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Hydrocarbons

❑ Aliphatic (Αλειφαρ = Ointment).  

▪ Alkanes (saturated hydrocarbons): hydrocarbons having only 
single C−C and C−H bonds. 
➢Linear (normal alkanes, n-alkanes) 

➢Branched 

➢Cyclic 

▪ Alkenes (olefins): hydrocarbons having double bonds. 

▪ Alkynes: hydrocarbons having triple bonds. 

❑ Aromatic
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Alkanes

methane 
ethane 
propane 
butane 
pentane 
hexane 
heptane 
octane 
nonane 
decane 
eicosane

Numberof 
C-atoms

Molecular 
formula

Name  
(n-alkane)

Empirical formula: CnH2n+2
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tetrahedral sp3 C ethane
Two sp3 hybrids overlap 
giving the  C–C σ bond

sp3 hybrids on C overlap with 1s 
orbitals on H giving the C-H σ 
bonds.

Ethane



CH

H

H

= CH3-CH

H

H

H

Alkyl Groups

Root-Suffix (= yl)

CH3-CH2-  = C2H5-

CH3-CH2-CH2- = C3H7-

Free 
valence methyl

ethyl

propyl
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Alkanes – Structural Isomerism
❑ There are two hydrocarbons with empirical formula C4H10: 

butane and isobutane. 
❑ Butane and isobutane are structural isomers: they have 

the same composition but different physico-chemical 
properties. 

butane

isobutane

Linear Alkane

Branched Alkane
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Alkanes – Structural Isomerism
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Examples

1ry carbon
2ry carbon 3ry carbon

4ry carbon

H 1ry H 2ry

H 3ry methine

methyl
methylene



Nomenclature



Nomenclature

2-metylbutane 2,2,3-trimethylpentane

3-methyl-6-propylnonane 5-(1-methylethyl)-3-methyloctane



C-Atoms Structure Name

5 n-pentyl

isopentyl

neopentyl

sec-pentyl

C-Atoms Structure Name

1 methyl

methylene

methine

2 ethyl

3 n-propyl

isopropyl

4 n-butyl

isobutyl

sec-butyl

tert-butyl

Alkyl Groups

2

3
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Physical Properties

# C atoms

Te
m

pe
ra

tu
re

Boiling point

Melting point



b.p.

Surface area decreases with branching

36 °C 69 °C0 °C

10 °C 30 °C 36 °C

Surface area increases with C-atoms

Physical Properties

m.p.

Increases with symmetry

–138 °C –95 °C

–160°C –17 °C

Surface area increases with C-atoms
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Solubility: soluble in organic solvents (apolar) 

insoluble in water

Physical state: C1-C4      gas /b.p. -160°-0° 

     C5-C17    liq./m.p.    -130°-20° 

     >C17        solid

Physical Properties



Natural sources of alkanes are natural gas and oil.  

Natural gas contains mainly methane: minor components are 
ethane, propane and butane.

Oil is a complex mixture of, mainly, C1-C40 hydrocarbons. 
Distillation of crude oil (refining) separates oil in fractions with 
different boiling point. The main fractions are: 
gasoline: C5H12 – C12H26 

kerosene: C12H26 – C16H34 

diesel oil: C15H32 – C18H38

Natural Sources
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Refining

❑ In the refining process, crude oil is heated and the volatile 
fractions distill first, followed by fractions with higher boiling 
points. 

Pre-heated crude 
oil and gases

C1-C4

C5-C10

C10-C18

C18-C25

gasoline

kerosene

diesel oil

lubricant oil

Residue (asphalt)



Barrel 
42 gal 
159 l

fine chemicals and plastics  1.25 gal 3%     

asphalt    1,3   gal 3%

coolants     2,9  gal   7%
lubrificants, waxes, solvents   4,2  gal  10%  

kerosene (aeroplanes)    4,2  gal  10%

gasoline    19,7 gal  47%

diesel and fuel oil    8,4  gal  20%   

1 US gal = 3.78 l

Crude Oil
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Ethane 

❑ In the eclipsed conformation, all C−H bonds are alligned. 
❑ In the staggered conformation, C−H bonds on each 

carbon bisect the H−C−H angles on the other carbon. 

