Bayesian Reasoning and Machine Learning

David Barber (©2007,2008,2009,2010,2011,2012,2013

Notation List

a calligraphic symbol typically denotes a set of random variables 7
Domain of a variable i 7
The variable z is in the state x i i 7
probability of event/variable x being in the state true 7
probability of event/variable x being in the state false 7
probability of @ and 4 ... 8
probability of x and 4 8
probability of z or y ... 8
The probability of x conditioned on gy 8

Variables X are independent of variables) conditioned on variables Z .11

Variables X are dependent on variables) conditioned on variables Z .. 11

For continuous variables this is shorthand for [f(z)dz and for discrete vari-

ables means summation over the states of x, >~ f(z) 17
Indicator : has value 1 if the statement S is true, 0 otherwise 19
The parents of node &o 26
The children of node @& ... i 26
Neighbours of node T 26

For a discrete variable x, this denotes the number of states = can take ..34

The average of the function f(x) with respect to the distribution p(z) .158

Delta function. For discrete a, b, this is the Kronecker delta, d,; and for

continuous a, b the Dirac delta function d(a —b) 160
The dimension of the vector/matrix xooi... 171
The number of times x is in state s and y in state ¢ simultaneously ... 197
The number of times variable x isinstate y 278
Dataset 291
Data indexoooiii 291
Number of dataset training pointso i, 291
Sample Covariance matrixo, 315
The logistic sigmoid 1/(1 4+ exp(—x)) ...ovviriiiiiiiiiiii ., 353
The (Gaussian) error functioncooiiiiiiiiiiiiiain.. 353
O L 7 PP 455
The set of unique neighbouring edges on a graph 585
The m x m identity matrix i 605

DRAFT June 18, 2013

Preface

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different
sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce (customer
databases, financial transactions, engine monitoring, speech recognition, surveillance, search). Possessing
the knowledge as to how to process and extract value from such data is therefore a key and increasingly
important skill. Our society also expects ultimately to be able to engage with computers in a natural manner
so that computers can ‘talk’ to humans, ‘understand’ what they say and ‘comprehend’ the visual world
around them. These are difficult large-scale information processing tasks and represent grand challenges
for computer science and related fields. Similarly, there is a desire to control increasingly complex systems,
possibly containing many interacting parts, such as in robotics and autonomous navigation. Successfully
mastering such systems requires an understanding of the processes underlying their behaviour. Processing
and making sense of such large amounts of data from complex systems is therefore a pressing modern day
concern and will likely remain so for the foreseeable future.

Machine Learning

Machine Learning is the study of data-driven methods capable of mimicking, understanding and aiding
human and biological information processing tasks. In this pursuit, many related issues arise such as how
to compress data, interpret and process it. Often these methods are not necessarily directed to mimicking
directly human processing but rather to enhance it, such as in predicting the stock market or retrieving
information rapidly. In this probability theory is key since inevitably our limited data and understanding
of the problem forces us to address uncertainty. In the broadest sense, Machine Learning and related fields
aim to ‘learn something useful’ about the environment within which the agent operates. Machine Learning
is also closely allied with Artificial Intelligence, with Machine Learning placing more emphasis on using data
to drive and adapt the model.

In the early stages of Machine Learning and related areas, similar techniques were discovered in relatively
isolated research communities. This book presents a unified treatment via graphical models, a marriage
between graph and probability theory, facilitating the transference of Machine Learning concepts between
different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in undergraduate
calculus and linear algebra. No formal computer science or statistical background is required to follow the
book, although a basic familiarity with probability, calculus and linear algebra would be useful. The book
should appeal to students from a variety of backgrounds, including Computer Science, Engineering, applied
Statistics, Physics, and Bioinformatics that wish to gain an entry to probabilistic approaches in Machine
Learning. In order to engage with students, the book introduces fundamental concepts in inference using

11

only minimal reference to algebra and calculus. More mathematical techniques are postponed until as and
when required, always with the concept as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises and
demonstrations, together with an accompanying MATLAB toolbox, enable the reader to experiment and
more deeply understand the material. The ultimate aim of the book is to enable the reader to construct
novel algorithms. The book therefore places an emphasis on skill learning, rather than being a collection of
recipes. This is a key aspect since modern applications are often so specialised as to require novel methods.
The approach taken throughout is to describe the problem as a graphical model, which is then translated
into a mathematical framework, ultimately leading to an algorithmic implementation in the BRMLTOOLBOX.

The book is primarily aimed at final year undergraduates and graduates without significant experience in
mathematics. On completion, the reader should have a good understanding of the techniques, practicalities
and philosophies of probabilistic aspects of Machine Learning and be well equipped to understand more
advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent reader
chapters 1,2,3,4,5,9,10,13,14,15,16,17,21 and 23 would form a good introduction to probabilistic reasoning,
modelling and Machine Learning. The material in chapters 19, 24, 25 and 28 is more advanced, with the
remaining material being of more specialised interest. Note that in each chapter the level of material is of
varying difficulty, typically with the more challenging material placed towards the end of each chapter. As
an introduction to the area of probabilistic modelling, a course can be constructed from the material as
indicated in the chart.

The material from parts I and II has been successfully used for courses on Graphical Models. I have also
taught an introduction to Probabilistic Machine Learning using material largely from part III, as indicated.
These two courses can be taught separately and a useful approach would be to teach first the Graphical
Models course, followed by a separate Probabilistic Machine Learning course.

A short course on approximate inference can be constructed from introductory material in part I and the
more advanced material in part V, as indicated. The exact inference methods in part I can be covered
relatively quickly with the material in part V considered in more in depth.

A timeseries course can be made by using primarily the material in part IV, possibly combined with material
from part I for students that are unfamiliar with probabilistic modelling approaches. Some of this material,
particularly in chapter 25 is more advanced and can be deferred until the end of the course, or considered
for a more advanced course.

The references are generally to works at a level consistent with the book material and which are in the most
part readily available.

Accompanying code

The BRMLT0oOLBOX is provided to help readers see how mathematical models translate into actual MAT-
LAB code. There are a large number of demos that a lecturer may wish to use or adapt to help illustrate
the material. In addition many of the exercises make use of the code, helping the reader gain confidence
in the concepts and their application. Along with complete routines for many Machine Learning methods,
the philosophy is to provide low level routines whose composition intuitively follows the mathematical de-
scription of the algorithm. In this way students may easily match the mathematics with the corresponding
algorithmic implementation.

v DRAFT June 18, 2013

Part I:
Inference in Probabilistic Models

Part II:
Learning in Probabilistic Models

Part II1I:
Machine Learning

Part IV:
Dynamical Models

Part V:
Approximate Inference

Website

®

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

27:
28:

Probabilistic Reasoning
Basic Graph Concepts

Belief Networks

Graphical Models

Efficient Inference in Trees
The Junction Tree Algorithm
Making Decisions

Statistics for Machine Learning
Learning as Inference
Naive Bayes
Learning with Hidden Variables
Bayesian Model Selection

Machine Learning Concepts

Nearest Neighbour Classification
Unsupervised Linear Dimension Reduction
Supervised Linear Dimension Reduction
Linear Models

Bayesian Linear Models

Gaussian Processes

Mixture Models

Latent Linear Models

Latent Ability Models

Discrete-State Markov Models
Continuous-State Markov Models
Switching Linear Dynamical Systems
Distributed Computation

Sampling
Deterministic Approximate Inference

Graphical Models Course

OO |O0O00 OOOOOOOOOO, 00000 OCOO00000
OO |0000 OOO0OOO0OO0O OOOOO| OOOOLOOO
Q0 OO0O0 OOOOOOOOOO OOOOO| OO0
OO0 0000 OOOOOOOOOO OOOOO| GOOOOOO
OO0 |[OO000O ©OO0OOOOOOO) ©OOV00 OCOOOO0O

The BRMLT0oOLBOX along with an electronic version of the book is available from

www.cs.ucl.ac.uk/staff/D.Barber/brml

Probabilistic Machine Learning Course

Approximate Inference Short Course

Time-series Short Course

Probabilistic Modelling Course

Instructors seeking solutions to the exercises can find information at the website, along with additional

teaching materials.

DRAFT June 18, 2013

http://www.cs.ucl.ac.uk/staff/D.Barber/brml

Other books in this area

The literature on Machine Learning is vast with much relevant literature also contained in statistics, en-
gineering and other physical sciences. A small list of more specialised books that may be referred to for
deeper treatments of specific topics is:

e Graphical models
— Graphical models by S. Lauritzen, Oxford University Press, 1996.
— Bayesian Networks and Decision Graphs by F. Jensen and T. D. Nielsen, Springer Verlag, 2007.

— Probabilistic Networks and Ezxpert Systems by R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D.
J. Spiegelhalter, Springer Verlag, 1999.

Probabilistic Reasoning in Intelligent Systems by J. Pearl, Morgan Kaufmann, 1988.

— Graphical Models in Applied Multivariate Statistics by J. Whittaker, Wiley, 1990.

— Probabilistic Graphical Models: Principles and Techniques by D. Koller and N. Friedman, MIT
Press, 2009.

e Machine Learning and Information Processing

— Information Theory, Inference and Learning Algorithms by D. J. C. MacKay, Cambridge Uni-

versity Press, 2003.

Pattern Recognition and Machine Learning by C. M. Bishop, Springer Verlag, 2006.

— An Introduction To Support Vector Machines, N. Cristianini and J. Shawe-Taylor, Cambridge
University Press, 2000.

— Gaussian Processes for Machine Learning by C. E. Rasmussen and C. K. I. Williams, MIT press,
2006.

Acknowledgements

Many people have helped this book along the way either in terms of reading, feedback, general insights,
allowing me to present their work, or just plain motivation. Amongst these I would like to thank Dan
Cornford, Massimiliano Pontil, Mark Herbster, John Shawe-Taylor, Vladimir Kolmogorov, Yuri Boykov,
Tom Minka, Simon Prince, Silvia Chiappa, Bertrand Mesot, Robert Cowell, Ali Taylan Cemgil, David Blei,
Jeff Bilmes, David Cohn, David Page, Peter Sollich, Chris Williams, Marc Toussaint, Amos Storkey, Zakria
Hussain, Le Chen, Serafin Moral, Milan Studeny, Luc De Raedt, Tristan Fletcher, Chris Vryonides, Tom
Furmston, Ed Challis and Chris Bracegirdle. I would also like to thank the many students that have helped
improve the material during lectures over the years. I'm particularly grateful to Taylan Cemgil for allowing
his GraphLayout package to be bundled with the BRMLTOOLBOX.

The staff at Cambridge University Press have been a delight to work with and I would especially like to
thank Heather Bergman for her initial endeavors and the wonderful Diana Gillooly for her continued enthu-
siasm.

A heartfelt thankyou to my parents and sister — I hope this small token will make them proud. I'm also

fortunate to be able to acknowledge the support and generosity of friends throughout. Finally, I’d like to
thank Silvia who made it all worthwhile.

VI DRAFT June 18, 2013

BRMLTOOLBOX

The BRMLTOOLBOX is a lightweight set of routines that enables the reader to experiment with concepts in
graph theory, probability theory and Machine Learning. The code contains basic routines for manipulating
discrete variable distributions, along with more limited support for continuous variables. In addition there
are many hard-coded standard Machine Learning algorithms. The website contains also a complete list of
all the teaching demos and related exercise material.

BRMLTOOLKIT
Graph Theory

ancestors - Return the ancestors of nodes x in DAG A

ancestralorder - Return the ancestral order or the DAG A (oldest first)
descendents - Return the descendents of nodes x in DAG A

children - return the children of variable x given adjacency matrix A
edges - Return edge list from adjacency matrix A

elimtri - Return a variable elimination sequence for a triangulated graph
connectedComponents - Find the connected components of an adjacency matrix

istree - Check if graph is singly-connected

neigh - Find the neighbours of vertex v on a graph with adjacency matrix G
noselfpath - return a path excluding self transitions

parents - return the parents of variable x given adjacency matrix A
spantree - Find a spanning tree from an edge list

triangulate - Triangulate adjacency matrix A

triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable

changevar - Change variable names in a potential

dag - Return the adjacency matrix (zeros on diagonal) for a Belief Network
deltapot - A delta function potential

disptable - Print the table of a potential

divpots - Divide potential pota by potb

drawFG - Draw the Factor Graph A

drawID - plot an Influence Diagram

drawJTree - plot a Junction Tree

drawNet - plot network

evalpot - Evaluate the table of a potential when variables are set
exppot - exponential of a potential

eyepot - Return a unit potential

grouppot - Form a potential based on grouping variables together
groupstate - Find the state of the group variables corresponding to a given ungrouped state
logpot - logarithm of the potential

markov - Return a symmetric adjacency matrix of Markov Network in pot
maxpot - Maximise a potential over variables

maxsumpot - Maximise or Sum a potential over variables

multpots - Multiply potentials into a single potential

numstates - Number of states of the variables in a potential

VII

orderpot Return potential with variables reordered according to order
orderpotfields Order the fields of the potential, creating blank entries where necessary
potsample Draw sample from a single potential

potscontainingonly Returns those potential numbers that contain only the required variables
potvariables Returns information about all variables in a set of potentials

setevpot Sets variables in a potential into evidential states

setpot sets potential variables to specified states

setstate set a potential’s specified joint state to a specified value

squeezepots Eliminate redundant potentials (those contained wholly within another)
sumpot Sum potential pot over variables

sumpotID Return the summed probability and utility tables from an ID

sumpots Sum a set of potentials

table Return the potential table

ungrouppot Form a potential based on ungrouping variables

uniquepots Eliminate redundant potentials (those contained wholly within another)
whichpot Returns potentials that contain a set of variables

Routines also extend the toolbox to deal with Gaussian potentials:
multpotsGaussianMoment.m, sumpotGaussianCanonical.m, sumpotGaussianMoment.m, multpotsGaussianCanonical.m

See demoSumprodGaussCanon.m, demoSumprodGaussCanonLDS.m, demoSumprodGaussMoment.m

Inference

absorb Update potentials in absorption message passing on a Junction Tree
absorption Perform full round of absorption on a Junction Tree

absorptionID Perform full round of absorption on an Influence Diagram
ancestralsample Ancestral sampling from a Belief Network

binaryMRFmap get the MAP assignment for a binary MRF with positive W

bucketelim Bucket Elimination on a set of potentials

condindep Conditional Independence check using graph of variable interactions
condindepEmp Compute the empirical log Bayes Factor and MI for independence/dependence
condindepPot Numerical conditional independence measure

condMI conditional mutual information I(x,ylz) of a potential.

FactorConnectingVariable

Factor nodes connecting to a set of variables

FactorGraph Returns a Factor Graph adjacency matrix based on potentials

IDvars probability and decision variables from a partial order

jtassignpot Assign potentials to cliques in a Junction Tree

jtree Setup a Junction Tree based on a set of potentials

jtreelD Setup a Junction Tree based on an Influence Diagram

LoopyBP loopy Belief Propagation using sum-product algorithm

MaxFlow Ford Fulkerson max flow - min cut algorithm (breadth first search)

maxNpot Find the N most probable values and states in a potential

maxNprodFG N-Max-Product algorithm on a Factor Graph (Returns the Nmax most probable States)
maxprodFG Max-Product algorithm on a Factor Graph

MDPemDeterministicPolicy

Solve MDP using EM with deterministic policy

MDPsolve Solve a Markov Decision Process

MesstoFact Returns the message numbers that connect into factor potential
metropolis Metropolis sample

mostprobablepath Find the most probable path in a Markov Chain

mostprobablepathmult Find the all source all sink most probable paths in a Markov Chain
sumprodFG Sum-Product algorithm on a Factor Graph represented by A

Specific Models

ARlds Learn AR coefficients using a Linear Dynamical System
ARtrain Fit autoregressive (AR) coefficients of order L to v.
BayesLinReg Bayesian Linear Regression training using basis functions phi(x)

BayesLogRegressionRVM

Bayesian Logistic Regression with the Relevance Vector Machine

CanonVar Canonical Variates (no post rotation of variates)

cca canonical correlation analysis

covinGE Gamma Exponential Covariance Function

EMbeliefnet train a Belief Network using Expectation Maximisation

EMminimizeKL MDP deterministic policy solver. Finds optimal actions

EMgTranMarginal EM marginal transition in MDP

EMqUtilMarginal Returns term proportional to the q marginal for the utility term
EMTotalBetaMessage backward information needed to solve the MDP process using message passing
EMvalueTable MDP solver calculates the value function of the MDP with the current policy
FA Factor Analysis

VIII

DRAFT June 18, 2013

GMMem

GPclass

GPreg

HebbML
HMMbackward
HMMbackwardSAR
HMMem
HMMforward
HMMforwardSAR
HMMgamma
HMMsmooth
HMMsmoothSAR
HMMviterbi
kernel

Kmeans
LDSbackward
LDSbackwardUpdate
LDSforward
LDSforwardUpdate
LDSsmooth
LDSsubspace
LogReg
MIXprodBern
mixMarkov
NaiveBayesDirichletTest

NaiveBayesDirichletTrain

NaiveBayesTest
NaiveBayesTrain
nearNeigh

pca

plsa

plsaCond

rbf

SARlearn
SLDSbackward
SLDSforward
SLDSmargGauss
softloss

svdm

SVMtrain

General

argmax
assign
betaXbiggerY
bar3zcolor
avsigmaGauss
cap

chi2test
count

condexp

condp

dirrnd
field2cell
GaussCond
hinton
ind2subv
ismember_sorted
lengthcell
logdet

logeps
logGaussGamma
logsumexp
logZdirichlet
majority
maxarray
maxNarray

DRAFT June 18, 2013

Fit a mixture of Gaussian to the data X using EM

Gaussian Process Binary Classification

Gaussian Process Regression

Learn a sequence for a Hopfield Network

HMM Backward Pass

Backward Pass (beta method) for the Switching Autoregressive HMM

EM algorithm for HMM

HMM Forward Pass

Switching Autoregressive HMM with switches updated only every Tskip timesteps
HMM Posterior smoothing using the Rauch-Tung-Striebel correction method
Smoothing for a Hidden Markov Model (HMM)

Switching Autoregressive HMM smoothing

Viterbi most likely joint hidden state of a HMM

A kernel evaluated at two points

K-means clustering algorithm

Full Backward Pass for a Latent Linear Dynamical System (RTS correction method)
Single Backward update for a Latent Linear Dynamical System (RTS smoothing update)
Full Forward Pass for a Latent Linear Dynamical System (Kalman Filter)
Single Forward update for a Latent Linear Dynamical System (Kalman Filter)
Linear Dynamical System : Filtering and Smoothing

Subspace Method for identifying Linear Dynamical System

Learning Logistic Linear Regression Using Gradient Ascent (BATCH VERSION)
EM training of a Mixture of a product of Bernoulli distributions

EM training for a mixture of Markov Models

Naive Bayes prediction having used a Dirichlet prior for training

Naive Bayes training using a Dirichlet prior

Test Naive Bayes Bernoulli Distribution after Max Likelihood training
Train Naive Bayes Bernoulli Distribution using Max Likelihood

Nearest Neighbour classification

Principal Components Analysis

Probabilistic Latent Semantic Analysis

Conditional PLSA (Probabilistic Latent Semantic Analysis)

Radial Basis function output

EM training of a Switching AR model

Backward pass using a Mixture of Gaussians

Switching Latent Linear Dynamical System Gaussian Sum forward pass

compute the single Gaussian from a weighted SLDS mixture

Soft loss function

Singular Value Decomposition with missing values

train a Support vector Machine

performs argmax returning the index and value

Assigns values to variables

p(x>y) for x"Beta(a,b), y Beta(c,d)

Plot a 3D bar plot of the matrix Z

Average of a logistic sigmoid under a Gaussian

Cap x at absolute value c

inverse of the chi square cumulative density

for a data matrix (each column is a datapoint), return the state counts
Compute normalised p proportional to exp(logp);

Make a conditional distribution from the matrix

Samples from a Dirichlet distribution

Place the field of a structure in a cell

Return the mean and covariance of a conditioned Gaussian
Plot a Hinton diagram

Subscript vector from linear index

True for member of sorted set

Length of each cell entry

Log determinant of a positive definite matrix computed in a numerically stable manner

log(x+eps)

unnormalised log of the Gauss-Gamma distribution

Compute log(sum(exp(a).*b)) valid for large a

Log Normalisation constant of a Dirichlet distribution with parameter u
Return majority values in each column on a matrix

Maximise a multi-dimensional array over a set of dimensions

Find the highest values and states of an array over a set of dimensions

X

mix2mix
mvrandn
mygamrnd
mynanmean
mynansum
mynchoosek
myones
myrand
myzeros
normp
randgen
replace
sigma
sigmoid
sqdist
subv2ind
sumlog

Miscellaneous

compat

logp

placeobject
plotCov

pointsCov

setup
validgridposition

Fit a mixture of Gaussians with another mixture of Gaussians
Samples from a multi-variate Normal(Gaussian) distribution
Gamma random variate generator

mean of values that are not nan

sum of values that are not nan

binomial coefficient v choose k

same as ones(x), but if x is a scalar, interprets as ones([x 1])
same as rand(x) but if x is a scalar interprets as rand([x 1])
same as zeros(x) but if x is a scalar interprets as zeros([x 1])
Make a normalised distribution from an array

Generates discrete random variables given the pdf

Replace instances of a value with another value

1./(1+exp(-x))

1./(1+exp(-beta*x))

Square distance between vectors in x and y

Linear index from subscript vector.

sum(log(x)) with a cutoff at 10e-200

Compatibility of object F being in position h for image v on grid Gx,Gy

The logarithm of a specific non-Gaussian distribution
Place the object F at position h in grid Gx,Gy
return points for plotting an ellipse of a covariance

unit variance contours of a 2D Gaussian with mean m and covariance S
run me at initialisation -- checks for bugs in matlab and initialises path

Returns 1 if point is on a defined grid

DRAFT June 18, 2013

Contents

Front Matter 1
Notation List o o e e II
Preface e 11
BRML toolbox e VII
Contents e XI

I Inference in Probabilistic Models 1

1 Probabilistic Reasoning 7
1.1 Probability Refresher L 7

1.1.1 Imterpreting Conditional Probability 9
1.1.2 Probability Tables 12
1.2 Probabilistic Reasoning L 12
1.3 Prior, Likelihood and Posterior 17
1.3.1 Two dice : what were the individual scores? 19
1.4 Summaryo e e e e 19
1.5 Code . . . o o e 20
1.5.1 Basic Probability code 20
1.5.2 General utilities 21
1.5.3 Anexample 21
1.6 EXercises e e 21

2 Basic Graph Concepts 25
2.1 Graphs. e 25
2.2 Numerically Encoding Graphs e 27

221 Edgelist 27
2.2.2 Adjacency matrix e 28
223 Clique matrix oo e 28
2.3 SUMMATY ottt s e e 29
24 Code o 29
2.4.1 Utility routineso 29
2.0 EXercises 30

3 Belief Networks 31

3.1 The Benefits of Structure 31
3.1.1 Modelling independencies 32
3.1.2 Reducing the burden of specification 34

3.2 Uncertain and Unreliable Evidence o 35
3.2.1 Uncertain evidence e e e e 35

CO

XII

NTENTS CONTENTS
3.2.2 Unreliable evidence e
3.3 Belief Networks e
3.3.1 Conditional independence L
3.3.2 The impact of collisions
3.3.3 Graphical path manipulations for independence
3.3.4 d-Separation e
3.3.5 Graphical and distributional in/dependence L.
3.3.6 Markov equivalence in belief networks Lo
3.3.7 Belief networks have limited expressibility oL
3.4 Causality e
3.4.1 Simpson’s paradox Lo
3.4.2 Thedo-calculus e e e
3.4.3 Influence diagrams and the do-calculus
3.5 SUMMATY . . . o v et e e e e e e
3.6 Code L
3.6.1 Naive inference demo L
3.6.2 Conditional independence demo L L L
3.6.3 Utility routines L
3.7 EXErcises e e e e

Graphical Models

4.1 Graphical Models
4.2 Markov Networks L oL
4.2.1 Markov properties L
4.2.2 Markov random fields
4.2.3 Hammersley-Clifford Theorem
4.2.4 Conditional independence using Markov networks
4.2.5 Lattice Models
4.3 Chain Graphical Models e
4.4 Factor Graphs. L
4.4.1 Conditional independence in factor graphs
4.5 Expressiveness of Graphical Models oo o
4.6 SUMMATY . . .« o ot e e e e e e
4.7 Code o e
4.8 EXercises e

Efficient Inference in Trees

5.1 Marginal Inference Lo
5.1.1 Variable elimination in a Markov chain and message passing
5.1.2 The sum-product algorithm on factor graphs
5.1.3 Dealing with Evidence L
5.1.4 Computing the marginal likelihood oo
5.1.5 The problem with loops L

5.2 Other Forms of Inference
5.2.1 Max-Product
5.2.2 Finding the N most probable states
5.2.3 Most probable path and shortest path
5.2.4 Mixed inference

5.3 Inference in Multiply Connected Graphs
5.3.1 Bucket elimination
5.3.2 Loop-cut conditioningo

5.4 Message Passing for Continuous Distributions

5.5 Summary ... L L

5.6 Code o
5.6.1 Factor graph exampleso
5.6.2 Most probable and shortest path L o oo

DRAFT June 18, 2013

CONTENTS CONTENTS

5.6.3 Bucket eliminationo 94
5.6.4 Message passing on Gaussianso e e e e e e e 94

9.7 EXErcises e e 94
6 The Junction Tree Algorithm 97
6.1 Clustering Variables 97
6.1.1 Reparameterisation Lo 97

6.2 Clique Graphs e 98
6.2.1 Absorption e 99
6.2.2 Absorption schedule on clique trees L Lo 100

6.3 Junction Trees L e 101
6.3.1 The running intersection property oL 102

6.4 Constructing a Junction Tree for Singly-Connected Distributions 104
6.4.1 Moralisation L 104
6.4.2 Forming the clique graph L 104
6.4.3 Forming a junction tree from a clique graph L. 104
6.4.4 Assigning potentials to cliques 105

6.5 Junction Trees for Multiply-Connected Distributions 105
6.5.1 Triangulation algorithms. 107

6.6 The Junction Tree Algorithmo 108
6.6.1 Remarksonthe JTA 109
6.6.2 Computing the normalisation constant of a distribution 110
6.6.3 The marginal likelihood 111
6.6.4 Some small JTA examples e 111
6.6.5 Shafer-Shenoy propagation 113

6.7 Finding the Most Likely State 113
6.8 Reabsorption : Converting a Junction Tree to a Directed Network 114
6.9 The Need For Approximations 115
6.9.1 Bounded width junction trees 115

6.10 Summary e e 116
6.11 Code 116
6.11.1 Utility routines e e 116

6.12 EXercises s 117
7 Making Decisions 121
7.1 Expected Utility o L o e 121
7.1.1 Utility of money o 121

7.2 Decision Trees. 122
7.3 Extending Bayesian Networks for Decisions 125
7.3.1 Syntax of influence diagrams L L L L L L 125

7.4 Solving Influence Diagrams L L 129
74.1 Messagesonan IDo Lo 129
7.4.2 Using a junction tree L. L 130

7.5 Markov Decision Processes e 133
7.5.1 Maximising expected utility by message passing oL 134
7.5.2 Bellman’s equation e 135

7.6 Temporally Unbounded MDPs 135
7.6.1 Value iteration 136
7.6.2 Policy iterationo 136
7.6.3 A curse of dimensionality 137

7.7 Variational Inference and Planning o o0 137
7.8 Financial Matters 139
7.8.1 Options pricing and expected utility oL 139
7.8.2 Binomial options pricing modelo L L 141
7.8.3 Optimal investment L L 142

7.9 Further Topics e 144

DRAFT June 18, 2013 XIII

CONTENTS CONTENTS

7.9.1 Partially observable MDPs L 144
7.9.2 Reinforcement learning oL oL 144

710 SUMMATY . . . o o o o ot e e e e 146
711 Code . . . o o o 146
7.11.1 Sum/Max under a partial order Lo 146
7.11.2 Junction trees for influence diagrams 146
7.11.3 Party-Friend example 147
7.11.4 Chest Clinic with Decisions 147
7.11.5 Markov deciSion processes e e e e e e e 148

T7.12 EXErcises o e e 148
II Learning in Probabilistic Models 153
8 Statistics for Machine Learning 157
8.1 Representing Data e 157
8.1.1 Categorical L 157
8.1.2 Ordinal e 157
8.1.3 Numerical e 157

8.2 Distributions L 158
8.2.1 The Kullback-Leibler Divergence KL(g|p) 161
8.2.2 Entropy and information L L 162

8.3 Classical Distributions L 163
8.4 Multivariate Gaussian Lo 168
8.4.1 Completing the square L 169
8.4.2 Conditioning as system reversal L L L 170
8.4.3 Whitening and centering 171

8.5 Exponential Familyo 171
8.5.1 Conjugate priors 172

8.6 Learning distributions 172
8.7 Properties of Maximum Likelihood 174
8.7.1 Training assuming the correct model class 175
8.7.2 Training when the assumed model is incorrect 175
8.7.3 Maximum likelihood and the empirical distribution 176

8.8 Learning a Gaussian Lo o e 176
8.8.1 Maximum likelihood training Lo oL 176
8.8.2 Bayesian inference of the mean and variance, 177
8.8.3 Gauss-Gamma distributiono 0oL Lo 179

8.9 Summary L 179
8.10 Code e 180
8.11 EXErciSes o o o e 180
9 Learning as Inference 191
9.1 Learning as Inference 191
9.1.1 Learning the biasofacoin o 191
9.1.2 Making decisions L L L 192
9.1.3 A continuum of parameters L. 193
9.1.4 Decisions based on continuous intervals oL 194

9.2 Bayesian methods and ML-IT 195
9.3 Maximum Likelihood Training of Belief Networks, 196
9.4 Bayesian Belief Network Training 199
9.4.1 Global and local parameter independence 199
9.4.2 Learning binary variable tables using a Beta prior 200
9.4.3 Learning multivariate discrete tables using a Dirichlet prior 202

9.5 Structure learning L L 205
9.5.1 PCalgorithm e 206

X1V DRAFT June 18, 2013

CONTENTS

CONTENTS

9.5.2 Empirical independence

9.5.3 Network scoring

9.5.4 Chow-LiuTrees
9.6 Maximum Likelihood for Undirected models

9.6.1 The likelihood gradient

9.6.2 General tabular clique potentials

9.6.3 Decomposable Markov networks

9.6.4 Exponential form potentials

9.6.5 Conditional random fields

9.6.6 Pseudo likelihood

9.6.7 Learning the structure
0.7 Summary
9.8 Code

9.8.1

PC algorithm using an oracle
9.8.2 Demo of empirical conditional independence
9.8.3 Bayes Dirichlet structure learning

9.9 Exercises

10 Naive Bayes

10.1 Naive Bayes and Conditional Independence

10.2 Estimation using Maximum Likelihood

10.2.1 Binary attributes
10.2.2 Multi-state variables
10.2.3 Text classification
10.3 Bayesian Naive Bayes
10.4 Tree Augmented Naive Bayes
10.4.1 Learning tree augmented Naive Bayes networks
10.5 Summary

10.6 Code

10.7 Exercises

11 Learning with Hidden Variables

11.1 Hidden Variables and Missing Data
11.1.1 Why hidden/missing variables can complicate proceedings
11.1.2 The missing at random assumption
11.1.3 Maximum likelihood
11.1.4 Identifiability issues

11.2 Expectation Maximisation

Variational EM

Classical EM

Application to Belief networks

General case L

Convergence

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.3 Extensions of EM
11.3.1 Partial M step
11.3.2 Partial E-step
11.4 A failure case for EM
11.5 Variational Bayes
11.5.1 EM is a special case of variational Bayes
11.5.2 An example: VB for the Asbestos-Smoking-Cancer network
11.6 Optimising the Likelihood by Gradient Methods
11.6.1 Undirected models
11.7 Summary

11.8 Code

11.9 Exercises

Application to Markov networks

DRAFT June 18, 2013

CONTENTS CONTENTS

12 Bayesian Model Selection 267
12.1 Comparing Models the Bayesian Wayo 267
12.2 Mlustrations : coin tossing L e 268

12.2.1 A discrete parameter spaceo e 268
12.2.2 A continuous parameter SPace e e e e e e e e e e 269
12.3 Occam’s Razor and Bayesian Complexity Penalisation 270
12.4 A continuous example : curve fittingo 273
12.5 Approximating the Model Likelihood 274
12.5.1 Laplace’smethod L 275
12.5.2 Bayes information criterion (BIC) o L 275
12.6 Bayesian Hypothesis Testing for Outcome Analysis 276
12.6.1 Outcome analysis L 276
12.6.2 Hindep : model likelihood oo 277
12.6.3 Hgame : model likelihood 278
12.6.4 Dependent outcome analysiso 279
12.6.5 Is classifier A better than B? 280
12.7 Summaryo e e e 281
12.8 Code o e 282
12.9 EXercises o e e 282

IIT Machine Learning 287

13 Machine Learning Concepts 291
13.1 Styles of Learning L 291

13.1.1 Supervised learning L 291
13.1.2 Unsupervised learning Lo 292
13.1.3 Anomaly detection 293
13.1.4 Online (sequential) learning L 293
13.1.5 Interacting with the environmento 293
13.1.6 Semi-supervised learningo 294
13.2 Supervised Learning L 294
13.2.1 Utility and Loss o o e 294
13.2.2 Using the empirical distribution. oo o 295
13.2.3 Bayesian decision approach L L 298
13.3 Bayes versus Empirical Decisions o 302
13.4 Summaryol e e e 303
13.5 ExXercises e 303

14 Nearest Neighbour Classification 305
14.1 Do As Your Neighbour Does o e 305
14.2 K-Nearest Neighbours e 306
14.3 A Probabilistic Interpretation of Nearest Neighbours 308

14.3.1 When your nearest neighbour is far away00 309
14.4 SUmMmMAaryo e e e e e e 309
14.5 Code o e 309
14.6 EXercises e e 309

15 Unsupervised Linear Dimension Reduction 311
15.1 High-Dimensional Spaces — Low Dimensional Manifolds 311
15.2 Principal Components Analysis 311

15.2.1 Deriving the optimal linear reconstruction L 0L 312
15.2.2 Maximum variance criteriono oL 314
15.2.3 PCA algorithm e 314
15.2.4 PCA and nearest neighbours classification 316
15.2.5 Comments on PCA e 316
XVI DRAFT June 18, 2013

CONTENTS

CONTENTS

15.3 High Dimensional Data
15.3.1 Eigen-decomposition for N < D
15.3.2 PCA via Singular value decomposition

15.4 Latent Semantic Analysis
15.4.1 Information retrieval

15.5 PCA With Missing Data
15.5.1 Finding the principal directions
15.5.2 Collaborative filtering using PCA with missing data

15.6 Matrix Decomposition Methods
15.6.1 Probabilistic latent semantic analysis
15.6.2 Extensions and variations
15.6.3 Applications of PLSA/NMF

