Alkyl Halides

Chapter 10 Organic Chemistry, 8th Edition John McMurry

Introduction to Alkyl Halides

- Alkyl halides are organic molecules containing a halogen atom bonded to an sp³ hybridized carbon atom.
- Alkyl halides are classified as primary (1°), secondary (2°), or tertiary (3°), depending on the number of carbons bonded to the carbon with the halogen atom.
- The halogen atom in halides is often denoted by the symbol "X".

Introduction to Alkyl Halides

Nomenclature

Nomenclature

Common names are often used for simple alkyl halides. To assign a common name:

Physical Properties

Alkyl halides are weak polar molecules. They exhibit dipole-dipole interactions because of their polar C—X bond, but because the rest of the molecule contains only C—C and C—H bonds, they are incapable of intermolecular hydrogen bonding.

Physical Properties

Table 7.1	Physical Properties of Alkyl Halides				
Property	Observation				
Boiling point and melting point	• Alkyl halides have higher bp's and mp's than alkanes having the same number of carbons. $\begin{array}{c} \textbf{CH}_3\textbf{CH}_3 & \text{and} & \textbf{CH}_3\textbf{CH}_2\textbf{Br} \\ \text{bp} = -89 \ ^\circ \textbf{C} & \text{bp} = 39 \ ^\circ \textbf{C} \end{array}$				
	 Bp's and mp's increase as the size of R increases. 				
	$\begin{array}{c c} \textbf{CH}_{3}\textbf{CH}_{2}\textbf{CI} & \text{and} & \textbf{CH}_{3}\textbf{CH}_{2}\textbf{CH}_{2}\textbf{CI} & \bullet & \textbf{Iarger surface area-higher mp and bp} \\ mp = -136 \ ^{\circ}\textbf{C} & mp = -123 \ ^{\circ}\textbf{C} & bp = 47 \ ^{\circ}\textbf{C} \end{array}$				
	 Bp's and mp's increase as the size of X increases. 				
	CH ₃ CH ₂ CI and CH ₃ CH ₂ Br ← more polarizable halogen— mp = -136 °C mp = -119 °C higher mp and bp				
	bp = 12 °C bp = 39 °C				
Solubility	RX is soluble in organic solvents.RX is insoluble in water.				

Preparation from alcohols ×^{OH} ^{HX} ∕ \times^{X} tertiary $\begin{array}{c|c} & & & PBr_3 \\ \hline & & & \\ & &$ primary and secondary *,*Χ

The Polar Carbon-Halogen Bond

The electronegative halogen atom in alkyl halides creates a polar C-X bond, making the carbon atom electron deficient. Electrostatic potential maps of four simple alkyl halides illustrate this point.

The polar C-X bond makes the carbon atom electron deficient in each CH₃X molecule.

The Polar Carbon-Halogen Bond

Alkyl halides undergo substitution reactions with nucleophiles.

$$Nu^{-}$$
 R X \rightarrow Nu $-$ R + X^{-}

Alkyl halides undergo elimination reactions with Brønsted–Lowry bases.

Nucleophilic Substitution

Chapter 11 Organic Chemistry, 8th Edition John McMurry

Nucleophilic Substitutions

The Leaving Group

Stable species are good leaving groups.

• Leaving group ability increases down a period:

• Leaving group ability increases from left to right across a group:

The Leaving Group

Starting material Leaving group Conjugate acid R-CI Cl-HCI These molecules R-Br Br⁻ HBr undergo nucleophilic R- I^- HI substitution R-OH₂ H_2O H_3O^+

These molecules do not undergo nucleophilic substitution

Starting material	Leaving group	Conjugate acid	pK _a
R-F	F ⁻	HF	3.2
R-OH	−ОН	H ₂ O	15.7
R-NH ₂	$\neg NH_2$	NH ₃	38
R-H	H	H_2	35
R-R	R ⁻	RH	50

pK_a

-7

-9

-10

-1.7

- Nucleophilicity is correlated to basicity.
- Although nucleophilicity and basicity are interrelated, they are fundamentally different.

