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BASICS

o Consider a function f(x), from R" to R, twice differentiable.
Their minima are points such that Vf(x) = 0.

e At a minimum x* of f, the Hessian matrix Hy(x*) is positive
semidefinite, i.e.[v’ Hv > 0.]

o| If a point x* is such that (a) Vf(x) = 0 and (b) Hs(x*) iﬂ
positive definite, then x* is a minimum of f.

e For a quadratic function f(x) = %XTAX “bTx+Cthe
condition Vf(x) =0 reads@x -b=0]

e If Ais invertible and positive definite, then the point
x* = A 'b is the unique minimum of f, as f is a convex

function.
A
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GRADIENT DESCENT o O
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descent. gx = Vf(xk)! The update is in the directio
Xk41 = nsp - LEpRaN
L [ g

o In gradient descent, at a point x, take a step towards

| -V£(x), hence in the update rule becomes we set
/( e In the simplest case, nx = n. If n is not small enough, we
can step over the minimum. | very small this usually

- hot happens, but convergence-is very slow.
@ BYk- ui

Notation. x, denotes the sequence of points of the II

e An improvement of convergence is to set px =
with 0 < g < 1 the momentum coefficient.

o For a quadratic function, we have that px = —Axk +b.
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STOCHASTIC GRADIENT DESCENT

M U compuse V4 6 conblyy

o If the function to minimise is of the form’f(x) = i fi(x),
as is the case for ML problems, then we can use astic
gradient descent, which instead of taking a step along g,
it steps along the direction —Vf;(xk).

e The algorithm iterates over the dataset one or more times,
typically permuting it each time.

@ The learning rate n, can be takes as constant or be
decreased every (m) iterations, to improve convergence.

o Alternatively to one single observations, small batches of
V2 observations can be used to improve the method.

2. e FrEn
wountn &<N-
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ADIENT DESCENT WITH LINE SEARCH D

P <
e 774 |

e One pOSSIbI|Ity to improve gradient descent is to take the
best step possible, i.e. set nx to a value minimising the
functionﬁf(xk + Apk) along the line with direction p.

o The minimum is obtained by solving for A the equation

and settmg@to this solution.
e for a quadratic function, we have that the best learning rate
| is given by -
b — Ax
L e = ( . k) Pk
pKApl{JiJr
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%
CONJUGATE GRADIENTS | &%t biava

ILLA-, x‘@x«m <C

. ®)Consider a quadratic minimisation problem. If the matrix A
would be diagonal, we could solve separately n different
1-dimensionatoptimisation problems.

@ We can change coordinates by an orthogonal matri@that
diagonalises the matrix A. By letting x = Py{ we can
rewrite the function f(x) as

_ fly) = %VT\ET;A—jv —Ey +E(

o _The columns-of P are called conjugate vectors and satisfy
M»\&TAEL: 0 ano\m > Q. Tﬁéﬁ’eﬁﬁéﬁ?ﬁdependent‘

and are very good directions to follows in a descent

method.
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CONJUGATE GRADIENTS

o To construct conjugate vectors, we can use the
Gram-Schmidt orthogonalisation procedure: if v is linearly
independent of p1,. .., Pk, then

k p /.TAV

Pi+1 :V—Z

= P/ Ap;

Pji| 4-
)
@ We can start from a basis and construct the conjugate
vectors pq,. .., Pn-
@ In the conjugate vectors algorithm, we take step k + 1
along p«+1. The best 5k, according to line search, is
. —Plgk
k= —F—
P/ AP«
e It holds that Vf(xx.1)p; = 0 forall 7= 1,..., k (Lunenberg
expanding subspace theorem).
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CONJUGATE GRADIENTS

@ The conjugate gradients method constructs p,’s on the fly.
Works well also for non-quadratic problems. For quadratic
problems converges in at most n steps.

@ A good choice for a linearly |nde?endent vector v at step

k + 1 to construct px.1 is thus|VF(Xx.1)
o In this case, after some algebra we can compute:

@ 9k+19k+1
~V Pk+1APk+1
Pk+1 —Ok+1 + BkPk
with
oo T ) T
9, 19k+1 g (9k+1 - dk)
ﬁk:k+1— or /ﬁk— aal

9,9k 9, 9k

known as the Fletcher-Reeves or Polak-Ribiere
Y e~ — —_———— T ———

(preferrable for non- quadratic problems) formulae .
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NEWTON-RAPSON METHOD

@ As an alternative optimisation for small n, we can use the
Newton-Rapson method, which has better convergence
properties than gradient descent.

o By Taylor expansion éj

f(x + A) ~|f(x) + ATVF(x) + %ATHf(x)A

where Hy is the Hessian of f(x).
o Differentiating w.r.t. A, the minimum of the r.h.s. is when

[ VF(x) = ~H(X)& [hence for
]

@ Thus we obtain the update rule:

with 0 <))< 1 to improve convergence. <—
e Compute the update for a quadratic problem