15.7 Kernel PCA

15.8 Canonical Correlation Analysis
15.8.1 SVD formulation

15.9 Summary

15.10Code

15.11Exercises

16 Supervised Linear Dimension Reduction
16.1 Supervised Linear Projections
16.2 Fisher’s Linear Discriminant
16.3 Canonical Variates

16.3.1 Dealing with the nullspace
16.4 Summary

16.5 Code

16.6 Exercises

17 Linear Models
17.1 Introduction: Fitting A Straight Line
17.2 Linear Parameter Models for Regression

17.2.1 Vector outputs
17.2.2 Regularisation
17.2.3 Radial basis functions
17.3 The Dual Representation and Kernels
17.3.1 Regression in the dual-space
17.4 Linear Parameter Models for Classification
17.4.1 Logistic regression
17.4.2 Beyond first order gradient ascent
17.4.3 Avoiding overconfident classification
17.4.4 Multiple classes
17.4.5 The Kernel Trick for Classification
17.5 Support Vector Machines
17.5.1 Maximum margin linear classifier
17.5.2 Using kernels
17.5.3 Performing the optimisation
17.5.4 Probabilistic interpretation
17.6 Soft Zero-One Loss for Outlier Robustness
17.7 Summary

17.8 Code

17.9 Exercises

DRAFT June 18, 2013

CONTENTS

CONTENTS

18 Bayesian Linear Models
18.1 Regression With Additive Gaussian Noise
18.1.1 Bayesian linear parameter models

18.1.2 Determining hyperparameters: ML-II

18.1.3 Learning the hyperparameters using EM

18.1.4 Hyperparameter optimisation : using the gradient

18.1.5 Validation likelihood

18.1.6 Prediction and model averaging

18.1.7 Sparse linear models

18.2 Classification

18.2.1 Hyperparameter optimisation
18.2.2 Laplace approximation
18.2.3 Variational Gaussian approximation
18.2.4 Local variational approximation
18.2.5 Relevance vector machine for classification
18.2.6 Multi-class case
18.3 Summaryo
184 Code
18.5 Exercises

19 Gaussian Processes
19.1 Non-Parametric Prediction
19.1.1 From parametric to non-parametric
19.1.2 From Bayesian linear models to Gaussian processes
19.1.3 A prior on functions
19.2 Gaussian Process Prediction
19.2.1 Regression with noisy training outputs
19.3 Covariance Functions
19.3.1 Making new covariance functions from old
19.3.2 Stationary covariance functions
19.3.3 Non-stationary covariance functions
19.4 Analysis of Covariance Functions
19.4.1 Smoothness of the functions
19.4.2 Mercer kernels
19.4.3 Fourier analysis for stationary kernels
19.5 Gaussian Processes for Classification
19.5.1 Binary classification
19.5.2 Laplace’s approximation
19.5.3 Hyperparameter optimisation
19.5.4 Multiple classes
19.6 Summary
19.7 Code
19.8 Exercises

20 Mixture Models

20.1 Density Estimation Using Mixtures
20.2 Expectation Maximisation for Mixture Models
20.2.1 Unconstrained discrete tables
20.2.2 Mixture of product of Bernoulli distributions
20.3 The Gaussian Mixture Model
20.3.1 EM algorithm
20.3.2 Practical issues
20.3.3 Classification using Gaussian mixture models
20.3.4 The Parzen estimator
20.3.5 K-Means
20.3.6 Bayesian mixture models

XVIII

DRAFT June 18, 2013

CONTENTS CONTENTS

20.3.7 Semi-supervised learningo 416

20.4 Mixture of Experts L e 416
20.5 Indicator Models L e 417
20.5.1 Joint indicator approach: factorised prior L Lo Lo 417
20.5.2 Polya prior 418

20.6 Mixed Membership Models e 419
20.6.1 Latent Dirichlet allocation 419
20.6.2 Graph based representations of data L. 421
20.6.3 Dyadic data 421
20.6.4 Monadic data 422
20.6.5 Cliques and adjacency matrices for monadic binary data 423

20.7 SUMMATY . . . v v o et e e e e e e e e 426
20.8 Code L 426
20.9 EXercises e e e 427
21 Latent Linear Models 429
21.1 Factor Analysis L 429
21.1.1 Finding the optimal bias o 431

21.2 Factor Analysis : Maximum Likelihood 431
21.2.1 Eigen-approach likelihood optimisation. 432
21.2.2 Expectation maximisation Lo Lo L L 434

21.3 Interlude: Modelling Faces e 436
21.4 Probabilistic Principal Components Analysis 438
21.5 Canonical Correlation Analysis and Factor Analysis 439
21.6 Independent Components Analysis L 440
21.7 SUummary e e 442
21.8 Code o L 442
21.9 EXerciseso e e e 442
22 Latent Ability Models 445
22.1 The Rasch Model e 445
22.1.1 Maximum likelihood training L Lo Lo 445
22.1.2 Bayesian Rasch models oo 446

22.2 Competition Models 447
22.2.1 Bradley-Terry-Luce model 447
22.2.2 Elo ranking model oL 448
22.2.3 Glicko and TrueSkill L 448

22.3 SUMMATY L oo e e e e e e e e 449
224 Code 449
22.5 EXErCiSes e 449
IV Dynamical Models 451
23 Discrete-State Markov Models 455
23.1 Markov Models 455
23.1.1 Equilibrium and stationary distribution of a Markov chain 456
23.1.2 Fitting Markov models L Lo 457
23.1.3 Mixture of Markov models o 458

23.2 Hidden Markov Models e 460
23.2.1 The classical inference problems L Lo oL 460
23.2.2 Filtering p(he|vie) - o o o o o e 461
23.2.3 Parallel smoothing p(h|vir) - - o o o o o 462
23.2.4 Correction smoothing 462
23.2.5 Sampling from p(hi.p|vir) .o 464
23.2.6 Most likely joint stateo 464

DRAFT June 18, 2013 XIX

CONTENTS

CONTENTS

24 Continuous-state Markov Models
24.1 Observed Linear Dynamical Systems

XX

23.3

234

23.5

23.6
23.7
23.8

24.2

24.3
244

24.5

24.6

24.7
24.8

24.9

23.2.7 Prediction
23.2.8 Self localisation and kidnapped robots
23.2.9 Natural language models
Learning HMMs
23.3.1 EM algorithm
23.3.2 Mixture emission
23.3.3 The HMM-GMM
23.3.4 Discriminative training
Related Models
23.4.1 Explicit duration model
23.4.2 Input-Output HMM
23.4.3 Linear chain CRFs

23.4.4 Dynamic Bayesian networks
Applications L.

23.5.1 Object tracking

23.5.2 Automatic speech recognition

23.5.3 Bioinformatics

23.5.4 Part-of-speech tagging
Summary e e

Code

Exercises

24.1.1 Stationary distribution with noise
Auto-Regressive Models
24.2.1 Training an AR model
24.2.2 AR model as an OLDS
24.2.3 Time-varying AR model
24.2.4 Time-varying variance AR models
Latent Linear Dynamical Systems
Inference
24.4.1 Filtering
24.4.2 Smoothing : Rauch-Tung-Striebel correction method

24.4.3 The likelihood

24.4.4 Most likely state
24.4.5 Time independence and Riccati equations
Learning Linear Dynamical Systems
24.5.1 Identifiability issues
24.5.2 EM algorithm
24.5.3 Subspace Methods
24.5.4 Structured LDSs

24.5.5 Bayesian LDSs

Switching Auto-Regressive Models
24.6.1 Inference
24.6.2 Maximum likelihood learning using EM
Summary e e e
Code
24.8.1 Autoregressive models

Exercises

DRAFT June 18, 2013

CONTENTS CONTENTS

25 Switching Linear Dynamical Systems 507
25.1 Introduction L e 507
25.2 The Switching LDS o . e 507

25.2.1 Exact inference is computationally intractable 508
25.3 Gaussian Sum Filtering L 508
25.3.1 Continuous filtering 509
25.3.2 Discrete filtering oL 511
25.3.3 The likelihood p(Vi.7) « « « o o o o 511
25.3.4 Collapsing Gaussians v vt e e e e e e e 511
25.3.5 Relation to other methods L o 512
25.4 Gaussian Sum Smoothing L 512
25.4.1 Continuous smoothing 514
25.4.2 Discrete smoothing L L Lo 514
25.4.3 Collapsing the mixture L L 514
25.4.4 Using mixtures in smoothing 515
25.4.5 Relation to other methods L o 516
25.5 Reset Models e 518
25.5.1 A Poisson reset model 520
25.5.2 Reset-HMM-LDS 521
25.6 SUMMATY oo e e e e 522
257 Code o 522
25.8 EXErciSes e s 522

26 Distributed Computation 525
26.1 Introduction L 525
26.2 Stochastic Hopfield Networks 525
26.3 Learning Sequencest e 526

26.3.1 A single sequence 526
26.3.2 Multiple sequenceso 531
26.3.3 Boolean networks oL 532
26.3.4 Sequence disambiguation oL 532
26.4 Tractable Continuous Latent Variable Models 532
26.4.1 Deterministic latent variables L oo oo 532
26.4.2 An augmented Hopfield network 534
26.5 Neural Models L e 535
26.5.1 Stochastically spiking neurons L L oL 535
26.5.2 Hopfield membrane potential 5935
26.5.3 Dynamic Synapseso e e e e e e 536
26.5.4 Leaky integrate and firemodels L L Lo oL 537
26.6 SUMMATY o vttt e e e e 537
26.7 Code L 537
26.8 EXErciseso e e e e 538

V Approximate Inference 539

27 Sampling 543
27.1 Introduction L 543

27.1.1 Univariate sampling e 544
27.1.2 Rejection sampling oL 545
27.1.3 Multivariate sampling Lo 546
27.2 Ancestral Sampling L 548
27.2.1 Dealing with evidence L L 048
27.2.2 Perfect sampling for a Markov network o oL 549
27.3 Gibbs Sampling L e e 549
27.3.1 Gibbs sampling as a Markov chain0 0oL 550

DRAFT June 18, 2013 XXI

CONTENTS CONTENTS

27.3.2 Structured Gibbs samplingo Lo 551
27.3.3 Remarks e 551

27.4 Markov Chain Monte Carlo (MCMC) 552
27.4.1 Markov chains 553
27.4.2 Metropolis-Hastings sampling L oo 553

27.5 Auxiliary Variable Methods 555
27.5.1 Hybrid Monte Carlo 555
27.5.2 Swendson-Wang e 557
27.5.3 Slice sampling 559

27.6 Importance Sampling 560
27.6.1 Sequential importance sampling L Lo oo 562
27.6.2 Particle filtering as an approximate forward pass 563

277 SUMMATY . . . c o v v et et e e e e e e e e e e e 565
27.8 Code o 565
27.9 EXercises e e e 566
28 Deterministic Approximate Inference 569
28.1 Introduction L 569
28.2 The Laplace approximation e 569
28.3 Properties of Kullback-Leibler Variational Inference 570
28.3.1 Bounding the normalisation constant Lo L L. 570
28.3.2 Bounding the marginal likelihood L oo 570
28.3.3 Bounding marginal quantities 571
28.3.4 Gaussian approximations using KL divergence 571
28.3.5 Marginal and moment matching properties of minimising KL(plg) 572

28.4 Variational Bounding Using KL(q|p)« .« o 573
28.4.1 Pairwise Markov random field 973
28.4.2 General mean field equations L L oL Lo 576
28.4.3 Asynchronous updating guarantees approximation improvement 576
28.4.4 Structured variational approximation L Lo 577

28.5 Local and KL Variational Approximations, 579
28.5.1 Local approximation L L 580
28.5.2 KL variational approximation Lo 580

28.6 Mutual Information Maximisation : A KL Variational Approach 581
28.6.1 The information maximisation algorithm 582
28.6.2 Linear Gaussian decoder L L Lo 583

28.7 Loopy Belief Propagation 584
28.7.1 Classical BP on an undirected graph oo L. 584
28.7.2 Loopy BP as a variational procedure L oo 585

28.8 Expectation Propagation. L L 587
28.9 MAP for Markov networks L 590
28.9.1 Pairwise Markov networks L L Lo 592
28.9.2 Attractive binary Markov networkso Lo Lo 593
28.9.3 Pottsmodel 595
28.10Further Reading 596
28.11SUMMATY o o o e e e e e e e e e e e 596
28.12C0de 597
28.13EXErcises e e e e e e e e e 597
29 Background Mathematics 603
29.1 Linear Algebra e 603
29.1.1 Vector algebra e 603
29.1.2 The scalar product as a projection L L oo 604
29.1.3 Lines in space o i e e e 604
29.1.4 Planes and hyperplanes L L 604
29.1.5 Matriceso 605
XXII DRAFT June 18, 2013

CONTENTS CONTENTS

29.1.6 Linear transformations L Lo 606

29.1.7 Determinants e 606

29.1.8 Matrix inversiono 607

29.1.9 Computing the matrix inverse L 608

29.1.10 Eigenvalues and eigenvectors L o 608

29.1.11 Matrix decompositions L 609

29.2 Multivariate Calculus oL e 610
29.2.1 Interpreting the gradient vector oL L oL 611

29.2.2 Higher derivatives oL 611

29.2.3 Matrix calculus L 612

29.3 Inequalities L e 612
29.3.1 Convexity o e 612

29.3.2 Jensen’s inequality L 613

29.4 Optimisation L 613
29.5 Multivariate Optimisation e 613
29.5.1 Gradient descent with fixed stepsize o L. 614

29.5.2 Gradient descent with line searches L. 614

29.5.3 Minimising quadratic functions using line searcho, 615

29.5.4 Gram-Schmidt construction of conjugate vectors 615

29.5.5 The conjugate vectors algorithmo o o 616

29.5.6 The conjugate gradients algorithm o o 0. 616

29.5.7 Newton’s method 617

29.6 Constrained Optimisation using Lagrange Multipliers. 619
29.6.1 Lagrange Dual e 619

End Matter 603
Bibliography 621
Index 637

DRAFT June 18, 2013 XXIII

CONTENTS CONTENTS

XXIV DRAFT June 18, 2013

Part 1

Inference in Probabilistic Models

Introduction to Part I

Probabilistic models explicitly take into account uncertainty and deal with our
imperfect knowledge of the world. Such models are of fundamental significance in
Machine Learning since our understanding of the world will always be limited by our
observations and understanding. We will focus initially on using probabilistic models
as a kind of expert system.

In Part I, we assume that the model is fully specified. That is, given a model of the
environment, how can we use it to answer questions of interest. We will relate the
complexity of inferring quantities of interest to the structure of the graph describing
the model. In addition, we will describe operations in terms of manipulations on
the corresponding graphs. As we will see, provided the graphs are simple tree-like
structures, most quantities of interest can be computed efficiently.

Part I deals with manipulating mainly discrete variable distributions and forms the
background to all the later material in the book.

DRAFT June 18, 2013

Graphical
Models

Chain Graphs

Undirected
Graphs

Markov
network

Factor .
Graphs Clique

Graphs

Pairwise

Junction
(3 Gauss.
Process

(cont)

Directed

input
dependent

Boltz.
machine
(disc.)

Directed
Factor
Graph

Bayesian
Networks

Influence
diagrams

Markov
chains

Latent
variable
models

Discrete

Continuous

Strong

T

Mixture
models

Some members of the graphical models family and their uses. Nodes further from the Graphical Models
root node are loosely speaking specialised versions of their parents. We discuss many of these models in
Part I, although some of the more specialised models are deferred to later Parts of the book.

DRAFT June 18, 2013

approx-
message- required
passing

approx-
required

messages-

messages- intractable

tractable

cliques
cliques large
small

decomposable

Multiply
connected

Graphical
model

Graphical models and associated (marginal) inference methods. Specific inference methods are highlighted
in red. Loosely speaking, provided the graph corresponding to the model is singly-connected most of
the standard (marginal) inference methods are tractable. Multiply-connected graphs are generally more

absorption

cliques
small

non-
decomposable

tractable-
special-cases

Shafer-
Shenoy

cliques

approx-
required

cutset
conditioning
(inefficient)

Gaussian

interaction-
MRF
sum/max

product

message
updates
tractable

approx
required
(EP)

Singly

connected
message

updates
intractable

Bucket
elimination
(inefficient)

problematic, although there are special cases which remain tractable.

DRAFT June 18, 2013

DRAFT June 18, 2013

CHAPTER 1

Probabilistic Reasoning

We have intuition about how uncertainty works in simple cases. To reach sensible conclusions in complicated
situations, however — where there may be many (possibly) related events and many possible outcomes — we
need a formal ‘calculus’ that extends our intuitive notions. The concepts, mathematical language and rules of
probability give us the formal framework we need. In this chapter we review basic concepts in probability —in
particular, conditional probability and Bayes’ rule, the workhorses of machine learning. Another strength of
the language of probability is that it structures problems in a form consistent for computer implementation.
We also introduce basic features of the BRMLTOOLBOX that support manipulating probability distributions.

1.1 Probability Refresher

Variables, States and Notational Shortcuts

Variables will be denoted using either upper case X or lower case x and a set of variables will typically be
denoted by a calligraphic symbol, for example V = {a, B, c} .

The domain of a variable x is written dom(x), and denotes the states z can take. States will typically
be represented using sans-serif font. For example, for a coin ¢, dom(c) = {heads, tails} and p(c = heads)
represents the probability that variable c is in state heads. The meaning of p(state) will often be clear,
without specific reference to a variable. For example, if we are discussing an experiment about a coin c,
the meaning of p(heads) is clear from the context, being shorthand for p(c = heads). When summing over a
variable > f(z), the interpretation is that all states of z are included, i.e. -, f(%) = X scqoma) [(T =5).
Given a variable, z, its domain dom(z) and a full specification of the probability values for each of the
variable states, p(z), we have a distribution for x. Sometimes we will not fully specify the distribution, only
certain properties, such as for variables z,y, p(z,y) = p(x)p(y) for some unspecified p(x) and p(y). When
clarity on this is required we will say distributions with structure p(x)p(y), or a distribution class p(x)p(y).

For our purposes, events are expressions about random variables, such as Two heads in 6 coin tosses. Two
events are mutually exclusive if they cannot both be true. For example the events The coin is heads and
The coin is tails are mutually exclusive. One can think of defining a new variable named by the event so,
for example, p(The coin is tails) can be interpreted as p(The coin is tails = true). We use the shorthand
p(xz = tr) for the probability of event/variable x being in the state true and p(x = fa) for the probability of
variable x being in the state false.

Definition 1.1 (Rules of Probability for Discrete Variables).

Probability Refresher

The probability p(x = x) of variable x being in state x is represented by a value between 0 and 1.
p(z = x) = 1 means that we are certain x is in state x. Conversely, p(x = x) = 0 means that we are certain
x is not in state x. Values between 0 and 1 represent the degree of certainty of state occupancy.

The summation of the probability over all the states is 1:

> plr=x=1 (1.1.1)

xedom(z)
This is called the normalisation condition. We will usually more conveniently write > p(x) = 1.
Two variables z and y can interact through

plx=aory=b)=plz=a)+ply=>b)—p(z =aand y =b) (1.1.2)
Or, more generally, we can write

p(z or y) = p(z) + p(y) — p(z and y) (1.1.3)

We will use the shorthand p(z,y) for p(z and y). Note that p(y,z) = p(x,y) and p(z or y) = p(y or x).

Definition 1.2 (Set notation). An alternative notation in terms of set theory is to write

p(z or y) = p(z Uy), p(x,y) =p(zNy) (1.1.4)

Definition 1.3 (Marginals). Given a joint distribution p(x,y) the distribution of a single variable is given
by

p(x) =Y plx,y) (1.1.5)

Here p(x) is termed a marginal of the joint probability distribution p(x,y). The process of computing a
marginal from a joint distribution is called marginalisation. More generally, one has

P(T1y ey Tim 1, Tigly e oy) = Zp(xl, ey Tp) (1.1.6)
i

Definition 1.4 (Conditional Probability / Bayes’ Rule). The probability of event conditioned on knowing
event y (or more shortly, the probability of x given y) is defined as

pzly) = 2z,) (1.1.7)

If p(y) = 0 then p(x|y) is not defined. From this definition and p(x,y) = p(y,x) we immediately arrive at
Bayes’ rule

pylz)p(z)

o) (1.1.8)

p(zly) =

Since Bayes’ rule trivially follows from the definition of conditional probability, we will sometimes be loose
in our language and use the terms Bayes’ rule and conditional probability as synonymous.

As we shall see throughout this book, Bayes’ rule plays a central role in probabilistic reasoning since it helps

8 DRAFT June 18, 2013

Probability Refresher

us ‘invert’ probabilistic relationships, translating between p(y|z) and p(z|y).

Definition 1.5 (Probability Density Functions). For a continuous variable x, the probability density f(x)
is defined such that

f@) >0, /_Oo F@)de = 1 (1.1.9)

and the probability that x falls in an interval [a, b] is given by

b
pla<xz<b) = / f(z)dx (1.1.10)

As shorthand we will sometimes write fgg f(z), particularly when we want an expression to be valid for either
continuous or discrete variables. The multivariate case is analogous with integration over all real space, and
the probability that x belongs to a region of the space defined accordingly. Unlike probabilities, probability
densities can take positive values greater than 1.

Formally speaking, for a continuous variable, one should not speak of the probability that z = 0.2 since the
probability of a single value is always zero. However, we shall often write p(z) for continuous variables, thus
not distinguishing between probabilities and probability density function values. Whilst this may appear
strange, the nervous reader may simply replace our p(z) notation for fxe A f(x)dx, where A is a small region
centred on x. This is well defined in a probabilistic sense and, in the limit A being very small, this would
give approximately A f(z). If we consistently use the same A for all occurrences of pdfs, then we will simply
have a common prefactor A in all expressions. Our strategy is to simply ignore these values (since in the end
only relative probabilities will be relevant) and write p(x). In this way, all the standard rules of probability
carry over, including Bayes’ Rule.

Remark 1.1 (Subjective Probability). Probability is a contentious topic and we do not wish to get bogged
down by the debate here, apart from pointing out that it is not necessarily the rules of probability that
are contentious, rather what interpretation we should place on them. In some cases potential repetitions
of an experiment can be envisaged so that the ‘long run’ (or frequentist) definition of probability in which
probabilities are defined with respect to a potentially infinite repetition of experiments makes sense. For
example, in coin tossing, the probability of heads might be interpreted as ‘If I were to repeat the experiment
of flipping a coin (at ‘random’), the limit of the number of heads that occurred over the number of tosses
is defined as the probability of a head occurring.’

Here’s a problem that is typical of the kind of scenario one might face in a machine learning situation. A
film enthusiast joins a new online film service. Based on expressing a few films a user likes and dislikes,
the online company tries to estimate the probability that the user will like each of the 10000 films in their
database. If we were to define probability as a limiting case of infinite repetitions of the same experiment,
this wouldn’t make much sense in this case since we can’t repeat the experiment. However, if we assume
that the user behaves in a manner consistent with other users, we should be able to exploit the large amount
of data from other users’ ratings to make a reasonable ‘guess’ as to what this consumer likes. This degree
of belief or Bayesian subjective interpretation of probability sidesteps non-repeatability issues — it’s just a
framework for manipulating real values consistent with our intuition about probability[158].

1.1.1 Interpreting Conditional Probability

Conditional probability matches our intuitive understanding of uncertainty. For example, imagine a circular
dart board, split into 20 equal sections, labelled from 1 to 20. Randy, a dart thrower, hits any one of the 20
sections uniformly at random. Hence the probability that a dart thrown by Randy occurs in any one of the
20 regions is p(region i) = 1/20. A friend of Randy tells him that he hasn’t hit the 20 region. What is the
probability that Randy has hit the 5 region? Conditioned on this information, only regions 1 to 19 remain
possible and, since there is no preference for Randy to hit any of these regions, the probability is 1/19. The

DRAFT June 18, 2013 9

Probability Refresher

conditioning means that certain states are now inaccessible, and the original probability is subsequently
distributed over the remaining accessible states. From the rules of probability :
p(region 5, not region 20) p(region5) 1/20 1

jon 5|not region 20) = = - ~ 19
p(region 5|not region 20) p(not region 20) p(not region 20) 19/20 19

giving the intuitive result. An important point to clarify is that p(A = a|B = b) should not be interpreted
as ‘Given the event B = b has occurred, p(A = a|B = b) is the probability of the event A = a occurring’.
In most contexts, no such explicit temporal causality is implied! and the correct interpretation should be
p(A = a|B = b) is the probability of A being in state a under the constraint that B is in state b’.

The relation between the conditional p(A = a|B = b) and the joint p(A = a, B = b) is just a normalisation
constant since p(A = a, B = b) is not a distribution in A — in other words, > p(A =a,B =b) # 1. To
make it a distribution we need to divide : p(A=a,B =b)/> , p(A = a, B =b) which, when summed over
a does sum to 1. Indeed, this is just the definition of p(A = a|B = b).

Definition 1.6 (Independence).

Variables z and y are independent if knowing the state (or value in the continuous case) of one variable
gives no extra information about the other variable. Mathematically, this is expressed by

p(z,y) = p(2)p(y) (1.1.11)

Provided that p(x) # 0 and p(y) # 0 independence of z and y is equivalent to

p(zly) = p(z) & p(y|r) = p(y) (1.1.12)

If p(z|y) = p(x) for all states of x and y, then the variables x and y are said to be independent. If

p(z,y) =kf(x)g(y) (1.1.13)

for some constant k, and positive functions f(-) and g(-) then z and y are independent and we write = 1L y.

Example 1.1 (Independence). Let x denote the day of the week in which females are born, and y denote
the day in which males are born, with dom(z) = dom(y) = {1,...,7}. It is reasonable to expect that x
is independent of y. We randomly select a woman from the phone book, Alice, and find out that she was
born on a Tuesday. We also randomly select a male at random, Bob. Before phoning Bob and asking him,
what does knowing Alice’s birth day add to which day we think Bob is born on? Under the independence
assumption, the answer is nothing. Note that this doesn’t mean that the distribution of Bob’s birthday is
necessarily uniform — it just means that knowing when Alice was born doesn’t provide any extra information
than we already knew about Bob’s birthday, p(y|z) = p(y). Indeed, the distribution of birthdays p(y) and
p(x) are non-uniform (statistically fewer babies are born on weekends), though there is nothing to suggest
that = are y are dependent.

Deterministic Dependencies

Sometimes the concept of independence is perhaps a little strange. Consider the following : variables x and
y are both binary (their domains consist of two states). We define the distribution such that x and y are
always both in a certain joint state:

plx=a,y=1)=1, ple=a,y=2)=0, plz=b,y=2)=0, plr=b,y=1)=0

Are z and y dependent? The reader may show that p(x = a) = 1, p(x = b) = 0 and p(y = 1) = 1,
p(y = 2) = 0. Hence p(z)p(y) = p(x,y) for all states of x and y, and x and y are therefore independent.

'"We will discuss issues related to causality further in section(3.4).

10 DRAFT June 18, 2013

Probability Refresher

This may seem strange — we know for sure the relation between x and y, namely that they are always in the
same joint state, yet they are independent. Since the distribution is trivially concentrated in a single joint
state, knowing the state of x tells you nothing that you didn’t anyway know about the state of y, and vice
versa. This potential confusion comes from using the term ‘independent’ which may suggest that there is no
relation between objects discussed. The best way to think about statistical independence is to ask whether
or not knowing the state of variable y tells you something more than you knew before about variable x,
where ‘knew before’ means working with the joint distribution of p(z,y) to figure out what we can know
about x, namely p(z).

Definition 1.7 (Conditional Independence).
XYz (1.1.14)

denotes that the two sets of variables X and) are independent of each other provided we know the state
of the set of variables Z. For conditional independence, X and Y must be independent given all states of
Z. Formally, this means that

p(X,Y|2) =p(X|Z)p(Y|Z) (1.1.15)

for all states of X',), Z. In case the conditioning set is empty we may also write X 1L Y for X 1L Y0, in
which case X is (unconditionally) independent of).

If X and Y are not conditionally independent, they are conditionally dependent. This is written
XTY 2 (1.1.16)

Similarly XTTY|0 can be written as XTTY.

Intuitively, if z is conditionally independent of ¢ given z, this means that, given z, y contains no additional
information about x. Similarly, given z, knowing = does not tell me anything more about y. Note that
XUV Z=X WY |Z for X CX and Y C).

Remark 1.2 (Independence implications). It’s tempting to think that if a is independent of b and b is
independent of ¢ then ¢ must be independent of c:

{allbbllc} =allc (1.1.17)
However, this does not follow. Consider for example a distribution of the form
p(a,b,c) = p(b)p(a, c) (1.1.18)

From this

pla,b) => p(a,b,e) =p(b) Y _pla,c) (1.1.19)

Hence p(a,b) is a function of b multiplied by a function of a so that a and b are independent. Similarly, one
can show that b and c are independent. However, a is not necessarily independent of ¢ since the distribution
p(a, c) can be set arbitrarily.

Similarly, it’s tempting to think that if ¢ and b are dependent, and b and ¢ are dependent, then a and ¢
must be dependent:

{aTb, bTTc} = alle (1.1.20)

However, this also does not follow. We give an explicit numerical example in exercise(3.17).

Finally, note that conditional independence x 1l y| z does not imply marginal independence z 1l y. See also
exercise(3.20).

DRAFT June 18, 2013 11

Probabilistic Reasoning

1.1.2 Probability Tables

Based on the populations 60776238, 5116900 and 2980700 of England (E), Scotland (S) and Wales (W),
the a priori probability that a randomly selected person from the combined three countries would live in
England, Scotland or Wales, is approximately 0.88, 0.08 and 0.04 respectively. We can write this as a vector
(or probability table) :

p(Cnt = E) 0.88
p(Cnt=S) | =| 0.08 (1.1.21)
p(Cnt = W) 0.04

whose component values sum to 1. The ordering of the components in this vector is arbitrary, as long as it
is consistently applied.

For the sake of simplicity, we assume that only three Mother Tongue languages exist : English (Eng),
Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country of residence, England (E),
Scotland (S) and Wales (W). We write a (fictitious) conditional probability table

p(MT = Eng|Cnt =E) =095 p(MT =Eng|Cnt=S)=0.7 p(MT = Eng|Cnt =W) =0.6

p(MT = Scot|Cnt = E) =0.04 p(MT = Scot|Cnt =S) =0.3 p(MT = Scot|Cnt = W) = 0.0

p(MT = Wel|Cnt =E) =0.01 p(MT =Wel|Cnt=S)=0.0 p(MT = Wel|lCnt=W)=0.4
(1.1.22)

From this we can form a joint distribution p(Cnt, MT) = p(MT|Cnt)p(Cnt). This could be written as a
3 x 3 matrix with columns indexed by country and rows indexed by Mother Tongue:

0.95x 0.88 0.7 x0.08 0.6 x0.04 0.836 0.056 0.024
0.04 x 0.88 0.3x0.08 0.0x0.04 | =1 0.0352 0.024 0 (1.1.23)
0.01 x 0.88 0.0 x0.08 0.4 x0.04 0.0088 0 0.016

The joint distribution contains all the information about the model of this environment. By summing the
columns of this table, we have the marginal p(Cnt). Summing the rows gives the marginal p(MT). Similarly,
one could easily infer p(Cnt|MT) o< p(MT|Cnt)p(Cnt) from this joint distribution by dividing an entry of
equation (1.1.23) by its row sum.

For joint distributions over a larger number of variables, z;,¢ = 1,..., D, with each variable x; taking K;
states, the table describing the joint distribution is an array with HiDzl K; entries. Explicitly storing tables
therefore requires space exponential in the number of variables, which rapidly becomes impractical for a
large number of variables. We discuss how to deal with this issue in chapter(3) and chapter(4).

A probability distribution assigns a value to each of the joint states of the variables. For this reason,
p(T,J, R, S) is considered equivalent to p(J, S, R,T) (or any such reordering of the variables), since in each
case the joint setting of the variables is simply a different index to the same probability. This situation is
more clear in the set theoretic notation p(J N.SNT N R). We abbreviate this set theoretic notation by using
the commas — however, one should be careful not to confuse the use of this indexing type notation with
functions f(x,y) which are in general dependent on the variable order. Whilst the variables to the left of the
conditioning bar may be written in any order, and equally those to the right of the conditioning bar may be
written in any order, moving variables across the bar is not generally equivalent, so that p(z1|z2) # p(x2|x1).

1.2 Probabilistic Reasoning

The central paradigm of probabilistic reasoning is to identify all relevant variables z1,...,zy in the envi-
ronment, and make a probabilistic model p(z1,...,2zx) of their interaction. Reasoning (inference) is then
performed by introducing evidence that sets variables in known states, and subsequently computing proba-
bilities of interest, conditioned on this evidence. The rules of probability, combined with Bayes’ rule make
for a complete reasoning system, one which includes traditional deductive logic as a special case[158]. In
the examples below, the number of variables in the environment is very small. In chapter(3) we will discuss

12 DRAFT June 18, 2013

Probabilistic Reasoning

reasoning in networks containing many variables, for which the graphical notations of chapter(2) will play
a central role.

Example 1.2 (Hamburgers). Consider the following fictitious scientific information: Doctors find that
people with Kreuzfeld-Jacob disease (KJ) almost invariably ate hamburgers, thus p(Hamburger Eater| KJ) =
0.9. The probability of an individual having KJ is currently rather low, about one in 100,000.

1. Assuming eating lots of hamburgers is rather widespread, say p(Hamburger Fater) = 0.5, what is the
probability that a hamburger eater will have Kreuzfeld-Jacob disease?

This may be computed as

Hamb Eater, K.J Hamb Eater|KJ)p(KJ
p(KJ |Hamburger Eater) = Pl Elgiitiger L2etan L) = p(Hamburger Eater|KJ)p(KJ)

p(Hamburger Eater) p(Hamburger Eater)
(1.2.1)
91
= 40~ 100000 — 18 x 107° (1.2.2)
2

2. If the fraction of people eating hamburgers was rather small, p(Hamburger Eater) = 0.001, what is the
probability that a regular hamburger eater will have Kreuzfeld-Jacob disease? Repeating the above
calculation, this is given by

9 1
10 = 100000, 1/100 (1.2.3)

1000

This is much higher than in scenario (1) since here we can be more sure that eating hamburgers is
related to the illness.