Basicity is a thermodynamic property.

$$K_B$$

B: + H₂O \implies BH⁺ + OH⁻

Nucleophilicity is a kinetic property.

Nu: + E
$$\longrightarrow$$
 Nu-E

• For two nucleophiles with the same nucleophilic atom, the stronger base is the stronger nucleophile.

HO⁻ is a stronger nucleophile than CH₃COO⁻. (pK_a : H₂O = 15.7, CH₃COOH = 4.8).

- A negatively charged nucleophile is always a stronger nucleophile than its conjugate acid.
 HO⁻ is a stronger base and stronger nucleophile than H₂O.
- Right-to-left across a row of the periodic table, nucleophilicity increases as basicity increases:
 NH₃ is a stronger base and stronger nucleophile than H₂O.

- Nucleophilicity does not parallel basicity when steric hindrance becomes important.
- Steric hindrance results from the presence of bulky groups at the site of a reaction.
- Steric hindrance decreases nucleophilicity but not basicity.
- Sterically hindered bases that are poor nucleophiles are called non-nucleophilic bases.

Some Common Nucleophiles

6 8 <u>7 - 8</u>	Negati	vely charged	nucleophiles	Neutral nu	ucleophiles
Oxygen	гон	⁻OR	CH₃COO⁻	H ₂ O	ROH
Nitrogen	N ₃ ⁻			NH ₃	RNH ₂
Carbon	[−] CN	$HC \equiv C^{-}$			
Halogen	Cl⁻	Br ⁻	Г		
Sulfur	HS⁻	RS⁻		H ₂ S	RSH

Mechanisms

Bond making and bond breaking occur at the same time. S_N^2

Bond breaking occurs before bond making. $S_N 1$

SN2 Mechanism: Kinetics

Bond making and bond breaking occur at the same time.

2nd order rate equation; depends on both the nucleophile and the substrate

S_N2 Mechanism: Stereochemistry

All S_N^2 reactions proceed with <u>backside attack</u> of the nucleophile, resulting in inversion of configuration at a stereogenic center.

:Nu- and Br- are 180° away from each other, on either side of a plane containing C, H, Me, Et

S_N2 Mechanism: Energy Profile \longrightarrow HO -- CH₃ + Br $OH^- + H_3C$ Energy profile for the reaction: Br H H δ⁻ Br δ⁻ HO----transition state Energy $\Delta G^{\#}$ CH₃Br + CH₃OH ΔG OH-+ Br⁻ reaction coordinate

 In the transition state, the C-Br bond is partially broken, the C-O bond is partially formed, and both the attacking nucleophile and the departing leaving group bear a partial negative charge.

S_N2 Mechanism: Stereochemistry

• The bond to the nucleophile in the product is always on the **opposite side** relative to the bond to the leaving group in the starting material.

$S_N 2$ Reaction: The Alkyl Substrate

- Increasing the number of R groups on the carbon with the leaving group makes the approach of the nucleophile more difficult and increases crowding in the transition state.
- The S_N^2 reaction is fastest with unhindered halides.

The Alkyl Substrate

• As the number of R groups on the carbon with the leaving group *increases*, the rate of an S_N2 reaction *decreases*.

CH ₃ -X	RCH ₂ -X	R ₂ CH-X	R_3C-X
methyl	1 °	2 °	3 °
	Increasing rate of	an S _N 2 reaction	

This order of reactivity can be explained by steric effects.

- Methyl and 1° alkyl halides undergo S_N^2 reactions with ease.
- 2° Alkyl halides react more slowly.
- 3° Alkyl halides do not undergo S_N^2 reactions.

Characteristic	Result
Kinetics	 Second-order kinetics; rate = k[RX][:Nu⁻]
Mechanism	One step
Stereochemistry	 Backside attack of the nucleophile Inversion of configuration at a stereogenic center
Identity of R	 Unhindered halides react fastest. Rate: CH₃X > RCH₂X > R₂CHX > R₃CX

$S_N 1$ Mechanism: Kinetics

Bond breaking occurs before bond making.

- \bullet In the $S_{\rm N}1$ mechanism carbocations are formed as reactive intermediates.
- The first step (bond breaking) is slow; the second step (bond making) is fast.

