Conjugated Dienes

Chapter 14 Organic Chemistry, 8th Edition John E. McMurry

Dienes

- Propadiene (allene) is a cumulated diene.
- 1,3-Butadiene is a conjugated diene.
- 1,4-Pentadiene is an isolated diene.

Allenes

Stereochemistry

Chiral

 1,3 disubstituted allenes have no plane of symmetry
Avial chirality

• Axial chirality

Energetics	
(K	ΔH _f ° cal/mol)
$H_2C = C = CH_2$	45.5
HC≡C−CH₃	44.2

Conjugated Dienes

• The C—C single bond joining the two double bonds is unusually short.

• Conjugated dienes are more stable than similar isolated dienes.

• Some reactions of conjugated dienes are different than reactions of isolated double bonds.

• Conjugated dienes absorb light at longer wavelengths than alkenes.

Delocalisation, Resonance, and Dienes

Delocalisation occurs whenever *p* orbitals can overlap on three or more adjacent atoms.

Delocalisation, Resonance, and Dienes

charge separation less stable

neutral more stable

charge separation less stable

Delocalisation, Resonance, and Dienes

• The allyl carbocation is another example of a conjugated system.

- Three *p* orbitals on three adjacent atoms, even if one of the *p* orbitals is empty, make the allyl carbocation conjugated.
- Conjugation stabilizes the allyl carbocation.

Structure

• Three stereoisomers are possible for 1,3-dienes with alkyl groups bonded to each end carbon of the diene.

 Two possible conformations result from rotation around the C—C bond that joins the two double bonds.

Conformational Analysis of 1,3-Butadiene

9

Electrophilic Addition: 1,2- Versus 1,4-Addition

The amount of 1,2- and 1,4-addition products formed in electrophilic addition reactions of conjugated dienes depends greatly on the reaction conditions.

Electrophilic Addition: 1,2- Versus 1,4-Addition

The 1,2-product is the kinetic product because:

a) the charge on C2 is higher

b) a proximity effect.

When a mixture containing predominantly the 1,2-product is heated, the 1,4-addition product becomes the major product at equilibrium.

- The 1,2-product is formed faster because it predominates at low temperature. The product that is formed faster is called the *kinetic product*.
- The 1,4-product must be more stable because it predominates at equilibrium. The product that predominates at equilibrium is called the *thermodynamic product*.

The Diels-Alder Reaction

Because each new σ bond is ~20 kcal/mol stronger than a π bond that is broken, a typical Diels-Alder reaction releases ~40 kcal/mol of energy.

The Diels-Alder Reaction

Mechanism of The Diels-Alder Reaction

2 new σ bonds are formed simultaneously by interaction of the π orbitals of the diene and dienophile.

No ions or radicals are involved; 6 electrons are delocalized in the cyclic transition state.

The D.A. cycloaddition is a pericyclic reaction

- 1. Electron-withdrawing substituents in the dienophile increase the reaction rate.
- The diene acts as a nucleophile and the dienophile acts as an electrophile.
- Electron-withdrawing groups make the dienophile more electrophilic

2. The diene can react only when it adopts the *s*-cis conformation.

This rotation is prevented in cyclic alkenes.

3. The stereochemistry of the dienophile is retained.

4. When endo and exo products are possible, the endo product is preferred.

- A substituent on one bridge is *endo* if it is closer to the *longer* bridge that joins the two carbons common to both rings.
- A substituent is exo if it is closer to the shorter bridge that joins the carbons together.

The Diels-Alder Reaction in Organic Synthesis

• Steroids are tetracyclic lipids.

The Diels-Alder Reaction in Organic Synthesis