Example 1.3 (Inspector Clouseau). Inspector Clouseau arrives at the scene of a crime. The victim lies dead
in the room alongside the possible murder weapon, a knife. The Butler (B) and Maid (M) are the inspector’s
main suspects and the inspector has a prior belief of 0.6 that the Butler is the murderer, and a prior belief
of 0.2 that the Maid is the murderer. These beliefs are independent in the sense that p(B, M) = p(B)p(M).
(It is possible that both the Butler and the Maid murdered the victim or neither). The inspector’s prior
criminal knowledge can be formulated mathematically as follows:

dom(B) = dom(M) = {murderer, not murderer} , dom(K’) = {knife used, knife not used} (1.2.4)
p(B = murderer) = 0.6, p(M = murderer) = 0.2 (1.2.5)
p(knife used| B = not murderer, M = not murderer) = 0.3
p(knife used| B = not murderer, M = murderer) =0.2 (1.2.6)
p(knife used| B = murderer, M = not murderer) = 0.6 o
p(knife used| B = murderer, M = murderer) =0.1

In addition p(K, B, M) = p(K|B, M)p(B)p(M). Assuming that the knife is the murder weapon, what is
the probability that the Butler is the murderer? (Remember that it might be that neither is the murderer).
Using b for the two states of B and m for the two states of M,

B N PBmE) S, p(K(Bm)p(Bm) _ p(B) %, pK|B mip(m)
POBIK) =3 p(BymlK) = 5 = S mpum) 3y p(0) S T, mp(e)

(1.2.7)

DRAFT June 18, 2013 13

Probabilistic Reasoning

where we used the fact that in our model p(B, M) = p(B)p(M). Plugging in the values we have (see also
demoClouseau.m)

|oo

) 300

=" ~073 (1.2.8)
2 8 3
ot 1 x<1) 412

6 2 1

G B
6 2 1 8 6 4 2
(i *0+ 1% >0+ 1 (%

Hence knowing that the knife was the murder weapon strengthens our belief that the butler did it.

o

p(B = murderer|knife used) =

X 5l

Remark 1.3. The role of p(knife used) in the Inspector Clouseau example can cause some confusion. In
the above,

plknife used) = > " p(b) Y p(knife used|b, m)p(m) (1.2.9)
b m

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the question! Note that the
quantity p(knife used) relates to the prior probability the model assigns to the knife being used (in the
absence of any other information). If we know that the knife is used, then the posterior

p(knife used, knife used) p(knife used)

knif d|knif d) = = =1 1.2.1
p(knife used|knife used) p(knife used) p(knife used) ()

which, naturally, must be the case.

Example 1.4 (Who's in the bathroom?). Consider a household of three people, Alice, Bob and Cecil.
Cecil wants to go to the bathroom but finds it occupied. He then goes to Alice’s room and sees she is there.
Since Cecil knows that only either Alice or Bob can be in the bathroom, from this he infers that Bob must
be in the bathroom.

To arrive at the same conclusion in a mathematical framework, we define the following events
A = Alice is in her bedroom, B = Bob is in his bedroom, O = Bathroom occupied (1.2.11)

We can encode the information that if either Alice or Bob are not in their bedrooms, then they must be in
the bathroom (they might both be in the bathroom) as

p(O =tr|[A=fa,B) =1, p(O =trlA,B =fa)=1 (1.2.12)

The first term expresses that the bathroom is occupied if Alice is not in her bedroom, wherever Bob is.

Similarly, the second term expresses bathroom occupancy as long as Bob is not in his bedroom. Then

p(B=fa,0=tr,A=tr) p(O=tr|A=tr,B="fa)p(A=tr, B=fa)
p(O =tr, A =tr) - p(O =tr, A =tr)

p(B=falO=tr,A=tr)= (1.2.13)

where
p(O =tr,A=tr) =p(O =tr]A=tr, B =fa)p(A = tr, B = fa)
+p(O =tr]A =tr, B =tr)p(A = tr, B =tr) (1.2.14)

Using the fact p(O = tr|A = tr, B = fa) = 1 and p(O = tr|A = tr, B = tr) = 0, which encodes that if Alice
is in her room and Bob is not, the bathroom must be occupied, and similarly, if both Alice and Bob are in
their rooms, the bathroom cannot be occupied,

p(A =tr, B =fa)
B =falO=tr,A=1tr) = = 1.2.15
P °| % " p(A =tr, B = fa) ()
This example is interesting since we are not required to make a full probabilistic model in this case thanks
to the limiting nature of the probabilities (we don’t need to specify p(A, B)). The situation is common in

limiting situations of probabilities being either 0 or 1, corresponding to traditional logic systems.

14 DRAFT June 18, 2013

Probabilistic Reasoning

Example 1.5 (Aristotle : Resolution). We can represent the statement ‘All apples are fruit’ by p(F = tr|A =
tr) = 1. Similarly, ‘All fruits grow on trees’ may be represented by p(T = tr|F' = tr) = 1. Additionally
we assume that whether or not something grows on a tree depends only on whether or not it is a fruit,
p(T|A, F) = P(T|F). From this we can compute

p(T:tr\A:tr):Zp(T:tr\F,A:tr) (FlA=tr) = Zp = tr|F)p(F|A = tr)
F

=p(T =tr|F =fa)p(F =fa|A=tr)+p(T =tr|F = tr)p(=trlA=tr)=1 (1.2.16)

=0 =1 =1

In other words we have deduced that ‘All apples grow on trees’ is a true statement, based on the information
presented. (This kind of reasoning is called resolution and is a form of transitivity : from the statements
A= F and F = T we can infer A =T).

Example 1.6 (Aristotle : Inverse Modus Ponens). According to Logic, from the statement : ‘If A is true
then B is true’, one may deduce that ‘if B is false then A is false’. To see how this fits in with a probabilistic
reasoning system we can first express the statement : ‘If A is true then B is true’ as p(B = tr|A = tr) = 1.
Then we may infer

p(A=fa|B=fa)=1—p(A=tr|B="fa)
= fa|A = tr)p(A = tr)

—1_
p(B = fa]A = tr)p(A = tr) + p(B = fa|A = fa)p(A = fa)

=1 (1.2.17)

This follows since p(B = fa|A =tr) =1 —p(B = tr|A = tr) = 1 — 1 = 0, annihilating the second term.

Both the above examples are intuitive expressions of deductive logic. The standard rules of Aristotelian
logic are therefore seen to be limiting cases of probabilistic reasoning.

Example 1.7 (Soft XOR Gate).

A standard XOR logic gate is given by the table on the right. If we A| B | Axor B
observe that the output of the XOR gate is 0, what can we say about 0] 0 0
A and B? In this case, either A and B were both 0, or A and B were 0|1 1
both 1. This means we don’t know which state A was in — it could 110 1
equally likely have been 1 or 0. 111 0

A | B | p(C=1|AB)
Consider a ‘soft’ version of the XOR gate given on the right, 0] 0 0.1
with additionally A Il B and p(A =1) = 0.65, p(B =1) = 0.77. 0|1 0.99
What is p(A = 1|C = 0)? 110 0.8

1] 1 0.25

p(A=1,C=0)=> p(A=1,B,C=0)=> p(C=0[A=1,B)p(A=1)p(B)
B B
—p(A=1

)((C=0lA=1,B=0)p(B=0)+p(C=0[A=1B=1)pB=1)
= 0.65 x (0.2 x 0.23 + 0.75 x 0.77) = 0.405275 (1.2.18)

DRAFT June 18, 2013 15

Probabilistic Reasoning

p(A=0,C=0)=) p(A=0,B,C=0)=)Y p(C =0|A=0,B)p(A=0)p(B)
B B

— p(A=0) (p(C = 0|4 =0,B = 0)p(B = 0) +p(C = 04 = 0,B = L)p(B = 1))
=0.35 x (0.9 x 0.23 + 0.01 x 0.77) = 0.075145

Then

p(A=1,C=0) B 0.405275
p(A=1,C=0)+p(A=0,C=0) 0.405275 + 0.075145

p(A=1]C=0)= — 0.8436 (1.2.19)

Example 1.8 (Larry). Larry is typically late for school. If Larry is late, we denote this with L = late,
otherwise, L = not late. When his mother asks whether or not he was late for school he never admits to
being late. The response Larry gives Ry, is represented as follows

p(Rr, = not late|L = not late) = 1, p(Rr = late|L = late) =0 (1.2.20)
The remaining two values are determined by normalisation and are

p(Rr, = late|L = not late) = 0, p(Rr, = not late|L = late) =1 (1.2.21)
Given that Ry, = not late, what is the probability that Larry was late, i.e. p(L = late| Ry, = not late)?

Using Bayes’ we have

p(L = late, Ry, = not late)
p(Rr, = not late)
p(L = late, Ry, = not late)

p(L = late| R, = not late) =

B p(L = late, Ry, = not late) + p(L = not late, R, = not late) (1.2.22)

In the above

p(L = late, R;, = not late) = p(Rz = not late|L = late) p(L = late) (1.2.23)

=1

and

p(L = not late, Ry, = not late) = p(Ry, = not late|L = not late) p(L = not late) (1.2.24)

=1

Hence

p(L = late| Ry, = not late) = p p(L = late) = p(L = late) (1.2.25)

(L = late) 4+ p(L = not late)

Where we used normalisation in the last step, p(L = late) + p(L = not late) = 1. This result is intuitive —
Larry’s mother knows that he never admits to being late, so her belief about whether or not he really was
late is unchanged, regardless of what Larry actually says.

Example 1.9 (Larry and Sue). Continuing the example above, Larry’s sister Sue always tells the truth to
her mother as to whether or not Larry was late for School.

p(Rs = not late|L = not late) =1, p(Rs = late|L = late) =1 (1.2.26)

16 DRAFT June 18, 2013

Prior, Likelihood and Posterior

The remaining two values are determined by normalisation and are

p(Rs = late|L = not late) =0, p(Rs = not late|L = late) =0 (1.2.27)
We also assume p(Rg, Rr|L) = p(Rs|L)p(Rr|L). We can then write

p(Ry, Rs, L) = p(Re|L)p(Rs|L)p(L) (1.2.28)

Given that Rg = late and Ry, = not late, what is the probability that Larry was late?

Using Bayes’ rule, we have
p(L = late| Ry, = not late,Rg = late)

1
= Ep(RS = late|L = late)p(Rr = not late|L = late)p(L = late) (1.2.29)
where the normalisation Z is given by

p(Rs = late|L = late)p(Ry, = not late|L = late)p(L = late)
+ p(Rs = late|L = not late)p(R, = not late|L = not late)p(L = not late) (1.2.30)

Hence

1 x 1 x p(L = late)
L = lat = not lat = late) = =1 1.2.31
o ate|fty, = not late, Rs = late) 1 x1xp(L=late) + 0 x 1 x p(L = not late) ()

This result is also intuitive — Since Larry’s mother knows that Sue always tells the truth, no matter what
Larry says, she knows he was late.

Example 1.10 (Luke). Luke has been told he’s lucky and has won a prize in the lottery. There are 5
prizes available of value £10, £100, £1000, £10000, £1000000. The prior probabilities of winning these 5
prizes are pi, p2, P3, P4, P5, with pg being the prior probability of winning no prize. Luke asks eagerly ‘Did I
win £10000007!". ‘I'm afraid not sir’, is the response of the lottery phone operator. ‘Did I win £100007!
asks Luke. ‘Again, I'm afraid not sir’. What is the probability that Luke has won £10007

Note first that pg+ p1 + p2 +p3 +pa+p5 = 1. We denote W = 1 for the first prize of £10, and W =2,....,5
for the remaining prizes and W = 0 for no prize. We need to compute

Cp(W =3, W #£5W #£4,W #£0)
— p(W#B5W #4,W #0)

p(W = 3) _ P3
pW=1or W=2o0r W =3) pi+p2+p3

p(W =3|W #5W #4,W #0)

(1.2.32)

where the term in the denominator is computed using the fact that the events W are mutually exclusive
(one can only win one prize). This result makes intuitive sense : once we have removed the impossible states
of W, the probability that Luke wins the prize is proportional to the prior probability of that prize, with
the normalisation being simply the total set of possible probability remaining.

1.3 Prior, Likelihood and Posterior

Much of science deals with problems of the form : tell me something about the variable 6 given that I have
observed data D and have some knowledge of the underlying data generating mechanism. Our interest is

DRAFT June 18, 2013 17

Prior, Likelihood and Posterior

0.35
03
025
0.2
0151
0.1
0.05

. . . . 0
0 20 40 60 80 100 -0.1

Figure 1.1: (a): Noisy observations of displacements 1, ..., x100 for a pendulum. (b): The prior belief
on 5 possible values of . (c): The posterior belief on 6.

then the quantity

p(DIO)p(6) _ p(DI6)p(6)
»(D) Jop(D10)p(0)

This shows how from a forward or generative model p(D|f) of the dataset, and coupled with a prior belief
p(0) about which variable values are appropriate, we can infer the posterior distribution p(6|D) of the vari-
able in light of the observed data. The most probable a posteriori (MAP) setting is that which maximises
the posterior, 0, = argmaxy p(8|D). For a ‘flat prior’, p(f) being a constant, not changing with 6, the MAP
solution is equivalent to the mazimum likelihood, namely that 6 that maximises the likelihood p(D]#) of the
model generating the observed data. We will return to a discussion of such summaries of the posterior and

p(0]D) = (1.3.1)

parameter learning in chapter(9).

This use of a generative model sits well with physical models of the world which typically postulate how
to generate observed phenomena, assuming we know the model. For example, one might postulate how
to generate a time-series of displacements for a swinging pendulum but with unknown mass, length and
damping constant. Using this generative model, and given only the displacements, we could infer the
unknown physical properties of the pendulum.

Example 1.11 (Pendulum). As a prelude to scientific inference and the use of continuous variables, we
consider an idealised pendulum for which x; is the angular displacement of the pendulum at time t. Assuming
that the measurements are independent, given the knowledge of the parameter of the problem, 6, we have

that the likelihood of a sequence of observations x1, ...,z is given by
T
=1

If the model is correct and our measurement of the displacements x is perfect, then the physical model is
xy = sin(6t) (1.3.3)

where 0 represents the unknown physical constants of the pendulum (1/g/L, where g is the gravitational
attraction and L the length of the pendulum). If, however, we assume that we have a rather poor instrument
to measure the displacements, with a known variance of 0% (see chapter(8)), then

xp = sin(0t) + & (1.3.4)

where ¢; is zero mean Gaussian noise with variance 02. We can also consider a set of possible parameters
6 and place a prior p(f) over them, expressing our prior belief (before seeing the measurements) in the
appropriateness of the different values of 6. The posterior distribution is then given by

7P
1 1 : 2
0|lz1,...,27) ox p(@ ¢ 207 (@ —sin(0%)) 1.3.5
P02 7) o< p()tnlm (1.3.5)

Despite noisy measurements, the posterior over the assumed possible values for 6 becomes strongly peaked
for a large number of measurements, see fig(1.1).

18 DRAFT June 18, 2013

Prior, Likelihood and Posterior

1.3.1 Two dice : what were the individual scores?

Two fair dice are rolled. Someone tells you that the sum of the two scores is 9. What is the posterior
distribution of the dice scores??

The score of die a is denoted s, with dom(s,) = {1,2,3,4,5,6} and similarly for s;. The three variables
involved are then s,, s, and the total score, t = s, + sp. A model of these three variables naturally takes
the form

p(t; 8a, 5b) = P(t]8a, 5b) P(Sas Sp) (1.3.6)
—_———

likelihood prior

The prior p(sg, sp) is the joint probability of score s,

and score s;, without knowing anything else. Assuming P(sa)p(sp):
. . . Sq = Sq =2 | Sq= Sq = Sq = Sq =
no dependency in the rolling mechanism, =1 1736 | 1736 | 1/36 | 1736 | 1/36 | 1/36
s,—2 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
p(Sa, Sb) = p(sa)p(sb) (1,3.7) s,=31] 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36

s,—4 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36
Since the dice are fair both p(s,) and p(s) are uniform ;Z zg 5;2 };gg %gg 1%2 %;g %;g

distributions, p(sq) = p(sp) = 1/6.

o . p(t = 9|sq, Sp):
Here the likelihood term is Sa=1]5a=2[8,=3[8,=4[5,=5]5,=6
ss=1] 0 0 0 0 0 0
s=2] 0 0 0 0 0 0
p(t|sa,sp) =1t = sq + sp] (1.3.8) ;: — 0 5 5 5 5 i
sp = 0 0 0 0 1 0
which states that the total score is given by s, + sp. s=5| 0 0 0 1 0 0
Here [[A] is the indicator function defined as I[A] =1 %=06] 0 0 ! 0 0 0
if the statement A is true and 0 otherwise.
, p(t = 9]sa, 55)P(54)P(50)
Hence, our complete model is Sa=1]5=215=3]5a=4]5.=5]5,=6
ss=1] 0 0 0 0 0 0
s=2] 0 0 0 0 0 0
p(t, Sa78b> = p(t’sa, Sb)p(SIZ)p(Sb) (139) :Z: 0 0 0 0 0 1/36
ss=4] 0 0 0 0 1/36 0
where the terms on the right are explicitly defined. s5=5| 0 0 0 1/36 0 0
s5=6] 0 0 1/36 0 0 0
The posterior is then given by,
P(Sq, splt = 9)
o o P(t = g‘savsb)p(sa)p(sb) Sa=115,=215,=3|8,=4|8,=5|5,=6
P(Sq, splt =9) = o(E=9) (1.3.10) P 5 5 5 5 5
ss=2] 0 0 0 0 0 0
sy = 0 0 0 0 0 1/4
where sy = 0 0 0 0 1/4 0
sp = 0 0 0 1/4 0 0
p(t=9)=3" p(t = Olsw sp)p(sa)p(sy) (13.11) [a=e] 0 | v | §i1 o | 0|0
Sa,Sb

The term p(t =9) =3, , p(t = 9]sa, sp)P(sa)p(sp) = 4 x 1/36 = 1/9. Hence the posterior is given by equal
mass in only 4 non-zero elements, as shown.

1.4 Summary

e The standard rules of probability are a consistent, logical way to reason with uncertainty.

e Bayes' rule mathematically encodes the process of inference.

A useful introduction to probability is given in [292]. The interpretation of probability is contentious and
we refer the reader to [158, 197, 193] for detailed discussions. The website understandinguncertainty.org
contains entertaining discussions on reasoning with uncertainty.

2This example is due to Taylan Cemgil.

DRAFT June 18, 2013 19

Code

1.5 Code

The BRMLTooLBOX code accompanying this book is intended to give the reader some insight into repre-
senting discrete probability tables and performing simple inference. We provide here only the briefest of
descriptions of the code and the reader is encouraged to experiment with the demos to understand better
the routines and their purposes.

1.5.1 Basic Probability code

At the simplest level, we only need two basic routines. One for multiplying probability tables together
(called potentials in the code), and one for summing a probability table. Potentials are represented using a
structure. For example, in the code corresponding to the Inspector Clouseau example demoClouseau.m, we
define a probability table as

>> pot (1)
ans =
variables: [1 3 2]
table: [2x2x2 double]

This says that the potential depends on the variables 1,3,2 and the entries are stored in the array given
by the table field. The size of the array informs how many states each variable takes in the order given by
variables. The order in which the variables are defined in a potential is irrelevant provided that one indexes
the array consistently. A routine that can help with setting table entries is setstate.m. For example,

>> pot (1) = setstate(pot(1),[2 1 3],[2 1 1],0.3)

means that for potential 1, the table entry for variable 2 being in state 2, variable 1 being in state 1 and
variable 3 being in state 1 should be set to value 0.3.

The philosophy of the code is to keep the information required to perform computations to a minimum.
Additional information about the labels of variables and their domains can be useful to interpret results,
but is not actually required to carry out computations. One may also specify the name and domain of each
variable, for example

>>variable(3)
ans =
domain: {’murderer’ ’not murderer’}
name: ’butler’

The variable name and domain information in the Clouseau example is stored in the structure variable,
which can be helpful to display the potential table:

>> disptable(pot (1) ,variable);

knife = used maid = murderer butler = murderer 0.100000
knife = not used maid = murderer butler = murderer 0.900000
knife = used maid = not murderer butler = murderer 0.600000
knife = not used maid = not murderer butler = murderer 0.400000
knife = used maid = murderer butler = not murderer 0.200000
knife = not used maid = murderer butler = not murderer 0.800000
knife = used maid = not murderer butler = not murderer 0.300000
knife = not used maid = not murderer butler = mnot murderer 0.700000

Multiplying Potentials

In order to multiply potentials, (as for arrays) the tables of each potential must be dimensionally consistent
— that is the number of states of variable ¢ must be the same for all potentials. This can be checked us-
ing potvariables.m. This consistency is also required for other basic operations such as summing potentials.

multpots.m: Multiplying two or more potentials
divpots.m: Dividing a potential by another

20 DRAFT June 18, 2013

FExercises

Summing a Potential

sumpot.m: Sum (marginalise) a potential over a set of variables
sumpots.m: Sum a set of potentials together

Making a conditional Potential

condpot.m: Make a potential conditioned on variables

Setting a Potential

setpot.m: Set variables in a potential to given states
setevpot.m: Set variables in a potential to given states and return also an identity potential on the given
states

The philosophy of BRMLTooLBOX is that all information about variables is local and is read off from a
potential. Using setevpot.m enables one to set variables in a state whilst maintaining information about
the number of states of a variable.

Maximising a Potential

maxpot.m: Maximise a potential over a set of variables
See also maxNarray.m and maxNpot.m which return the N-highest values and associated states.

Other potential utilities

setstate.m: Set a potential state to a given value

table.m: Return a table from a potential

whichpot.m: Return potentials which contain a set of variables

potvariables.m: Variables and their number of states in a set of potentials
orderpotfields.m: Order the fields of a potential structure

uniquepots.m: Merge redundant potentials by multiplication and return only unique ones
numstates.m: Number of states of a variable in a domain

squeezepots.m: Find unique potentials and rename the variables 1,2,...

normpot.m: Normalise a potential to form a distribution

1.5.2 General utilities

condp.m: Return a table p(z|y) from p(zx,y)

condexp.m: Form a conditional distribution from a log value

logsumexp.m: Compute the log of a sum of exponentials in a numerically precise way
normp.m: Return a normalised table from an unnormalised table

assign.m: Assign values to multiple variables

maxarray.m: Maximize a multi-dimensional array over a subset

1.5.3 An example

The following code highlights the use of the above routines in solving the Inspector Clouseau, example(1.3),
and the reader is invited to examine the code to become familiar with how to numerically represent proba-
bility tables.

demoClouseau.m: Solving the Inspector Clouseau example

1.6 Exercises
Exercise 1.1. Prove
p(z,yl2) = p(z|2)p(y|z, 2) (1.6.1)

DRAFT June 18, 2013 21

Exercises

and also
p(ylz, 2)p(z|2)
pP\xY,2) = ———~ 1.6.2
o) = =) (162)
Exercise 1.2. Prove the Bonferroni inequality
p(a,b) = p(a) +p(b) — 1 (1.6.3)

Exercise 1.3 (Adapted from [181]). There are two bozes. Box 1 contains three red and five white balls and
box 2 contains two red and five white balls. A box is chosen at random p(box = 1) = p(box = 2) = 0.5 and
a ball chosen at random from this box turns out to be red. What is the posterior probability that the red ball
came from box 1¢

Exercise 1.4 (Adapted from [181]). Two balls are placed in a box as follows: A fair coin is tossed and a
white ball is placed in the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed
again and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Balls
are drawn from the box three times in succession (always with replacing the drawn ball back in the box). It
is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box are
red?

Exercise 1.5 (From David Spiegelhalter understandinguncertainty.org). A secret government agency
has developed a scanner which determines whether a person is a terrorist. The scanner is fairly reliable;
95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified
as such. An informant tells the agency that exactly one passenger of 100 aboard an aeroplane in which you
are seated is a terrorist. The agency decide to scan each passenger and the shifty looking man sitting next
to you is the first to test positive. What are the chances that this man is a terrorist?

Exercise 1.6. Consider three variable distributions which admit the factorisation

p(a, b, ¢) = p(alb)p(blc)p(c) (1.6.4)
where all variables are binary. How many parameters are needed to specify distributions of this form?

Exercise 1.7. Repeat the Inspector Clouseau scenario, example(1.3), but with the restriction that either the
maid or the butler is the murderer, but not both. Explicitly, the probability of the maid being the murderer
and not the butler is 0.04, the probability of the butler being the murderer and not the maid is 0.64. Modify
demoClouseau.m to implement this.

Exercise 1.8. Prove

p(a, (b or c)) = p(a,b) + p(a,c) — p(a, b, c) (1.6.5)

Exercise 1.9. Prove

plxlz) = plaly, 2)p(ylz) = D p(alw, y, 2)p(wly, 2)p(yl?) (1.6.6)
Yy y,w

Exercise 1.10. As a young man Mr Gott visits Berlin in 1969. He’s surprised that he cannot cross into
East Berlin since there is a wall separating the two halves of the city. He’s told that the wall was erected 8
years previously. He reasons that : The wall will have a finite lifespan; his ignorance means that he arrives
uniformly at random at some time in the lifespan of the wall. Since only 5% of the time one would arrive
in the first or last 2.5% of the lifespan of the wall he asserts that with 95% confidence the wall will survive
between 8/0.975 ~ 8.2 and 8/0.025 = 320 years. In 1989 the now Professor Gott is pleased to find that
his prediction was correct and promotes his prediction method in prestigious journals. This ‘delta-t’ method
is widely adopted and used to form predictions in a range of scenarios about which researchers are ‘totally
ignorant’. Would you ‘buy’ a prediction from Prof. Gott? Fxplain carefully your reasoning.

Exercise 1.11. Implement the soft XOR gate, example(1.7) using BRMLrooLBOX. You may find condpot.m
of use.

22 DRAFT June 18, 2013

FExercises

Exercise 1.12. Implement the hamburgers, example(1.2) (both scenarios) using BRMLrooLBOX. To do so
you will need to define the joint distribution p(hamburgers, KJ) in which dom(hamburgers) = dom(KJ) =
{tr, fa}.

Exercise 1.13. Implement the two-dice example, section(1.3.1) using BRMLTOOLBOX.

Exercise 1.14. A redistribution lottery involves picking the correct four numbers from 1 to 9 (without
replacement, so 3,4,4,1 for example is not possible). The order of the picked numbers is irrelevant. Every
week a million people play this game, each paying £1 to enter, with the numbers 3,5,7,9 being the most
popular (1 in every 100 people chooses these numbers). Given that the million pounds prize money is split
equally between winners, and that any four (different) numbers come up at random, what is the expected
amount of money each of the players choosing 3,5,7,9 will win each week? The least popular set of numbers
is 1,2,8,4 with only 1 in 10,000 people choosing this. How much do they profit each week, on average? Do
you think there is any ‘skill’ involved in playing this lottery?

Exercise 1.15. In a test of ‘psychometry’ the car keys and wrist watches of 5 people are given to a medium.
The medium then attempts to match the wrist watch with the car key of each person. What is the expected
number of correct matches that the medium will make (by chance)? What is the probability that the medium
will obtain at least 1 correct match?

Exercise 1.16. 1. Show that for any function f

> p(ly)fy) = fy) (1.6.7)

2. Fxplain why, in general,

> p(ly)f(a,y) # Y @) (1.6.8)

Exercise 1.17 (Inspired by singingbanana.com). Seven friends decide to order pizzas by telephone from
Pizza4 U based on a flyer pushed through their letterbox. Pizzaf U has only 4 kinds of pizza, and each person
chooses a pizza independently. Bob phones Pizza4U and places the combined pizza order, simply stating
how many pizzas of each kind are required. Unfortunately, the precise order is lost, so the chef makes seven
randomly chosen pizzas and then passes them to the delivery boy.

1. How many different combined orders are possible?
2. What is the probability that the delivery boy has the right order?

Exercise 1.18. Sally is new to the area and listens to some friends discussing about another female friend.
Sally knows that they are talking about either Alice or Bella but doesn’t know which. From previous conver-
sations Sally knows some independent pieces of information: She’s 90% sure that Alice has a white car, but
doesn’t know if Bella’s car is white or black. Similarly, she’s 90% sure that Bella likes sushi, but doesn’t know
if Alice likes sushi. Sally hears from the conversation that the person being discussed hates sushi and drives
a white car. What is the probability that the friends are talking about Alice? Assume mazimal uncertainty
in the absence of any knowledge of the probabilities.

Exercise 1.19. The weather in London can be summarised as: if it rains one day there’s a 70% chance it
will rain the following day; if it’s sunny one day there’s a 40% chance it will be sunny the following day.

1. Assuming that the prior probability it rained yesterday is 0.5, what is the probability that it was raining
yesterday given that it’s sunny today?

2. If the weather follows the same pattern as above, day after day, what is the probability that it will rain
on any day (based on an effectively infinite number of days of observing the weather)?

3. Use the result from part 2 above as a new prior probability of rain yesterday and recompute the proba-
bility that it was raining yesterday given that it’s sunny today.

DRAFT June 18, 2013 23

Exercises

24

DRAFT June 18, 2013

CHAPTER 2

Basic Graph Concepts

Often we have good reason to believe that one event affects another, or conversely that some events are
independent. Incorporating such knowledge can produce models that are better specified and computation-
ally more efficient. Graphs describe how objects are linked and provide a convenient picture for describing
related objects. We will ultimately introduce a graph structure among the variables of a probabilistic model
to produce a ‘graphical model’ that captures relations among the variables as well as their uncertainties. In
this chapter, we introduce the required basic concepts from graph theory.

2.1 Graphs

Definition 2.1 (Graph). A graph G consists of nodes (also called vertices) and edges (also called links)
between the nodes. Edges may be directed (they have an arrow in a single direction) or undirected. Edges
can also have associated weights. A graph with all edges directed is called a directed graph, and one with
all edges undirected is called an undirected graph.

eve -
(2)—9)

"’e An undirected graph G consists of undirected edges between nodes.

Graphs with edge weights are often used to model networks and flows along ‘pipes’, or distances between
cities, where each node represents a city. We will also make use of these concepts in chapter(5) and chap-
ter(28). Our main use of graphs though will be to endow them with a probabilistic interpretation and we
develop a connection between directed graphs and probability in chapter(3). Undirected graphs also play a
central role in modelling and reasoning with uncertainty. Essentially, two variables will be independent if
they are not linked by a path on the graph. We will discuss this in more detail when we consider Markov
networks in chapter(4).

An directed graph G consists of directed edges between nodes.

Definition 2.2 (Path, ancestors, descendants). A path A — B from node A to node B is a sequence of
nodes that connects A to B. That is, a path is of the form Ay, A1,...,A,_1,An, with Ag= A and A, =B

25

Graphs

and each edge (Ax_1,Ag), k = 1,...,n being in the graph. A directed path is a sequence of nodes which
when we follow the direction of the arrows leads us from A to B. In directed graphs, the nodes A such that
A — B and B s A are the ancestors of B. The nodes B such that A — B and B v A are the descendants
of A.

Definition 2.3 (Cycle, loop and chord). A cycle is a directed path that starts and returns to the same
nodea — b — ... = z — a. A loop is a path containing more than two nodes, irrespective of edge direction,
that starts and returns to the same node. For example in fig(2.2b) 1 —2 — 4 — 3 — 1 forms a loop, but the
graph is acyclic (contains no cycles). A chord is an edge that connects two non-adjacent nodes in a loop —
for example, the 2 — 3 edge is a chord in the 1 —2 —4 — 3 — 1 loop of fig(2.2a).

Definition 2.4 (Directed Acyclic Graph (DAG)). A DAG is a graph G with directed edges (arrows on each
link) between the nodes such that by following a path of nodes from one node to another along the direction
of each edge no path will revisit a node. In a DAG the ancestors of B are those nodes who have a directed
path ending at B. Conversely, the descendants of A are those nodes who have a directed path starting at

A.

Definition 2.5 (Relationships in a DAG).

@ @ @ The parents of x4 are pa(x4) = {x1,22,23}. The children of x4 are
ch(zy4) = {x5,26}. The family of a node is itself and its parents.
The Markov blanket of a node is its parents, children and the parents
@ @ @ of its children (excluding itself). In this case, the Markov blanket of

T4 18 T1, T2, T3, T5, Te, T7-

DAGs will play a central role in modelling environments with many variables, in particular they are used
for the belief networks that we describe in the following chapter. One can view the directed links on a graph
as ‘direct dependencies’ between parent and child variables. Naively, the acyclic condition prevents circular
reasoning. These connections are discussed in detail in chapter(3).

Definition 2.6 (Neighbour). For an undirected graph G the neighbours of z, ne (z) are those nodes directly
connected to x.

Definition 2.7 (Clique).

Given an undirected graph, a clique is a fully connected subset of nodes.

a e All the members of the clique are neighbours; for a maximal clique there is
v no larger clique that contains the clique. For example this graph has two
‘.@ maximal cliques, Ci = {A, B,C, D} and Co = {B,C,E}. Whilst A, B,C
Q‘@ are fully connected, this is a non-maximal clique since there is a larger

fully connected set, A, B,C, D that contains this. A non-maximal clique is
sometimes called a cliquo.

Cliques play a central role in both modelling and inference. In modelling they will describe variables
that are all dependent on each other, see chapter(4). In inference they describe sets of variables with no
simpler structure describing the relationship between them and hence for which no simpler efficient inference
procedure is likely to exist. We will discuss this issue in detail in chapter(5) and chapter(6).

26 DRAFT June 18, 2013

Numerically Encoding Graphs

Q. @
@ @ O
O @

(a)

(b): Multiply-connected graph.

(. [
e.@ e Figure 2.1: (a): Singly-connected graph.

(b)

Definition 2.8 (Connected graph). An undirected graph is connected if there is a path between every pair
of nodes (i.e. there are no isolated islands). For a graph which is not connected, the connected components
are those subgraphs which are connected.

Definition 2.9 (Singly Connected Graph). A graph is singly connected if there is only one path from any
node A to any other node B. Otherwise the graph is multiply connected. This definition applies regardless
of whether or not the edges in the graph are directed. An alternative name for a singly connected graph is
a tree. A multiply-connected graph is also called loopy.

Definition 2.10 (Spanning Tree).

A spanning tree of an undirected graph G is a singly-connected
subset of the existing edges such that the resulting singly-
connected graph covers all nodes of G. On the right is a graph
and an associated spanning tree. A maximum weight spanning
tree is a spanning tree such that the sum of all weights on the
edges of the tree is at least as large as any other spanning tree of

G.

Procedure 2.1 (Finding a maximal weight spanning tree). An algorithm to find a spanning tree with
maximal weight is as follows: Start by picking the edge with the largest weight and add this to the edge
set. Then pick the next candidate edge which has the largest weight and add this to the edge set — if this
results in an edge set with cycles, then reject the candidate edge and propose the next largest edge weight.
Note that there may be more than one maximal weight spanning tree.

2.2 Numerically Encoding Graphs

Our ultimate goal is to make computational implementations of inference. Therefore, if we want to incorpo-
rate graph structure into our models, we need to express graphs in a way that a computer can understand
and manipulate. There are several equivalent possibilities.

2.2.1 Edge list

As the name suggests, an edge list simply lists which node-node pairs are in the graph. For fig(2.2a), an
edge list is L = {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(2,4),(4,2),(3,4), (4,3)}. Undirected edges are listed
twice, once for each direction.