 $v = k[(CH_3)_3CBr]$

• 1st order rate equation; depends only on the substrate

$S_N 1$ Mechanism: Kinetics

1st order rate equation; depends only on the substrate

S_N1 Mechanism: Energetics

$S_N 1$ Mechanism. Stereochemistry

- Loss of the leaving group in Step [1] generates a planar carbocation that is achiral.
- In Step [2], attack of the nucleophile can occur on either side to afford two products which are a pair of enantiomers. Racemization has occurred.

S_N1 Mechanism: Stereochemistry

- Nucleophilic substitution of each starting material by an S_N1 mechanism forms a racemic mixture of two products.
- With H₂O, a neutral nucleophile, the initial product of nucleophilic substitution (ROH₂⁺) loses a proton to form the final neutral product, ROH (Section 7.6).

The Alkyl Substrate

• As the number of R groups on the carbon with the leaving group *increases*, the rate of an S_N1 reaction *increases*.

CH ₃ -X	RCH ₂ -X	R ₂ CH-X	R_3C-X	
methyl	1 °	2 °	3°	
Increasing rate of an S _N 1 reaction				

- 3° Alkyl halides undergo S_N1 reactions rapidly.
- 2° Alkyl halides react more slowly.
- Methyl and 1° alkyl halides do not undergo S_N1 reactions.

This trend is exactly opposite to that observed in S_N^2 reactions and reflects the stability of the carbocation.

Carbocation Stability

Alkyl groups are electron donating. Since an alkyl group has several σ bonds, each containing electron density, it is more polarizable than a hydrogen atom, and better able to donate electron density.

Characteristic	Result		
Kinetics	 First-order kinetics; rate = k[RX] 		
Mechanism	Two steps		
Stereochemistry	 Trigonal planar carbocation intermediate Racemization at a single stereogenic center 		
Identity of R	 More substituted halides react fastest. Rate: R₃CX > R₂CHX > RCH₂X > CH₃X 		

$S_N 1$ and $S_N 2$ Mechanisms

- Substrate: 1^{ry} S_N2; 2^{ry} S_N2 or S_N1; 3^{ry} S_N1
- Leaving group: the same reactivity order in $S_N 1$ and $S_N 2$ reactions.
- Nucleophile: has little effect in $S_N 1$ reactions because it reacts after the slow step (must be nonbasic to prevent elimination). Good nucleophiles favour $S_N 2$ reactions.
- Solvent: polar solvents favor the S_N1 reaction by stabilizing the intermediate carbocation (Hammond postulate).

$$\rightarrow$$
 CI + ROH \rightarrow \rightarrow OR + CI⁻

	ethanol	40% water/ 60% ethanol	80% water/20% ethanol	water
Relative reactivity	1	100	14000	100000

Predicting the Mechanism

Predicting the Mechanism

Alkyl Halides in Organic Synthesis

R-X + :Nu → R-Nu + X-

39

Vinyl Halides

 a. Vinyl halides and the S_N2 mechanism: Backside attack of the nucleophile is not possible.

Backside attack would force the nucleophile to approach in the plane of the double bond.

b. Vinyl halides and the S_N1 mechanism: Heterolysis of the C-X bond forms a very unstable carbocation, making the ratedetermining step very slow.

Aryl Halides

Backside attack is impossible

Very unstable sp² carbocation

Eliminations

Chapter 11 Organic Chemistry, 8th Edition John McMurry

General Features of Elimination

 Alkyl halides undergo elimination reactions with Brønsted–Lowry bases. The elements of HX are lost and an alkene is formed.

Elimination Mechanisms

Leaving Groups in Elimination Reactions

Elimination reactions are faster with good leaving groups:

The Zaitsev (Saytzeff) Rule

• The major product is the more stable product—the one with the more substituted double bond.

• A reaction is regioselective when it yields predominantly or exclusively one constitutional isomer when more than one is possible. Thus, elimination reactions are regioselective.

• The most common mechanism for dehydrohalogenation is the E2 mechanism.