60° rotation

eclipsed staggered

Conformational Isomerism

https://moodle2.units.it/pluginfile.php/242148/mod_resource/
content/2/Ethane%20Rotation%20About%20the%20Carbon-
Carbon%20Single%20Bond.mp4

https://moodle2.units.it/pluginfile.php/242148/mod_resource/content/2/Ethane%20Rotation%20About%20the%20Carbon-Carbon%20Single%20Bond.mp4
https://moodle2.units.it/pluginfile.php/242148/mod_resource/content/2/Ethane%20Rotation%20About%20the%20Carbon-Carbon%20Single%20Bond.mp4
https://moodle2.units.it/pluginfile.php/242148/mod_resource/content/2/Ethane%20Rotation%20About%20the%20Carbon-Carbon%20Single%20Bond.mp4
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60° rotation

View along the C–C bond

C front

C back

❑ The H−C−C−H angle is called dihedral angle (0° in the 
eclipsed and 60° in the staggered conformation).

0°

Staggered conformationEclipsed conformation
The front C-H bonds bisect the  H−C−H angles 

on the carbon atom at the back

Ethane Conformations
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Newman Projection

❑ How to draw a Newman projection 

 [1] Look along the C-C bond and draw a circle (the back C atom) 
with a dot in the centre (the front C atom). 

 [2] Draw the bonds 

 [3] Add the atoms

C front

C back
front bonds

back bonds

H

H
H

HH

H
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staggered conformation eclipsed conformation

dihedral angle
Dihedral angle 

0°

Newman Projections of Ethane
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P
ot

en
tia

l E
ne

rg
y

Dihedral angle

eclipsed 
energy 

maximum

staggered 
energy 

minimum

Conformations of Ethane
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staggered conformation eclipsed conformation

ehtane propane

Conformations of Propane
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Torsional Strain (3.3 kcal/mole) is higher than in ethane. The 
methyl group is bulkier than a hydrogen atom

Conformations of Propane

P
ot

en
tia

l E
ne

rg
y

eclipsed 
energy 

maximum

staggered 
energy 

minimum

H-C-C-CH3 dihedral angle
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6 different conformations

eclipsedstaggered, anti

eclipsed staggered, gauche eclipsed

staggered, gauche

Conformations of Butane
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Eclipsed conformation

anti conformation conformazione gauche

4

31

The CH3 are at 180° The CH3 are at 60° 
steric strain

The CH3 are at 0° 
steric strain

A staggered conformation with two 
large groups at 60° is called gauche.

A staggered conformation with two 
large groups at 180° is called anti

Conformations of Butane
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▪ Staggered conformations:  
▪ 1 (anti) is the absolute 
minimum  

▪ 3,5 (gauche) are relative 
minima 

▪ Eclipsed conformations:  
▪ 4 is the absolute 
maximum (CH3 eclipsed)  

▪ 2,6 are relative maxima

Conformations of Butane

P
ot

en
tia

l E
ne

rg
y

H3C-C-C-CH3 dihedral angle
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❑ A rotational barrier is the energy difference between two 
minima. 

❑ The most stable conformation of linear hydrocarbons is 
staggered with the bulky groups in anti. Thus long chains are 
usually drawn with a zigzag.

Interaction Energy (kcal/mole)

Eclipsing H,H 1

Eclipsing H,CH3 1.5

Eclipsing CH3,CH3 4

Gauche CH3,CH3 0.9

Torsional Strain in Linear Alkanes
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Cycloalkanes
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Cycloalkanes

• Cycloalkanes have empirical formula CnH2n and contain 

carbon atoms arranged in a cyclic chain 

• Nomenclature: cyclo + name of the corresponding alkane

cyclopropane 
C3H6

cyclobutane 
C4H8

cyclopentane 
C5H10

cyclohexane 
C6H12
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Stability: Angular Strain (Baeyer’s Strain)

❑ Baeyer (1885): as carbon prefers 109° bond angles, rings other 
than five or six membered may be too strained to exist.  