DRAFT June 18, 2013 27

Numerically Encoding Graphs

0 e e e Figure 2.2: (a): An undirected graph can be represented as
a symmetric adjacency matrix. (b): A directed graph with
nodes labelled in ancestral order corresponds to a triangular
e e adjacency matrix.
(a) (b)

2.2.2 Adjacency matrix

An alternative is to use an adjacency matrix

(2.2.1)

O = = O

1
0
1
1

O = = O

1
1
0
1

where A;; = 1 if there is an edge from node i to node j in the graph, and 0 otherwise. Some authors include
self-connections and place 1’s on the diagonal in this definition. An undirected graph has a symmetric
adjacency matrix.

Provided that the nodes are labelled in ancestral order (parents always come before children) a directed
graph fig(2.2b) can be represented as a triangular adjacency matrix:

~—

(2.2.2)

e Rl en B an B @]
SO O
SO ==
O = = O

Adjacency matrix powers

Adjacency matrices may seem wasteful since many of the entries are zero. However, they have a useful
property that more than redeems them. For an N x N adjacency matrix A, powers of the adjacency
matrix [Ak]ij specify how many paths there are from node i to node j in k edge hops. If we include 1’s

on the diagonal of A then [AN *1]“ is non-zero when there is a path connecting i to j in the graph. If A
corresponds to a DAG the non-zero entries of the j** row of [AN *1] correspond to the descendants of node
7.

2.2.3 Clique matrix

For an undirected graph with N nodes and maximal cliques Cy,...,Cx a clique matrix is an N x K matrix
in which each column ¢ has zeros except for ones on entries describing the clique. For example

(2.2.3)

O = =
=== O

is a clique matrix for fig(2.2a). A cliquo matrix relaxes the constraint that cliques are required to be
maximall. A cliquo matrix containing only two-node cliques is called an incidence matriz. For example

Cine = (2.2.4)

S O = =
SO = O =
O = = O
_ o~ O
— = O O

!The term ‘cliquo’ for a non-maximal clique is attributed to Julian Besag.

28 DRAFT June 18, 2013

Code

is an incidence matrix for fig(2.2a). It is straightforward to show that CmcCiTnc is equal to the adjacency
matrix except that the diagonals now contain the degree of each node (the number of edges it touches).
Similarly, for any cliquo matrix the diagonal entry of [CC']; expresses the number of cliquos (columns)
that node i occurs in. Off diagonal elements [CCT];; contain the number of cliquos that nodes i and j
jointly inhabit.

Remark 2.1 (Graph Confusions). Graphs are widely used, but differ markedly in what they represent.
Two potential pitfalls are described below.

State Transition Diagrams Such representations are used in Markov chains and finite state automata.
Each state is a node and a directed edge between node i and node j (with an associated weight p;;)
represents that a transition from state ¢ to state j can occur with probability p;;. From the graphical
models perspective we use a directed graph z(t) — x(t 4+ 1) to represent this Markov chain. The
state-transition diagram provides a more detailed graphical description of the conditional probability
table p(z(t + 1)|z(t)).

Neural Networks Neural networks also have nodes and edges. In general, however, neural networks are
graphical representations of functions, whereas graphical models are representations of distributions.

2.3 Summary

e A graph is made of nodes and edges, which we will use to represent variables and relations between them.
e A DAG is an acyclic graph and will be useful for representing 'causal’ relationships between variables.
e Neighbouring nodes on an undirected graph will represent dependent variables.

e A graph is singly-connected if there is only one path from any node to any other — otherwise the graph is
multiply-connected.

e A clique is group of nodes all of which are connected to each other.

e The adjacency matrix is a machine-readable description of a graph. Powers of the adjacency matrix give
information on the paths between nodes.

Good reference for graphs, associated theories and their uses are [86, 121].

2.4 Code

2.4.1 Utility routines

drawNet.m: Draw a graph based on an adjacency matrix
ancestors.m: Find the ancestors of a node in a DAG
edges.m: Edge list from an adjacency matrix
ancestralorder.m: Ancestral order from a DAG
connectedComponents.m: Connected Components
parents.m: Parents of a node given an adjacency matrix
children.m: Children of a node given an adjacency matrix
neigh.m: Neighbours of a node given an adjacency matrix

A connected graph is a tree if the number of edges plus 1 is equal to the number of nodes. However, for a
disconnected graph this is not the case. The code istree.m below deals with the possibly disconnected case.
The routine is based on the observation that any singly-connected graph must always possess a simplical

DRAFT June 18, 2013 29

Exercises

node (a leaf node) which can be eliminated to reveal a smaller singly-connected graph.
istree.m: If graph is singly connected return 1 and elimination sequence
spantree.m: Return a spanning tree from an ordered edge list

singleparenttree.m: Find a directed tree with at most one parent from an undirected tree

Additional routines for basic graph manipulations are given at the end of chapter(6).

2.5 Exercises

Exercise 2.1. Consider an adjacency matriz A with elements [A]ij =1 if one can reach state i from state
j in one timestep, and 0 otherwise. Show that the matrix [Ak]i. represents the number of paths that lead
from state j to i in k timesteps. Hence derive an algorithm that will find the minimum number of steps to

get from state j to state i.

Exercise 2.2. For an N x N symmetric adjacency matriz A, describe an algorithm to find the connected
components. You may wish to examine connectedComponents.m.

Exercise 2.3. Show that for a connected graph that is singly-connected, the number of edges E must be
equal to the number of nodes minus 1, E =V — 1. Give an example graph with E =V — 1 that is not
singly-connected. Hence the condition E =V — 1 is a necessary but not sufficient condition for a graph to
be singly-connected.

Exercise 2.4. Describe a procedure to determine if a graph is singly-connected.
Exercise 2.5. Describe a procedure to determine all the ancestors of a set of nodes in a DAG.

Exercise 2.6. WikiAdjSmall.mat contains a random selection of 1000 Wiki authors, with a link between

two authors if they ‘know’ each other (see snap.stanford.edu/data/wiki-Vote.html). Assume that if i ++
‘knows’ j, then j ‘knows’i. Plot a histogram of the separation (the length of the path between two users on

the graph corresponding to the adjacency matriz) between all users based on separations from 1 to 20. That

is the bin n(s) in the histogram contains the number of pairs with separation s.

Exercise 2.7. The file cliques.mat contains a list of 100 cliques defined on a graph of 10 nodes. Your task QQ
is to return a set of unique maximal cliques, eliminating cliques that are wholly contained within another.
Once you have found a clique, you can represent it in binary form as, for example

(1110011110)

which says that this clique contains variables 1,2,3,6,7,8,9, reading from left to right. Converting this
binary representation to decimal (with the rightmost bit being the units and the leftmost 2°) this corresponds
to the number 926. Using this decimal representation, write the list of unique cliques, ordered from lowest
decimal representation to highest. Describe fully the stages of the algorithm you use to find these unique
cliques. Hint: you may find examining uniquepots.m useful.

Exercise 2.8. Ezplain how to construct a graph with N nodes, where N is even, that contains at least
(N/2)? mazimal cliques.

Exercise 2.9. Let N be divisible by 3. Construct a graph with N nodes by partitioning the nodes into N/3
subsets, each subset containing 3 nodes. Then connect all nodes, provided they are not in the same subset.
Show that such a graph has 3N/3 mazimal cliques. This shows that a graph can have an exponentially large
number of mazimal cliques[217].

30 DRAFT June 18, 2013

CHAPTER 3

Belief Networks

We can now make a first connection between probability and graph theory. A belief network introduces
structure into a probabilistic model by using graphs to represent independence assumptions among the vari-
ables. Probability operations such as marginalizing and conditioning then correspond to simple operations
on the graph, and details about the model can be ‘read’ from the graph. There is also a benefit in terms of
computational efficiency. Belief networks cannot capture all possible relations among variables. However,
they are natural for representing ‘causal’ relations, and they are a part of the family of graphical models we
study further in chapter(4).

3.1 The Benefits of Structure

It’s tempting to think of feeding a mass of undigested data and probability distributions into a computer
and getting back good predictions and useful insights in extremely complex environments. However, unfor-
tunately, such a naive approach is likely to fail. The possible ways variables can interact is extremely large,
so that without some sensible assumptions we are unlikely to make a useful model. Independently specifying
all the entries of a table p(z1,...,zx) over binary variables x; takes O(2V) space, which is impractical for
more than a handful of variables. This is clearly infeasible in many machine learning and related application
areas where we need to deal with distributions on potentially hundreds if not millions of variables. Structure
is also important for computational tractability of inferring quantities of interest. Given a distribution on N
binary variables, p(x1,...,zy), computing a marginal such as p(z1) requires summing over the 2V=1 states
of the other variables. Even on the most optimistically fast supercomputer this would take far too long,
even for a N = 100 variable system.

The only way to deal with such large distributions is to constrain the nature of the variable interactions
in some manner, both to render specification and ultimately inference in such systems tractable. The key
idea is to specify which variables are independent of others, leading to a structured factorisation of the
joint probability distribution. For a distribution on a chain, p(z1,...,Z100) = H?i1 (i, xiy1), computing
a marginal p(z;) can be computed in the blink of an eye on modern computers. Belief networks are a con-
venient framework for representing such independence assumptions. We will discuss belief networks more
formally in section(3.3), first discussing their natural role as ‘causal’ models.

Belief networks (also called Bayes’ networks or Bayesian belief networks) are a way to depict the indepen-
dence assumptions made in a distribution [161, 182]. Their application domain is widespread, ranging from
troubleshooting[53] and expert reasoning under uncertainty to machine learning. Before we more formally
define a Belief Network (BN), an example will help motivate the development!.

'The scenario is adapted from [236].

31

The Benefits of Structure

Figure 3.1: (a): Belief network structure for the

@ e e e ‘wet grass’ example. Each node in the graph rep-

resents a variable in the joint distribution, and
0 @ @ e the variables which feed in (the parents) to an-
other variable represent which variables are to
() (b) the right of the conditioning bar. (b): Belief
network for the Burglar model.

3.1.1 Modelling independencies

One morning Tracey leaves her house and realises that her grass is wet. Is it due to overnight rain or did
she forget to turn off the sprinkler last night? Next she notices that the grass of her neighbour, Jack, is also
wet. This explains away to some extent the possibility that her sprinkler was left on, and she concludes
therefore that it has probably been raining.

We can model the above situation by first defining the variables we wish to include in our model. In the
above situation, the natural variables are

R e {0,1} R =1 means that it has been raining, and 0 otherwise

S €{0,1} S =1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise
J €{0,1} J =1 means that Jack’s grass is wet, and 0 otherwise

T €{0,1} T =1 means that Tracey’s Grass is wet, and 0 otherwise

A model of Tracey’s world then corresponds to a probability distribution on the joint set of the variables of
interest p(T, J, R, S) (the order of the variables is irrelevant).

Since each of the variables in this example can take one of two states, it would appear that we naively
have to specify the values for each of the 2* = 16 states, e.g. p(T =1,J = 0,R = 1,8 = 1) = 0.7 etc.
However, since there are normalisation conditions for probabilities, we do not need to specify all the state
probabilities. To see how many states need to be specified, consider the following decomposition. Without
loss of generality and repeatedly using the definition of conditional probability, we may write

p(T,J,R,S) = p(T|J, R, S)p(J, R, S) (3.1.1)
=p(T|J, R, S)p(JIR, S)p(R, S) (3.1.2)
= p(T|J, R, S)p(J|R, S)p(R|S)p(S) (3.1.3)

That is, we may write the joint distribution as a product of conditional distributions. The first term
p(T|J, R, S) requires us to specify 23 = 8 values — we need p(T = 1|J, R, S) for the 8 joint states of J, R, S.
The other value p(T' = 0]J, R, S) is given by normalisation : p(T" = 0|J,R,S) = 1 — p(T = 1|J,R,S).
Similarly, we need 4 + 2 + 1 values for the other factors, making a total of 15 values in all. In general, for a
distribution on n binary variables, we need to specify 2" — 1 values in the range [0, 1]. The important point
here is that the number of values that need to be specified in general scales exponentially with the number
of variables in the model — this is impractical in general and motivates simplifications.

Conditional independence

The modeler often knows constraints on the system. For example, in the scenario above, we may assume
that Tracey’s grass is wet depends only directly on whether or not is has been raining and whether or not
her sprinkler was on. That is, we make a conditional independence assumption

p(T|J, R, S) :p(T|R, S) (3.1.4)

Similarly, we assume that Jack’s grass is wet is influenced only directly by whether or not it has been raining,
and write

p(JIR,S) = p(J|R) (3.1.5)

32 DRAFT June 18, 2013

The Benefits of Structure

Furthermore, we assume the rain is not directly influenced by the sprinkler,

p(R|S) = p(R) (3.1.6)
which means that our model equation (3.1.3) now becomes

p(T,J, R, S) = p(T|R, $)p(J| R)p(R)p(S) (3.1.7)

We can represent these conditional independencies graphically, as in fig(3.1a). This reduces the number of
values that we need to specify to 4 +2 + 1+ 1 = 8, a saving over the previous 15 values in the case where
no conditional independencies had been assumed.

To complete the model, we need to numerically specify the values of each conditional probability table
(CPT). Let the prior probabilities for R and S be p(R = 1) = 0.2 and p(S = 1) = 0.1. We set the
remaining probabilities to p(J = 1|R = 1) = 1, p(J = 1|R = 0) = 0.2 (sometimes Jack’s grass is wet
due to unknown effects, other than rain), p(T' = 1|1R = 1,5=0) = 1, p(T = 1|lR = 1,8=1) = 1,
p(T =1/R=0,5 =1) = 0.9 (there’s a small chance that even though the sprinkler was left on, it didn’t
wet the grass noticeably), p(T'=1|R =0,5 =0) = 0.

Inference

Now that we’ve made a model of an environment, we can perform inference. Let’s calculate the probability
that the sprinkler was on overnight, given that Tracey’s grass is wet: p(S = 1|T" = 1). To do this we use:

PE=1T=1)= p(T=1 Y psp(T=1JR,S) (3-18)
_ 2urpUIRP(T =1|R, 5 = 1)p(R)p(S = 1) (3.1.9)

> srs PU[R)p(T = 1|R, S)p(R)p(S) o
_ 2gp(T =1R,S = 1p(R)p(S = 1) (3.1.10)

> rsP(T =1|R,S)p(R)p(S)
B 09x08x014+1x0.2x0.1
T 09%x08x01+1x02x01+0x08x%x09+1x0.2x0.9

so the (posterior) belief that the sprinkler is on increases above the prior probability 0.1, due to the evidence
that the grass is wet. Note that in equation (3.1.9), the summation over J in the numerator is unity since, for
any function f(R), a summation of the form) ; p(J|R)f(R) equals f(R). This follows from the definition
that a distribution p(J|R) must sum to one, and the fact that f(R) does not depend on J. A similar effect
occurs for the summation over J in the denominator.

=0.3382 (3.1.11)

Let us now calculate the probability that Tracey’s sprinkler was on overnight, given that her grass is wet
and that Jack’s grass is also wet, p(S = 1|7 = 1,J = 1). We use conditional probability again:

p(S=1,T=1,J=1)

PEAT =L =0 = p(T=1,J=1) (3.1.12)
 Yep(T=1,J=1RS=1)
B SR,SP(T —1,J=1,R,S) (3.1.13)
_ Ygp(J =1R)p(T = 1|R, S = 1)p(R)p(S = 1) .
Yo rsP(J =1R)p(T = 1|R, S)p(R)p(S 1.
B g'giﬁ = 0.1604 (3.1.15)

The probability that the sprinkler is on, given the extra evidence that Jack’s grass is wet, is lower than the
probability that the grass is wet given only that Tracey’s grass is wet. This occurs since the fact that Jack’s
grass is also wet increases the chance that the rain has played a role in making Tracey’s grass wet.

Naturally, we don’t wish to carry out such inference calculations by hand all the time. General purpose
algorithms exist for this, such as the junction tree algorithm, chapter(6).

DRAFT June 18, 2013 33

The Benefits of Structure

Example 3.1 (Was it the Burglar?). Here’s another example using binary variables, adapted from [236].
Sally comes home to find that the burglar alarm is sounding (A = 1). Has she been burgled (B = 1), or
was the alarm triggered by an earthquake (E = 1)7 She turns the car radio on for news of earthquakes and
finds that the radio broadcasts an earthquake alert (R = 1).

Using Bayes’ rule, we can write, without loss of generality,

p(B,E,A,R) =p(A|B,E,R)p(B, E,R) (3.1.16)
We can repeat this for p(B, E, R), and continue

p(B, B, A, R) = p(A|B, E, R)p(R|B, E)p(E| B)p(B) (3.1.17)

However, the alarm is surely not directly influenced by any report on the Radio — that is, p(A|B, E, R) =
p(A|B, E). Similarly, we can make other conditional independence assumptions such that

p(B, E, A, R) = p(A|B, E)p(R|E)p(E)p(B) (3.1.18)

as depicted in fig(3.1b).

Specifying conditional probability tables

Alarm = 1 | Burglar | Earthquake
0.9999 1 1 Radio = 1 | Earthquake
0.99 1 0 1 1
0.99 0 1 0 0
0.0001 0 0

The remaining tables are p(B = 1) = 0.01 and p(E = 1) = 0.000001. The tables and graphical structure
fully specify the distribution. Now consider what happens as we observe evidence.

Initial Evidence: The Alarm is sounding
B=1,E,A=1R
p(B:”A:l):ZE,Rp()
ZB,E,RP(Bv E7 A= 17 R)
_ Yprp(A=1|B=1,E)p(B = 1)p(E)p(R|E)
> B,5,rP(A=1|B, E)p(B)p(E)p(R|E)

(3.1.19)

~ 0.99 (3.1.20)

Additional Evidence: The Radio broadcasts an Earthquake warning: A similar calculation gives
p(B =1|A =1,R = 1) =~ 0.01. Thus, initially, because the Alarm sounds, Sally thinks that she’s been
burgled. However, this probability drops dramatically when she hears that there has been an Earthquake.
That is, the Earthquake ‘explains away’ to an extent the fact that the Alarm is ringing. See demoBurglar.m.

Remark 3.1 (Causal intuitions). Belief networks as we’ve defined them are ways to express independence
statements. Nevertheless, in expressing these independencies it can be useful (though also potentially
misleading) to think of ‘what causes what’. In example(3.1) we chose the ordering of the variables as
(reading from right to left) B, E, R, A in equation (3.1.17) since B and F can be considered root ‘causes’
and A and R as ‘effects’.

3.1.2 Reducing the burden of specification

Consider a discrete variable y with many discrete parental variables z1,...,x,, fig(3.2a). Formally, the
structure of the graph implies nothing about the form of the parameterisation of the table p(y|x1,...,xy,).
If each parent z; has dim (z;) states, and there is no constraint on the table, then the table p(y|x1, ..., zy)

34 DRAFT June 18, 2013

Uncertain and Unreliable Evidence

(a) (b)

Figure 3.2: (a): If all variables are binary 2° = 32 states are required to specify p(y|z1,...,75). (b):
Here only 16 states are required. (c): Noisy logic gates.

contains (dim (y) — 1) [], dim (z;) entries. If stored explicitly for each state, this would require potentially
huge storage. An alternative is to constrain the table to have a simpler parametric form. For example, one
might write a decomposition in which only a limited number of parental interactions are required (this is
called divorcing parents in [161]). For example, in fig(3.2b), we have

pylar,. .. w5) =Y pyla, 2)p(z1|2r, 22, 23)p(20]2a, 5) (3.1.21)

21,22

Assuming all variables are binary, the number of states requiring specification is 23 422 +22 = 16, compared
to the 2° = 32 states in the unconstrained case.

Logic gates

Another technique to constrain tables uses simple classes of conditional tables. For example, in fig(3.2c),
one could use a logical OR gate on binary z;, say

p(y|z1, ... (3.1.22)

25) = 1 if at least one of the z; is in state 1
") 71 0 otherwise

We can then make a table p(y|z1,...,25) by including the additional terms p(z; = 1|z;). When each z;
is binary there are in total only 2 4+ 2 + 2 + 2 + 2 = 10 quantities required for specifying p(y|z). In this
case, fig(3.2c¢) can be used to represent any noisy logic gate, such as the noisy OR or noisy AND, where the
number of parameters required to specify the noisy gate is linear in the number of parents.

The noisy-OR is particularly common in disease-symptom networks in which many diseases x can give rise
to the same symptom y— provided that at least one of the diseases is present, the probability that the
symptom will be present is high.

3.2 Uncertain and Unreliable Evidence

In the following we make a distinction between evidence that is uncertain, and evidence that is unreliable.

3.2.1 Uncertain evidence

In soft or uncertain evidence, the evidence variable is in more than one state, with the strength of our belief
about each state being given by probabilities. For example, if z has the states dom(x) = {red, blue, green}
the vector (0.6,0.1,0.3) represents the belief in the respective states. In contrast, for hard evidence we are
certain that a variable is in a particular state. In this case, all the probability mass is in one of the vector
components, for example (0,0, 1).

Performing inference with soft-evidence is straightforward and can be achieved using Bayes’ rule. For
example, for a model p(z,y), consider that we have some soft evidence § about the variable y, and wish to

DRAFT June 18, 2013 35

Uncertain and Unreliable Evidence

know what effect this has on the variable z — that is we wish to compute p(x|g). From Bayes’ rule, and the
assumption p(z|y,y) = p(z|y), we have

p(x|g) = prcyly Zp zly, 9)p(ylF) = Zp:vly (y17) (3.2.1)

where p(y = i|y) represents the probability that y is in state i under the soft-evidence. This is a generalisation
of hard-evidence in which the vector p(y|7) has all zero component values, except for a single component.
This procedure in which we first define the model conditioned on the evidence, and then average over the
distribution of the evidence is also known as Jeffrey’s rule.

In the BN we use a dashed circle to represent that a variable is in a soft-evidence
state.

Example 3.2 (soft-evidence). Revisiting the burglar scenario, example(3.1), imagine that we are only 70 per
cent sure we heard the burglar alarm sounding. For this binary variable case we represent this soft-evidence
for the states (1,0) as A = (0.7,0.3). What is the probability of a burglary under this soft-evidence?

=1|4) = Zp = 1|A)p(A|A) = p(B=1/A=1) x 0.7+ p(B = 1|A = 0) x 0.3 (3.2.2)

The probabilities p(B = 1|A = 1) = 0.99 and p(B = 1|A = 0) ~ 0.0001 are calculated using Bayes’ rule as
before to give

p(B =1|A) ~ 0.6930 (3.2.3)

This is lower than 0.99, the probability of having been burgled when we are sure we heard the alarm.

Holmes, Watson and Mrs Gibbon

An entertaining example of uncertain evidence is given by Pearl[236] that we adapt for our purposes here.
The environment contains four variables

B € {tr,fa} B = tr means that Holmes’ house has been burgled
A € {tr,fa} A = tr means that Holmes’ house Alarm went off
W e {tr,fa} W = tr means that Watson heard the alarm

G € {tr,fa} G = tr means that Mrs Gibbon heard the alarm

The BN below for this scenario is depicted in fig(3.3a)
p(B, A, G, W) = p(A|B)p(B)p(W|A)p(G|A). (3.2.4)

Watson states that he heard the alarm is sounding. Mrs Gibbon is a little deaf and cannot be sure herself
that she heard the alarm, being 80 per cent sure she heard it. This can be dealt with using the soft evidence
technique, fig(3.3b). From Jeffrey’s rule, one uses the original model equation (3.2.4) to first compute the
model conditioned on the evidence

B=t,W =tr,G) Y ,p(G|A)p(W = tr|A)p(A|B = tr)p(B = tr)

(
B=tr|W=tr,G) = = 3.2.5
p(B =t)= W =w,6) > PGIARW =t Ap(AB)p(B) >
and then uses the soft-evidence
~ 0.8 G =tr
p(G|G) = { 0.2 G — fa (3.2.6)

to compute
p(B=tr|W =tr,G) = p(B =tr|[W =tr,G = tr)p(G = tr|G)+p(B = tr|W = tr, G = fa)p(G = fa|G) (3.2.7)

A full calculation requires us to numerically specify all the terms in equation (3.2.4); see for example
exercise(3.8).

36 DRAFT June 18, 2013

Uncertain and Unreliable Evidence

TR
yen
. G
v

©® @
O— O—GL
® @(@ @ O~ -

(a) (b) (c) (d)

Figure 3.3: (a): Mr Holmes’ burglary worries as given in [236]: (B)urglar, (A)larm, (W)atson, Mrs
(G)ibbon. (b): Mrs Gibbon’s uncertain evidence represented by a dashed circle. (c): Virtual evidence or
the replacement of unreliable evidence can be represented by a dashed line. (d): Mrs Gibbon is uncertain
in her evidence. Holmes also replaces the unreliable Watson with his own interpretation.

3.2.2 Unreliable evidence

Holmes telephones Mrs Gibbon and realises that he doesn’t trust her evidence (he suspects that she’s been
drinking) and he believes that, based on his interpretation of Mrs Gibbon’s evidence, there is an 80 per
cent chance that the alarm sounded. Note that this is not the same as Mrs Gibbon being 80 per cent sure
herself that she heard the alarm — this would be soft evidence whose effect on our calculations would also
contain the term p(G|A), as in equation (3.2.5). Holmes rather wishes to discard all of this and simply
replace it with his own interpretation of events. Mr Holmes can achieve this by replacing the term p(G|A)
by a so-called wvirtual evidence term

0.8 A=tr
p(G|A) — p(H|A), where p(H|A) = { 02 A—fa (3.2.8)
Here the state H is arbitrary and fixed. This is used to modify the joint distribution to
p(B, A,H, W) = p(A[B)p(B)p(W|A)p(H|A), (3.2.9)

see fig(3.3c). When we then compute p(B = tr|IW = tr,H) the effect of Mr Holmes’ judgement will count
for a factor of 4 times more in favour of the alarm sounding than not. The values of the table entries are
irrelevant up to normalisation since any constants can be absorbed into the proportionality constant. Note
also that p(H|A) is not a distribution in A, and hence no normalisation is required. This form of evidence
is also called likelihood evidence.

Uncertain and unreliable evidence

To demonstrate how to combine such effects as unreliable and uncertain evidence, consider the situation in
which Mrs Gibbon is uncertain in her evidence, and Mr Holmes feels that Watson’s evidence is unreliable
and wishes to replaces it with his own interpretation, see fig(3.3d). To account for this we first deal with
the unreliable evidence

p(B,A,W,G) — p(B, A, H,G) = p(B)p(A|B)p(G|A)p(H|A) (3.2.10)
Using this modified model, we can now use Jeffrey’s rule to compute the model conditioned on the evidence
p(B)p(A|B)p(G|A)p(H|A)

PUB ARG = B AIB)p(ClA)p(HIA) (8.2.11)

We now include the uncertain evidence G to form the final model

p(B,AH,G) = " p(B, AH,G)p(G|G) (3.2.12)
G

from which we may compute the marginal p(B|H, G)

p(BH,G) =" p(B, AH,G) (3.2.13)
A

DRAFT June 18, 2013 37

Belief Networks

3.3 Belief Networks

Definition 3.1 (Belief network). A belief network is a distribution of the form

D

p(z1,...,2p) = Hp(wi]pa(ac,-)) (3.3.1)
i=1

where pa (x;) represent the parental variables of variable ;. Represented as a directed graph, with an arrow
pointing from a parent variable to child variable, a belief network corresponds to a Directed Acyclic Graph
(DAG), with the i*" node in the graph corresponding to the factor p(z;|pa (z;)).

Remark 3.2 (Graphs and distributions). A somewhat subtle point is whether or not a belief network
corresponds to a specific instance of a distribution (as given in definition(3.1)) requiring also the numerical
specification of the conditional probability tables, or whether or not it refers to any distribution which is
consistent with the specified structure. In this one can potentially distinguish between a belief network
distribution (containing a numerical specification) and a belief network graph (which contains no numerical
specification). Normally this issue will not arise much throughout the book, but is potentially important in
clarifying the scope of independence/dependence statements.

In the Wet Grass and Burglar examples, we had a choice as to how we recursively used Bayes’ rule. In a
general 4 variable case we could choose the factorisation,

p(1, 2, 23, 14) = p(x1|72, T3, 74)p(T2|73, T4)p(T3|T4)P(T4) (3.3.2)

An equally valid choice is (see fig(3.4))

p(x1, 22, x3, 24) = p(x3|rs, 21, 22) (24|71, 22)p(21|22)P(22). (3.3.3)

In general, two different graphs may represent the same independence assumptions, as we will discuss further
in section(3.3.1). If one wishes to make independence assumptions, then the choice of factorisation becomes
significant.

The observation that any distribution may be written in the cascade form, fig(3.4), gives an algorithm for
constructing a BN on variables z1,...,z, : write down the n—node cascade graph; label the nodes with
the variables in any order; now each successive independence statement corresponds to deleting one of the
edges. More formally, this corresponds to an ordering of the variables which, without loss of generality, we

may write as x1,...,2T,. Then, from Bayes’ rule, we have
p(x1, ... xn) = p(x1|xe, ..., 20)p(T2, . . ., X0) (3.3.4)
= p(x1]2, ..., xn)p(x2|T3, . .., Tp)p(X3y ... Tp) 3.3.5)
n—1
= p(zn) H p(@ilzit1, ... 2n) (3.3.6)
i=1

The representation of any BN is therefore a Directed Acyclic Graph (DAG).

Every probability distribution can be written as a BN, even though it may correspond to a fully connected
‘cascade’ DAG. The particular role of a BN is that the structure of the DAG corresponds to a set of
conditional independence assumptions, namely which ancestral parental variables are sufficient to specify
each conditional probability table. Note that this does not mean that non-parental variables have no influ-
ence. For example, for distribution p(xi|x2)p(x2|zs)p(xs) with DAG z1 < z2 < 3, this does not imply
p(z2|z1,23) = p(z2]rs). The DAG specifies conditional independence statements of variables on their an-
cestors — namely which ancestors are direct ‘causes’ for the variable. The ‘effects’, given by the descendants
of the variable, will generally be dependent on the variable. See also remark(3.3).

38 DRAFT June 18, 2013

Belief Networks

LT o
(o (oo (s)—(1) (w0 (o {1 J—{=)
(a) (b)

Figure 3.4: Two BNs for a 4 variable distribution. Both graphs (a) and (b) represent the same distribution
p(x1, e, x3, x4). Strictly speaking they represent the same (lack of) independence assumptions — the graphs
say nothing about the content of the tables. The extension of this ‘cascade’ to many variables is clear and
always results in a Directed Acyclic Graph.

Remark 3.3 (Dependencies and the Markov Blanket). Consider a distribution on a set of variables X'. For
a variable z; € X and corresponding belief network represented by a DAG G, let M B(x;) be the variables
in the Markov blanket of x;. Then for any other variable y that is also not in the Markov blanket of x;
(y € X\ {x; UMB(x;)}), then x; 1l y| M B(x;). That is, the Markov blanket of x; carries all information
about x;. As an example, for fig(3.2b), M B(z1) = {x1, 22, x3,y, 22} and z; 1L x4| M B(z1).

The DAG corresponds to a statement of conditional independencies in the model. To complete the speci-
fication of the BN we need to define all elements of the conditional probability tables p(z;|pa (z;)). Once
the graphical structure is defined, the entries of the conditional probability tables (CPTs) p(x;|pa(x;)) can
be expressed. For every possible state of the parental variables pa (x;), a value for each of the states of x;
needs to be specified (except one, since this is determined by normalisation). For a large number of parents,
writing out a table of values is intractable, and the tables are usually parameterised in a low dimensional
manner. This will be a central topic of our discussion on the application of BNs in machine learning.

3.3.1 Conditional independence

Whilst a BN corresponds to a set of conditional independence assumptions, it is not always immediately
clear from the DAG whether a set of variables is conditionally independent of a set of other variables (see
definition(1.7)). For example, in fig(3.5) are z1 and zy independent, given the state of x47 The answer is
yes, since we have

1 1

p(x1, 22|74) = e} ;p(:ch T2,x3,T4) = e} %:p(xllm)p(xz\xg, z4)p(z3)p(24) (3.3.7)
= p(a1|z4) Y p(w2lws, z4)p(s) (3.3.8)
3
Now
1 1
p(wa|ry) = @) mzm p(x1, 22,23, 74) = N xg?) p(z1|za)p(z2|T3, T4)p(23)P(74) (3.3.9)
=" p(aa|rs, z4)p(as) (3.3.10)
3
Combining the two results above we have
p(z1, 2|z4) = p(z1]24)p(22|24) (3.3.11)

Figure 3.5: p(z1, 22, x3,x4) = p(z1|24)p(22|23, 4)p(23)D(24).

DRAFT June 18, 2013 39

Belief Networks
WPAPAPAS
() () () ©
(a) (b) (c) (d)

Figure 3.6: By dropping say the connection between variables 1 and x2, we reduce the 6 possible BN graphs
amongst three variables to 4. (The 6 fully connected ‘cascade’ graphs correspond to (a) with 1 — x2, (a)
with 29 — x1, (b) with z; — x9, (b) with 29 — 21, (¢) with 1 — z3 and (d) with z9 — x1. Any other
graphs would be cyclic and therefore not distributions).

so that x1 and x9 are indeed independent conditioned on 4.

We would like to have a general algorithm that will allow us to avoid doing such tedious manipulations by
reading the result directly from the graph. To help develop intuition towards constructing such an algorithm,
consider the three variable distribution p(x1,x2,x3). We may write this in any of the 6 ways

p(xlv T2, $3) = p(xil |xi2 y Lig)p(:ziz |$15)p(x23) (3'3'12)

where (i1,12,173) is any of the 6 permutations of (1,2, 3). Whilst each factorisation produces a different DAG,
all represent the same distribution, namely one that makes no independence statements. If the DAGs are of
the cascade form, no independence assumptions have been made. The minimal independence assumptions
then correspond to dropping a single link in the cascade graph. This gives rise to the 4 DAGs in fig(3.6).
Are any of these graphs equivalent, in the sense that they represent the same distribution? Applying Bayes’
rule gives :

p(xa|z3)p(ws|z1)p(w1) = p(xe, 23)p(v3, 71)/p(23) = p(w1|23)p(T2, T3) (3.3.13)
graph(c)
= p(x1|z3)p(ws|z2)p(22) = p(@1|23)p(22|23)P(T3) (3.3.14)
graph(d) graph(b)

so that DAGs (b), (c) and (d) represent the same conditional independence (CI) assumptions — given the
state of variable 3, variables x; and z9 are independent, x1 1l zo|x3.

However, graph (a) represents something fundamentally different, namely: p(x1,x2) = p(z1)p(x2). There is
no way to transform the distribution p(x3|x1, x2)p(z1)p(x2) into any of the others.

Remark 3.4 (Graphical Dependence). Belief network (graphs) are good for encoding conditional indepen-
dence but are not well suited for encoding dependence. For example, consider the graph a — b. This may
appear to encode the relation that a and b are dependent. However, a specific numerical instance of a belief
network distribution could be such that p(bla) = p(b), for which a 1L b. The lesson is that even when the
DAG appears to show ‘graphical’ dependence, there can be instances of the distributions for which depen-
dence does not follow. The same caveat holds for Markov networks, section(4.2). We discuss this issue in
more depth in section(3.3.5).

