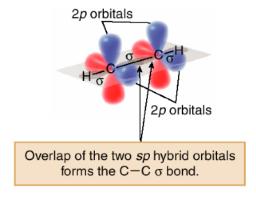
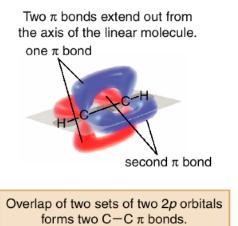

Alkynes


Chapter 9
Organic Chemistry, 8th Edition
John E. McMurry

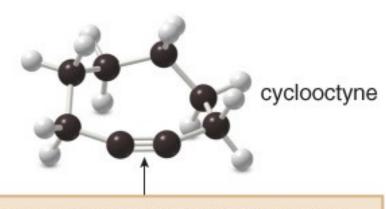

Structure and Bonding

General molecular formula C_nH_{2n-2} , Thus, the triple bond introduces two degrees of unsaturation.

- The σ bond is formed by end-on overlap of the two sp hybrid orbitals.
- Each π bond is formed by side-by-side overlap of two 2p orbitals.

Structure and Bonding

Alkynes are more reactive than alkenes

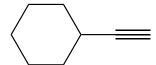

```
H_2C = CH_2 \longrightarrow H_3C - CH_3
152 Kcal/mol - 88 Kcal/mol = 64 Kcal/mol

HC = CH \longrightarrow H_2C = CH_2
200 Kcal/mol - 152 Kcal/mol. = 48 Kcal/mol
```

- Both π bonds of a C-C triple bond are weaker than a C-C σ bond, making them much more easily broken. As a result, alkynes undergo many addition reactions.
- Alkynes are more polarizable than alkenes because the electrons in their π bonds are more loosely held.

Structure and Bonding

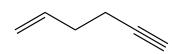
- Like trans cycloalkenes, cycloalkynes with small rings are unstable.
- Cyclooctyne is the smallest isolable cycloalkyne, though it decomposes upon standing at room temperature after a short time.



To accommodate the triple bond in a ring, bending occurs around the *sp* hybridized C's, destabilizing the molecule.

Nomenclature

$$H-C\equiv C-H$$
 ethyne (acetylene)

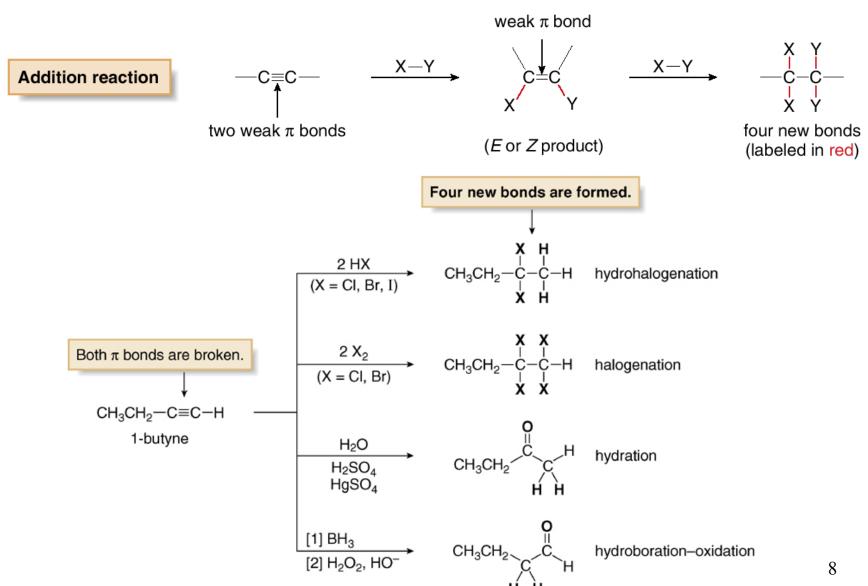

2,5-dimethyl-3-heptyne

ethynylcyclohexane

1,3-hexadiyne

1-hexen-5-yne

Physical Properties


- The physical properties of alkynes resemble those of hydrocarbons of similar shape and molecular weight.
- Alkynes have low melting points and boiling points.
- Melting point and boiling point increase as the number of carbons increases.
- Alkynes are soluble in organic solvents and insoluble in water.

