
Modes
in strings, air columns & membranes

Corso di Laurea in Fisica - UNITS

ISTITUZIONI DI FISICA 
PER IL SISTEMA TERRA

FABIO ROMANELLI
Department of Mathematics & Geosciences 

University of Trieste

romanel@units.it
http://moodle2.units.it/course/view.php?id=887

mailto:romanel@dst.units.it
mailto:romanel@dst.units.it
http://moodle2.units.it/course/view.php?id=887
http://moodle2.units.it/course/view.php?id=887


Fabio Romanelli Modes

Separation of variables

A starting point to study differential equations is to guess 
solutions of a certain form (ansatz). Dealing with linear PDEs, 
the superposition principle principle guarantees that linear 
combinations of separated solutions will also satisfy both the 
equation and the homogeneous boundary conditions. 

Separation of variables: a PDE of n variables ⇒ n ODEs 

Solving the ODEs by BCs to get normal modes (solutions 
satisfying PDE and BCs). 

The proper choice of linear combination will allow for the 
initial conditions to be satisfied 

Determining exact solution (expansion coefficients of 
modes) by ICs 
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Separation of variables: string

∂2y(x, t)
∂x2

− 1
c2

∂2y(x, t)
∂t2

= 0

and if it has separable solutions: 

y(x, t) = X(x)T(t)

ω=ck

d2X(x)
dx2

+ k2X(x) = 0

X(x) = Acos(kx) +Bsin(kx)

  

� 

T"(t) + c2k2T(t) = 0

T(t) = Ccos(ωt) +Dsin(ωt)

To be determined by initial and boundary conditions
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Standing waves in a string fixed at both ends

Consider a string of length L and fixed at both ends

The string has a number of natural patterns of vibration called 
NORMAL MODES

Each normal mode has a characteristic frequency which we can 
easily calculate

When the string is displaced at its mid point the centre of the 
string becomes an antinode. 

Node Node

L



Fabio Romanelli Modes

Standing waves in a string fixed at both ends

String is fixed at both ends   ∴  y(x,t) = 0 at x = 0 and L

y(0,t)=0  when x = 0              as  sin(kx) = 0  at  x = 0 

y(L,t) = 0  when sin(kL) = 0       ie     kn L = n π       n=1,2,3…. 

but kn = 2π / λ       ∴ (2π / λn )L = n π       or        λn = 2L/n

Node Node

L
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Standing waves in a string fixed at both ends

The next normal mode occurs when the length of the string L = 
one wavelength, i.e.   L = λ2  

The third normal mode occurs when  L = 3λ3 /2  

Generally normal modes occur when   L = nλn /2 

For first normal mode   L = λ1 / 2

Node Node

L
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Standing waves in a string fixed at both ends

The natural frequencies associated with these modes can be 
derived from    f = v/λ

For a string of mass/unit length µ, under tension F we can 
replace v  by  (F/µ)½ 

The lowest frequency  (fundamental)  corresponds to n = 1
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Musical Interpretation

The frequencies of modes with n = 2, 3, … (harmonics) are 
integral multiples of the fundamental frequency, 2f1, 3f1…… 

These higher natural frequencies together with the fundamental 
form a harmonic series.

The fundamental f1 is the first harmonic,   f2 = 2f1 is the second 
harmonic,    fn = nf1 is the nth harmonic

In music the allowed frequencies are called overtones where the 
second harmonic is the first overtone, the third harmonic the 
second overtone etc.
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Tipler Fig 16-11
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Guitars and Quantum mechanics
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Musical Instruments

When a stretched string is distorted so that the initial shape 
corresponds to a harmonic it will vibrate at the frequency of 
that harmonic.

If the string is struck (piano) or bowed (violin) the resulting 
vibration will include many frequencies.  Waves of the “wrong” 
frequency will destroy themselves when travelling between the 
fixed ends of the string and the string effectively “selects” the 
normal mode frequencies.

The frequency and pitch of a stringed instrument can be 
changed either by varying the tension F or the length L (guitar, 
violin)
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Modal summation on a string
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Standing waves with string free at one end

Tipler fig 16-15

Tipler Fig 16-17

One end of string is node, the 
other an antinode.