3.3.2 The impact of collisions

Definition 3.2. Given a path P, a collider is a node ¢ on P with neighbours a and b on P such that
a — ¢ < b. Note that a collider is path specific, see fig(3.8).

40 DRAFT June 18, 2013

Belief Networks

@
VIV 4

Figure 3.7: In graphs (a) and (b), variable z is not a collider. (c): Variable z is a collider. Graphs
(a) and (b) represent conditional independence z 1L y|z. In graphs (¢) and (d), and y are ‘graphically’
conditionally dependent given variable z.

In a general BN, how can we check if = Il y| 27 In fig(3.7a), x and y are independent when conditioned on
z since

p(x,ylz) = p(z|2)p(y|2) (3.3.15)

Similarly, for fig(3.7b), « and y are independent conditioned on z since

p(x,y|z) o< p(z|z)p(x)p(yl2) (3.3.16)

which is a function of x multiplied by a function of y. In fig(3.7c), however, = and y are graphically
dependent since p(z,y|z) p(z|z,y)p(z)p(y); in this situation, variable z is called a collider — the arrows
of its neighbours are pointing towards it. What about fig(3.7d)? In (d), when we condition on z, x and y
will be graphically dependent, since

planale) = PEEE S plelulptule, i(elply) # plal2)p(ol2) (33.17)

— intuitively, variable w becomes dependent on the value of z, and since x and y are conditionally dependent
on w, they are also conditionally dependent on z.

If there is a non-collider z which is conditioned along the path between x and y (as in fig(3.7)(a,b)), then
this path cannot induce dependence between x and y. Similarly, if there is a path between x and y which
contains a collider, provided that this collider is not in the conditioning set (and neither are any of its
descendants) then this path does not make xz and y dependent. If there is a path between x and y which
contains no colliders and no conditioning variables, then this path ‘d-connects’ x and y. Note that a collider
is defined relative to a path. In fig(3.8a), the variable d is a collider along the path a — b — d — ¢, but not
along the path a — b — d — e (since, relative to this path, the two arrows do not point inwards to d).

Consider the BN: A — B < C. Here A and C are (unconditionally) independent. However, conditioning
of B makes them ‘graphically’ dependent. Intuitively, whilst we believe the root causes are independent,
given the value of the observation, this tells us something about the state of both the causes, coupling them
and making them (generally) dependent. In definition(3.3) below we describe the effect that condition-
ing/marginalisation has on the graph of the remaining variables.

Definition 3.3 (Some properties of belief networks). It is useful to understand what effect conditioning or
marginalising a variable has on a belief network. We state here how these operations effect the remaining
variables in the graph and use this intuition to develop a more complete description in section(3.3.4).

(1) (B) p(A, B.C) = p(C|A, B)p(A)p(B) (3.3.18)

Q From a ‘causal’ perspective, this models the ‘causes’ A and B as a priori independent,
both determining the effect C.

DRAFT June 18, 2013 41

Belief Networks

(a): The variable d is a collider along the path a — b — d — ¢,
but not along the path a —b—d —e. Isa 1l e|b? a and e
are not d-connected since there are no colliders on the only path
between a and e, and since there is a non-collider b which is in the
conditioning set. Hence a and e are d-separated by b, = a 1L e|b.

(b): The variable d is a collider along the path a —d — e, but not
along the path a —b—c—d —e. Is alle|c¢? There are two paths
between a and e, namely a —d —e and a —b—c—d —e. The
path a — d — e is not blocked since although d is a collider on this
path and d is not in the conditioning set, we have a descendant
of the collider d in the conditioning set, namely c. For the path
a—b—c—d— e, the node c is a collider on this path and c is
in the conditioning set. For this path d is not a collider. Hence
this path is not blocked and a and e are (graphically) dependent

given c.

Figure 3.8: Collider examples for d-separation and d-connection.

Q. -0 ®
2

Marginalising over C' makes A and B independent. A
and B are (unconditionally) independent : p(A, B) =
p(A)p(B). In the absence of any information about
the effect C, we retain this belief.

@ B 0O—0O
©)

Conditioning on C' makes A and B (graphically) de-
pendent — in general p(A, B|C) # p(A|C)p(B|C). Al-
though the causes are a priori independent, knowing
the effect C in general tells us something about how
the causes colluded to bring about the effect observed.

ONSORIO=n0
()

Conditioning on D, a descendent of a collider C,
makes A and B (graphically) dependent — in general
p(A, B|D) # p(A|D)p(B|D).

e e p(4, B, C) = p(A|C)p(B|C)p(C) (3.3.19)

@ Here there is a ‘cause’ C' and independent ‘effects’ A and B.

ONSORIO_O
&

Marginalising over C' makes A and B (graphically) de-
pendent. In general, p(A, B) # p(A)p(B). Although
we don’t know the ‘cause’, the ‘effects’ will neverthe-
less be dependent.

42

DRAFT June 18, 2013

Belief Networks

Conditioning on C' makes A and B independent:
p(A, B|C) = p(A|C)p(B|C). If you know the ‘cause’

e e @ C, you know everything about how each effect occurs,

independent of the other effect. This is also true for

Q reversing the arrow from A to C — in this case A would
‘cause’ C' and then C ‘cause’ B. Conditioning on C'
blocks the ability of A to influence B.

e — @ e — » e These graphs all express the same
conditional independence assump-
© 6 ol

3.3.3 Graphical path manipulations for independence

Intuitively, we now have all the tools we need to understand when x is independent of y conditioned on z.
Examining the rules in definition(3.3), we need to look at each path between x and y. Colouring z as red
and y as green and the conditioning node z as yellow, we need to examine each path between x and y and
adjust the edges, following the intuitive rules in fig(3.9).

3.3.4 d-Separation

The above description is intuitive. A more formal treatment that is amenable to computational implemen-
tation is straightforward to obtain from these intuitions. First we define the DAG concepts of d-separation
and d-connection that are central to determining conditional independence in any BN with structure given
by the DAG[304].

Definition 3.4 (d-connection, d-separation). If G is a directed graph in which X, J and Z are disjoint
sets of vertices, then X and) are d-connected by Z in G if and only if there exists an undirected path
U between some vertex in X and some vertex in) such that for every collider C' on U, either C or a
descendent of C'is in Z, and no non-collider on U is in Z.

X and Y are d-separated by Z in G if and only if they are not d-connected by Z in G.

One may also phrase this as follows. For every variable x € X and y €), check every path U between x
and y. A path U is said to be blocked if there is a node w on U such that either

1. w is a collider and neither w nor any of its descendants is in Z, or
2. w is not a collider on U and w is in Z.

If all such paths are blocked then X and Y are d-separated by Z. If the variable sets X and) are d-separated
by Z, they are independent conditional on Z in all probability distributions such a graph can represent.

Remark 3.5 (Bayes Ball). The Bayes Ball algorithm[258] provides a linear time complexity algorithm
which given a set of nodes X and Z determines the set of nodes) such that X 1L Y| Z.) is called the set
of irrelevant nodes for X given Z.

3.3.5 Graphical and distributional in/dependence

‘We have shown

X and Y d-separated by Z = X 1L Y| Z in all distributions consistent with the belief network structure.

DRAFT June 18, 2013 43

Belief Networks

@ » -

If z is a collider (bottom path) keep undirected links
between the neighbours of the collider.

If z is a descendant of a collider, this could induce
dependence so we retain the links (making them undi-
rected)

eée :
o

If there is a collider not in the conditioning set (upper
path) we cut the links to the collider variable. In this
case the upper path between x and y is ‘blocked’.

If there is a non-collider which is in the conditioning
set (bottom path), we cut the link between the neigh-
bours of this non-collider which cannot induce depen-
dence between x and y. The bottom path is ‘blocked’.

N Lol B

In this case, neither path contributes to dependence
and hence z 1l y|z. Both paths are ‘blocked’.

@ » -

®
® 00O

®

Whilst z is a collider in the conditioning

e Q 0 @ set, w is a collider that is not in the con-
= ditioning set. This means that there is no
e @ @ path between x and y, and hence xz and y

are independent given z.

Figure 3.9: Graphical manipulations to determine independence x 1l y| z. After these manipulations,
if there is no undirected path between x and y, then x and y are independent, conditioned on z. Note
that the graphical rules here differ from those in definition(3.3) which considered the effect on the graph
having eliminated a variable (via conditioning or marginalisation). Here we consider rules for determining
independence based on a graphical representation in which the variables remain in the graph.

In other words, if one takes any instance of a distribution P which factorises according to the belief network
structure and then writes down a list £p of all the conditional independence statements that can be obtained
from P, if X and) are d-separated by Z then this list must contain the statement X' 1L Y| Z. Note that
the list Lp could contain more statements than those obtained from the graph. For example for the belief
network graph

p(a,b,c) = p(cla, b)p(a)p(b) (3.3.20)

44 DRAFT June 18, 2013

Belief Networks

b)J—>9 J— f b)— 9 Je— f
J, l J, l Figure 3.10: (a): t and f are d-connected by g. (b):
t —_———(s t Ye—{ u)—(s b and f are d-separated by u.

(a) (b)

which is representable by the DAG a — ¢ < b, then a 1L b is the only graphical independence statement
we can make. Consider a distribution consistent with equation (3.3.20), for example, on binary variables
dom(a) = dom(b) = dom(c) = {0, 1}

pp(c=1la,b) = (a —b)?, pyla=1)=0.3, pylb=1)=04 (3.3.21)

then numerically we must have a L b for this distribution pj;). Indeed the list £};) contains only the statement
a1l b. On the other hand, we can also consider the distribution

p[g}(c = 1|a,b) = 0.5, 4P (a=1)=0.3, p[g](b =1)=04 (3.3.22)

from which Ly = {allb,alle,b 1l c}. In this case L[contains more statements than a L b.

An interesting question is whether or not d-connection similarly implies dependence? That is, do all distri-
butions P consistent with the belief network possess the dependencies implied by the graph? If we consider
the belief network structure equation (3.3.20) above, a and b are d-connected by ¢, so that graphically a and
b are dependent, conditioned on c. For the specific instance pj;) we have numerically aT'b| ¢ so that the list
of dependence statements for pj;; contains the graphical dependence statement. Now consider pjg). The list
of dependence statements for pyy) is empty. Hence the graphical dependence statements are not necessarily
found in all distributions consistent with the belief network. Hence

X and Y d-connected by Z #A X TT)Y| Z in all distributions consistent with the belief network structure.

See also exercise(3.17). This shows that belief networks are powerful in ensuring that distributions necessarily
obey the independence assumptions we expect from the graph. However, belief networks are not suitable
for ensuring that distributions obey desired dependency statements.

Example 3.3. Consider the graph in fig(3.10a).

1. Are the variables ¢ and f unconditionally independent, i.e. ¢ 1L f|()? Here there are two colliders,
namely g and s — however, these are not in the conditioning set (which is empty), and hence ¢t and f
are d-separated and therefore unconditionally independent.

2. What about t L f|g? There is a path between t and f for which all colliders are in the conditioning
set. Hence t and f are d-connected by g, and therefore ¢ and f are graphically dependent conditioned
on g.

Example 3.4. Is {b, f} 1L u|0 in fig(3.10b)? Since the conditioning set is empty and every path from either
b or f to u contains a collider, b and f are unconditionally independent of wu.

3.3.6 Markov equivalence in belief networks

We have invested a lot of effort in learning how to read conditional independence relations from a DAG.
Happily, we can determine whether two DAGs represent the same set of conditional independence statements
(even when we don’t know what they are) by using a relatively simple rule.

DRAFT June 18, 2013 45

Belief Networks

Figure 3.11: (a): Two treatments t1,t2 and corresponding
outcomes y1,ys. The health of a patient is represented by
h. This DAG embodies the conditional independence state-
ments t1 1L to,ya| 0, to UL ¢1,y1| 0, namely that the treat-
ments have no effect on each other. (b): One could repre-

6 @ @ sent the effect of marginalising over h using a bi-directional
(b

dee.
(a)) oeee

H—E

O
l
o

Definition 3.5 (Markov equivalence). Two graphs are Markov equivalent if they both represent the same
set of conditional independence statements. This definition holds for both directed and undirected graphs.

Example 3.5. Consider the belief network with edges A — C «+ B, from which the set of conditional
independence statements is A 1L B|(). For another belief network with edges A — C' + B and A — B, the
set of conditional independence statements is empty. In this case, the two belief networks are not Markov
equivalent.

Procedure 3.1 (Determining Markov equivalence). Define an immorality in a DAG as a configuration of
three nodes, A, B, C such that C' is a child of both A and B, with A and B not directly connected. Define
the skeleton of a graph by removing the directions on the arrows. Two DAGs represent the same set of
independence assumptions (they are Markov equivalent) if and only if they have the same skeleton and the
same set of immoralities [78].

Using procedure(3.1) we see that in fig(3.6), BNs (b,c,d) have the same skeleton with no immoralities and
are therefore equivalent. However BN (a) has an immorality and is therefore not equivalent to BNs (b,c,d).

3.3.7 Belief networks have limited expressibility

Belief networks fit well with our intuitive notion of modelling ‘causal’ independencies. However, formally
speaking they cannot necessarily graphically represent all the independence properties of a given distribu-
tion.

Consider the DAG in fig(3.11a), (from [249]). This DAG could be used to represent two successive ex-
periments where t; and to are two treatments and y; and yo represent two outcomes of interest; h is the
underlying health status of the patient; the first treatment has no effect on the second outcome hence
there is no edge from y; to yo. Now consider the implied independencies in the marginal distribution
p(t1,t2,y1,y2), obtained by marginalising the full distribution over h. There is no DAG containing only
the vertices %1, y1,%2,y2 which represents the independence relations and does not also imply some other
independence relation that is not implied by fig(3.11a). Consequently, any DAG on vertices t1,y1,t2, Y2
alone will either fail to represent an independence relation of p(t1, t2, y1, y2), or will impose some additional
independence restriction that is not implied by the DAG. In the above example

plt1st2, 1, 92) = p(t)p(ta) Y p(yiltr, h)p(yalta, h)p(h) (3.3.23)
h

cannot in general be expressed as a product of functions defined on a limited set of the variables. However,
it is the case that the conditional independence conditions ¢ 1L (t2,y2), t2 1L (t1,y1) hold in p(t1,te, y1,y2) —
they are there, encoded in the form of the conditional probability tables. It is just that we cannot ‘see’ this
independence since it is not present in the structure of the marginalised graph (though one can naturally

46 DRAFT June 18, 2013

Causality

infer this in the larger graph p(t1,t2, y1, 92, h)). For example, for the BN with link from y, to y;, we have
t1 1L ta| y2, which is not true for the distribution in (3.3.23). Similarly, for the BN with link from y; to ya,
the implied statement ¢; Ll ¢2|y; is also not true for (3.3.23).

This example demonstrates that BNs cannot express all the conditional independence statements that could
be made on that set of variables (the set of conditional independence statements can be increased by consid-
ering additional variables however). This situation is rather general in the sense that any graphical model
has limited expressibility in terms of independence statements[281]. It is worth bearing in mind that BNs
may not always be the most appropriate framework to express one’s independence assumptions and intu-
itions.

A natural consideration is to use a bi-directional arrow when a variable is marginalised. For fig(3.11a), one
could depict the marginal distribution using a bi-directional edge, fig(3.11b). For a discussion of extensions
of BNs using bi-directional edges see [249].

3.4 Causality

Causality is a contentious topic and the purpose of this section is to make the reader aware of some pitfalls
that can occur and which may give rise to erroneous inferences. The reader is referred to [237] and [78] for
further details.

The word ‘causal’ is contentious particularly in cases where the model of the data contains no explicit tem-
poral information, so that formally only correlations or dependencies can be inferred. For a distribution
p(a,b), we could write this as either (i) p(alb)p(b) or (ii) p(bla)p(a). In (i) we might think that b ‘causes’
a, and in (i) a ‘causes’ b. Clearly, this is not very meaningful since they both represent exactly the same
distribution, see fig(3.12). Formally BNs only make independence statements, not causal ones. Neverthe-
less, in constructing BNs, it can be helpful to think about dependencies in terms of causation since our
intuitive understanding is usually framed in how one variable ‘influences’ another. First we discuss a classic
conundrum that highlights potential pitfalls that can arise.

3.4.1 Simpson’s paradox

Simpson’s ‘paradox’ is a cautionary tale in causal reasoning in BNs. Consider a medical trial in which
patient treatment and outcome are recovered. Two trials were conducted, one with 40 females and one with
40 males. The data is summarised in table(3.1). The question is : Does the drug cause increased recovery?
According to the table for males, the answer is no, since more males recovered when they were not given the
drug than when they were. Similarly, more females recovered when not given the drug than recovered when
given the drug. The conclusion appears that the drug cannot be beneficial since it aids neither subpopulation.

However, ignoring the gender information, and collating both the male and female data into one combined
table, we find that more people recovered when given the drug than when not. Hence, even though the
drug doesn’t seem to work for either males or females, it does seem to work overalll Should we therefore
recommend the drug or not?

O—B 60— O—W

Figure 3.12: Both (a) and (b) represent the same distribution p(a,b) = p(alb)p(b) = p(bla)p(a). (c):
The graph represents p(rain, grasswet) = p(grasswet|rain)p(rain). (d): We could equally have written
p(rain|grasswet)p(grasswet), although this appears to be causally non-sensical.

DRAFT June 18, 2013 47

Causality

Figure 3.13: (a): A DAG for the relation be-
tween Gender (G), Drug (D) and Recovery (R), see

table(3.1). (b): Influence diagram. No decision vari-
@ e - i@ i @ able is required for G since G has no parents.
(a) (b)

Resolution of the paradox

The ‘paradox’ occurs because we are asking a causal (interventional) question — If we give someone the drug,
what happens? — but we are performing an observational calculation. Pearl[237] would remind us that there
is a difference between ‘given that we see’ (observational evidence) and ‘given that we do’ (interventional
evidence). We want to model a causal experiment in which we first intervene, setting the drug state, and
then observe what effect this has on recovery.

A model of the Gender, Drug and Recovery data (which makes no conditional independence assumptions)
is, fig(3.13a),

p(G, D, R) = p(R|G, D)p(D|G)p(G) (3.4.1)

In a causal interpretation, however, if we intervene and give the drug, then the term p(D|G) in equation
(3.4.1) should play no role in the experiment — we decide to give the drug or not independent of gender.
The term p(D|G) therefore needs to be replaced by a term that reflects the set-up of the experiment. We
use the idea of an atomic intervention, in which a single variable is set in a particular state. In our atomic
causal intervention, where we set D, we deal with the modified distribution

p(G, R|D) = p(R|G, D)p(G) (3.4.2)

where the terms on the right hand side of this equation are taken from the original BN of the data. To
denote an intervention we use |[:
p(R|G, D)p(G)

p(R[|G, D) = p(R|G, D) = S p(RIG, D)p(G) = p(R|G, D) (3.4.3)

(One can also consider here G as being interventional — in this case it doesn’t matter since the fact that the
variable G has no parents means that for any distribution conditional on G, the prior factor p(G) will not be
present). Using equation (3.4.3), for the males given the drug 60percent recover, versus 7T0percent recovery
when not given the drug. For the females given the drug 20percent recover, versus 30percent recovery when
not given the drug.

Males Recovered | Not Recovered | Rec. Rate
Given Drug 18 12 60%
Not Given Drug 7 3 70%

Females Recovered | Not Recovered | Rec. Rate
Given Drug 2 8 20%
Not Given Drug 9 21 30%

Combined Recovered | Not Recovered | Rec. Rate
Given Drug 20 20 50%
Not Given Drug 16 24 40%

Table 3.1: Table for Simpson’s Paradox (from [237])

48 DRAFT June 18, 2013

Causality

Similarly,

_ 2.aP(R|G, D)p(G)
>_rcPRIG, D)p(G)

Using the post intervention distribution, equation (3.4.4), we have

p(R||D) = p(R|D)

=> p(R|G,D)p(G) (3.4.4)
G

p(recovery|drug) = 0.6 x 0.5+ 0.2 x 0.5 =04 (3.4.5)
p(recovery|no drug) = 0.7 x 0.5+ 0.3 x 0.5 =0.5 (3.4.6)

Hence we infer that the drug is overall not helpful, as we intuitively expect, and is consistent with the
results from both subpopulations.

Summarising the above argument, p(G, D, R) = p(R|G, D)p(G)p(D) means that we choose either a Male
or Female patient and give them the drug or not independent of their gender, hence the absence of the
term p(D|G) from the joint distribution. One way to think about such models is to consider how to draw
a sample from the joint distribution of the random variables — in most cases this should clarify the role of
causality in the experiment.

In contrast to the interventional calculation, the observational calculation makes no conditional independence
assumptions. This means that, for example, the term p(D|G) plays a role in the calculation (the reader
might wish to verify that the result given in the combined data in table(3.1) is equivalent to inferring with
the full distribution equation (3.4.1)).

3.4.2 The do-calculus

In making causal inferences we’ve seen above that we must adjust the model to reflect any causal experi-
mental conditions. In setting any variable into a particular state we need to surgically remove all parental
links of that variable. Pearl calls this the do operator, and contrasts an observational (‘see’) inference p(z|y)
with a causal (‘make’ or ‘do’) inference p(z|do(y)).

Definition 3.6 (Pearl’s Do Operator).

Inferring the effect of setting variables X, ,..., X.,, cx € C, in states x¢,, ..., X, is equivalent to standard
evidential inference in the post intervention distribution:

X1, XolXeys -5 X
p(X|do(X,, :xcl),...,do(XcK:XCK))ZP(1 nlXe; cx

) Xj|pa (X; 3.4.7
15, p(Xe,lpa(Xe,)) jgp(jlpa (X;)) (3.4.7)

where any parental states pa(X;) of X; are set in their evidential states. An alternative notation is
DX [Xeyy - vy Xege)-

In words, for those variables for which we causally intervene and set in a particular state, the corresponding
terms p(X,,|pa (X)) are removed from the original Belief Network. For variables which are evidential but
non-causal, the corresponding factors are not removed from the distribution. The interpretation is that the
post intervention distribution corresponds to an experiment in which the causal variables are first set and
non-causal variables are subsequently observed.

3.4.3 Influence diagrams and the do-calculus

Another way to represent intervention is to modify the basic BN by appending a parental decision variable
Fx to any variable X on which an intervention can be made, giving rise to a so-called influence diagram[78].
For example?, for the Simpson’s paradox example, we may use, fig(3.13b),

#(D,G, R, Fp) = p(D|Fp, G)p(G)p(R|G, D)p(Fp) (3.4.8)

2Here the influence diagram is a distribution over variables including decision variables, in contrast to the application of
IDs in chapter(7).

DRAFT June 18, 2013 49

Code

where
p(D|Fp =0,G) = p(D|pa (D)), p(D|Fp=d,G)=1for D=d and 0 otherwise

Hence, if the decision variable Fp is set to the empty state, the variable D is determined by the standard
observational term p(D|pa (D)). If the decision variable is set to a state of D, then the variable puts all its
probability in that single state of D = d. This has the effect of replacing the conditional probability term by
a unit factor and any instances of D set to the variable in its interventional state®. A potential advantage
of this influence diagram approach over the do-calculus is that conditional independence statements can be
derived using standard techniques for the augmented BN. Additionally, for learning, standard techniques
apply in which the decision variables are set to the condition under which each data sample was collected
(a causal or non-causal sample).

Remark 3.6 (Learning the edge directions). In the absence of data from causal experiments, one should
be justifiably sceptical about learning ‘causal’ networks. Nevertheless, one might prefer a certain direction
of a link based on assumptions of the ‘simplicity’ of the CPTs. This preference may come from a physical
intuition that whilst root causes may be uncertain, the relationship from cause to effect is clear. In this
sense a measure of the complexity of a CPT is required, such as entropy. Such heuristics can be numerically
encoded and the edge directions learned in an otherwise Markov equivalent graph. See also exercise(12.6).

3.5 Summary

e We can reason with certain or uncertain evidence using repeated application of Bayes' rule.

e A belief network represents a factorisation of a distribution into conditional probabilities of variables de-
pendent on parental variables.

e Belief networks correspond to directed acyclic graphs.

e Variables are conditionally independent = Ll y| z if p(z,y|z) = p(z|2)p(y|z); the absence of a link in a belief
network corresponds to a conditional independence statement.

e |f in the graph representing the belief network, two variables are independent, then they are independent
in any distribution consistent with the belief network structure.

e Belief networks are natural for representing ‘causal’ influences.

e Causal questions must be addressed by an appropriate causal model.

3.6 Code

3.6.1 Naive inference demo

demoBurglar.m: Was it the Burglar demo

demoChestClinic.m: Naive Inference on Chest Clinic. See exercise(3.4).
3.6.2 Conditional independence demo

The following demo determines whether X 1l J| Z for the Chest Clinic network, fig(3.15), and checks
the result numerically?. The independence test is based on the Markov method of section(4.2.4). This

3More general cases can be considered in which the variables are placed in a distribution of states [78].
4The code for graphical conditional independence is given in chapter(4).

50 DRAFT June 18, 2013

FExercises

"4 Figure 3.14: Party animal. Here all variables are binary. P = Been to
G @ Party, H = Got a Headache, D = Demotivated at work, U = Underperform
e at work, A =Boss Angry. Shaded variables are observed in the true state.

x = Positive X-ray
e d = Dyspnea (Shortness of breath)

e = Either Tuberculosis or Lung Cancer

e 0 G t = Tuberculosis

I = Lung Cancer
e b = Bronchitis

e e a = Visited Asia

s = Smoker

Figure 3.15: Belief network structure for the Chest Clinic example.

is an alternative to the d-separation method and also more general in that it deals also with conditional
independence in Markov Networks as well as belief networks. Running the demo code below, it may happen
that the numerical dependence is very small — that is

P(X, V|Z) ~ p(X|Z)p(V|2) (36.1)

even though X1 Y| Z. This highlights the difference between ‘structural’ and ‘numerical’ independence.
condindepPot.m: Numerical measure of conditional independence
demoCondindep.m: Demo of conditional independence (using Markov method)

3.6.3 Utility routines

dag.m: Find the DAG structure for a belief network

3.7 Exercises

Exercise 3.1 (Party Animal). The party animal problem corresponds to the network in fig(3.14). The boss
is angry and the worker has a headache — what is the probability the worker has been to a party? To complete
the specifications, the probabilities are given as follows:

p({U=tlP=tr,D=1tr)=0999 pU=tlP=fa,D=tr)=0.9 p(H=trlP=1tr)=0.9

p(U =trlP =tr,D = fa) = 0.9 p(U =trlP =fa,D = fa) = 0.01 p(H = tr|P = fa) = 0.2

p(A =trlU = tr) = 0.95 p(A=trlU =1fa) =05 p(P=tr)=0.2,p(D=1tr) =04

Exercise 3.2. Consider the distribution p(a,b,c) = p(cla,b)p(a)p(b). (i) Is a LLb|0? (i) Is a LLb|c?

Exercise 3.3. The Chest Clinic network[184] concerns the diagnosis of lung disease (tuberculosis, lung
cancer, or both, or neither), see fig(3.15). In this model a visit to Asia is assumed to increase the probability
of tuberculosis. State if the following conditional independence relationships are true or false

1. tuberculosis 1. smoking| shortness of breath
2. lung cancer 1L bronchitis| smoking
3. visit to Asia Ll smoking|lung cancer

4. wvisit to Asia 1l smoking|lung cancer, shortness of breath

DRAFT June 18, 2013 51

Exercises

Battery @

4
C Turn Over)

Figure 3.16: Belief network of car starting, see exercise(3.6).

Exercise 3.4. Consider the Chest Clinic belief network in fig(3.15)[184]. Calculate by hand the values for

p(d), p(d|s = tr), p(d|s = fa). The table values are:
pla = tr) =0.01 p(s=tr) =0.5
p(t = trla = tr) =0.05 p(t = trla = fa) =0.01
p(l = trls = tr) =01 p(l=trs="fa) =0.01
p(b = tr|s = tr) =0.6 pb=trs="fa) =0.3
p(z = trle = tr) =0.98 p(z = trle = fa) =0.05
p(d=trle=tr,b=tr) =09 p(d=tre=tr,b="fa) =0.7
p(d=trle="fa,b=tr) =0.8 p(d=trle="fa,b="fa) =0.1

p(e = trlt,1) = 0 only if both t and [are fa, 1 otherwise.

Exercise 3.5. If we interpret the Chest Clinic network exercise(3.4) causally, how can we help a doctor
answer the question ‘If I could cure my patients of Bronchitis, how would this affect my patients’ chance of
being short of breath?’. How does this compare with p(d = trlb = fa) in a non-causal interpretation, and
what does this mean?

Exercise 3.6 ([140]). The network in fig(3.16) concerns the probability of a car starting, with

p(b = bad) = 0.02 p(f = empty) = 0.05
p(g = empty|b = good, f = not empty) = 0.04 p(g = empty|b = good, f = empty) = 0.97
p(g = empty|b = bad, f = not empty) = 0.1 p(g = empty|b = bad, f = empty) = 0.99
p(t = fa|b = good) = 0.03 p(t = falb = bad) = 0.98
p(s = falt = tr, f = not empty) = 0.01 p(s = fa|t = tr, f = empty) = 0.92

p(s = fa|t = fa, f = not empty) = 1.0 p(s = falt = fa, f = empty) = 0.99

Calculate P(f = emptyls = no), the probability of the fuel tank being empty conditioned on the observation
that the car does not start.

Exercise 3.7. There is a synergistic relationship between Asbestos (A) exposure, Smoking (S) and Cancer
(C). A model describing this relationship is given by

p(4,8,C) =p(C|A, S)p(A)p(S) (3.7.1)
1. Is A1LS|0?
2. Is A1LS|C?

3. How could you adjust the model to account for the fact that people who work in the building industry
have a higher likelihood to also be smokers and also a higher likelihood to asbestos exposure?

©
@
©

Exercise 3.8.

Consider the belief network on the right which represents Mr
Holmes’ burglary worries as given in fig(3.3a) : (B)urglar,
(A)larm, (W)atson, Mrs (G)ibbon.

All variables are binary with states {tr,fa}. The table entries are

p(B = tr) = 0.01

p(A tr]B tr) =099 p(A=trlB="fa) =0.05 (3.7.2)
pW=trlA=tr) =09 p(W=trlA=1fa) =05 o
p(G=trlA=tr) =07 pG=trlA=1fa) =02

52 DRAFT June 18, 2013

FExercises

1. Compute ‘by hand’ (i.e. show your working) :
(a) p(B = tW = tr)
(b) p(B = trlW = tr,G = fa)

2. Consider the same situation as above, except that now the evidence is uncertain. Mrs Gibbon thinks
that the state is G = fa with probability 0.9. Similarly, Dr Watson believes in the state W = fa with
value 0.7. Compute ‘by hand’ the posteriors under these uncertain (soft) evidences:

(a) p(B = trlW)
(b) p(B = tW,G)

Exercise 3.9. A doctor gives a patient a (D)rug (drug or no drug) dependent on their (A)ge (old or young)
and (G)ender (male or female). Whether or not the patient (R)ecovers (recovers or doesn't recover) depends
on all D, A,G. In addition A1 G|0.

1. Write down the belief network for the above situation.
2. Explain how to compute p(recover|drug).
3. Explain how to compute p(recover|do(drug), young).
Exercise 3.10. Implement the Wet Grass scenario in section(3.1.1) using the BRMLTOOLBOX.

Exercise 3.11 (LA Burglar). Consider the Burglar scenario, example(3.1). We now wish to model the
fact that in Los Angeles the probability of being burgled increases if there is an earthquake. Explain how to
include this effect in the model.

Exercise 3.12. Given two belief networks represented as DAGs with associated adjacency matrices A and
B, write a MATLAB function MarkovEquiv (A,B) .m that returns 1 if A and B are Markov equivalent, and
zero otherwise.

Exercise 3.13. The adjacency matrices of two belief networks are given below (see ABmatrices.mat). State
if they are Markov equivalent.

001 101000 001100000
001010000 001000000
000000 T1O0 0 000000100
00000001 1 00000O0O0T11
A=loo01000 100 [, B=|011000100 (3.7.3)
000100010 100100010
000000GO0O0 1 000000GO0O0 1
000000 O0O0 O 0000000 O0 O
00000000 O 0000000 O0 O

Exercise 3.14. There are three computers indexed by i € {1,2,3}. Computer i can send a message in
one timestep to computer j if C;; = 1, otherwise Ci; = 0. There is a fault in the network and the task is
to find out some information about the communication matriz C (C is not necessarily symmetric). To do
this, Thomas, the engineer, will run some tests that reveal whether or not computer i can send a message to
computer j in t timesteps, t € {1,2}. This is expressed as C;j(t), with C;j(1) = Cjy;. For example, he might
know that C13(2) = 1, meaning that according to his test, a message sent from computer 1 will arrive at
computer 8 in at most 2 timesteps. Note that this message could go via different routes — it might go directly
from 1 to 3 in one timestep, or indirectly from 1 to 2 and then from 2 to 3, or both. You may assume
Cii = 1. A priori Thomas thinks there is a 10 per cent probability that C;; = 1, i # j, and assumes that
each such connection is independent of the rest. Given the test information C = {C12(2) = 1, C3(2) = 0},
compute the a posteriori probability vector

[p(Cr2 = 1|C), p(C13 = 1|C), p(Ca3 = 1|C), p(C32 = 1|C), p(C21 = 1|C), p(C31 = 1|C)] (3.7.4)

DRAFT June 18, 2013 53

Exercises

Exercise 3.15. A belief network models the relation between the variables oil,inf,eh, bp, rt which stand for
the price of oil, inflation rate, economy health, British Petroleum Stock price, retailer stock price. FEach
variable takes the states low, high, except for bp which has states low, high, normal. The belief network model

for these variables has tables

p(eh=low)=0.2

p(bp=Ilow|oil=low)=0.9
p(bp=low|oil=high)=0.1
p(oil=low|eh=Ilow)=0.9
p(rt=low|inf=Ilow,eh=Ilow)=0.9
p(rt=low|inf=high,eh=Ilow)=0.1
p(inf=low| oil=Ilow,eh=Ilow)=0.9
p(inf=low|oil=high,eh=Ilow)=0.1

p(bp=normal|oil=low)=0.1
p(bp=normal|oil=high)=0.}
p(oil=low|eh=high)=0.05
p(rt=low|inf=Ilow,eh=high)=0.1
p(rt=low|inf=high,eh=high)=0.01
p(inf=low|oil=Ilow,eh=high)=0.1
p(inf=Ilow|oil=high,eh=high)=0.01

1. Draw a belief network for this distribution.

2. Given that the BP stock price is normal and the retailer stock price is high, what is the probability that
inflation is high?

Exercise 3.16. There are a set of C potentials with potential ¢ defined on a subset of variables X,. If
X, C Xy we can merge (multiply) potentials ¢ and d since the variables in potential ¢ are contained within
potential d. With reference to suitable graph structures, describe an efficient algorithm to merge a set of
potentials so that for the new set of potentials no potential is contained within the other.