❑ Cycloalkanes from C3 to C30 do exist, but some of them are 

strained because of distorted bond angles and other 
interactions.
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Cyclopropane C3H6

❑ Planar. 
❑ Angle strain: 60° CCC angles.  
❑ Torsional strain: all H are eclipsed. 
❑ May be described as sp3 hybridized with banana bonds. 

HH

HH

H H
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Cyclobutane C4H8

❑ In planar cyclobutane all hydrogens would be eclipsed. 
❑ To relieve torsional strain, cyclobutane is puckered by 

about 25°.  
❑ In doing so the  CCC bond angles decrease to 88° and 

hydrogens on opposite carbons become closer.

Puckered 
slightly higher angle strain 

lower torsional strain 
some VdW strain 

H

H

H

H

H

H

H

H 25° 
puckering 

angle

Planar 
angle strain 

torsional strain 
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Ring Strain

Stability of cycloalkanes depend on ring strain: 

▪ angle strain: distorted bond angles.  

▪ torsional strain: eclipsing of C-H bonds.  

▪ VdW or steric strain: repulsions between non bonded atoms.
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Cyclopentane C5H10

“envelope” conformation 
eclipsing is partially relieved

25° 
puckering angle

envelope and half-chair conformations have similar 
energies and rapidly interconvert into one another

angle strain  
torsional strain 

HH

H
H

H

H

H

H
H

H

envelope half-chair

H
H

H
H

H

H
HH

H

H
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❑ Planar cyclohexane. 

❑ Chair conformation.

angle strain torsional strain

all H are eclipsedCCC > 109.5°

H are staggered

Cyclohexane C6H12

strainless
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Strain Energies of Cycloalkanes

ring size

st
ra

in
 e

ne
rg

y 
(k

J/
m

ol
)

kc
al

/m
ol



❑ Heats of combustion are used to calculate strain energies of cycloalkanes. 
❑ Heats of combustion increase with the number of C atoms. 
❑ Cyclohexane is taken as reference (Strain = 0). 

Per CH2   697 681 658 653 657 658

kJ/mol    2091       2724          3290           3910             4599              5264 

Strain      132          112             25                  0                28                   40  

Strain Energies of Cycloalkanes
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How to Draw Chair Cyclohexane
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❑ There are two types of hydrogens:  

▪ Axial: perpendicular to the ring’s mid-plane, above and below 
the ring.  

▪ Equatorial: in the ring’s mid-plane, all around the ring. 

❑ There are 6 axial and 6 equatorial hydrogens in 
cyclohexane.

Chair Conformation of Cyclohexane

H axial

H equatorial

equatorial 
upward

equatorial 
downward

axial   
upward

axial  
downward
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Ring Flipping

❑ Ring flipping is the interconversion between two chair 
conformations of cyclohexane.  

❑ Upwards C become dawnwards and viceversa.  
❑ Axial H become equatorial and viceversa. 

chair 1 chair 2boat
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chair 1 chair 2boat

axial H become equatorial

equatorial H become axial

Ring Flipping
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Conformations of Cyclohexane

❑ Chair conformations are 7 kcal/mol more stable than boat 
conformations.  

❑ Torsional strain. In the boat conformation the H on the 
base are eclipsed. 

❑ Steric strain. Flag pole H are forced in close proximity.

H eclipsed

H eclipsed

H flagpole
1.80 Å

H bowspring

H bowspring
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5.5  
kcal/mole

10.8  
kcal/mole

6.9  
kcal/mole

E

twist-boat

boat

half-chair half-chair

chair chair

Conformations of Cyclohexane
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 chair  
no ring strain 

(99.99% at 25°C)

boat   
- torsional strain 
- steric strain  

ring strain: ~ 7  kcal

twist-boat  
~ 1.5 kcal more stable 

than the boat 
(0.01% at 25°C)

Conformations of Cyclohexane
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❑ The chair conformations are no longer equivalent: they 
have different energies. 

❑ The axial conformer is destabilized by 1,3-diaxial 
interactions (VdW interactions) between the substituent 
and axial hydrogens.  

❑ The larger the substituent, the less stable the axial 
conformation.

