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BASICS

Consider a function f (x), from Rn to R, twice differentiable.
Their minima are points such that rf (x) = 0.
At a minimum x⇤ of f , the Hessian matrix Hf (x⇤) is positive
semidefinite, i.e. vT Hf v � 0.
If a point x⇤ is such that (a) rf (x) = 0 and (b) Hf (x⇤) is
positive definite, then x⇤ is a minimum of f .
For a quadratic function f (x) = 1

2xT Ax � bT x + c the
condition rf (x) = 0 reads Ax � b = 0.
If A is invertible and positive definite, then the point
x⇤ = A�1b is the unique minimum of f , as f is a convex
function.
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GRADIENT DESCENT

Notation. xk denotes the sequence of points of the
descent. gk = rf (xk ). The update is in the direction pk :

xk+1 = xk + ⌘kpk

In gradient descent, at a point x, take a step towards
�rf (x), hence in the update rule becomes we set
pk = �gk .
In the simplest case, ⌘k = ⌘. If ⌘ is not small enough, we
can step over the minimum. If ⌘ is very small this usually
not happens, but convergence is very slow.
An improvement of convergence is to set pk = �gk � �gk�1,
with 0 < � < 1 the momentum coefficient.
For a quadratic function, we have that pk = �Axk + b.
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STOCHASTIC GRADIENT DESCENT

If the function to minimise is of the form f (x) =
PN

i=1 fi(x),
as is the case for ML problems, then we can use stochastic
gradient descent, which instead of taking a step along gk ,
it steps along the direction �rfi(xk).
The algorithm iterates over the dataset one or more times,
typically permuting it each time.
The learning rate ⌘k can be takes as constant or be
decreased every (m) iterations, to improve convergence.
Alternatively to one single observations, small batches of
observations can be used to improve the method.
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GRADIENT DESCENT WITH LINE SEARCH

One possibility to improve gradient descent is to take the
best step possible, i.e. set ⌘k to a value minimising the
function f (xk + �pk) along the line with direction pk .
The minimum is obtained by solving for � the equation

rf (xk + �pk)
T pk = gT

k+1pk = 0

and setting ⌘k to this solution.
for a quadratic function, we have that the best learning rate
is given by

⌘k =
(b � Axk )T pk

pT Ap
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CONJUGATE GRADIENTS

Consider a quadratic minimisation problem. If the matrix A
would be diagonal, we could solve separately n different
1-dimensional optimisation problems.
We can change coordinates by an orthogonal matrix P that
diagonalises the matrix A. By letting x = Py, we can
rewrite the function f (x) as

f (y) =
1
2

yT PT APy � BT Py + c

The columns of P are called conjugate vectors and satisfy
pT

i Apj = 0 and pT
i Api > 0. They are linearly independent

and are very good directions to follows in a descent
method.
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CONJUGATE GRADIENTS

To construct conjugate vectors, we can use the
Gram-Schmidt orthogonalisation procedure: if v is linearly
independent of p1,. . . , pk , then

pk+1 = v �
kX

j=1

pT
j Av

pT
j Apj

pj

We can start from a basis and construct the conjugate
vectors p1,. . . , pn.
In the conjugate vectors algorithm, we take step k + 1
along pk+1. The best ⌘k , according to line search, is

⌘k =
�pT

k gk

pT
k Apk

It holds that rf (xk+1)T pi = 0 for all i = 1, . . . , k (Lunenberg
expanding subspace theorem).
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CONJUGATE GRADIENTS

The conjugate gradients method constructs pk ’s on the fly.
Works well also for non-quadratic problems. For quadratic
problems converges in at most n steps.
A good choice for a linearly independent vector v at step
k + 1 to construct pk+1 is thus rf (xk+1).
In this case, after some algebra, we can compute:

⌘k+1 =
gT

k+1gk+1

pT
k+1Apk+1

pk+1 = �gk+1 + �kpk

with

�k =
gT

k+1gk+1

gT
k gk

or �k =
gT

k+1(gk+1 � gk )

gT
k gk

known as the Fletcher-Reeves or Polak-Ribière
(preferrable for non-quadratic problems) formulae .
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NEWTON-RAPSON METHOD

As an alternative optimisation for small n, we can use the
Newton-Rapson method, which has better convergence
properties than gradient descent.
By Taylor expansion

f (x +�) ⇡ f (x) +�Trf (x) +
1
2
�T Hf (x)�

where Hf is the Hessian of f (x).
Differentiating w.r.t. �, the minimum of the r.h.s. is when
rf (x) = �Hf (x)�, hence for � = �H�1

f (x)rf (x)
Thus we obtain the update rule:

xk+1 = xk � ⌘H�1
f (xk )rf (xk )

with 0 < ⌘ < 1 to improve convergence.
Compute the update for a quadratic problem