Exercise 3.17. This exercise explores the distinction between d-connection and dependence. Consider the
distribution class

p(a,b,c) = p(c|b)p(bla)p(a) (3.7.5)

for which a is d-connected to c. One might expect that this means that a and c are dependent, allc. Our
interest is to show that there are non-trivial distributions for which a 1L c.

1. Consider dom(a) = dom(c) = {1,2} and dom(b) = {1,2,3}. For

1/4 15/40
_(3/5 4 — - (13 1/2 15/40
s =(372). ol - iz s)k (s 1 U)o
show that a1l c.
2. Consider
pla,b,c) = o(a, By (b, o (3.77)

for positive function ¢, and Z = Emb’c @d(a,b)1p(b,). Defining matrices M and N with elements

Mij = ¢(a =i,b = j), Nij =1p(b=j,c=k) (3.7.8)
show that the marginal distribution p(a = i,c = k) is represented by the matriz elements
. 1 T
pla=ic=k) = [MN }k (3.7.9)
3. Show that if
MN' = mgn] (3.7.10)

for some vectors mg and ng, then a1l c.

54 DRAFT June 18, 2013

++
++

FExercises

4. Writing
M=[m; my; mj], N=[n; ny nj (3.7.11)
for two dimensional vectors m;,n;, i =1,...,3, show that
MN' = min] + myn] + mzn] (3.7.12)

5. Show that by setting
my = A\m;, nz =~ (n;+ Ang) (3.7.13)
for scalar X, v then MINT can be written as monoT where

my = m; + ymg, ng = nj + Any (3.7.14)

6. Hence construct example tables p(a), p(bla), p(c|b) for which a L c. Verify your examples explicitly
using BRMLTOOLBOX.

Exercise 3.18. Alice and Bob share a bank account which contains an a priori unknown total amount of
money T. Whenever Alice goes to the cash machine, the available amount for withdrawal A for Alice is
always 10percent of the total T. Similarly, when Bob goes to the cash machine the available amount for
withdrawal B for Bob is 10percent of the total T. Whatever the amount in the bank, Alice and Bob check
their available amounts for withdrawal independently. Draw a belief network that expresses this situation
and show that ATTB.

Exercise 3.19. Assume that the day of the week that females are born on, x, is independent of the day of
the week, y, on which males are born. Assume, however, that the old rhyme is true and that personality
is dependent on the day of the week you’re born on. If a represents the female personality type and b the
male personality type, then allx and bTy, but a 1L b. Whether or not a male and a female are married, m,
depends strongly on their personality types, m1T {a,b}, but is independent of x and y if we know a and b.
Draw a belief network that can represent this setting. What can we say about the (graphical) dependency
between the days of the week that John and Jane are born on, given that they are not married?

Exercise 3.20. A survey of households in which the husband and wife each own their own car is made.
The survey also know whether the household income (inc) is high or low. There are 4 car types, dom(h) =
dom(w) = {1,2,3,4}, the first two being ‘cheap’ and the last two being ‘expensive’. The survey finds that
the types of cars owned by the husband and wife are independent, given their income:

wife’s car type 1L husband’s car type| family income

Specifically, p(inc = low) = 0.8 and

0.7 0.2
p(wline = low) = 0(')3 , p(wlinc = high) = 8}1
0 0.3
0.2 0
p(hlinc = low) = 0(')8 , p(hlinc = high) = 093

0 0.7

Use BRMLTOOLBOX to find the marginal p(w,h) and show that whilst h 1L w|inc, it is not the case that
h 1l w.

DRAFT June 18, 2013 55

Exercises

56

DRAFT June 18, 2013

CHAPTER 4

Graphical Models

In chapter(3) we saw how belief networks are used to represent statements about independence of variables in
a probabilistic model. Belief networks are simply one way to unite probability and graphical representation.
Many others exist, all under the general heading of ‘graphical models’. FEach has specific strengths and
weaknesses. Broadly, graphical models fall into two classes: those useful for modelling, such as belief
networks, and those useful for inference. This chapter will survey the most popular models from each class.

4.1 Graphical Models

Graphical Models (GMs) are depictions of independence/dependence relationships for distributions. Each
class of GM is a particular union of graph and probability constructs and details the form of independence
assumptions represented. GMs are useful since they provide a framework for studying a wide class of prob-
abilistic models and associated algorithms. In particular they help to clarify modelling assumptions and
provide a unified framework under which inference algorithms in different communities can be related.

It needs to be emphasised that all forms of GM have a limited ability to graphically express conditional
(in)dependence statements[281]. As we’ve seen, belief networks are useful for modelling ancestral condi-
tional independence. In this chapter we’ll introduce other types of GM that are more suited to representing
different assumptions. Here we’ll focus on Markov networks, chain graphs (which marry Belief and Markov
networks) and factor graphs. There are many more inhabitants of the zoo of graphical models, see [73, 314].

The general viewpoint we adopt is to describe the problem environment using a probabilistic model, after
which reasoning corresponds to performing probabilistic inference. This is therefore a two part process :

Modelling After identifying all potentially relevant variables of a problem environment, our task is to
describe how these variables can interact. This is achieved using structural assumptions as to the
form of the joint probability distribution of all the variables, typically corresponding to assumptions
of independence of variables. Each class of graphical model corresponds to a factorisation property of
the joint distribution.

Inference Once the basic assumptions as to how variables interact with each other is formed (i.e. the
probabilistic model is constructed) all questions of interest are answered by performing inference on
the distribution. This can be a computationally non-trivial step so that coupling GMs with accurate
inference algorithms is central to successful graphical modelling.

Whilst not a strict separation, GMs tend to fall into two broad classes — those useful in modelling, and those
useful in representing inference algorithms. For modelling, belief networks, Markov networks, chain graphs
and influence diagrams are some of the most popular. For inference one typically ‘compiles’ a model into a

57

Markov Networks

Figure 4.1: (a): ¢(x1,xg)é(xg,x3)¢(x3,x4)¢(x4,x1)/Za (b) ¢($1,$2,1‘3,1‘4)/Zb (C):
G(x1, w2, 24)P(22, T3, T4)P(23, 25) P (23, T6) [Ze-

suitable GM for which an algorithm can be readily applied. Such inference GMs include factor graphs and
junction trees.

4.2 Markov Networks

Belief networks correspond to a special kind of factorisation of the joint probability distribution in which
each of the factors is itself a distribution. An alternative factorisation is, for example

pla,bye) = %qﬁ(a, b)o(b,) (4.2.1)

where ¢(a,b) and ¢(b, c) are potentials (see below) and Z is a constant which ensures normalisation, called
the partition function

Z=> ¢(a,b)p(b,c) (4.2.2)

a,b,c

Definition 4.1 (Potential). A potential ¢(x) is a non-negative function of the variable z, ¢(x) > 0. A joint
potential ¢(z1,...,z,) is a non-negative function of the set of variables. A distribution is a special case
of a potential satisfying normalisation, > ¢(x) = 1. This holds similarly for continuous variables, with
summation replaced by integration.

We will typically use the convention that the ordering of the variables in the potential is not relevant (as
for a distribution) — the joint variables simply index an element of the potential table. Markov Networks
are defined as products of potentials defined on maximal cliques of an undirected graph — see below and
fig(4.1).

Definition 4.2 (Markov Network). For a set of variables X = {z1,...,2,} a Markov network is defined as
a product of potentials on subsets of the variables X, C X:

1 C
p($17-~7$n) = E H¢C(XC) (423)
c=1

The constant Z ensures the distribution is normalised. Graphically this is represented by an undirected
graph G with X.,c = 1,...,C being the maximal cliques of G. For the case in which clique potentials are
strictly positive, this is called a Gibbs distribution.

Definition 4.3 (Pairwise Markov network). In the special case that the graph contains cliques of only size
2, the distribution is called a pairwise Markov Network, with potentials defined on each link between two
variables.

58 DRAFT June 18, 2013

Markov Networks

(2) (5 (2) (5
Q"@"@ Q‘.@‘.@ Figure 4.2: (a): ¢(1,2,3)¢(2,3,4)¢(4,5,6)¢(5,6,7).
(b): By the global Markov property, since every path

OO OO

from 1 to 7 passes through 4, then 111 7/4.

(a) (b)

Whilst a Markov network is formally defined on maximal cliques, in practice

authors often use the term to refer to non-maximal cliques. For example, in the @ @
graph on the right, the maximal cliques are z1,x2,x3 and x2, x3, x4, so that the v
graph describes a distribution p(x1,x2, 3, x4) = ¢(x1, T2, x3)(T2, 3, 24)/Z. In | |
a pairwise network though the potentials are assumed to be over two-cliques, @ @
giving p(z1, v2, 23, 74) = ¢(x1, 22)P(T1, 73)d(72, 73)P(T2, T4) (T3, 74) /2.

Example 4.1 (Boltzmann machine). A Boltzmann machine is a MN on binary variables dom(z;) = {0,1}
of the form

1

_ DR, 0, D S IDS T
p(x) Z(w,b)e < Wig ity (4.2.4)

where the interactions w;; are the ‘weights’ and the b; the ‘biases’. This model has been studied in the
machine learning community as a basic model of distributed memory and computation[2]. The graphical
model of the BM is an undirected graph with a link between nodes 7 and j for w;; # 0. Consequently, for
all but specially constrained W, the graph is multiply-connected and inference will be typically intractable.

Definition 4.4 (Properties of Markov Networks).

@ p(A, B, C) = ¢AC(Aa C)(Z)BC(Ba C)/Z (4'2'5)

e e — Marginalising over C' makes A and B (graphically)

r dependent. In general p(A, B) # p(A)p(B).
&

@ e @ Conditioning on C' makes A and B independent:

@ p(A, B|C) = p(A[C)p(B|C).

4.2.1 Markov properties

We consider here informally the properties of Markov networks and the reader is referred to [182] for detailed
proofs. Consider the MN in fig(4.2a) in which we use the shorthand p(1) = p(z1), ¢(1,2,3) = ¢(x1, z2, x3)
etc. We will use this undirected graph to demonstrate conditional independence properties. Note that
throughout we will be often dividing by potentials and, in order to ensure this is well defined, we assume the
potentials are positive. For positive potentials the following local, pairwise and global Markov properties
are all equivalent.

DRAFT June 18, 2013 59

Markov Networks

i
—0F—0o0 B 6w

(

Figure 4.3: (a-d): Local conditional distributions. Note that no distribution is implied for the parents of
each variable. That is, in (a) we are given the conditional p(x4|z1,x3) — one should not read from the graph
that we imply 21 and z3 are marginally independent. (e): The Markov network consistent with the local
distributions. If the local distributions are positive, by the Hammersley-Clifford theorem, the only joint
distribution that can be consistent with the local distributions must be a Gibbs distribution with structure

given by (e).

Definition 4.5 (Separation). A subset S separates a subset A from a subset B (for disjoint A and B) if
every path from any member of A to any member of B passes through S. If there is no path from a member
of A to a member of B then A is separated from B. If S = () then provided no path exists from A to B, A
and B are separated.

Definition 4.6 (Global Markov Property). For disjoint sets of variables, (A, B,S) where S separates A
from B in G, then A 1L B|S.

As an example of the global Markov property, consider

p(L,714) o > p(1,2,3,4,5,6,7) (4.2.6)
2,3,5,6
=) #(1,2,3)6(2,3,4)6(4,5,6)6(5,6,7) (4.2.7)
2,3,5,6
=) 6(1,2,3)6(2,3,4) $ > 6(4,5,6)9(5,6,7) (4.2.8)
2.3 5,6

This implies that p(1,7]4) = p(1/4)p(7]4). This can be inferred since all paths from 1 to 7 pass through 4,
see fig(4.2a).

Procedure 4.1 (An algorithm for independence). The separation property implies a simple algorithm for
deciding A 1l B| S. We simply remove all links that neighbour the set of variables S. If there is no path
from any member of A to any member of B, then ALl B|S is true — see also section(4.2.4).

For positive potentials, the so-called local Markov property holds

Pl X\x) = p(alne (2)). (4.2.9)

That is, when conditioned on its neighbours, = is independent of the remaining variables of the graph. In
addition, the so-called pairwise Markov property holds that for any non-adjacent vertices x and y

x Ly X\{z,y}. (4.2.10)

4.2.2 Markov random fields

A MRF is a set of conditional distributions, one for each indexed ‘location’.

60 DRAFT June 18, 2013

Markov Networks

Definition 4.7 (Markov Random Field). A MRF is defined by a set of distributions p(x;|ne (x;)) where
i € {1,...,n} indexes the distributions and ne (z;) are the neighbours of variable x;, namely that subset of
the variables x1,...,x, that the distribution of variable z; depends on. The term Markov indicates that
this is a proper subset of the variables. A distribution is an MRF with respect to an undirected graph G if

p(zilz\i) = p(zilne (z;)) (4.2.11)

where ne (z;) are the neighbouring variables of variable x;, according to the undirected graph G. The
notation x\; is shorthand for the set of all variables X excluding variable x;, namely X'\z; in set notation.

4.2.3 Hammersley-Clifford Theorem

An undirected graph G specifies a set of independence statements. An interesting challenge is to find
the most general functional form of a distribution that satisfies these independence statements. A trivial
example is the graph z; — z2 — z3, from which we have z; 1l x3|x2. From this requirement we must have

p(x1|z2, v3) = p(x1]72) (4.2.12)
Hence
p(x1, 22, 23) = p(a1|2e, 23)p(22, ¥3) = p(@1|22)p(T2, 23) = P12(T1, T2)P23(T2, 3) (4.2.13)

where the ¢ are potentials.

More generally, for any decomposable graph G, see definition(6.8), we can start at the edge and work inwards
to reveal that the functional form must be a product of potentials on the cliques of G. For example, for
fig(4.2a), we can start with the variable z1 and the corresponding local Markov statement x; 1l x4, x5, zg, ¢
o, x3 to write

p(x1,...,x7) = p(x1|z2, 3)p(22, 3, T4, T5, T6, T7) (4.2.14)

Now we consider x; eliminated and move to the neighbours of x1, namely xz9, 3. The graph specifies that
x1, X2, x3 are independent of x5, xg, T7 given xy:

p(x1, v2, ¥3|T4, T5, T, T7) = P(T1, T2, T3] T4) (4.2.15)
By summing both sides above over z; we have that p(x2, z3|z4, x5, x6, 27) = p(x2, z3|z4). Hence

(2, x3, T4, T5, Te, T7) = p(T2, T3|T4, T5, T6, T7)P(T4, T5, Te, T7) = p(T2, T3|T4)p(T4, X5, 6, x7) (4.2.16)
and

p(x1,...,x7) = p(z1|z2, x3)p(T2, T3|T4) (24, T5, T6, T7) (4.2.17)

Having eliminated x2, x3, we now move to their neighbour(s) on the remaining graph, namely x4. Continuing
in this way, we necessarily end up with a distribution of the form

p(x1, ..., x7) = p(x1|2e, 3)p(w2, T3|24)p(T4|25, T6)D(T5, T6|27)P(27) (4.2.18)

The pattern here is clear and shows that the Markov conditions mean that the distribution is expressible
as a product of potentials defined on the cliques of the graph. That is G = F where F' is a factorisation
into clique potentials on G. The converse is easily shown, namely that given a factorisation into clique
potentials, the Markov conditions on G are implied. Hence G < F'. It is clear that for any decomposable
G, this always holds since we can always work inwards from the edges of the graph.

The Hammersley-Clifford theorem is a stronger result and shows that this factorisation property holds for
any undirected graph, provided that the potentials are positive. For a formal proof, the reader is referred

to [182, 36, 219]. An informal argument can be made by considering a specific example, and we take the

DRAFT June 18, 2013 61

Markov Networks

4-cycle x1 — x9 — x3 — x4 — 1 from fig(4.1a). The theorem states that for positive potentials ¢, the Markov
conditions implied by the graph mean that the distribution must be of the form

p(x1, T2, 23, T4) = P12(21, T2)P23(T2, 3) P34 (23, T4) P41 (T4, 1) (4.2.19)

One may readily verify that for any distribution of this form x; 1l x3|x9, 4. Consider including an additional
term that links x1 to a variable not a member of the cliques that x1 inhabits. That is we include a term
¢13(x1, x3). Our aim is to show that a distribution of the form

p(r1, 72, 23, 74) = P12(71, T2)P23(72, ¥3) P34(73, T4) P41 (T4, T1)P13(71, 73) (4.2.20)
cannot satisfy the Markov property x; 1l x3|z2,24. To do so we examine

(1|22, 3, 74) = P12(x1, 22)P23(72, ¥3) P34 (23, 4) Pa1 (4, T1) P13(71, 73) (4.2.21)

Y., Pra(w, o) dos(wa, x3) d3a (w3, 4) Pt (24, 1) Pr3(w1, 43)
b12(x1, 22) Par (T4, 1) P13(21, 23)

N >wy P12(21, 22) Par (w4, 1) P13(21, 3) (4.2:22)
If we assume that the potential ¢13 is weakly dependent on z; and x3,
p13(z1,23) = 1 + ep(z1, 73) (4.2.23)
where € < 1, then p(x1|xa, x3,24) is given by
~1
St O v (Lo BRI) e

By expanding (14 €f)™!' =1 —¢f + O (¢?) and retaining only terms that are first order in ¢, we obtain

d12(21, x2)Pa1(4, 21
p(xi|zo, 23, 24) = (Joul)

Y., Pra(w, w9)dur (w4, 71)

X (1—1—&

The first factor above is independent of x3, as required by the Markov condition. However, for € # 0, the
second term varies as a function of z3. The reason for this is that one can always find a function ¥ (x1, x3)
for which

> e, P12(71, ¥2) a1 (T4, 1) (71, 73)

Y(21,23) — > a, P12(21, 22) Pa1 (24, 71)

> +0 (%) (4.2.25)

> e, P12(21, T2)ar (w4, 1) (21, 73)
> e, P12(21, T2) a1 (w4, 71)
since the term ¥ (x1,x3) on the left is functionally dependent on x; whereas the term on the right is not a

function of x;. Hence, the only way we can ensure the Markov condition holds is if € = 0, namely that there
is no connection between x1 and x3.

Y(x1,23) # (4.2.26)

One can generalise this argument to show that if the graph of potentials in the distribution contains a
link which is not present in G, then there is some distribution for which a corresponding Markov condition
cannot hold. Informally, therefore, G = F'. The converse F = G is trivial.

The Hammersley-Clifford theorem also helps resolve questions as to when a set of positive local conditional
distributions p(z;|pa (x;)) could ever form a consistent joint distribution p(z1, ..., z,). Each local conditional
distribution p(z;|pa (z;)) corresponds to a factor on the set of variables {z;, pa (x;)}, so we must include such
a term in the joint distribution. The MN can form a joint distribution consistent with the local conditional
distributions if and only if p(x1,...,x,) factorises according to

P,) = %exp (-ZVC(XC)) (4.2.27)

62 DRAFT June 18, 2013

Markov Networks

® O

|

Figure 4.4: (a): Belief network for
which we are interested in checking
conditional independence a 1L b|{d,i}.
(b): Ancestral graph. (c): Ances-
tral, moralised and separated graph
(n) G0 5 ® for a 1L b| {d,i}. There is no path

from a red to green node so a and b
are independent given d, 7.

O—0O0—@
®
®

(a) (b) (c)

where the sum is over all cliques and V,(A&;) is a real function defined over the variables in the clique
indexed by c¢. Equation (4.2.27) is equivalent to [[.¢(AX:), namely a MN on positive clique potentials.
The graph over which the cliques are defined is an undirected graph constructed by taking each local
conditional distribution p(z;|pa(z;)) and drawing a clique on {z;, pa(x;)}. This is then repeated over all
the local conditional distributions, see fig(4.3). Note that the HC theorem does not mean that, given a set
of conditional distributions, we can always form a consistent joint distribution from them — rather it states
what the functional form of a joint distribution has to be for the conditionals to be consistent with the joint,
see exercise(4.8).

4.2.4 Conditional independence using Markov networks

For X, Y, Z each being collections of variables, in section(3.3.4) we discussed an algorithm to determine
if X 1L Y| Z for belief networks. An alternative and more general method (since it handles directed and
undirected graphs) uses the procedure below (see [78, 183]). See fig(4.4) for an example.

Procedure 4.2 (Ascertaining independence in Markov and belief networks). For Markov Networks only
the final separation criterion needs to be applied:

Ancestral Graph Identify the ancestors A of the nodes X U)Y U Z. Retain the nodes X UY U Z but
remove all other nodes which are not in A, together with any edges in or out of such nodes.

Moralisation Add a link between any two remaining nodes which have a common child, but are not already
connected by an arrow. Then remove remaining arrowheads.

Separation Remove links neighbouring Z. In the undirected graph so constructed, look for a path which
joins a node in X to one in Y. If there is no such path deduce that X' 1L Y| Z.

Note that the ancestral step in procedure(4.2) for belief networks is intuitive since, given a set of nodes
X and their ancestors A, the remaining nodes D form a contribution to the distribution of the form
p(D|X, A)p(X,A), so that summing over D simply has the effect of removing these variables from the
DAG.

4.2.5 Lattice Models

Undirected models have a long history in different branches of science, especially statistical mechanics on
lattices and more recently as models in visual processing in which the models encourage neighbouring vari-
ables to be in the same states[36, 37, 116].

DRAFT June 18, 2013 63

Markov Networks

Consider a model in which our desire is that states of the binary valued variables

x1,...,T9, arranged on a lattice (right) should prefer their neighbouring variables L1 J— 22 J—{ T3

to be in the same state | | |
1

plx1, ..., x9) = EH%(%‘W (4.2.28) Ta J— 5 J— %6

! I I I

where ¢ ~ j denotes the set of indices where 7 and j are neighbours in the x7)— xg }—{ 9

undirected graph.

The Ising model

A set of potentials for equation (4.2.28) that encourages neighbouring variables to have the same state is
ij (@i, 2j) = e‘%(ri—wj)z” x; € {—1,+1} (4.2.29)

This corresponds to a well-known model of the physics of magnetic systems, called the Ising model which
consists of ‘mini-magnets’ which prefer to be aligned in the same state, depending on the temperature
T. For high T the variables behave independently so that no global magnetisation appears. For low T,
there is a strong preference for neighbouring mini-magnets to become aligned, generating a strong macro-
magnet. Remarkably, one can show that, in a very large two-dimensional lattice, below the so-called Curie
temperature, T, ~ 2.269 (for £1 variables), the system admits a phase change in that a large fraction of the
variables become aligned — above T, on average, the variables are unaligned. This is depicted in fig(4.5)

where M = ‘Eﬁl x;
non-zero temperature has driven considerable research in this and related areas[41]. Global coherence effects
such as this that arise from weak local constraints are present in systems that admit emergent behaviour.

Similar local constraints are popular in image restoration algorithms to clean up noise, under the assumption
that noise will not show any local spatial coherence, whilst ‘signal” will.

/N is the average alignment of the variables. That this phase change happens for

Example 4.2 (Cleaning up images).

Consider a binary image defined on a set of pixels z; € {—1,+1}, i =1,...,D. We
observe a noise corrupted version y; of each pixel z;, in which the state of y; € {—1,+1}
is opposite to x; with some probability. Here the filled nodes indicate observed noisy
pixels and the unshaded nodes the latent clean pixels. Our interest is to ‘clean up’ the
observed dirty image), and find the most likely joint clean image X.

A model for this situation is

1
p(Xay):E

D
Hgb(xz’yl)] HUJ(?L‘“%)) ¢($17y1) = eﬁwiyia w(fﬁz,%) = it (4230)
i=1

i~J

here ¢ ~ j indicates the set of latent variables that are neighbours. The potential ¢ encourages the noisy
and clean pixel to be in the same state. Similarly, the potential ¢ (z;, z;) encourages neighbouring pixels to
be in the same state. To find the most likely clean image, we need to compute

argmax p(X|)Y) = argmax p(X,)) (4.2.31)
X X

This is a computationally difficult task but can be approximated using iterative methods, see section(28.9).

S 05 Figure 4.5: Onsagar magnetisation. As the temperature T decreases
towards the critical temperature T, a phase transition occurs in which
0 a large fraction of the variables become aligned in the same state.
0 05 1 15 2
T/Te

64 DRAFT June 18, 2013

Chain Graphical Models

O0—@ () O—— @ O
(a) (b) (c) (d)

Figure 4.6: Chain graphs. The chain components are identified by deleting the directed edges and identifying
the remaining connected components. (a): Chain components are (a),(b),(c, d), which can be written as a
BN on the cluster variables in (b). (c¢): Chain components are (a, e, d, f, h), (b, g), (¢), which has the cluster
BN representation (d).

-
e

On the left is the clean image, from which a noisy corrupted image) is formed (middle). The most likely
restored image is given on the right. See demoMRFclean.m. Note that the parameter § is straightfor-
ward to set, given knowledge of the corruption probability peorrupt, since p(y; # zi|xzi) = o (2f3), so that
B = %a‘l(pcormpt). Setting a is more complex since relating p(x; = x;) to a is not straightforward, see
section(28.4.1). In the demonstration we set o = 10, peorrupt = 0.15.

4.3 Chain Graphical Models

Chain Graphs (CGs) contain both directed and undirected links. To develop the intuition, consider fig(4.6a).
The only terms that we can unambiguously specify from this depiction are p(a) and p(b) since there is no
mixed interaction of directed and undirected edges at the a and b vertices. By probability, therefore, we
must have

p(a,b,c,d) = p(a)p(b)p(c, d|a, b) (4.3.1)
Looking at the graph, we might expect the interpretation to be
p(C, d’(l, b) = ¢(C7 d)p(c|a)p(d|b) (432)

However, to ensure normalisation, and also to retain generality, we interpret this as

-1

p(c,dla,b) = ¢(c, d)p(cla)p(d|b)¢(a, b), with ¢(a,b) = [> é(c,d)p(cla)p(d|b) (4.3.3)

c,d

This leads to the interpretation of a CG as a DAG over the chain components see below.

Definition 4.8 (Chain Component). The chain components of a graph G are obtained by :
1. Forming a graph G’ with directed edges removed from G.

2. Then each connected component in G’ constitutes a chain component.

DRAFT June 18, 2013 65

Chain Graphical Models

FEach chain component represents a distribution over the variables of the component, conditioned on the
parental components. The conditional distribution is itself a product over the cliques of the undirected
component and moralised parental components, including also a factor to ensure normalisation over the
chain component.

Definition 4.9 (Chain Graph distribution). The distribution associated with a chain graph G is found by
first identifying the chain components, 7. Then

p(x) = [[p(X:Ipa (X)) (4.3.4)
and
p(Xrlpa (X)) o«] ¢ (Ae,) (4.3.5)
ceCr

where C; denotes the union of the cliques in component 7 together with the moralised parental components
of 7, with ¢ being the associated functions defined on each clique. The proportionality factor is determined
implicitly by the constraint that the distribution sums to 1.

BNs are CGs in which the connected components are singletons. MNs are CGs in which the chain components
are simply the connected components of the undirected graph. CGs can be useful since they are more
expressive of CI statements than either belief networks or Markov networks alone. The reader is referred to
[182] and [106] for further details.

Example 4.3 (Chain graphs are more expressive than Belief or Markov networks). Consider the chain
graph in fig(4.7a), which has chain component decomposition

p(a,b,c,d, e, f) = p(a)p(b)p(c,d, e, fla,b) (4.3.6)
where
p(c,d,e, fla,b) = ¢(a,c)d(c, e)d(e, f)o(d, f)é(d, b)¢(a,b) (4.3.7)

with the normalisation requirement
—

dla,b) = | D dla,c)p(ce)dle, f)o(d, f)o(d,b) (4.3.8)

C7d787f

The marginal p(c, d, e, f) is given by

d(c,e)p(e, N)o(d,)Y (a,b)p(a)p(b)d(a,)$(d, b) (4.3.9)
a,b
6(ed)

Since the marginal distribution of p(c, d, e, f) is an undirected 4-cycle, no DAG can express the CI statements
contained in the marginal p(c, d, e, f). Similarly no undirected distribution on the same skeleton as fig(4.7a)
could express that a and b are independent (unconditionally), i.e. p(a,b) = p(a)p(b).

66 DRAFT June 18, 2013

Factor Graphs

Figure 4.7: The CG (a) expresses a 1L b| () and d 1L

@
@ e| (¢, f). No directed graph could express both these
l conditions since the marginal distribution p(c,d, e, f)
() @ @ () is an undirected four cycle, (b). Any DAG on a 4 cycle
must contain a collider, as in (¢) and therefore express
a different set of CI statements than (b). Similarly, no
connected Markov network can express unconditional
©) — independence and hence (a) expresses CI statements
(a) (b) (c)

that no belief network or Markov network alone can
express.

)
PR R R
®/:\@ Gﬁ—:@ ?M@

Figure 4.8: (a): ¢(a,b,c). (b): ¢(a,b)o(b,c)p(c,a). (c): ¢(a,b,c). Both (a) and (b) have the same
undirected graphical model, (¢). (d): (a) is an undirected FG of (d). (e): Directed FG of the BN in (d).
A directed factor represents a term p(children|parents). The advantage of (e) over (a) is that information
regarding the marginal independence of variables b and ¢ is clear from graph (e), whereas one could only
ascertain this by examination of the numerical entries of the factors in graph (a).

4.4 Factor Graphs

Factor Graphs (FGs) are mainly used as part of inference algorithms®.

Definition 4.10 (Factor Graph). Given a function

f@1,. . an) = Hwi (&) (4.4.1)

The FG has a node (represented by a square) for each factor v;, and a variable node (represented by
a circle) for each variable ;. For each 2; € Aj an undirected link is made between factor 1; and variable x;.

When used to represent a distribution
1
p(x1,. .. 7)) = 7 Hw,- (X5) (4.4.2)

a normalisation constant Z =, [[; ¥; (&;) is assumed.
For a factor 1; (X;) which is a conditional distribution p(z;|pa(x;)), we may use directed links from the

parents to the factor node, and a directed link from the factor node to the child x;. This has the same
structure as an (undirected) FG, but preserves the information that the factors are distributions.

Factor graphs are useful since they can preserve more information about the form of the distribution than

'"Formally a FG is an alternative graphical depiction of a hypergraph[86] in which the vertices represent variables, and a
hyperedge a factor as a function of the variables associated with the hyperedge. A FG is therefore a hypergraph with the
additional interpretation that the graph represents a function defined as products over the associated hyperedges. Many thanks
to Robert Cowell for this observation.

DRAFT June 18, 2013 67

Expressiveness of Graphical Models

either a belief network or a Markov network (or chain graph) can do alone. Consider the distribution

p(a,b,c) = ¢(a,b)o(a,c)p(b,c) (4.4.3)

Represented as a MN, this must have a single clique, as given in fig(4.8c). However, fig(4.8¢c) could equally
represent some unfactored clique potential ¢(a, b, ¢) so that the factorised structure within the clique is lost.
In this sense, the FG representation in fig(4.8b) more precisely conveys the form of distribution equation
(4.4.3). An unfactored clique potential ¢(a,b,c) is represented by the FG fig(4.8a). Hence different FGs
can have the same MN since information regarding the structure of the clique potential is lost in the MN.
Similarly, for a belief network, as in fig(4.8d) one can represent this using a standard undirected FG, although
more information about the independence is preserved by using a directed FG representation, as in fig(4.8e).
One can also consider partially directed FGs which contain both directed and undirected edges; this requires
a specification of how the structure is normalised, one such being to use an approach analogous to the chain
graph — see [103] for details.

4.4.1 Conditional independence in factor graphs

Conditional independence questions can be addressed using a rule which works with directed, undirected
and partially directed FGs[103]. To determine whether two variables are independent given a set of condi-
tioned variables, consider all paths connecting the two variables. If all paths are blocked, the variables are
conditionally independent. A path is blocked if one or more of the following conditions is satisfied:

e One of the variables in the path is in the conditioning set.

e One of the variables or factors in the path has two incoming edges that are part of the path (variable
or factor collider), and neither the variable or factor nor any of its descendants are in the conditioning
set.

4.5 Expressiveness of Graphical Models

It is clear that directed distributions can be represented as undirected distributions since one can asso-
ciate each (normalised) factor of the joint distribution with a potential. For example, the distribution
p(a|b)p(blc)p(c) can be factored as ¢(a,b)d(b, ¢), where ¢(a,b) = p(alb) and ¢(b, c) = p(b|c)p(c), with Z = 1.
Hence every belief network can be represented as some MN by simple identification of the factors in the
distributions. However, in general, the associated undirected graph (which corresponds to the moralised
directed graph) will contain additional links and independence information can be lost. For example, the
MN of p(c|a, b)p(a)p(b) is a single clique ¢(a,b,c) from which one cannot graphically infer that a LLb.

The converse question is whether every undirected model can be represented by a BN with a readily derived
link structure. Consider the example in fig(4.9). In this case, there is no directed model with the same
link structure that can express the (in)dependencies in the undirected graph. Naturally, every probability
distribution can be represented by some BN though it may not necessarily have a simple structure and
be a ‘fully connected’ cascade style graph. In this sense the DAG cannot always graphically represent the
independence properties that hold for the undirected distribution.

Definition 4.11 (Independence Maps). A graph is an independence map (I-map) of a given distribution P
if every conditional independence statement that one can derive from the graph G is true in the distribution
P. That is

XUV Z,=> XUV Zp (4.5.1)

for all disjoint sets X,), Z.

Similarly, a graph is a dependence map (D-map) of a given distribution P if every conditional independence
statement that one can derive from P is true in the graph G. That is

XUV Z,<=X 1LY Z, (4.5.2)

68 DRAFT June 18, 2013

Expressiveness of Graphical Models

Q e Figure 4.9: (a): An undirected model for which we wish to find a
directed equivalent. (b): Every DAG with the same structure as
a e e e the undirected model must have a situation where two arrows will
point to a node, such as node d (otherwise one would have a cyclic
Q e graph). Summing over the states of variable d will leave a DAG
on the variables a, b, ¢ with no link between a and c. This cannot
(a) (b) represent the undirected model since when one marginalises over
d this adds a link between a and c.

for all disjoint sets X,), Z.

A graph G which is both an I-map and a D-map for P is called a perfect map and
XUV Zo e XUV Zp (4.5.3)

for all disjoint sets X,),Z. In this case, the set of all conditional independence and dependence statements
expressible in the graph GG are consistent with P and vice versa.

Note that by contraposition, a dependence map is equivalent to
XTIV Z,=XTY|Zp (4.5.4)

meaning that if X and) are graphically dependent given Z, then they are dependent in the distribution.

One way to think about this is to take a distribution P and write out a list Lp of all the independence
statements. For a graph G, one writes a list of all the possible independence statements L. Then:

Lp C Lig Dependence Map (D-map)
Lp O L Independence Map (I-map) (4.5.5)
Lp =Lg Perfect Map

In the above we assume the statement [is contained in £ if it is consistent with (can be derived from) the

independence statements in L.