Substitued Cyclohexanes

123

23
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equatorial 
(95%) 

no steric strain

axial 
(5%) 
steric 

repulsion

Each CH3 / H interaction destabilizes the axial conformer by 0.9 kcal/mol

1,3-diaxial 
interactions

Methylcyclohexane

ΔG ~ 1.8 kcal



48

tert-Butylcyclohexane

❑ The tert-butyl group is so bulky that there is no axial 
conformer at the equilibrium.

< 0.01% > 99.99%

ΔG ~ 5.5 kcal

The tert-butyl group freezes the conformational equilibrium.
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Steric Strain and Torsional Strain

• Steric strain results from VdW repulsions between non bonded atoms 
or groups. 

• Torsional strain is steric strain between atoms or groups that are 
separated by 3 bonds and depends on the dihedral angle between 
the adjacent groups (conformation = rotation around a single bond)  
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Disubstitued Cyclohexanes. Geometrical 
Stereoisomerism

❑ There are two isomers of 1,4-dimethylcyclohexane. 

❑ Each geometrical isomer has two possible chair 
conformations.

cis trans
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1,4-Dimethylcyclohexane

ΔG = 0 kcal

equatorial-axial 
2 1,3-diaxial interactions 

2 x 0.9 = 1.8 kcal

axial-equatorial 
2 1,3-diaxial interactions  

2 x 0.9 = 1.8 kcal

bisequatorial 
no repulsions

bisaxial 
4 1,3-diaxial interactions  

4 x 0.9 = 3.6 kcal

ΔG ~ 3.6 kcal

trans

cis
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Dimethylcyclohexanes
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cis-1-t-Butyl-4-methylcyclohexane

❑ The conformational equilibrium is frozen by the bulky t-butyl 
group.

ΔG ~ 3.7 kcal1.8 kcal/mole5.5 kcal/mol

But
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A spiro bicyclic system

•  One atom is shared by two rings

Polycyclic compounds
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Polycyclic compounds

bicyclo[2.2.2]octane bicyclo[3.2.0]heptane spiro[4,5]decane
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Polycyclic Hydrocarbons

cis-decaline

trans-decaline

more stable 
(equatorial substituents)

less stable 
(1 axial substituent)
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• no lone pairs 
• no π bonds 
• no heteroatoms 
• not nucleophilic 
• not electrophilic 
• strong, not polar C–C, 

C–H bonds

Alkanes react only at high 
temperatures, with radical 
mechanisms.

Reactions of Alkanes
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Halogenation of Alkanes 

Chapt. 10 Organic Chemistry, 8th Edition 
John E. McMurry
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Halogenation of Alkanes

❑ In the presence of heat or light, alkanes react with 
halogens, with a radical mechanism, to give alkyl halides. 

❑ Halogenation of alkanes is carried out with Cl2 o Br2. The 

reaction with F2 is too violent and the reaction with I2 is too 

slow. 

R–H  +  X2  ⎯⎯→  R–X  +  HX 
Δ or hν

radical substitution
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Halogenation of Methane

Initiation 
Stage [1]: formation of Cl. radicals

Propagation 
Stages [2] and [3]: A new radical is formed for each reacting radical

Termination 
Stage [4]: Two radicals recombine forming a σ bond.

thousands of 
cycles. 

Chain reaction
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Halogenation of Methane

Initiation

Propagation
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Energetics

ΔH°(C-H) 104

X = F Cl Br I
ΔH°(X-H) 136 103 88 71
ΔH° -32 +1 +16 +33

ΔH°, Kcal/mole

36
32

24

16

8

ΔH°

4

–32

0 Eatt +1.2 Kcal/mole

–32 Kcal/mole

Eatt +4 Kcal/mole
+1 Kcal/mole

Eatt +18 Kcal/mole

+16 Kcal/mole

Eatt +34 Kcal/mole
+33 Kcal/mole

F

Cl

Br

I

Stage [2] is the slow step:

ΔH° = ΔH°(C-H) - ΔH°(X-H)
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❑ Monohalogenation is only possible with an excess of 
substrate, otherwise polyhalogenation predominates.