Preparation of Alkynes

Alkynes are prepared by elimination reactions.

$$CH_3$$
— C — C — C — CH_3 base CH_3 — C = C — CH_3 CH_3 — C = C — CH_3 vicinal dibromide

Alkyne Reactions—Additions

Hydrohalogenation

Part [1] Addition of HBr to form a vinyl halide

slower

(less stable vinyl cation)

Part [2] Addition of HBr to form a geminal dihalide

faster

(more stable, tertiary alkyl cation)

The positive charge is delocalized.

hybrid

Hydrohalogenation

Not regioselective with internal alkynes

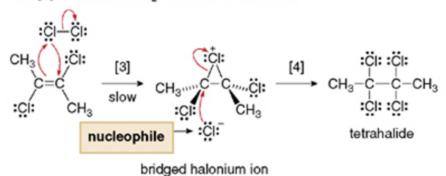
Halogenation

Part [1] Addition of X2 to form a trans dihalide

$$CH_{3}-C=C-CH_{3} \xrightarrow{[1]} CH_{3} \xrightarrow{\vdots Cl:} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{\vdots Cl:} CH_{3}$$

$$CH_{3}-C=C-CH_{3} \xrightarrow{[1]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{\vdots Cl:} CH_{3}$$

$$CH_{3}-C=C \xrightarrow{[1]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3}$$

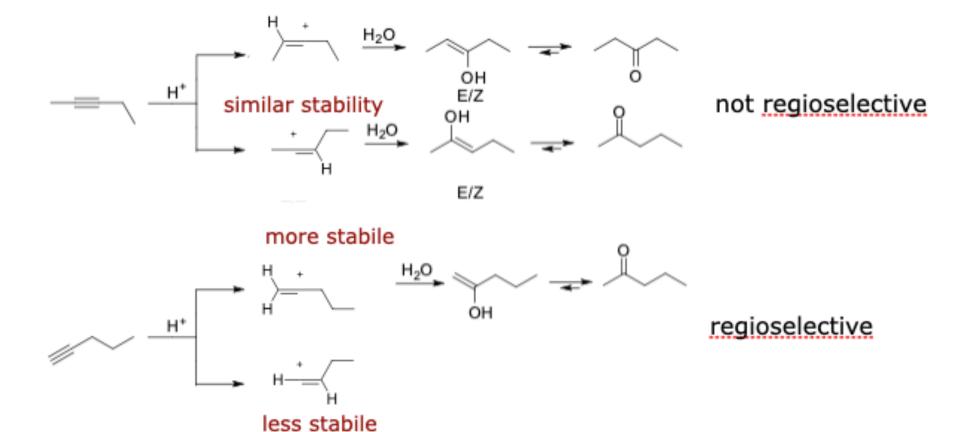

$$CH_{3}-C=C \xrightarrow{[1]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3}$$

$$CH_{3}-C=C \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3} \xrightarrow{[2]} CH_{3}$$

$$CH_{3}-C=C \xrightarrow{[3]} CH_{3} \xrightarrow{[3]} CH_{3} \xrightarrow{[3]} CH_$$

bridged halonium ion

Part [2] Addition of X2 to form a tetrahalide


Hydration

Hydration
$$R-C\equiv C-R$$
 H_2O H_2SO_4 H_2SO_4 H_2SO_4 H_2SO_4 H_2O has been added.

Equilibrium favors the keto form largely because the C=O is much stronger than a C=C.

 Tautomers are constitutional isomers that differ in the location of a double bond and a hydrogen atom. Two tautomers are in equilibrium with each other.