For fundamental mode of vibration  
L = λ1/4

For next highest mode of vibration  
L = 3λ3/4

Generally     L = nλn/4      with n=1,3,5...
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Standing waves with string free at one end

     if L = nλn/4      then   λn = 4L/n 

Resonant frequencies are given by      fn = v/λn

where f1 is the fundamental frequency.
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Standing waves in air columns

Standing longitudinal waves can be set up in a tube of air (eg 
organ pipe).

Consider a pipe open at both ends:
L

1st harmonic

2nd harmonic

3rd harmonic

 

L = λ1/2      f1 = v/2L

  

L = λ2         f2 = 2v/2L

  

L = 3λ3/2    f3 = 3v/2L

 
A                   A
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Generally       

In a pipe open at both ends, the natural frequencies of 
vibration form a harmonic series, ie the overtones are 
integral multiples of the fundamental frequency.

 f1 = v/2L   f2 = 2v/2L = 2f1   f3 = 3v/2L = 3f1
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Consider a pipe open at one end and closed at the other

1st harmonic

2nd harmonic

3rd harmonic

 

L = λ1/4    f1 = v/4L

 

 L = 3λ2/4    f2 = 3v/4L

 L = 5λ3/4    f3 = 5v/4L

L

A                                  N
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Open-closed tube comparison

The boundary: 
A closed end allows large 
pressures but no motions.  
An open ends allows motions 
but no pressure changes.

At a closed boundary: 
the wave reflects if it has a high 
pressure at the wall; the air 
compresses at the wall and then 
bounces back.
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Wave equation & Laplacian

Laplacian in Cylindrical and Spherical systems

  

� 

Δf = ∂2f
∂ρ2

+ 1
ρ
∂f
∂ρ

+ 1
ρ2

∂2f
∂ϕ2

+ ∂2f
∂z2

  

� 

Δf = 1
r2

∂
∂r

r2 ∂f
∂r

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

1
r2 sinθ

∂
∂θ

sinθ ∂f
∂θ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

1
r2 sin2 θ

∂2f
∂ϕ2

    v
2∇2u = v2Δu = utt

 Wave equation
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Special Coordinate systems

In these cases, the variable separation approach also facilitates 
the solution. In the Euclidian case the eigenfunctions were 
Fourier series. Here, after the substitution:

The differential equations arise, which solutions are special 
functions like Legendre polinomials or Bessel functions.

  

� 

f = P(ρ) ⋅Φ(ϕ) ⋅Z(z)

  

� 

f = R(r) ⋅Φ(ϕ) ⋅Θ(θ)
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Circular Membrane Problem
A thin circular elastic membrane has a radius a:

a

and the wave equation, with a circular boundary condition, is:

  

� 

∂2u
∂r2

+ 1
r
∂u
∂r

+ 1
r2

∂2u
∂θ2

− 1
c2

∂2u
∂t2

= 0

and if it has separable solutions: 

  

� 

u(r,θ, t) = R(r)Θ(θ)T(t)
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Variable separation

m is a positive integer

  

� 

Θ"(θ) + m2Θ(θ) = 0
  Θ(θ) = Ccos(mθ) +Dsin(mθ)

  

� 

T"(t) + c2k2T(t) = 0
  T(t) = Acos(ωt) +B sin(ωt)

ω=ck

that is a Bessel equation of order m

  

� 

x2 ′ ′ y + x ′ y + x2 −m2( )y = 0

  

� 

1
R
∂2R
∂r2

+ 1
rR

∂R
∂r

− m2

r2
= 1

c2T
∂2T
∂t2

= −k2

  

� 

s2 d2R
ds2

+ s dR
ds

+ s2 −m2( )R = 0;   s = kr
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and the general solution is:

The BC at the (regular singular) origin point is: R(0) is finite 

The radial factor of the solution is a Bessel function of the first kind: NOT 
periodic and the distance between zeros is NOT constant.

that are to cylindrical waves what cosines/sines are to waves on a straight line.