❑ Problem: mixture of halogenated products.  

❑ Solution: CH4 in large excess and recycled.

Halogenation of Alkanes



64

Regioselectivity

❑ Isomers are formed in the halogenation of propane and 
higher hydrocarbons:

substitution of a 2ry H 

observed ratio  1                  :                 1                

statistical ratio

substitution of a 1ry H 

/
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❑ Alkyl radicals are sp2 hybridized with a trigonal planar 
geometry. 

❑ The p orbital contains an unpaired electron. 

Structure of Radicals

a single electron in 
the p orbital

methyl  
radical

1ry  
radical

2ry  
radical

3ry  
radical
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R−H  →  R•  +  H•

C−H Bond Dissociation Energies

B
D

E

104 kcal/mole

98 kcal/mole

98 kcal/mole (1ry C-H)

95 kcal/mole (2ry C-H)

91 kcal/mole (3ry C-H)

Reactivity of C−H bonds: 
3ry > 2ry > 1ry > CH3−H

DH = BDE bond dissociation energy

S
TA

B
ILITY

methyl  
radical

1ry  
radical

2ry  
radical

3ry  
radical
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❑ Radical stability:   3ry > 2ry > 1ry. 
❑ Strength of C-H bonds:  3ry < 2ry < 1ry.

Lower energy, more stable, 
weaker C-H bond.

98 kcal 95 kcal

1ry radical 2ry radical

Regioselectivity
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Reactivity and Selectivity

▪ Chlorination of alkanes is faster than bromination. 

▪ Bromination of alkanes is more selective.

57%43%

/

/
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Regioselectivity

Cl2: 28%           23%                     35%                    14% 
Br2: ~0%           90%                       9%                    ~0%

isopentane 2ry H

3ry H

C-H relative reactivity 3ry 2ry 1ry

     with Cl2 5.2 3.9 1

     with Br2 1640 82 1

1ry H 1ry H

/
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Nomenclatura dei bromo(metil)butani
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Bromurazione di cicloalcani
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❑ Allylic carbons are sp3 carbons adjacent to a double bond. 
❑ A resonance-stabilized allylic radical is obtained by omolysis of 

an allylic C−H bond. 

❑ BDEs of allylic C−H bonds are approximately 4 kcal/mol lower 
than BDE for 3ry C−H bonds.  

❑ The delocalized allylic radical is more stable than a 3ry radical.

Halogenation of Allylic Carbons

allylic radical

radical stability
radicale allilico
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The Allylic Radical
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Delocalyzed Radicals
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Halogenation of Allylic Carbons

initiation 

propagation 

termination 
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❑ Allylic carbons can be selectively brominated with NBS and 
UV irradiation or a radical initiator. 

❑ Breaking of the weak N-Br bond of NBS initiates the radical 
chain reaction. 

allylic C

Halogenation of Allylic Carbons

/
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Halogenation of Allylic Carbons
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Combustion of Alkanes
❑ Combustion is a redox reaction. C is oxidized and O is 

reduced. 
❑ All hydrocarbons burn giving carbon dioxide, water and 

heat (ΔH <0).  

❑ C−C e C−H bonds are converted into C-O and H-O bonds.

Every C atom is converted into CO2

CnH2n+2 +             O2                             n CO2 +  (n+1)H2O  +  calore
2

3n+1

isoottano

heat

heat

heat
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Stability of Isomers

❑ Heats of combustion are used to compare the stability of 
isomers. E.g.: C8H18

Branched isomers are more stable than linear ones.

1303.0 kcal
~
~1304.6 kcal

~
~1306.3 kcal

~
~1307.5 kcal

~
~

8 CO2 + 9 H2O



❑ Heats of combustion are used to calculate strain energies of cycloalkanes. 
❑ Heats of combustion increase with the number of C atoms. 
❑ Cyclohexane is taken as reference (Strain = 0). 

Per CH2   697 681 658 653 657 658

kJ/mol    2091       2724          3290           3910             4599              5264 

Strain      132          112             25                  0                28                   40  

Strain Energies of Cycloalkanes


