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LINEAR DISCRIMINANT CLASSIFIER

e y(x) =w’x + b, decode to class 1 iff y(x) > 0, and to
class 0 if y(x) < 0.

e Typically here we use the encoding schem, but
also t, € {—1, 1} works (different solutions, though).

o Maximum likelihood training like in regression: minimise

the W function ®°¢ \

e Solution is|(X7X)"'XTt.
o The method can be extended to k classes (see next slide),

but performs poorly in general, because it tries to
approximate a probability in [0, 1] with a real number.
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MULTI-CLASS STRATEGIES Clug
| 95

classifiers, one-versus-the-rest strate class Ck versus all

other points ( ).
Alternatively, there is the@;\%classiﬁer, trains
\,r; for each pair of classes, decode by majority

&J\ voiing. Both arelambiguous.
(M e o) One can train K linear discriminant
J'\"Z\and decode to j such that]y;(x) > yi(
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LINEAR DISCRIMINANT - EXAMPLE
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o |dea: project data linearly in one dimension, so to separate
as much as possible the two classes. The projection is
vﬁ
@ "Choose the projection that (a) maximises the separation
between the two classes, either by maximising the

projected class means distance, or by maximising the ratio
between between-class and within-class variances.

o m; = 1/N.¥jcc, Xi, mj = W'm;, class means.
o Between-class variance,
Sg = (M2 —my)(mz —my) |
o Within-class varianceivlTSLwV\L,\ WS v o
Sw = See, (X = Mp)(Xj = M) T+ Fjec, (X — m2j(x; — mg) 7.
EL " i U‘L
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FISHER’S DISCRIMINANT
(_'1

e Maximise the ratio (,&:\

@ B@L‘V&e"\ v oL
WiSyw wiflwn Lo=s

e Deriving and setting the derivative to zero, we get

W < Sy (m2 -m ) U~
@ Choose the best}chat separates the projected data.
Classify to Cy if y(X) > yp. Idea: approximate the projected
class distributions [p ICx )] as Gaussians and then find yq
such that p(yolC1)p(C1) = p(olC2)p(C2). PG\ = Ni/n
4 . 3
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THE PERCEPTRON ALGORITHM

o For binary classes, proposed by\Rosenblatt in 62.) Typically
one maps the input data in a higher dimensional space

#(X;), chooses the coding —t’f/{:lj\} and decodes to Cy if
2 y(x) =(f )) > 0, where the activation function is the

step functionm?(a) =1,ifa>0and f(a) = -1 ifa<O.

vﬂa"& o A correctly classified pattern satisfies w’ ¢(x;)t; > 0. A

misclassified pattern insteag < O
@ We pick as error function Ep ; Te(xi)t;, which

generalises the idea of minimising the number o

misclassified patterns M. W ool oS

"= o Optimise it byww i

‘ el
(S W =Wl W)t < 0) N
< A2 (typically, 5 = 1) g
{ o If the data is linearly separable (in the feature space ¢),§zy\/\
. A ————,
then the algorithm converges(i_o & L\%F&]\%aw ‘{LP' h wo>
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THE PERCEPTRON ALGORITHM
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LOGIT AND PROBIT REGRESSION (BINARY CASE)

@ We model directly the conditional class probabilities
p(C11x) @(WT¢ ), after a (nonlinear) mapping of the
features $(X) = ¢1 (x) $m(X). {M» 0 Y
e Common ch0|ces for f are the logistic or logit function
,\@‘a(a) = 1+e = and theMn
W@ = [2 N(610,1)d6b. 4~
o We will focus on logistic regression.
@ The non-linear embedding is an important step
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V\\l él).
LOGISTIC REGRESSION %w\wu o o)

U\(\

oge assume\@_&:j a(w’e) where@ ¢(x) and
¢(Xi)

o Asy = y(¢(x)) €[0,1] we mterpret is as the probability of
assigning mput x to class 1, so that the likelihood is
.E 6)\0‘

e We need to minimise minus the log-likelihood, i.e.

_—
\i)j log p(tiw) = Zt,logy, (1-1t)log(1 - ;)
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NUMERICAL OPTIMISATION é 6 = € LYA-C 0oy

e The gradient of E(w is@ = >N . (yi- ti)¢i. The
equation|VE(w) = 0lhas no closed form solution, so we
need to solve it numerically.

@ One possibility is gradient descend. We |n|t|allsé\w° to any
value and then update it by

(]

e
where the method converges for@small.

@ We can also use stochastic gradient descent for online
training, using the update rule for w:

~y low’+ Ukn—H E(w"),
with V,E(w) =
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LOGISTIC REGRESSION: OVERFITTING

chMly-f Us)L)(L'\' ()J‘s\( \(Z.f ikl gl Xt’(( xz PN
w4Y|, fwg,(v" et

o If we allocate each point x to the class with highest
probability, i.e. maximising o-(w’ ¢(x)), then the separating

surface is an hyperplane in the feature space and is given
by the equatio mm

o/If the data is linearly separable in the feature space, then
any separable hyperplane is a solution, and the magnitude
of w tends to go to infinity during optimisation. In this case,
the logistic function converges to the Heaviside function.

o To avoid this issue, we can dd a regularlsatlon term to
E(w), thus minimising ( X y uw‘l\:{

Uq
(ﬁ "X cW) b