One can also discuss whether or not a distribution class has an associated map. That is whether or not all
numerical instances of distributions consistent with the specified form obey the constraints required for the
map. To do so we take any numerical instance of a distribution P; consistent with a given class P and write
out a list Lp, of all the independence statements. One then takes the intersection Lp = N;Lp, of all the
lists from all possible distribution instances. This list is then used in equation (4.5.5) to determine if there
is an associated map. For example the distribution class

p(x,y,2) = p(z|z,y)p(z)p(y) (4.5.6)

has a directed perfect map * — z < y. However, the undirected graph for the class equation (4.5.6) is
fully connected so that L is empty. For any distribution consistent with equation (4.5.6) x and y are
independent, a statement which is not contained in L5 — hence there is no undirected D-map and hence no
perfect undirected map for the class represented in equation (4.5.6).

Example 4.4. Consider the distribution (class) defined on variables t1, t2, y1, y2[249]:

p(t1,t2,y1,y2) = p(t1)p(ta) Y p(yltr, B)p(yzlta, h)p(h) (4.5.7)
h

In this case the list of all independence statements (for all distribution instances consistent with p) is

Lp = {t11L(t2,y2), toll(t1,y1)} (4.5.8)

DRAFT June 18, 2013 69

Expressiveness of Graphical Models

Consider the graph of the BN

p(y2ly1, t2)p(y1t1)p(t)p(te) (4.5.9)

For this we have
Lo ={ta 1L (t1,y1)} (4.5.10)

Hence L5 C Lp so that the BN is an I-MAP for (4.5.7) since every independence statement in the BN is
true for the distribution class in equation (4.5.7). However, it is not a D-MAP since Lp € L. In this case
no perfect MAP (a BN or a MN) can represent (4.5.7).

Remark 4.1 (Forcing dependencies?). Whilst graphical models as we have defined them ensure specified
independencies, they seem to be inappropriate for ensuring specified dependencies. Consider the undirected
graph z — y — z. Graphically this expresses that x and z are dependent. However, there are numerical
instances of distributions for which this does not hold, for example

p(m,y,z) = qb(x’y)gb(yaz)/zl (4511)

with ¢(z,y) = const. One might complain that this is a pathological case since any graphical representation
of this particular instance contains no link between x and y. Maybe one should therefore ‘force’ potentials
to be non-trivial functions of their arguments and thereby ensure dependency? Consider

o(z,y) = g Py, 2) =yz (4.5.12)

In this case both potentials are non-trivial in the sense that they are truly functionally dependent on their
arguments. Hence, the undirected network contains ‘genuine’ links x — y and y — z. Nevertheless,

p2(x,y,2) = ¢(x,y)o(y, 2) | Z2 x gyz =xz (4.5.13)

Hence po(x,2) & zz = x 1L z. So ‘forcing’ local non-trivial functions does not guarantee dependence of
path-connected variables. In this case, the algebraic cancellation is clear and the problem is again rather
trivial since for pg, z Ll y and y L z, so one might assume that x 1L z (see however, remark(1.2)). However,
there may be cases where such algebraic simplifications are highly non-trivial, though nevertheless true.
See, for example, exercise(3.17) in which we construct p(x,y, z) < ¢(z,y)d(y, z) for which 2Ty and yTTz, yet
zll 2.

4.6 Summary

e Graphical modelling is the discipline of representing probability models graphically.

e Belief networks intuitively describe which variables ‘causally’ influence others and are represented using
directed graphs.

o A Markov network is represented by an undirected graph.

e Intuitively, linked variables in a Markov network are graphically dependent, describing local cliques of
graphically dependent variables.

e Markov networks are historically important in physics and may be used to understand how global collabo-
rative phenomena can emerge from only local dependencies.

e Graphical models are generally limited in their ability to represent all the possible logical consequences of
a probabilistic model.

70 DRAFT June 18, 2013

FExercises

e Some special probabilistic models can be ‘perfectly’ mapped graphically.

e Factor graphs describe the factorisation of functions and are not necessarily related to probability distribu-
tions.

A detailed discussion of the axiomatic and logical basis of conditional independence is given in [47] and
[280].

4.7 Code

condindep.m: Conditional Independence test p(X,Y|Z) = p(X|Z2)p(Y|Z)?

4.8 Exercises

Exercise 4.1. 1. Consider the pairwise Markov network,

p(x) = d(z1, 22) (22, 3)P(23, T4) (24, 1) (4.8.1)

Ezxpress in terms of ¢ the following:
p(x1|z2, 74), p(z2|x1, x3), p(x3|z2, v4), p(xalz1, 73) (4.82)
2. For a set of local distributions defined as

p1(z1|z2, 1), pa2(z2lx1, 23), p3(x3|za, 4), pa(z4|z1, 23) (4.8.3)

is it always possible to find a joint distribution p(x1,xa,x3,x4) consistent with these local conditional
distributions?

Exercise 4.2. Consider the Markov network

p(a, b, C) = Qbab(a? b)¢bc(b7 C) (4'8'4)

Nominally, by summing over b, the variables a and ¢ are dependent. For binary b, explain a situation in
which this is not the case, so that marginally, a and c are independent.

Exercise 4.3. Show that for the Boltzmann machine defined on binary variables x; with

p(x) = Z(Vif,b)eXp (XTWX + XTb> (4.8.5)

one may assume, without loss of generality, W = W,

Exercise 4.4.

The restricted Boltzmann machine (or Harmonium/269]) is a constrained

Boltzmann machine on a bipartite graph, consisting of a layer of visible @ @
variables v = (v1,...,vy) and hidden variables h = (hq,... , hy): "
p(v,h) = ;exp (VTWh +alv+ bTh> (4.8.6) '
MW P W

All variables are binary taking states 0, 1.

1. Show that the distribution of hidden units conditional on the visible units factorises as

p(hlv) = [p(hilv), with p(hi =1|v) = o [b+ > Wy, (4.8.7)
i J

where o(x) = €* /(1 + €%).

DRAFT June 18, 2013 71

Exercises

2. By symmetry arqguments, write down the form of the conditional p(v|h).
3. Is p(h) factorised?
4. Can the partition function Z(W,a,b) be computed efficiently for the RBM?
Exercise 4.5. You are given that
1yl (z,u), ull 2|0 (4.8.8)

Derive the most general form of probability distribution p(z,y,z,u) consistent with these statements. Does
this distribution have a simple graphical model?

Exercise 4.6. The undirected graph @represents a Markov network with nodes x1, xo2, T3, T4, Ts5, counting
clockwise around the pentagon with potentials ¢(x;,x;). Show that the joint distribution can be written as

p(z1, 22, x5)p(x2, T4, T5)p(22, T3, T4)
p(w2, 25)p(w2, T4)

p(ﬂ?l,l’2,$3,l’4,l’5) = (489)

and express the marginal probability tables explicitly as functions of the potentials ¢(x;, ;).
Exercise 4.7.
Consider the belief network on the right.

1. Write down a Markov network of p(x1,x2,x3). ﬁ @

2. Is your Markov network a perfect map of p(x1,z2,x3)? @ @ @

Exercise 4.8. Two research labs work independently on the relationship between discrete variables x and
y. Lab A proudly announces that they have ascertained distribution pa(z|y) from data. Lab B proudly
announces that they have ascertained pg(y|z) from data.

1. Is it always possible to find a joint distribution p(z,y) consistent with the results of both labs?

2. Is it possible to define consistent marginals p(x) and p(y), in the sense that p(z) = >, pa(z|y)p(y)
and p(y) = >, pe(ylx)p(x)? If so, explain how to find such marginals. If not, explain why not.

Exercise 4.9. Research lab A states its findings about a set of variables x1,...,x, as a list Ly of conditional
independence statements. Lab B similarly provides a list of conditional independence statements Lp.

1. Is it always possible to find a distribution which is consistent with L4 and Lp?

2. If the lists also contain dependence statements, how could one attempt to find a distribution that is
consistent with both lists?

Exercise 4.10.
Consider the distribution

p(z,y, w, z) = p(zlw)p(w|z, y)p(x)p(y) (4.8.10)
1. Write p(z|z) using a formula involving (all or some of) p(z|w), p(w|z,y), p(z), p(y).
2. Write p(y|z) using a formula involving (all or some of) p(z|w), p(w|z,y), p(x), p(y).

3. Using the above results, derive an explicit condition for x 1L y|z and explain if this is satisfied for this
distribution.

Exercise 4.11. Consider the distribution

p(ti,t2, y1, Y2, h) = p(yilye, t1, t2, h)p(y2|te, h)p(t1)p(t2)p(h) (4.8.11)

1. Draw a belief network for this distribution.

72 DRAFT June 18, 2013

-
++

FExercises

2. Does the distribution

plte to,y1,02) = Y p(lya, tr, ta, h)p(yzlta, B)p(ty)p(t2)p(h) (4.8.12)
h

have a perfect map belief network?
3. Show that for p(t1,t2,y1,y2) as defined above t1 1L yo| (.
Exercise 4.12. Consider the distribution
p(a, b, ¢, d) = ¢ap(a, b)Pue(b, €)dea(c, d)Paa(d, a) (4.8.13)
where the ¢ are potentials.
1. Draw a Markov network for this distribution.
2. Explain if the distribution can be represented as a (‘non-complete’) belief network.
3. Derive explicitly if a L c|().

Exercise 4.13. Show how for any singly-connected Markov network, one may construct a Markov equivalent
belief network.

Exercise 4.14. Consider a pairwise binary Markov network defined on variables s; € {0,1}, i =1,..., N,
with p(s) = [1;jee ®ij(si,85), where € is a given edge set and the potentials ¢;; are arbitrary. Ezplain how
to translate such a Markov network into a Boltzmann machine.

Exercise 4.15. Our interest here is to show that it is not always possible to find a joint distribution p that
would give rise to a set of specified consistent distributions {q} on subsets of the variables.

1. We first wish to construct a set of distributions qi2(x1,22), q13(x1,23), q23(x2, x3) on binary variables
z; € {0,1} that are ‘marginally’ consistent; that is

Z q12(21, 2) = Z q13(21, x3)
T2 T3
> qia(r,m2) =Y qoslwa, x3)
T1 3
> ais(wr,ws) =Y gos(ws, x3)
1 x2

with all the q being distributions (non negative and summing to 1). By writing q12(z1 = 0,22 = 0) = yy,
qi2(z1 = 0,9 = 1) = ya, etc. , show that the above equations can be represented as a linear system

where M is a suitably defined 9 x 12 matriz. Hence by solving this system using linear programming
(or otherwise), find a set of marginally consistent distributions q.

2. Given a set of marginally consistent q, our interest is to see if we can find a joint distribution p which
would give rise to these marginals q. That is

> p(w1, w9, 33) = quslwa, x3), > p(w1,32,33) = qrz(w1,23), > p(w1,32,73) = qra(21, 22)

1 2 z3
Show that, by writing the 8 states of p as z1,...,zs, the above can be expressed as the linear system
Az =y, OSZz‘SLZZz‘Zl
i

where A is a suitably defined 12 x 8 matrix. For a marginally consistent 'y show numerically that it is
not always possible to find a joint distribution z that would give rise to these marginals.

DRAFT June 18, 2013 73

Exercises

The set of marginals consistent with a distribution p is called the marginal polytope of p. The question we are
therefore asking here is a given marginal set q is in the marginal polytope of p. Whilst this is straightforward
to solve (using linear-programming for example), for an n-variable system the size of the linear system will
be exponential in n, thus resulting in a computationally hard problem.

This issue is important for at least two reasons: (i) Imagine that different research labs are asked to examine
different aspects of a problem, each lab summarising their results as a distribution on a subset of the variables.
The question is whether there exists a single joint distribution that is consistent with all these marginals.
(ii) In certain deterministic approzimation schemes (see section(28.7.2)) the objective depends only on a set
of marginals and the question is how to characterise the marginal polytope. As this question intimates, this
is generally very difficult. However, as we will see in chapter(6), as least for singly-connected structures,
representing a distribution in terms of locally consistent marginals is straightforward.

Exercise 4.16. The question concerns cleaning up the binary image given in the file xnoisy.mat. The
objective function to minimise is

Y Wiglles =]+) b, z; € {0,1}
V] i

where W; ; = 10 for neighbouring pizels (up, down, left, right) in the image and W; j = 0 otherwise. Using
y to represent the noisy image, b; = 2y;. Plot the final cleaned up image x and give the minimum objective
function found for this cleaned up image.

74 DRAFT June 18, 2013

++

CHAPTER D

Efficient Inference in Trees

In previous chapters we discussed how to set up models. Inference then corresponds to operations such as
summing over subsets of variables. In machine learning and related areas we will often deal with distributions
containing hundreds of variables. In general inference is computationally very expensive and it is useful to
understand for which graphical structures this could be cheap in order that we may make models which we
can subsequently compute with. In this chapter we discuss inference in a cheap case, namely trees, which
has links to classical algorithms in many different fields from computer science (dynamic programming) to
physics (transfer matrix methods).

5.1 Marginal Inference

Given a distribution p(z1,...,x,), inference is the process of computing functions of the distribution.
Marginal inference is concerned with the computation of the distribution of a subset of variables, possibly
conditioned on another subset. For example, given a joint distribution p(xi,x9,x3,x4,x5) and evidence
x1 = tr, a marginal inference calculation is

p(s|z1 = tr) = Z p(z1 = tr, o, T3, T4, T5). (5.1.1)

T2,T3,T4

Marginal inference for discrete models involves summation and will be the focus of our development. In
principle the algorithms carry over to continuous variable models although the lack of closure of most
continuous distributions under marginalisation (the Gaussian being a notable exception) can make the
direct transference of these algorithms to the continuous domain problematic. The focus here is on efficient
inference algorithms for marginal inference in singly connected structures. An efficient algorithm for multiply
connected graphs will be considered in chapter(6).

5.1.1 Variable elimination in a Markov chain and message passing

A key concept in efficient inference is message passing in which information from the graph is summarised
by local edge information. To develop this idea, consider the four variable Markov chain (Markov chains are

Figure 5.1: A Markov chain is of the form p(z7) HtT:_ll p(xt|xes)

@(—@(—@(—@ for some assignment of the variables to labels ;. Variable Elimi-

nation can be carried out in time linear in the number of variables
in the chain.

75

Marginal Inference

discussed in more depth in section(23.1))

p(a, b, ¢, d) = p(alb)p(ble)p(c|d)p(d) (5.1.2)

as given in fig(5.1), for which our task is to calculate the marginal p(a). For simplicity, we assume that each
of the variables has domain {0,1}. Then

pla=0)= > pla=0,b,c,d) = > pla = 0[b)p(ble)p(cld)p(d) (5.1.3)
be{0,1},c€{0,1},de{0,1} be{0,1},c€{0,1},de{0,1}

We could carry out this computation by simply summing each of the probabilities for the 2 x 2 x 2 = 8
states of the variables b, ¢ and d. This would therefore require 7 addition-of-two-numbers calls.

A more efficient approach is to push the summation over d as far to the right as possible:

pla=0)= > pla=0p)pdlc) Y plcld)p(d) (5.1.4)

b€{0,1},ce{0,1} de{0,1}

va(c)

where 74 (c) is a (two state) potential. Defining v, (¢) requires two addition-of-two-numbers calls, one call
for each state of c¢. Similarly, we can distribute the summation over c as far to the right as possible:

pla=0)= Y pla=0[b) Y p(ble)va(c) (5.1.5)
be{0,1} ce{0,1}

Ye(b)

Then, finally,
pla=0)= > pla=0[b)y (b) (5.1.6)

be{0,1}

By distributing the summations we have made 3x2 = 6 addition-of-two-numbers calls, compared to 23—1 = 7
from the naive approach. Whilst this saving may not appear much, the important point is that the number
of computations for a chain of length 7'+ 1 would be linear, 2T, as opposed to exponential, 27 — 1 for the
naive approach.

This procedure is called variable elimination since each time we sum over the states of a variable we elimi-
nate it from the distribution. We can always perform variable elimination in a chain efficiently since there is
a natural way to distribute the summations, working inwards from the edges. Note that in the above case,
the potentials are in fact always distributions — we are just recursively computing the marginal distribution
of the right leaf of the chain.

One can view the elimination of a variable as passing a message (information) to a neighbouring node on
the graph. We can calculate a univariate-marginal of any tree (singly connected graph) by starting at a
leaf of the tree, eliminating the variable there, and then working inwards, nibbling off each time a leaf of
the remaining tree. Provided we perform elimination from the leaves inwards, then the structure of the
remaining graph is simply a subtree of the original tree, albeit with the conditional probability table entries
modified. This is guaranteed to enable us to calculate any marginal p(z;) using a number of summations
which scales linearly with the number of variables in the tree.

Finding conditional marginals for a chain
Consider the following inference problem, fig(5.1) : Given
pla,b,c,d) = plalb)p(blo)p(cld)p(d), (5.1.7)

find p(d|a). This can be computed using

p(dla) o< > p(a,b,e,d) = p(alb)p(ble)p(eld)p(d) =Y > " p(alb)p(ble) p(cld)p(d) = ve (d) (5.1.8)
b,c b,c c b

()

76 DRAFT June 18, 2013

Marginal Inference

The missing proportionality constant is found by repeating the computation for all states of variable d.
Since we know that p(d|a) = k7. (d), where 7. (d) is the unnormalised result of the summation, we can use
the fact that >, p(d|a) =1 to infer that k =1/ ;7. (d).

In this example, the potential v, (¢) is not a distribution in ¢, nor is 7. (d). In general, one may view variable
elimination as the passing of messages in the form of potentials from nodes to their neighbours. For belief
networks variable elimination passes messages that are distributions when following the direction of the
edge, and non-normalised potentials when passing messages against the direction of the edge.

Remark 5.1 (Variable elimination in trees as matrix multiplication). Variable elimination is related to the
associativity of matrix multiplication. For equation (5.1.2) above, we can define matrices

[Map)ij = pla =ilb=j), [Mylij=p(b=ilc=j),
[Mecalij = plc =1ild =j), [Mgl; =p(d=1), [Mi]; =pla=1) (5.1.9)

Then the marginal M, can be written
Ma = MabecMchd = Mab(Mbc(Mchd)) (5110)

since matrix multiplication is associative. This matrix formulation of calculating marginals is called the
transfer matriz method, and is particularly popular in the physics literature[26].

Example 5.1 (Where will the fly be?).

You live in a house with three rooms, labelled 1,2,3. There is a door between rooms 1 and 2 and another
between rooms 2 and 3. One cannot directly pass between rooms 1 and 3 in one time-step. An annoying fly
is buzzing from one room to another and there is some smelly cheese in room 1 which seems to attract the
fly more. Using x; to indicate which room the fly is in at time ¢, with dom(z;) = {1, 2,3}, the movement of
the fly can be described by a transition

p(Tig1 = ilwe = j) = M;; (5.1.11)

where M;; is an element of the transition matrix

0.7 05 0
M= | 03 03 05 (5.1.12)
0 02 05

The matrix M is called ‘stochastic’ meaning that, as required of a conditional probability table, its columns
sum to 1, Z?:l M;; = 1. Given that the fly is in room 1 at time ¢ = 1, what is the probability of room
occupancy at time ¢ = 57 Assume a Markov chain which is defined by the joint distribution

T-1

plar, ... xr) = pla1) [pl@ele) (5.1.13)
t=1

We are asked to compute p(zs|z; = 1) which is given by

> plwslea)p(wales)p(as|ze)p(zaler = 1) (5.1.14)

T4,23,T2

Since the graph of the distribution is a Markov chain, we can easily distribute the summation over the terms.
This is most easily done using the transfer matrix method, giving

p(xs =iz = 1) = [Mv], (5.1.15)

DRAFT June 18, 2013 7

Marginal Inference

where v is a vector with components (1,0, O)T, reflecting the evidence that at time ¢t = 1 the fly is in room
1. Computing this we have (to 4 decimal places of accuracy)

0.5746
M?*v = [0.3180 (5.1.16)
0.1074

Similarly, at time ¢ = 6, the occupancy probabilities are (0.5612,0.3215,0.1173). The room occupancy
probability is converging to a particular distribution — the stationary distribution of the Markov chain. One
might ask where the fly is after an infinite number of time-steps. That is, we are interested in the large t
behaviour of

p(@e41) = ZP($t+1|$t)p(-’Et) (5.1.17)

At convergence p(z¢4+1) = p(z;). Writing p for the vector describing the stationary distribution, this means
p = Mp (5.1.18)

In other words, p is the eigenvector of M with eigenvalue 1[134]. Computing this numerically, the stationary
distribution is (0.5435, 0.3261,0.1304). Note that software packages usually return eigenvectors with e% =
1 — the unit eigenvector therefore will usually require normalisation to make this a probability with >, e; =
1.

5.1.2 The sum-product algorithm on factor graphs

Both Markov and belief networks can be represented using factor graphs. For this reason it is convenient to
derive a marginal inference algorithm for FGs since this then applies to both Markov and belief networks.
This is termed the sum-product algorithm since to compute marginals we need to distribute the sum over
variable states over the product of factors. In other texts, this is also referred to as belief propagation.

Non-branching graphs : variable to variable messages

Consider the distribution

p(a,b,c,d) = fi(a,b) fa(b,c) f3(c,d) fa(d) (5.1.19)

which has the factor graph represented in fig(5.2). To compute the marginal p(a, b, ¢), since the variable d
only occurs locally, we use

plab,c) =) pla.bed) =) fi(a.b) f2(b.0) f3(c,d) fa(d) = f1 (a,b) f2(b,0) Y f3(e,d) fa(d) (5.1.20)
d d d

pd—sc(c)

Here 14 (¢) defines a message from node d to node ¢ and is a function of the variable ¢. Similarly,

pla,b) = Zp(a, b,c) = f1(a,b) Z f2 (b, ¢) pg—e () (5.1.21)
Be—sb(D)
Hence
presb (D) =Y f2 (b, €) prase (c) (5.1.22)

It is clear how one can recurse this definition of messages so that for a chain of n variables the marginal
of the first node can be computed in time linear in n. The term g, (b) can be interpreted as carrying

78 DRAFT June 18, 2013

Marginal Inference

Figure 5.2: For singly connected structures without
f.l () ;2 () .3 () .4 branches, simple messages from one variable to its
neighbour may be defined to form an efficient marginal

inference scheme.

marginal information from the graph beyond c. For simple linear structures with no branching, messages
from variables to variables are sufficient. However, as we will see below in more general structures with
branching, it is useful to consider two types of messages, namely those from variables to factors and vice
versa.

General singly connected factor graphs

The slightly more complex example,
p(alb)p(ble, d)p(c)p(d)p(el|d) (5.1.23)

has the factor graph depicted in fig(5.3)

f1 (a, b) f2 (b, C, d) f3 (C) f4 (d, 6) f5 (d) (5.1.24)
The marginal p(a, b) can be represented by an amputated graph with a message, since
pla,b) = f1(a,0) > fa(bye,d) fs(c) f5(d) > fa(d.e) (5.1.25)
c,d e
HfQ*)b(b)

where pif,_,4 (b) is a message from a factor to a variable. This message can be constructed from messages
arriving from the two branches through ¢ and d, namely

B (0) =Y f2 (bc,d)) () Zf4 (d,e) (5.1.26)

d
& “c—)fg (C)

iudﬁfg (d)
Similarly, we can interpret

Pd— £, (d Zf4 (d,e) (5.1.27)

Kfs —>d(d) ﬁt—’
,u‘f4ﬁd(d)

To complete the interpretation we identify p.—y, (¢) = pf,—e(c). In a non-branching link, one can more
simply use a variable to variable message. To compute the marginal p(a), we then have

= Z f1 (CL, b) K fa—b (b) (5‘1'28)
b

Hfi—a (a)

3
Joo
@—I—@—I Figure 5.3: For a branching singly connected graph,
1 2 it is useful to define messages from both factors to
[| variables, and variables to factors.
4
L IE

DRAFT June 18, 2013 79

Marginal Inference

For consistency of interpretation, one also can view the above as

ffy—a (0) = Zb:fl (a,b) fig,—p (b) (5.1.29)

lu’b*)fl (b)

We can now see how a message from a factor to a node is formed from summing the product of incoming
node-to-factor messages. Similarly, a message from a node to a factor is given by the product of incoming
factor-to-node messages.

A convenience of this approach is that the messages can be reused to evaluate other marginal inferences.
For example, it is clear that p(b) is given by

p(b) =D f1(a,b) sy () (5.1.30)

—_——
Hfi—b (b)

If we additionally desire p(c), we need to define the message from fs to c,

i (€)= 37 fo (b,eod) sy () pass, (d) (5.1.31)
b,d

where pp—z, (b)) = pif, 4 (b). This demonstrates the reuse of already computed message from d to fa to
compute the marginal p(c).

Definition 5.1 (Message schedule). A message schedule is a specified sequence of message updates. A valid
schedule is that a message can be sent from a node only when that node has received all requisite messages
from its neighbours. In general, there is more than one valid updating schedule.

Sum-Product algorithm

The sum-product algorithm is described below in which messages are updated as a function of incoming
messages. One then proceeds by computing the messages in a schedule that allows the computation of a
new message based on previously computed messages, until all messages from all factors to variables and
vice-versa have been computed.

Procedure 5.1 (Sum-Product messages on Factor Graphs).

Given a distribution defined as a product on subsets of the variables, p(X) = % [] 7 @5 (Xf), provided the

factor graph is singly connected we can carry out summation over the variables efficiently.

Initialisation Messages from leaf node factors are initialised to the factor. Messages from leaf variable
nodes are set to unity.

Variable to Factor message

fo—y () = H fg—a (x)
ge{ne(z)\f}

80 DRAFT June 18, 2013

Marginal Inference

Factor to Variable message “,

7 \/‘ @[/

pioe (@) =Y ¢p(Xp)] ty—r @) @

Xp\z ye{ne(f)\z}

We write) X\ 1O denote summation over all states in the set

of variables X'f\z.

fil
Marginal '

p)oc [#roe (@)

fé€ne(x)

fom

For marginal inference, the important information is the relative size of the message states so that we may
renormalise messages as we wish. Since the marginal will be proportional to the incoming messages for that
variable, the normalisation constant is trivially obtained using the fact that the marginal must sum to 1.
However, if we wish to also compute any normalisation constant using these messages, we cannot normalise
the messages since this global information will then be lost.

5.1.3 Dealing with Evidence

For a distribution which splits into evidential and non-evidential variables, X = X, U X,,, the marginal of a
non-evidential variable p(x;, X) is given by summing over all the variables in &, (except for x;) with X, set
into their evidential states. There are two ways to reconcile this with the factor graph formalism. Either
we can simply say that by setting the variables X, we define a new factor graph on X, and then pass
messages on this new factor graph. Alternatively, we can define the potentials which contain the variables
X. by multiplying each potential that contains an evidential variable by a delta function (an indicator) that
is zero unless the variable xz,, is in the specified evidential state. When we than perform a factor to variable
message, the sum of this modified potential over any of the evidential variable states will be zero except
for that state which corresponds to the evidential setting. Another way to view this is that the sum in
the factor to variable message is only over the non-evidential variables, with any evidential variables in the
potential set into their evidential states.

5.1.4 Computing the marginal likelihood

For a distribution defined as products over potentials ¢ (Xr)
1
p(X) = - [s (Xp) (5.1.32)
f

the normalisation is given by
Z=> "TI¢rxp) (5.1.33)
X f

To compute this summation efficiently we take the product of all incoming messages to an arbitrarily chosen
variable x and then sum over the states of that variable:

2o 1 @ (5.1
T fene(x)

If the factor graph is derived from setting a subset of variables of a BN in evidential states then the
summation over all non-evidential variables will yield the marginal on the visible (evidential) variables. For
example

p(b,d) = p(alb)p(ble)p(cld)p(d). (5.1.35)

DRAFT June 18, 2013 81

Marginal Inference

This can be interpreted as requiring the sum over a product of suitably defined factors. Hence one can
readily find the marginal likelihood of the evidential variables for singly connected BNs.

Log messages

For the above method to work, the absolute (not relative) values of the messages are required, which
prohibits renormalisation at each stage of the message passing procedure. However, without normalisation
the numerical value of messages can become very small, particularly for large graphs, and numerical precision
issues can occur. A remedy in this situation is to work with log messages,

A =logpu (5.1.36)

For this, the variable to factor messages

poop @ =] sgoe (@) (5.1.37)
g€{ne(@)\f}

become simply

Aesf (@)= D Agoa (@) (5.1.38)
g€{ne(@)\f}

More care is required for the factors to variable messages, which are defined by

pioe (@) =Y 05X I mer®) (5.1.39)
Xp\z y€{ne(f)\z}

Naively, one may write
Aose () =log | > ¢p(Xyp)exp Y Aor() (5.1.40)
Xp\w y€{ne(f)\z}

However, the exponentiation of the log messages will cause potential numerical precision problems. A
solution to this numerical difficulty is obtained by finding the largest value of the incoming log messages,

= max A\ 5.1.41

o= A () (5.1.41)
Then

Mo (@) = Nyyp +log [D7 ¢ (Xp)exp Do M) = Aoy (5.1.42)

Xp\z yE{ne(f)\z}
By construction the terms exp (Zye{ne(f)\m} Ayt (y) —)‘Zﬁf> will be < 1, with at least one term being
equal to 1. This ensures that the dominant numerical contributions to the summation are computed accu-

rately.

Log marginals are readily found using

logp(z) = Z Aoz () (5.1.43)
f€Ene(x)

82 DRAFT June 18, 2013

Other Forms of Inference

Figure 5.4: (a): Factor graph with a loop. (b): Elimi-

¥ 4l l f - 12 nating the variable d adds an edge between a and ¢, demon-

f5 strating that, in general, one cannot perform marginal in-
o 16

ference in loopy graphs by simply passing messages along
a) (b)

existing edges in the original graph.

N

5.1.5 The problem with loops

Loops cause a problem with variable elimination (or message passing) techniques since once a variable is
eliminated the structure of the ‘amputated’ graph in general changes. For example, consider the FG

p(a,b,c,d) = fi(a,b) fa(b,c) f3(c,d) fa(a,d) (5.1.44)

depicted in fig(5.4a). The marginal p(a, b, c) is given by

pla,b,c) = fi (a,b) f2(b,¢) Y _ fs(c.d) fa(a,d) (5.1.45)
d

f5 (a‘ac)

which adds a link ac in the amputated graph, see fig(5.4b). This means that one cannot account for
information from variable d by simply updating potentials on links in the original graph — one needs to
account for the fact that the structure of the graph changes. The junction tree algorithm, chapter(6) deals
with this by combining variables to make a new singly connected graph for which the graph structure remains
singly connected under variable elimination.

5.2 Other Forms of Inference

5.2.1 Max-Product

A common interest is the most likely state of distribution. That is

argmax p(x1,z2,...,%n) (5.2.1)

T1,X2,5..-3Tn

To compute this efficiently for trees we exploit any factorisation structure of the distribution, analogous to
the sum-product algorithm. That is, we aim to distribute the maximization so that only local computations
are required. To develop the algorithm, consider a function which can be represented as an undirected chain,

f(xl, o, X3, 1'4) = (ﬁ(.%j, x2)¢(x2, .%'3)(]5(.%’3, .%'4) (5.2.2)

for which we wish to find the joint state z7, 25, 23, } which maximises f. Firstly, we calculate the maximum
value of f. Since potentials are non-negative, we may write

max f(x) = max ¢(x1,x2)P(x2, x3)0(x3,24) = max ¢(x1,x2)d(r2, r3) max ¢(rs, x4)
X x1,22,T3,T4 I1,2,X3 T4
—_————
va(z3)
=max ¢(z1, T2) maX d(x2, x3)v4(x3) = max P(x1, x2)y3(x2) = max max ¢(x1, x2)y3(x2)
Z1,T2 1,22 1 x2
v3(z2) 72(x1)

The final equation corresponds to solving a single variable optimisation and determines both the optimal
value of the function f and also the optimal state z] = argmax ~v2(z1). Given z7, the optimal x5 is given

by x5 = argmax o(z7, x2)y3(x2), and similarly x% = argmax ¢(m2,x3)74(x3) ;= argmax ¢(x5, x4). This

procedure is called backtracking. Note that we could have equally started at the other end of the chain by

DRAFT June 18, 2013 83

Other Forms of Inference

defining messages v that pass information from x; to x;41. The chain structure of the function ensures that
the maximal value (and its state) can be computed in time which scales linearly with the number of factors
in the function. There is no requirement here that the function f corresponds to a probability distribution
(though the factors must be non-negative).

Example 5.2. Consider a distribution defined over binary variables:
p(a, b, c) = p(alb)p(ble)p(c) (5.2.3)
with

pla=trlb=1tr) =0.3, pla=trlb="fa)=0.2, p(b=trlc=tr)=0.75
p(b=trlc=fa) =0.1, p(c=tr)=0.4

What is the most likely joint configuration, argmax p(a,b,c)?
a,b,c

Naively, we could evaluate p(a, b, c) over all the 8 joint states of a,b,c and select that states with highest
probability. An alternative message passing approach is to define

7e(b) = maxp(ble)p(c) (5.2.4)
For the state b = tr,

p(b = trlc = tr)p(c = tr) = 0.75 x 0.4, p(b = tr|jc =fa)p(c =fa) = 0.1 x 0.6 (5.2.5)
Hence, v.(b =tr) = 0.75 x 0.4 = 0.3. Similarly, for b = fa,

p(b = falc = tr)p(c = tr) = 0.25 x 0.4 p(b = falc = fa)p(c =fa) = 0.9 x 0.6 (5.2.6)

Hence, v.(b =fa) = 0.9 x 0.6 = 0.54.

We now consider

(@) = max p(alb)ye(b) (5:2.7)
For a = tr, the state b = tr has value

pla = tr|b = tr)y.(b=tr) = 0.3 x 0.3 = 0.09 (5.2.8)
and state b = fa has value

p(a = tr|b = fa)y.(b = fa) = 0.2 x 0.54 = 0.108 (5.2.9)
Hence 7,(a = tr) = 0.108. Similarly, for a = fa, the state b = tr has value

pla = falb = tr)ye(b = tr) = 0.7 x 0.3 = 0.21 (5.2.10)
and state b = fa has value

pla = fa|b = fa)y.(b = fa) = 0.8 x 0.54 = 0.432 (5.2.11)
giving (a = fa) = 0.432. Now we can compute the optimal state

a* = argmax y,(a) = fa (5.2.12)
a

Given this optimal state, we can backtrack, giving

b* = argmax p(a = fa|b)v.(b) = fa, ¢* = argmax p(b = fa|c)p(c) = fa (5.2.13)
b c

Note that in the backtracking process, we already have all the information required from the computation
of the messages 7.

84 DRAFT June 18, 2013

Other Forms of Inference

If we want to find the most likely state for a variable in the centre of the chain we can therefore pass
messages from one end to the other followed by backtracking. This is the approach for example taken by
the Viterbi algorithm for HMMs, section(23.2). Alternatively, we can send messages (carrying the result
of maximisations) simultaneously from both ends of the chain and then read off the maximal state of
the variable from the state which maximises the product of incoming messages. The first is a sequential
procedure since we must have passed messages along the chain before we can backtrack. The second is
a parallel procedure in which messages can be sent concurrently. The latter approach can be represented
using a factor graph as described below.

