION (BINARY CASE)

$$
\sqrt{E(\mathbf{w})+ -\log p(\mathbf{t}|\mathbf{w})} = -\sum_{i=1}^N t_i \log \hat{y}_i^{\mathbf{r}} + (1-t_i) \log(1-y_i)
$$

NUMERICAL OPTIMISATION $\frac{d}{dx}f(x) = f(x)(1 - f(x))$ The gradient of $E(\mathbf{w})$ is $\nabla E(\mathbf{w}) = \sum_{i=1}^{N} (y_i - t_i) \phi_i$. The equation ∇ **E(w)** = 0 has no closed form solution, so wel need to solve it numerically. \bullet One possibility is gradient descend. We initialise w^0 to any value and then update it by **w**^{*n*+1} = **w**^{*n*} + *n*^{*n*} $\sqrt{P}E(w^n)$ where the method converges for η small. We can also use stochastic gradient descent for online

with
$$
\nabla_n E(\mathbf{w}) = \left(\frac{\mathbf{w}^{n+1}}{(\mathbf{y}_n - t_n)\phi_n}\right)^2
$$

with $\nabla_n E(\mathbf{w}) = \left(\frac{\mathbf{y}_n - t_n}{\phi_n}\right)^2$

training, using the update rule for **w**:

LOGISTIC REGRESSION: OVERFITTING

$$
\begin{array}{ccccccc}\n\omega_{0} & \lambda_{0} & \omega_{1} & \omega_{1} & \omega_{2} & \omega_{3} & \omega_{1} & \omega_{2} & \omega_{3} & \omega_{3} & \omega_{4} & \omega_{5} & \omega_{6} & \omega_{7} & \omega_{8} & \omega_{8} & \omega_{9} & \omega_{1} & \
$$

- If we allocate each point **x** to the class with highest probability, i.e. maximising $\sigma(\mathbf{w}^T\phi(\mathbf{x}))$, then the separating surface is an hyperplane in the feature space and is given by the equation $\mathbf{w}^T \mathbf{\emptyset}(\mathbf{x}) = 0$.
- o/If the data is linearly separable in the feature space, then any separable hyperplane is a solution, and the magnitude of **w** tends to go to infinity during optimisation. In this case, the logistic function converges to the Heaviside function.
- To avoid this issue, we can add a regularisation term to *E*(**w**), thus minimising $\mathbf{E}(\mathbf{w}) \neq \alpha \mathbf{w}^T \mathbf{w}$.

 ω = $K^{i\omega}$
 \approx $\frac{1}{2}$