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BAYESIAN REGRESSION: POSTERIOR DISTRIBUTION

Let’s assume the regression weights have a Gaussian prior
w ⇠ N(0,↵I) and that the bias is zero
The log posterior is
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BAYESIAN REGRESSION: PREDICTIVE DISTRIBUTION

Given the posterior, one can find the MAP estimate.
However, in a fully Bayesian treatment, one makes
predictions by integrating out the parameters via their
posterior distribution.
The predictive distribution
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MARGINAL LIKELIHOOD

We can find ↵ and � by maximising the marginal likelihood:
p(t|↵, �)
The log-marginal likelihood is:
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OPTIMISING THE MARGINAL LIKELIHOOD

We will present a fix-point algorithm: we will write the
gradient equations equal to zero as fix-point equations and
iterate until convergence.
In taking the derivative w.r.t ↵ or �, the most challenging
term is the log of the determinant of S
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OPTIMISING THE MARGINAL LIKELIHOOD

Now, define
� =
X
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(which measures the number of well determined
parameters)
By deriving the log-marginal w.r.t. ↵ and setting derivative
to zero, we obtain:

↵ =
�

m

N

T

m

N

= g↵(↵, �)

By deriving the log-marginal w.r.t. � and setting derivative
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TASK 3

Implement Bayesian regression, with type II likelihood
optimisation of ↵ and �.
For the 1d non-linear dataset, use polynomial model of
degree 12.
Plot predictions and 95% confidence intervals, from the
predictive distribution.
For the 2d non-linear dataset, use the Gaussian functions
models. How can we set the lengthscale �?