Hydration

Hydroboration—Oxidation

Reduction of Alkynes

Adding two equivalents of H₂ forms an alkane.

$$R-C \equiv C-R \xrightarrow{H_2} R-C-C-R$$

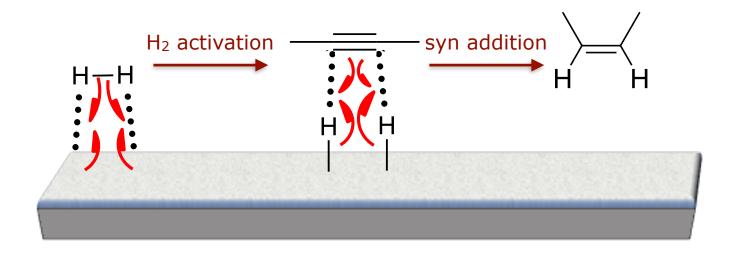
$$= R + H + H$$

$$= R + C + H + H$$
alkane

Adding one equivalent of H₂ in a syn fashion forms a cis alkene.

Adding one equivalent of H₂ in an anti fashion forms a trans alkene.

Catalytic Hydrogenation

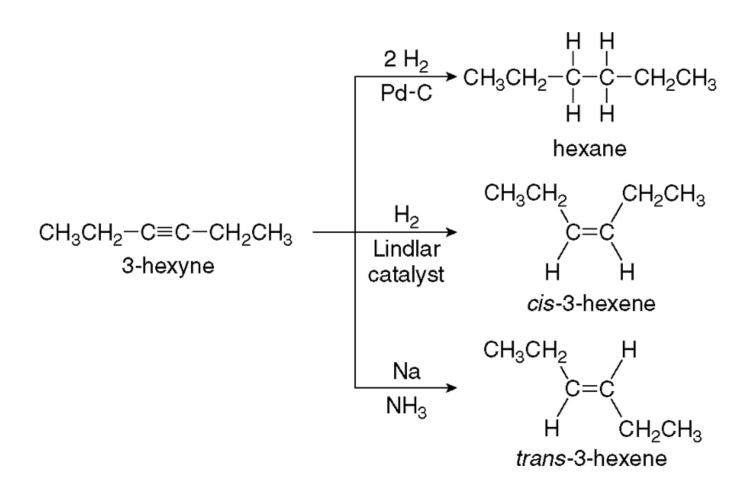

Alkanes:

Example
$$CH_3-C\equiv C-CH_3$$
 H_2 H_2 H_3 $C=C$ H_3 H_4 H_5 H_6 H_7 H_8 H_8

Cis-Alkenes:

- Palladium metal is too reactive to allow hydrogenation of an alkyne to stop after one equivalent of H₂ adds.
- To stop at a cis alkene, a less active Pd catalyst is used Pd adsorbed onto CaCO₃ with added lead(II) acetate and quinoline. This is called Lindlar's catalyst.

Catalytic Hydrogenation


Dissolving Metal Reduction

Steps [1] and [2] Addition of one electron and one proton to form a radical

Steps [3] and [4] Addition of one electron and one proton to form the trans alkene

Example
$$CH_3-C\equiv C-CH_3$$
 Na NH_3 CH_3 CH_3

Summary of Alkyne Reductions

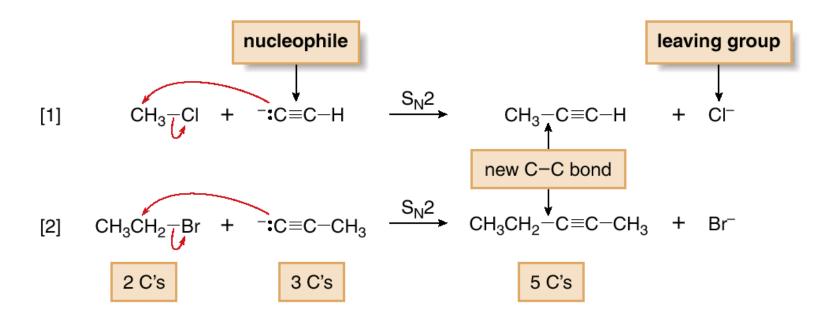
Oxidative Cleavage of Alkynes

- Internal alkynes are oxidized to carboxylic acids (RCOOH).
- Terminal alkynes afford a carboxylic acid and CO₂ from the sp hybridized C—H bond.