- The base $\ensuremath{^{-}\text{OH}}$ removes a proton from the β carbon, forming H_2O (a by-product).
- The electron pair in the β C-H bond forms the new π bond.
- The leaving group Br⁻ comes off with the electron pair in the C-Br bond.
- The reaction is concerted—all bonds are broken and formed in a single step.
- It exhibits second-order kinetics, and both the alkyl halide and the base appear in the rate equation, i.e.,

$$v = k[(CH_3)_3CBr][^-OH]$$

transition state Energy E_{a} (CH₃)₃CBr + -OH $(CH_3)_2C = CH_2 + H_2O + Br^-$

Reaction coordinate

 $(CH_3)_3CBr + ^{-}OH \rightarrow$ $(CH_3)_2C = CH_2 + H_2O + Br^{-}$

• E2 reactions are favoured by strong negatively charged bases, such as HO and its alkyl derivatives, RO , called alkoxides.

Na ^{+ −} OH	sodium hydroxide
K+ −OH	potassium hydroxide
Na ⁺ [−] OCH ₃	sodium methoxide
Na ⁺ [−] OCH ₂ CH ₃	sodium ethoxide
K ⁺ ⁻ OC(CH ₃) ₃	potassium tert-butoxide

• Potassium t-butoxide is a strong, non-nucleophilic base.

Stereochemistry of the E2 Reaction

• For efficient overlap the C—H and C—X bonds must be coplanar.

Stereochemistry of the E2 Reaction

The E2 reaction is stereoselective because one stereoisomer is formed preferentially. 51

Stereochemistry of the E2 Reaction

E2 Reactions in Cyclohexanes

E2 Reactions in Cyclohexanes

Proiezioni di Newman lungo i legami indicati dalla freccia

E2 Reactions in Cyclohexanes

Step [1] The C-I bond is broken.

Step [2] A C-H bond is cleaved and the π bond is formed.

- Heterolysis of the C-I bond forms an intermediate carbocation. This is the same first step as the S_N1 mechanism. It is responsible for the first-order kinetics because it is rate-determining.
- A base (such as H₂O or I⁻) removes a proton from a carbon adjacent to the carbocation (a β carbon). The electron pair in the C−H bond is used to form the new π bond.
- E1 reactions exhibit first-order kinetics: $v = k[(CH_3)_3I]$
- E1 reactions frequently accompany SN1 reactions

 $(CH_3)_3CI + H_2O \rightarrow$ $(CH_3)_2C = CH_2 + H_3O^+ + I^-$

Reaction coordinate

The rate of an E1 reaction increases as the number of R groups on the carbon with the leaving group increases.

E1 reactions are regioselective, favoring formation of the more substituted, more stable alkene (Zaitsev's rule)

	E2	E1
Mechanism	One step	Two steps
Kinetics	Second order	First order
Substrate	1ry, 2ry and 3ry halides	3ry (and 2ry) halides
Leaving group	Favored by good leaving groups	Favored by good leaving groups
Base	Favored by strong bases	Favored by weak bases (H ₂ O, ROH)
Stereochemistry	Antiperiplanar- stereoselective	Not stereoselective
Solvent	Favored by non polar solvents	Favored by polar protic solvents.

When is the Mechanism E1 or E2?

E2 conditions: 1M NaOEt, EtOH, 100 °C

E1 conditions: 0.01M NaOEt, 80% EtOH, 160 °C

Substitution vs Elimination

• Good nucleophiles that are weak bases favor substitution over elimination. These include I⁻, Br⁻, HS⁻, CN, and CH₃COO⁻.

 Bulky nonnucleophilic bases (KOC(CH₃)₃) favor elimination over substitution.

Substitution and Elimination

Alkyl halide	SN2	SN1	E2	E1
methyl	yes			
primary	with good, weakly basic nucleophiles		with strong, non- nucleophilic bases	
secondary allylic benzylic	<i>with good nucleophiles in aprotic solvents</i>	<i>with weak nucleophiles in protic solvents</i>	with strong bases in aprotic solvents	with weak bases in protic solvents
tertiary		with non basic nucleophiles	with strong bases	with weak bases

Reverse of Polarity. Organometallic Compounds

65