COMPUTATIONAL STATISTICS OPTIMISATION

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

Office 238, third floor, H2bis luca@dmi.units.it

Trieste, Winter Semester 2015/2016

GRADIENT-BASED METHODS

BASICS

- Consider a function *f*(**x**), from ℝⁿ to ℝ, twice differentiable. Their minima are points such that ∇*f*(**x**) = 0.
- At a minimum \mathbf{x}^* of f, the Hessian matrix $H_f(\mathbf{x}^*)$ is positive semidefinite, i.e. $\mathbf{v}^T H_f \mathbf{v} \ge 0.$
- If a point \mathbf{x}^* is such that (a) $\nabla f(\mathbf{x}) = 0$ and (b) $H_f(\mathbf{x}^*)$ is positive definite, then \mathbf{x}^* is a minimum of f.
- For a quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} \mathbf{b}^T \mathbf{x} + c$ the condition $\nabla f(\mathbf{x}) = 0$ reads $A \mathbf{x} \mathbf{b} = 0$.
- If *A* is invertible and positive definite, then the point $\mathbf{x}^* = A^{-1}\mathbf{b}$ is the unique minimum of *f*, as *f* is a convex function.

STOCHASTIC GRADIENT DESCENT If N >> (compute Df is costly

- If the function to minimise is of the form f(x) = ∑_{i=1}^N f_i(x), as is the case for ML problems, then we can use stochastic gradient descent, which instead of taking a step along g_k, it steps along the direction -∇f_i(x_k).
- The algorithm iterates over the dataset one or more times, typically permuting it each time.
- The learning rate η_k can be takes as constant or be decreased every (*m*) iterations, to improve convergence.
- Alternatively to one single observations, small batches of

 λ observations can be used to improve the method. Λ

ie. a small FixED Jumbb 40N

6/11

ARADIENT DESCENT WITH LINE SEARCH PK alon. One possibility to improve gradient descent is to take the best step possible, i.e. set η_k to a value minimising the function $f(\mathbf{x}_k + \lambda \mathbf{p}_k)$ along the line with direction \mathbf{p}_k . • The minimum is obtained by solving for λ the equation $\nabla f(\mathbf{x}_k + \mathbf{x}\mathbf{p}_k)^T \mathbf{p}_k = \mathbf{g}_{k+1}^T \mathbf{p}_k = 0$ and setting η_k to this solution. • for a quadratic function, we have that the best learning rate is given by $(\mathbf{b} - A\mathbf{x}_k)^T \mathbf{p}_k$ mm

- Consider a quadratic minimisation problem. If the matrix A would be diagonal, we could solve separately n different 1-dimensional optimisation problems.
- We can change coordinates by an orthogonal matrix P that diagonalises the matrix A. By letting $\mathbf{x} = P\mathbf{y}$ we can rewrite the function $f(\mathbf{x})$ as

$$f(\mathbf{y}) = \frac{1}{2} \mathbf{y}^T \mathbf{P}^T A \mathbf{P} \mathbf{y} - \mathbf{B}^T \mathbf{P} \mathbf{y} + \mathbf{c}$$

• The columns of *P* are called conjugate vectors and satisfy $\mathbf{p}_i^T A \mathbf{p}_i = 0$ and $\mathbf{p}_i^T A \mathbf{p}_i > 0$. They are linearly independent and are very good directions to follows in a descent method. 7/11

CONJUGATE GRADIENTS

 To construct conjugate vectors, we can use the Gram-Schmidt orthogonalisation procedure: if v is linearly independent of p₁,..., p_k, then

$$\mathbf{p}_{k+1} = \mathbf{v} - \sum_{j=1}^{k} \frac{\mathbf{p}_{j}^{T} A \mathbf{v}}{\mathbf{p}_{j}^{T} A \mathbf{p}_{j}} \mathbf{p}_{j}$$

- We can start from a basis and construct the conjugate vectors p₁,..., p_n.
- In the conjugate vectors algorithm, we take step k + 1 along **p**_{k+1}. The best η_k, according to line search, is

$$\eta_k = \frac{-\mathbf{p}_k^T \mathbf{g}_k}{\mathbf{p}_k^T A \mathbf{p}_k}$$

• It holds that $\nabla f(\mathbf{x}_{k+1})^T \mathbf{p}_i = 0$ for all $\vec{i} = 1, ..., k$ (Lunenberg expanding subspace theorem).

CONJUGATE GRADIENTS

- The conjugate gradients method constructs p_k's on the fly. Works well also for non-quadratic problems. For quadratic problems converges in at most *n* steps.
- S A good choice for a linearly independent vector **v** at step
 - k + 1 to construct \mathbf{p}_{k+1} is thus $\nabla f(\mathbf{x}_{k+1})$.
- In this case, after some algebra, we can compute:

NEWTON-RAPSON METHOD

• As an alternative optimisation for small *n*, we can use the Newton-Rapson method, which has better convergence properties than gradient descent.

• By Taylor expansion

$$f(\mathbf{x} + \Delta) \approx f(\mathbf{x}) + \Delta^T \nabla f(\mathbf{x}) + \frac{1}{2} \Delta^T H_f(\mathbf{x}) \Delta$$

where \mathbf{H}_{f} is the Hessian of $f(\mathbf{x})$.

 Differentiating w.r.t. Δ, the minimum of the r.h.s. is when ∇f(x) = -H_f(x)Δ, hence for Δ = -H_f⁻¹(x)∇f(x)

 Thus we obtain the update rule:

 x_{k+1} = x_k - ηH_f⁻¹(x_k)∇f(x_k), with 0 < η < 1 to improve convergence.
 Compute the update for a quadratic problem