Examples
$$CH_3-C\equiv C-CH_2CH_3$$
 [1] O_3 CH_3 $C=O$ + $O=C$ CH_2CH_3 $C=O$ + $O=C$ CH_2CH_3

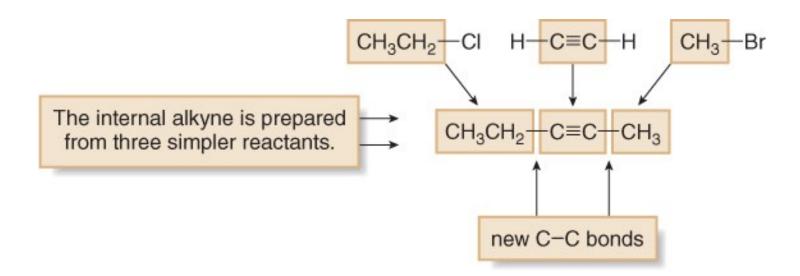
Oxidative Cleavage of Alkynes

$$CH_3 - C = CH \longrightarrow CH_3 - C \longrightarrow CH_3$$

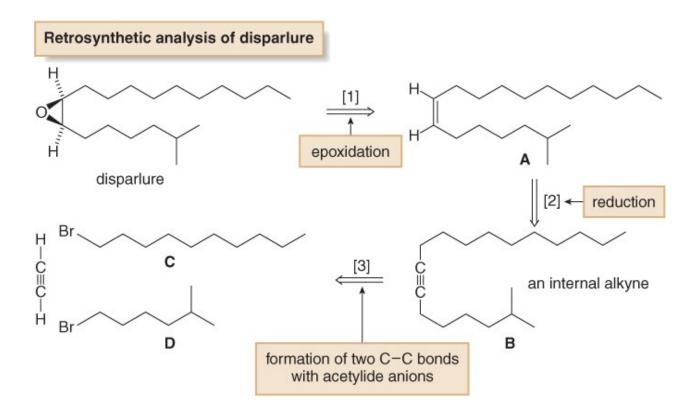

Acetylide anions

$$R-C\equiv C-H$$
 + :B \rightleftharpoons $R-C\equiv C$: + $H-B^+$ terminal alkyne $pK_a\approx 25$ acetylide anion

		Base	pK _a of the conjugate acid
These bases are strong enough to deprotonate an alkyne.	{	⁻NH₂ H⁻	38 35
These bases are <i>not</i> strong enough to deprotonate an alkyne.	{	⁻OH ⁻OR	15.7 15.5–18


Acetylide Anions

- Acetylide anions are strong nucleophiles and react with methyl and 1° alkyl halides to yield products of nucleophilic substitution.
- Acetylide anions do not react with 2° and 3° alkyl halides.



Nucleophilic substitution with acetylide anions forms new carbon-carbon bonds.

Acetylide anions

Disparlure – a pheromone

How To

Develop a Retrosynthetic Analysis

Step [1] Compare the carbon skeletons of the starting material and product.

- If the product has more carbon–carbon σ bonds than the starting material, the synthesis must form one or more C C bonds. If not, only functional group interconversion occurs.
- Match the carbons in the starting material with those in the product, to see where new C-C bonds must be added or where functional groups must be changed.

Step [2] Concentrate on the functional groups in the starting material and product and ask:

- · What methods introduce the functional groups in the product?
- · What kind of reactions does the starting material undergo?

Step [3] Work backwards from the product and forwards from the starting material.

- · Ask: What is the immediate precursor of the product?
- Compare each precursor to the starting material to determine if there is a one-step reaction that converts one to the
 other. Continue this process until the starting material is reached.
- · Always generate simpler precursors when working backwards.
- · Use fewer steps when multiple routes are possible.
- Keep in mind that you may need to evaluate several different precursors for a given compound.

Step [4] Check the synthesis by writing it in the synthetic direction.

 To check a retrosynthetic analysis, write out the steps beginning with the starting material, indicating all necessary reagents.

Ph
$$\stackrel{?}{\longrightarrow}$$
 Ph $\stackrel{OH}{\longrightarrow}$ $\stackrel{?}{\longrightarrow}$ $\stackrel{?}{\longrightarrow}$