COMPUTATIONAL STATISTICS LINEAR CLASSIFICATION

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

Office 238, third floor, H2bis luca@dmi.units.it

Trieste, Winter Semester 2015/2016

OUTLINE

2 LOGISTIC REGRESSION

S LAPLACE APPROXIMATION

BAYESIAN LOGISTIC REGRESSION

CONSTRAINED OPTIMISATION

6 SUPPORT VECTOR MACHINES

LINEAR DISCRIMINANT CLASSIFIER

• $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$, decode to class 1 iff $y(\mathbf{x}) > 0$, and to class 0 if $y(\mathbf{x}) < 0$.

• Typically here we use the encoding scheme $t_n \in \{0, 1\}$, but also $t_n \in \{-1, 1\}$ works (different solutions, though).

5/52

• Maximum likelihood training like in regression: minimise the sum-of-squares error function

 $E_D(\mathbf{w}) = \frac{1}{2} \sum_{i} (\mathbf{w}^T \mathbf{x}_i^{th} - t_i)^2$ $\Phi_L = X_1$ $\Phi_L = X_1$ $\Phi_L = X_1$

× * *

> • The method can be extended to k classes (see next slide), but performs poorly in general, because it tries to approximate a probability in [0, 1] with a real number.

LINEAR DISCRIMINANT - EXAMPLE

- Idea: project data linearly in one dimension, so to separate as much as possible the two classes. The projection is $y(\mathbf{x}) = (\mathbf{w}^T)\mathbf{x}$.
 - Choose the projection that (a) maximises the separation between the two classes, either by maximising the projected class means distance, or by maximising the ratio between between-class and within-class variances.

•
$$\mathbf{m_i} = 1/N_{\mathbf{k}}\sum_{j \in C_i} \mathbf{x_i}, m_i = \mathbf{w^T m_i}, \text{ class means.}$$

• Between-class variance $\mathbf{w^T S_B w},$
 $\mathbf{S_B} = (\mathbf{m_2} - \mathbf{m_1})(\mathbf{m_2} - \mathbf{m_1})^T$
• Within-class variance $\mathbf{w^T S_W w},$
 $\mathbf{S_W} = \sum_{j \in C_1} (\mathbf{x_j} - \mathbf{m_1})(\mathbf{x_j} - \mathbf{m_1})^T + \sum_{j \in C_2} (\mathbf{x_j} - \mathbf{m_2})(\mathbf{x_j} - \mathbf{m_2})^T.$

FISHER'S DISCRIMINANT

• Maximise the ratio

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_{\mathbf{B}} \mathbf{w}}{\mathbf{w}^T \mathbf{S}_{\mathbf{W}} \mathbf{w}}$$
 between cham voriance

- Deriving and setting the derivative to zero, we get $w \propto S_w^{-1}(m_2 m_1)$.
- Choose the best y_0 that separates the projected data. Classify to C_1 if $y(\mathbf{x}) \ge y_0$. Idea: approximate the projected class distributions $p(y|C_k)$ as Gaussians and then find y_0 such that $p(y_0|C_1)p(C_1) = p(y_0|C_2)p(C_2)$.

THE PERCEPTRON ALGORITHM

THE PERCEPTRON ALGORITHM

OUTLINE

LINEAR CLASSIFIERS

2 LOGISTIC REGRESSION A

S LAPLACE APPROXIMATION

BAYESIAN LOGISTIC REGRESSION

CONSTRAINED OPTIMISATION

6 SUPPORT VECTOR MACHINES

LOGIT AND PROBIT REGRESSION (BINARY CASE)

$$\sum E(\mathbf{w}) = -\log p(\mathbf{t}|\mathbf{w}) = -\sum_{i=1}^{N} t_i \log \mathbf{y}_i^{\mathbf{y}} + (1 - t_i) \log(1 - y_i)$$

NUMERICAL OPTIMISATION

- The gradient of $E(\mathbf{w})$ is $(\nabla E(\mathbf{w}) = \sum_{i=1}^{N} (y_i t_i)\phi_i$. The equation $\nabla E(\mathbf{w}) = 0$ has no closed form solution, so we need to solve it numerically. need to solve it numerically.
- One possibility is gradient descend. We initialise $|\mathbf{w}^0|$ to any value and then update it by

$$\mathbf{w}^{n+1} = \mathbf{w}^n \mathbf{w}^n \nabla E(\mathbf{w}^n)$$

where the method converges for η small.

• We can also use stochastic gradient descent for online training, using the update rule for w:

with
$$\nabla_n E(\mathbf{w}) = (y_n - t_n)\phi_n$$

W=K.W.

LOGISTIC REGRESSION: OVERFITTING

- If we allocate each point x to the class with highest probability, i.e. maximising σ(w^Tφ(x)), then the separating surface is an hyperplane in the feature space and is given by the equation w^Tφ(x) = 0.
- •/If the data is linearly separable in the feature space, then any separable hyperplane is a solution, and the magnitude of **w** tends to go to infinity during optimisation. In this case, the logistic function converges to the Heaviside function.
- To avoid this issue, we can add a regularisation term to $E(\mathbf{w})$, thus minimising $E(\mathbf{w}) \neq \alpha \mathbf{w}^T \mathbf{w}$.