  

� 

y = A1mJm x( ) + A2mYm x( )
m
∑

  
R(s) = R(kr) = AmJm(kr)

m
∑
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The other BOUNDARY CONDITION of the circular membrane problem is:

u=0 at r=a

this implies that       Jm(ka)=0 

Therefore nth positive zero of Jm
  

� 

ωa
c

= γmn

  
ωmn =

c
a
γmn

  
R(kr)∝ Jm

γmn

a
r

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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and the general solution is:

General solution

but if we assume that the initial conditions are rotationally symmetric, i.e. 
goes like f(r), we have that we need only m=0

  

� 

kn = γn

a
= γ0n

a
= ω0n

c

with

to be determined with the proper initial conditions!

  

� 

u = R(r)Θ(θ)T(t) = Cmn cos mθ( ) + Dmn sin mθ( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ Amn cos ckmnt( ) + Bmn sin ckmnt( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ Jm(kmnr)

n=1

∞

∑
m=0

∞

∑

  

� 

u = R(r)Θ(θ)T(t) = An cos cknt( ) + Bn sin cknt( )[ ]J0(knr)
n=1

∞

∑
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Oscillations of a Clamped Membrane

Mode: (0,1)

f0 1 = v/λ;  v = √(S/ σ)

f0 1 = x0 1 /(π d) ‧ √(S/ σ)

x0 1 = 2.405

Surface density σ

Surface Tension S

Surface density  σ= mass/area  σ= density ‧ thickness

Surface  Tension  S= force/length

d 
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Membrane vs string

ffnmnm  = = xxnmnm//((ππ d) d)(S/(S/σσ))1/21/2

xx0 1 0 1 = 2.405= 2.405

Tension Tension on on surface surface SS

TensionTension T T

Linear Linear density density µµ

ffn n   = n /(= n /(2 L) 2 L) (T/(T/µµ))1/21/2

nn  = 1, 2, 3, 4, 5, 6,= 1, 2, 3, 4, 5, 6,……..

dd

Areal Areal density density σσ

LL

ffnmnm  = = xxnmnm//((ππ d) d)(S/(S/σσ))1/21/2

xx0 1 0 1 = 2.405= 2.405

Tension Tension on on surface surface SS

TensionTension T T

Linear Linear density density µµ

ffn n   = n /(= n /(2 L) 2 L) (T/(T/µµ))1/21/2

nn  = 1, 2, 3, 4, 5, 6,= 1, 2, 3, 4, 5, 6,……..

dd

Areal Areal density density σσ

LL

Mode: (1,1)

f1 1 = (x1 1 / x0 1) f0 1 

x1 1 / x0 1 = 1.594

Mode: (2,1)

f2 1 = (x2 1 / x0 1) f0 1 

x2 1 / x0 1 = 2.136

http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html

http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html
http://www.kettering.edu/~drussell/Demos/MembraneCircle/Circle.html
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Mode: (0,1)  

xn m / x0 1 : 1
(1,1)     

1.594
(2,1)    

2.136
(0,2) 

2.296
(3,1) 

2.653

(1,2) 

2.918
(4,1) 

3.156
(2,2) 

3.501
(0,3) 

3.600
(5,1) 

3.652

Membrane modes
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Sturm-Liouville Problem
The special functions, which arise in these homogeneous Boundary Value Problems (BVPs) with 
homogeneous boundary conditions (BCs) are mostly special cases of Sturm-Liouville Problem, 
given by: 

On the interval a≤x≤b, with the homogeneous boundary conditions

The values λn, that yield the nontrivial solutions are called eigenvalues, and the corresponding 
solutions yn(x) are eigenfunctions.

The set of eigenfunctions, {yn(x)}, form an orthogonal system with respect to the weight 
function, r(x), over the interval.

 If p(x), q(x), and r(x) are real, the eigenvalues are also real 

  

� 

c1y(a) + c2 ′ y (a) = 0
k1y(b) + k2 ′ y (b) = 0

  

d
dx

p(x) d
dx

y(x)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

+ q(x) + λr(x)[ ]y(x) = 0