Using a factor graph

One can also use the factor graph to compute the joint most probable state. Provided that a full schedule
of message passing has occurred, the product of messages into a variable equals the maximum value of the
joint function with respect to all other variables. One can then simply read off the most probable state by
maximising this local potential.

Procedure 5.2 (Max-Product messages on Factor Graphs).

Given a distribution defined as a product on subsets of the variables, p(X) = % [] 7 @5 (Xy), provided the
factor graph is singly connected we can carry out maximisation over the variables efficiently.

Initialisation Messages from leaf node factors are initialised to the factor. Messages from leaf variable
nodes are set to unity.

Variable to Factor message

po—f (T) = H tg—a (T)
ge{ne(z)\f}

Factor to Variable message

Hr-e (@) = maxey (X) ||)
! ye{ne(f)\z}

. fim
Maximal State

uf;

x* = argmax H Pfsg ()

v f€ne(x) f-m

This algorithm is also called belief revision.

5.2.2 Finding the N most probable states

It is often of interest to calculate not just the most likely joint state, but the N most probable states,
particularly in cases where the optimal state is only slightly more probable than other states. This is an
interesting problem in itself and can be tackled with a variety of methods. A general technique is given by
Nilson[226] which is based on the junction tree formalism, chapter(6), and the construction of candidate

DRAFT June 18, 2013 85

Other Forms of Inference

lists, see for example [72].

For singly connected structures, several approaches have been developed [227, 319, 285, 272]. For the
hidden Markov model, section(23.2), a simple algorithm is the N-Viterbi approach which stores the N-most
probable messages at each stage of the propagation. For more general singly connected graphs one can
extend the max-product algorithm to an N-max-product algorithm by retaining at each stage the N most
probable messages, see below.

N-max-product

The algorithm for N-maz-product is a minor modification of the standard max-product algorithm. Compu-
tationally, a straightforward way to accomplish this is to introduce an additional variable for each message
that is used to index the most likely messages. We will first develop this for message passing on an undi-
rected graph. Consider the distribution

@ e @ p(a, b> Gy da e) = ¢(ev a)qb(a, b)¢(ba C)qb(b, d) (5~2-14)

for which we wish to find the two most probable values. Using the notation

max f(x) (5.2.15)

T

for the 7" highest value of f(z), the maximisation over d can be expressed using the message
~a(b,1) = mj?x (b, d), ~va(b,2) = mf?xqﬁ(b, d) (5.2.16)

Defining messages similarly, the 2 most likely values of p(a, b, c,d, e) can be computed using

rg%%((e, a)d(a, b)d(b,) b(b, d) :rrllgxnll:g)((ﬁ(e,a)bnllgx é(a, b) max ¢(b, c) H11§X¢(b, d) (5.2.17)
a,b,c,d,e e,Mq a,mp Me, Mg c
'70(;;710) ’yd(b,md)
(@)
Ya(€;ma)

where mg, myp, m. and mg index the two highest values. At the final stage we now have a table with dim(e) x 2
entries, from which we compute the highest two joint states of e,m,. Given these first most likely joint
states, e*,m} one then backtracks to find the most likely state of a, m; using arg max}lfnb o(e*, a)vp(a, mp).
One continues backtracking, then finding the most likely state of b, m., mg and finally ¢ and d. One may
then restart the backtracking using the second most likely state of e, m, and continue to find the most likely

states to have given rise to this, leading to the second most likely joint state.

The translation of this to the factor graph formalism is straightforward and contained in maxNprodFG.m.
Essentially the only modification required is to define extended messages which contain the N-most likely
messages computed at each stage. A variable to factor message consists of the product of extended mes-
sages. For a factor to variable message, all extended messages from the neighbours are multiplied together
into a large table. The N-most probable messages are retained, defining a new extended message. The
N-most probable states for each variable can then be read off by finding the variable state that maximises
the product of incoming extended messages.

Branches are the bottleneck in the above computation. Consider a term as part of a larger system with

e a d(z,a)p(a,b)o(a,c) (5.2.18)
(o)

86 DRAFT June 18, 2013

Other Forms of Inference

|

We would like to pass a message along the branch from b to a and then from ¢ to a and then from a to the
rest of the graph. To compute the most likely value we can find this from

4 3

N7 Figure 5.5: State transition diagram (weights not shown). The shortest
—_ 0 = 7 (unweighted) path from state 1 to state 7 is 1 — 2 — 7. Considered as a

\[\/ Markov chain (random walk), the most probable path from state 1 to state
6 5 7is 1 —8—9—7. The latter path is longer but more probable since for the
I path 1 — 2 — 7, the probability of exiting from state 2 into state 7 is 1/5
9

; (assuming each transition is equally likely). See demoMostProbablePath.m

max o(z,a) {mgxx¢(a,b)} {méix o(a, c)} (5.2.19)

which represents an efficient approach since the maximisation can be carried out over each branch separately.
However, to find the second most likely value, we cannot write

mzax o(z,a) {mgxx¢(a,b)} {méix o(a, c)} (5.2.20)

For a fixed z, this would erroneously always force a to be in a different state than the state corresponding to
the most likely value. Similarly, we cannot assume that the second most likely state corresponds to finding
the second most likely state of each factor. Unlike the single most likely state case, therefore, we cannot
distribute the maximisations over each branch but have to search over all branch contributions concurrently.
This therefore corresponds to an exponentially complex search for the N-highest joint branch states. Whilst
non branching links are non-problematic, the degree D of a variable’s node (in either the FG or undirected
representation) contributes an additional exponential term N? to the computational complexity.

5.2.3 Most probable path and shortest path

What is the most likely path from state a to state b for an N state Markov chain? Note that this is not
necessarily the same as the shortest path, as explained in fig(5.5). If we consider a path of length T', this
has probability

p(s2][s1 = a)p(ss|s2) ... p(sr = b|sr_1) (5.2.21)

Finding the most probable path can then be readily solved using the max-product (or max-sum algorithm
for the log-transitions) on a simple serial factor graph. To deal with the issue that we don’t know the optimal
T, one approach is to redefine the probability transitions such that the desired state b is an absorbing state
of the chain (that is, one can enter this state but not leave it). With this redefinition, the most probable
joint state will correspond to the most probable state on the product of N — 1 transitions. This approach
is demonstrated in demoMostProbablePath.m, along with the more direct approaches described below.

An alternative, cleaner approach is as follows: for the Markov chain we can dispense with variable-to-factor
and factor-to-variable messages and use only variable-to-variable messages. If we want to find the most
likely set of states a, so,...,s7_1, b to get us there, then this can be computed by defining the maximal path
probability F (a — b, T’) to get from a to b in T-timesteps:

E(a—bT)= . Illlf.l%;(ﬂp(82|51 = a)p(ss|s2)p(s4|ss) -..p(sT = blsr_1) (5.2.22)
= max maxp(sa|s1 = a)p(s3|s2)p(s4|ss)...p(sr =b|sr_1) (5.2.23)

83,sST—1 52

~v2-53(s3)

To compute this efficiently we define messages
Yest41 (St41) = MAx i1t (st) p(st+1lst), t=>2, Y12 (s2) = p(s2]s1 = a) (5.2.24)

DRAFT June 18, 2013 87

Other Forms of Inference

until the point
E(a—bT)= MaxX Y7271 (s7—1) p(sT = b|sr—1) = yr—157 (s7 = b) (5.2.25)

We can now proceed to find the maximal path probability for timestep T4 1. Since the messages up to time
T — 1 will be the same as before, we need only compute one additional message, yr—1—7 (s7), from which

E(@a—=bT+1)= maX Y717 (s7) p(sT+1 = blsT) = yr—7141 (8711 = b) (5.2.26)
We can proceed in this manner until we reach F (a — b, N) where N is the number of nodes in the graph.

We don’t need to go beyond this number of steps since those that do must necessarily contain non-simple
paths. (A simple path is one that does not include the same state more than once.) The optimal time ¢*

is then given by which of E(a — b,2),..., E(a — b, N) is maximal. Given t* one can begin to backtrack®.
Since
E(a—b,t") = INAX Ypr—25p<—1 (st+—1) p(sp+ = b|sp=—1) (5.2.27)
t*¥—1

we know the optimal state

Spe_q = argmax yp—9 1 (Sp=—1) p(S+ = b|sg_1) (5.2.28)
Syx_1

We can then continue to backtrack:

Six_g = ArgMAax Ye—3—px—2 (Spx—2) P(Sie_1]St —2) (5.2.29)
Si* 9

and so on. See mostprobablepath.m.

e In the above derivation we do not use any properties of probability, except that p must be non-negative
(otherwise sign changes can flip a whole sequence ‘probability’ and the local’ message recursion no
longer applies). One can consider the algorithm as finding the optimal ‘product’ path from a to b.

e It is straightforward to modify the algorithm to solve the (single-source, single-sink) shortest weighted
path problem. One way to do this is to replace the Markov transition probabilities with exp(—u(s¢|si—1)),
where u(s¢|s;—1) is the edge weight and is infinite if there is no edge from s;_1 to s;. This approach
is taken in shortestpath.m which is able to deal with either positive or negative edge weights. This
method is therefore more general than the well-known Dijkstra’s algorithm [121] which requires weights
to be positive. If a negative edge cycle exists, the code returns the shortest weighted length N path,
where N is the number of nodes in the graph. See demoShortestPath.m.

e The above algorithm is efficient for the single-source, single-sink scenario, since the messages contain
only N states, meaning that the overall storage is O(N?).

e As it stands, the algorithm is numerically impractical since the messages are recursively multiplied by
values usually less than 1 (at least for the case of probabilities). One will therefore quickly run into
numerical underflow (or possibly overflow in the case of non-probabilities) with this method.

To fix the final point above, it is best to work by defining the logarithm of E. Since this is a monotonic
transformation, the most probable path defined through log F is the same as that obtained from E. In this
case

L(a—=bT)= max log[p(sz|s1 = a)p(ss|s2)p(salss)...p(sr = blsT-1)] (5.2.30)
T-1

= max logp(salsy =a) + Z log p(s¢|si—1) + log p(sT = blsp—1) (5.2.31)
e t=2

! An alternative to finding t* is to define self-transitions with probability 1, and then use a fixed time T = N. Once the
desired state b is reached, the self-transition then preserves the chain in state b for the remaining timesteps. This procedure is
used in mostprobablepathmult.m

88 DRAFT June 18, 2013

Inference in Multiply Connected Graphs

We can therefore define new messages
Atst+1 (St41) = max [At—1-5t (5¢) +log p(sey1]st)] (5.2.32)

One then proceeds as before by finding the most probable t* defined on L, and backtracks.

Remark 5.2. A possible confusion is that optimal paths can be efficiently found ‘when the graph is loopy’.
Note that the graph in fig(5.5) is a state-transition diagram, not a graphical model. The graphical model
corresponding to this simple Markov chain is the Belief Network [[, p(s¢|s;—1), a linear serial structure.
Hence the underlying graphical model is a simple chain, which explains why computation is efficient.

Most probable path (multiple-source, multiple-sink)

If we need the most probable path between all states a and b, one could re-run the above single-source-
single-sink algorithm for all a and b. A computationally more efficient approach is to observe that one can
define a message for each starting state a:

Yest+1 (St+1]a) = H}j}x V-1t (5t]a) p(st41]st) (5.2.33)

and continue until we find the maximal path probability matrix for getting from any state a to any state b
in T timesteps:

FE (a — b,T) = gr%aX'yT_g_gp_l (sT_lla)p(sT = b’ST_l) (5.2.34)
-1

Since we know the message yr_o—7—1 (s7—1]a) for all states a, we can readily compute the most probable
path from all starting states a to all states b after T" steps. This requires passing an N X N matrix message
~v. We can then proceed to the next timestep 7'+ 1. Since the messages up to time T — 1 will be the same
as before, we need only compute one additional message, yr—1—7 (s7), from which

E(a—bT+1)= maX Y717 (sr|a) p(sT4+1 = b|sT) (5.2.35)

In this way one can then efficiently compute the optimal path probabilities for all starting states a and
end states b after ¢ timesteps. To find the optimal corresponding path, backtracking proceeds as before,
see mostprobablepathmult.m and demoMostProbablePathMult.m. One can also use the same algorithm to
solve the multiple-source, multiple-sink shortest weighted path problem using exponentiated negative edge
weights, as before. This is a variant of the Floyd-Warshall-Roy algorithm[121].

5.2.4 Mixed inference

An often encountered situation is to infer the most likely state of a joint marginal, possibly given some

evidence. For example, given a distribution p(z1,...,x,), find
argmax p(xi,Ta,...,Ty,) = argmax Z p(z1,...,2n) (5.2.36)
T1,T2,e0yTm T1,L2,eyTm

Tm+1y--Tn

In general, even for tree structured p(z1, ..., z,), the optimal marginal state cannot be computed efficiently.
One way to see this is that due to the summation the resulting joint marginal does not have a structured
factored form as products of simpler functions of the marginal variables. Finding the most probable joint
marginal then requires a search over all the joint marginal states — a task exponential in m. An approximate
solution is provided by the EM algorithm (see section(11.2) and exercise(5.7)).

5.3 Inference in Multiply Connected Graphs

We briefly discuss here some relatively straightforward approaches to dealing with multiply connected graphs
that are conceptually straightforward, or build on the repeated use of singly connected structures. We discuss
a more general algorithm in chapter(6).

DRAFT June 18, 2013 89

Inference in Multiply Connected Graphs

Algorithm 5.1 Compute marginal p(z:|evidence) from distribution p(x) = [[; ¢r({z}). Assumes non-
evidential variables are ordered x, ..., x,.

1: procedure BUCKET ELIMINATION(p(z) = [[; ¢¢({z}).)

2 Initialize all bucket potentials to unity. > Fill buckets
3 while There are potentials left in the distribution do

4: For each potential ¢y, find its highest variable x; (according to the ordering).

5: Multiply ¢ with the potential in bucket j and remove ¢; the distribution.

6: end while

7 for i = bucket n to 1 do > Empty buckets
8 For bucket i sum over the states of variable x; and call this potential ~;

9: Identify the highest variable z;, of potential ;

10: Multiply the existing potential in bucket h by ~;

11: end for

12: The marginal p(x1|evidence) is proportional to ;.

13: return p(x;|evidence) > The conditional marginal.
14: end procedure

5.3.1 Bucket elimination

We consider here a general conditional marginal variable elimination method that works for any distribu-
tion (including multiply connected graphs). Bucket elimination is presented in algorithm(5.1) and can be
considered a way to organise the distributed summation[83]. The algorithm is perhaps best explained by a
simple example, as given below.

Example 5.3 (Bucket Elimination). Consider the problem of calculating the marginal p(f) of

pla,b,c,d,e, f,g) = p(f|d)p(gld, e)p(cla)p(d|a, b)p(a)p(b)p(e), (5.3.1)
see fig(2.1a). Whilst this is singly-connected, this serves to explain the general procedure.
p(f)= > plabedef,g)= Y p(fldpgld,e)p(cla)p(dla,b)p(a)p(b)p(e) (5.3.2)
a,b,c,d,e,g a,b,c,d.e,g

We can distribute the summation over the various terms as follows: e, b and c are end nodes, so that we
can sum over their values:

= S p(fldp((Zp d|a, b)p >> (chm)) (Zp@rd, e>p<e>) (5.3.3)
d,a,g c e

For convenience, lets write the terms in the brackets as), p(d|a, b)p(b) = v (a,d), >, p(gld,e)p(e) =
Ye (d, g). The term) p(c|a) is equal to unity, and we therefore eliminate this node directly. Rearranging
terms, we can write

= > _p(fld)p(a)y (a,d) e (d, g) (5.3.4)
d,a,g

If we think of this graphically, the effect of summing over b, ¢, e is effectively to remove or ‘eliminate’ those
variables. We can now carry on summing over ¢ and g since these are end points of the new graph:

£ =>_p(fld) (Zp(a)% (a,d)> (Z e (d79)> (5.3.5)
d a g

Again, this defines new potentials v, (d), 74 (d), so that the final answer can be found from

= p(fld)7a (d) 74 (d) (5.3.6)
d

90 DRAFT June 18, 2013

Inference in Multiply Connected Graphs

(gld, e)
p(cla)
a b)
p(a) a)yB d? a)yg (d,a)
p(f|d)

p(fld)ve ()> p(fld)va (d)va (d)

p(f1d) p(f1d)

@@@@@@@

v (f)

Figure 5.6: The bucket elimination algorithm applied to the graph fig(2.1). At each stage, at least one
node is eliminated from the graph. The second stage of eliminating c is trivial since) p(cla) =1 and has
therefore been skipped over since this bucket does not send any message.

We illustrate this in fig(5.6). Initially, we define an ordering of the variables, beginning with the one that
we wish to find the marginal for — a suitable ordering is therefore, f,d,a,g,b,c,e. Then starting with the
highest bucket e (according to our ordering f,d, a, g,b,c,e), we put all the potentials that mention e in the
e bucket. Continuing with the next highest bucket, ¢, we put all the remaining potentials that mention c
in this ¢ bucket, etc. The result of this initialisation procedure is that terms (conditional distributions) in
the DAG are distributed over the buckets, as shown in the left most column of fig(5.6). Eliminating then
the highest bucket e, we pass a message to node g. Immediately, we can also eliminate bucket ¢ since this
sums to unity. In the next column, we have now two fewer buckets, and we eliminate the highest remaining
bucket, this time b, passing a message to bucket a, and so on.

There are some important observations we can make about bucket elimination:

1. To compute say p(z2|evidence) we need to re-order the variables (so that the required marginal variable
is labelled x1) and repeat bucket elimination. Hence each query (calculation of a marginal in this
case) requires re-running the algorithm. It would be more efficient to reuse messages, rather than
recalculating them each time.

2. In general, bucket elimination constructs multi-variable messages v from bucket to bucket. The storage
requirements of a multi-variable message are exponential in the number of variables of the message.

3. For trees we can always choose a variable ordering to render the computational complexity to be
linear in the number of variables. Such an ordering is called perfect, definition(6.9), and indeed it can
be shown that a perfect ordering can always easily be found for singly connected graphs (see [92]).
However, orderings exist for which bucket elimination will be extremely inefficient.

5.3.2 Loop-cut conditioning

For multiply connected distributions we run into some difficulty with the message passing routines such as
the sum-product algorithm which are designed to work on singly connected graphs only. One way to solve
the difficulties of multiply connected (loopy) graphs is to identify nodes that, when removed, would reveal
a singly connected subgraph[236]. Consider the example of fig(5.7). Imagine that we wish to calculate a

DRAFT June 18, 2013 91

Message Passing for Continuous Distributions

oo OO
Figure 5.7 A multiply con-
e @ e @ @ e nected graph (a) reduced to a
singly connected graph (b) by
e e e @ conditioning on the variable c.
(a) (b)

marginal, say p(d). Then

p(d) = z{;) Ig} p(cla)p(a) p(d|a, b)p(b) p(f|e, d) p(gld, e) (5.3.7)
DESI T pr(a) p*(fld)

where the p* potentials are not necessarily distributions. For each state of ¢, the product of the new po-
tentials on the variables a, b, e, f, g is singly connected, so that standard singly connected message passing
can be used to perform inference. We will need to perform inference for each state of variable ¢, each state
defining a new singly connected graph (with the same structure) but with modified potentials.

More generally, we can define a set of variables C, called the loop cut set and run singly connected inference
for each joint state of the cut-set variables C. This can also be used for finding the most likely state of a
multiply connected joint distribution as well. Hence, for a computational price exponential in the loop-cut
size, we can calculate the marginals (or the most likely state) for a multiply connected distribution. However,
determining a small cut set is in general difficult, and there is no guarantee that this will anyway be small for
a given graph. Whilst this method is able to handle loops in a general manner, it is not particularly elegant
since the concept of messages now only applies conditioned on the cut set variables, and how to re-use
messages for inference of additional quantities of interest becomes unclear. We will discuss an alternative
method for handling multiply connected distributions in chapter(6).

5.4 Message Passing for Continuous Distributions

For parametric continuous distributions p(z|6,), message passing corresponds to passing parameters 6 of
the distributions. For the sum-product algorithm, this requires that the operations of multiplication and
integration over the variables are closed with respect to the family of distributions. This is the case, for
example, for the Gaussian distribution — the marginal (integral) of a Gaussian is another Gaussian, and
the product of two Gaussians is a Gaussian, see section(8.4). This means that we can then implement
the sum-product algorithm based on passing mean and covariance parameters. To implement this requires
some tedious algebra to compute the appropriate message parameter updates. At this stage, the complex-
ities from performing such calculations are a potential distraction, though the interested reader may refer
to demoSumprodGaussMoment .m, demoSumprodGaussCanon.m and demoSumprodGaussCanonlDS.m and also
chapter(24) for examples of message passing with Gaussians. For more general exponential family distri-
butions, message passing is essentially straightforward, though again the specifics of the updates may be
tedious to work out. In cases where the operations of marginalisation and products are not closed within the
family, the distributions need to be projected back to the chosen message family. Expectation propagation,
section(28.8), is relevant in this case.

5.5 Summary

e For a tree-structured factor graph, non-mixed inference is essentially linear in the number of nodes in the
graph (provided the variables are discrete or the inference operations form a tractable closed family).

e Computation on trees can be achieved using local ‘message passing’ algorithms, analogous to dynamic
programming.

92 DRAFT June 18, 2013

Code

e The sum-product and max-product algorithm are particularly useful for computing marginal and most likely
inferences respectively.

e Message-passing also holds for continuous variables based on passing messages that update the parameters
of the distribution.

e Shortest-path problems can be solved using such message-passing approaches.

e Inference in non-trees (multiply connected distributions) is more complex since there is a fill-in effect when
variables are eliminated that adds additional links to the graph.

e Inference in multiply connected graphs can be achieved using techniques such as cut-set conditioning which,
by conditioning on a subset of variables, reveal a singly connected structure. However, this is generally
inefficient since the messages cannot be readily re-used.

A take-home message from this chapter is that (non-mixed) inference in singly connected structures is usu-
ally computationally tractable. Notable exceptions are when the message passing operations are not closed
within the message family, or representing messages explicitly requires an exponential amount of space. This
happens for example when the distribution can contain both discrete and continuous variables, such as the
Switching Linear Dynamical system, which we discuss in chapter(25).

Broadly speaking, inference in multiply connected structures is more complex and may be intractable.
However, we do not want to give the impression that this is always the case. Notable exceptions are:
finding the most likely state in an attractive pairwise MN, section(28.9); finding the most likely state and
marginals in a binary planar MN with pure interactions, see for example [127, 260]. For N variables in the
graph, a naive use of general purpose routines such as the junction tree algorithm for these inferences would
result in an O (2N) computation, whereas clever algorithms are able to return the exact results in O (N 3)
operations. Of interest is bond propagation[191] which is an intuitive node elimination method to perform
marginal inference in pure-interaction Ising models.

5.6 Code

The code below implements message passing on a tree structured factor graph. The FG is stored as an
adjacency matrix with the message between FG node i and FG node j given in A4, ;.

FactorGraph.m: Return a factor graph adjacency matrix and message numbers

sumprodFG.m: Sum-Product algorithm on a factor graph

In general it is recommended to work in log-space in the Max-Product case, particularly for large graphs
since the product of messages can become very small. The code provided does not work in log space and
as such may not work on large graphs; writing this using log-messages is straightforward but leads to less
readable code. An implementation based on log-messages is left as an exercise for the interested reader.
maxprodFG.m: Max-Product algorithm on a factor graph

maxNprodFG.m: N-Max-Product algorithm on a factor graph

5.6.1 Factor graph examples

For the distribution from fig(5.3), the following code finds the marginals and most likely joint states. The
number of states of each variable is chosen at random.

demoSumprod.m: Test the Sum-Product algorithm

demoMaxprod.m: Test the Max-Product algorithm

demoMaxNprod.m: Test the Max- N-Product algorithm

5.6.2 Most probable and shortest path

mostprobablepath.m: Most probable path
demoMostProbablePath.m: Most probable versus shortest path demo

DRAFT June 18, 2013 93

Exercises

demoShortestPath.m: The shortest path demo works for both positive and negative edge weights. If
negative weight cycles exist, the code finds the best length N shortest path.

mostprobablepathmult.m: Most probable path — multi-source, multi-sink

demoMostProbablePathMult.m: Demo of most probable path — multi-source, multi-sink

5.6.3 Bucket elimination

The efficiency of Bucket Elimination depends critically on the elimination sequence chosen. In the demon-
stration below we find the marginal of a variable in the Chest Clinic exercise using a randomly chosen
elimination order. The desired marginal variable is specified as the last to be eliminated. For comparison
we use an elimination sequence based on decimating a triangulated graph of the model, as discussed in
section(6.5.1), again under the constraint that the last variable to be ‘decimated’ is the marginal variable of
interest. For this smarter choice of elimination sequence, the complexity of computing this single marginal
is roughly the same as that for the Junction Tree algorithm, using the same triangulation.

bucketelim.m: Bucket Elimination

demoBucketElim.m: Demo Bucket Elimination

5.6.4 Message passing on Gaussians

The following code hints at how message passing may be implemented for continuous distributions. The
reader is referred to the BRMLrooLBox for further details and also section(8.4) for the algebraic manipu-
lations required to perform marginalisation and products of Gaussians. The same principle holds for any
family of distributions which is closed under products and marginalisation, and the reader may wish to
implement specific families following the method outlined for Gaussians.

demoSumprodGaussMoment .m: Sum-product message passing based on Gaussian Moment parameterisation

5.7 Exercises

Exercise 5.1. Given a pairwise singly connected Markov network of the form
1
)= [[(@i 2y) (5.7.1)
i~j

explain how to efficiently compute the normalisation factor (also called the partition function) Z as a function
of the potentials ¢.

Exercise 5.2. Consider a pairwise Markov network defined on binary variables:

99
p(x) = ¢z, z100) [[dlas, wis1) (5.7.2)

i=1

Is it possible to compute argmax p(z) efficiently?
Z1,--+,2100

Exercise 5.3. You are employed by a web start up company that designs virtual environments, in which
players can move between rooms. The rooms which are accessible from another in one time step is given by
the 100 x 100 matriz M, stored in virtualworlds.mat, where M;; = 1 means that there is a door between
rooms ¢ and j (M,-j = Mj,) M;; = 0 means that there is no door between rooms ¢ and j. My = 1 meaning
that in one time step, one can stay in the same room. You can visualise this matriz by typing imagesc(M).

1. Write a list of rooms which cannot be reached from room 2 after 10 time steps.
2. The manager complains that takes at least 13 time steps to get from room 1 to room 100. Is this true?
3. Find the most likely path (sequence of rooms) to get from room 1 to room 100.

4. If a single player were to jump randomly from one room to another (or stay in the same room), with no
preference between rooms, what is the probability at time t > 1 the player will be in room 17 Assume
that effectively an infinite amount of time has passed and the player began in room 1 att = 1.

94 DRAFT June 18, 2013

FExercises

5. If two players are jumping randomly between rooms (or staying in the same room), explain how to
compute the probability that, after an infinite amount of time, at least one of them will be in room 1?
Assume that both players begin in room 1.

Exercise 5.4. Consider the hidden Markov model:

T
p(vr,.. . vr b, hr) = plha)p(or ba) T] p(velhe)p (el 1) (5.7.3)
t=2

in which dom(hy) = {1,...,H} and dom(v;) ={1,...,V} forallt =1,...,T.
1. Draw a belief network representation of the above distribution.

2. Draw a factor graph representation of the above distribution.

3. Use the factor graph to derive a Sum-Product algorithm to compute marginals p(h¢|vy, ..., vr). Ezplain
the sequence order of messages passed on your factor graph.

4. Explain how to compute p(hy, hit1|v1, ..., vr).

5. Show that the belief network for p(hi,...,hr) is a simple linear chain, whilst p(vy,...,vr) is a fully
connected cascade belief network.

Exercise 5.5. For a singly connected Markov Network, p(x) = p(x1,...,x,), the computation of a marginal
p(zi) can be carried out efficiently. Similarly, the most likely joint state o™ = argmaxy, ., p(x) can be
computed efficiently. Fxplain when the most likely joint state of a marginal can be computed efficiently, i.e.
under what circumstances could one efficiently (in O (m) time) compute argmax p(xi,...,Ty) for m < n?
T1,L2,.. s Tm

Exercise 5.6. Consider the internet with webpages labelled 1,..., N. If webpage j has a link to webpage i,
then we place an element of the matriz L;; = 1, otherwise L;j = 0. By considering a random jump from
webpage j to webpage i to be given by the transition probability

2. Lij
what is the probability that after an infinite amount of random surfing, one ends up on webpage 1? How
could you relate this to the potential ‘relevance’ of a webpage in terms of a search engine?

M;; =

(5.7.4)

Exercise 5.7. A special time-homogeneous hidden Markov model is given by

T
p@1, -y, yrs b hy) = paa ha)p(yiha)p(ha) [[p(helhe-1)p(ael he)p(yel ha) (5.7.5)
t=2
The variable x; has 4 states, dom(xy) = {A, C, G, T} (numerically labelled as states 1,2,3,4). The variable
Yt has 4 states, dom(y) = {A, C, G, T}. The hidden or latent variable hy has 5 states, dom(hy) = {1,...,5}.
The HMM models the following (fictitious) process:

In humans, Z-factor proteins are a sequence on states of the variables x1,x2,...,xp. In bananas Z-factor
proteins are also present, but represented by a different sequence y1,yo, . ..,yr. Given a sequence x1,...,T
from a human, the task is to find the corresponding sequence yi,...,yr in the banana by first finding the

most likely joint latent sequence, and then the most likely banana sequence given this optimal latent sequence.
That is, we require

argmax p(y1,...,yr|hl, ..., h7) (5.7.6)
Y1y YT
where
1y...,hp =argmax p(hi,..., hy|z1,...,27) (5.7.7)
hi,....hp

The file banana.mat contains the emission distributions pxgh (p(z|h)), pygh (p(y|h)) and transition phtghtm
(p(h¢lhi—1)). The initial hidden distribution is given in phl (p(h1)). The observed x sequence is given in x.

DRAFT June 18, 2013 95

Exercises

1. Ezplain mathematically and in detail how to compute the optimal y-sequence, using the two-stage
procedure as stated above.

2. Write a MATLAB routine that computes and displays the optimal y-sequence, given the observed
x-sequence. Your routine must make use of the Factor Graph formalism.

3. Explain whether or not it is computationally tractable to compute

argmax p(y1,...,yr|T1,...,27) (5.7.8)
Yoo YT
4. Bonus question: By considering y1, . ..,yr as parameters, explain how the EM algorithm, section(11.2),
may be used to find argmax p(y1,...,yr|z1,...,2z7). Implement this approach with a suitable initiali-
yl?"'7yT
sation for the optimal parameters yi,...,yr.

Exercise 5.8. There are a set of firstnames: david, anton, fred, jim, barry which are numbered 1
(david) to 5 (barry) and a set of surnames: barber, ilsung, fox, chain, fitzwilliam, quinceadams,
grafvonunterhosen, which are numbered 1 (barber) to 7 (grafvonunterhosen). A string is generated by
first randomly sampling a character from a to z. Then we either continue this random character sampling
with probability 0.8, or we start to generate a firstname. A firstname is chosen uniformly at random.
After generating a firstname, we generate a character at random. We continue to generate another letter at
random with probability 0.8, or start to generate a surname (chosen uniformly from the set of surnames). We
continue until the last letter of the surname is generated. The process then goes back to start (unless we are
at the end timepoint T = 10000). For example, we might generate then dtyjimdfilsungffdavidmjfox. . ..
The catch is that the process of character generation is very noisy. The character we want to generate is only
generated correctly with probability 0.3, with probability 0.7 that another character (uniformly at random)
will be generated. Given the 10000 character sequence in the file noisystring.mat, you must decode the
noisystring to find the most likely intended ‘clean’ sequence. Once you have this sequence, you will be able to
find a set of (firstname,surname) pairs as you traverse along the clean sequence. Construct a matriz m(i,j)
with the counts of the number of occurrences of the pair (firstname(i), surname(j)) in your clean sequence
and display this matriz.

Exercise 5.9. A security company is employed to keep watch on the behaviour of people moving trough
a train station. Using video cameras they are able to track the x,y position of 500 people. The matriz in
drunkproblemX.mat contains the position of the 500 people through time, with a 1 in the matriz representing
that a person is occupying that position. This matriz is generated using the program drunkmover.m which
you may wish to examine. If a person moves out of the grid, they are moved back into a random position in
the grid, as described in drunkmover.m. All but one of the people move only to a single neighbouring point
on the z-y grid in one time step. Howewver, person 1 is a fast and dangerous drunk that we want to track.
The drunk can move from (z,y) to (x £ 2,y £ 2) at the next time step.

Devise a method to track where you think the dangerous drunk is and give a list of the (x,y) coordinates of
the single most likely path the drunk took through the station.

Exercise 5.10. The file BearBulldata contains the price of an asset through T = 200 timepoints. The
price takes values from 1 to 100. If the market is in a ‘bear’ state, the price changes from timet — 1 to t
with probability transition matriz pbear(t,t — 1). If the market is in the ‘bull’ state, the price changes from
time t — 1 to t with transition matriz pbull(t,t — 1). If the market is in a ‘bear’ state it will remain so with
probability 0.8. If the market is in a bull state it will remain so with probability 0.7. You may assume that
at timestep 1, the market is uniformly in either a bear or bull state and also that the price distribution at
timestep 1 is uniform. Use this model to compute the probability of the price at time T + 1 given all the
observed prices from time 1 to 100; that is p(price(T + t)|price(1 : T)). Using this probability, compute the
expected gain price(T + 1) — price(T) in the price of the asset, and also the standard deviation in this price
gain price(T + 1) — price(T).

96 DRAFT June 18, 2013

++
e

++

++

CHAPTER O

The Junction Tree Algorithm

When the distribution is multiply-connected it would be useful to have a generic inference approach that is
efficient in its reuse of messages. In this chapter we discuss an important structure, the junction tree, that by
clustering variables enables one to perform message-passing efficiently (although the structure on which the
message-passing occurs may consist of intractably large clusters). The most important thing is the junction
tree itself, based on which different message-passing procedures can be considered. The junction tree helps
forge links with the computational complexity of inference in fields from computer science to statistics and
physics.

6.1 Clustering Variables

In chapter(5) we discussed efficient inference for singly-connected graphs, for which variable elimination and
message passing schemes are appropriate. In the multiply connected case, however, one cannot in general
perform inference by passing messages only along existing links in the graph. The idea behind the junction
tree algorithm (JTA) is to form a new representation of the graph in which variables are clustered together,
resulting in a singly-connected graph in the cluster variables (albeit on a different graph). The main focus
of the development will be on marginal inference, though similar techniques apply to different inferences,
such as finding the most probable state of the distribution.

At this stage it is important to point out that the JTA is not a magic method to deal with intractabilities
resulting from multiply connected graphs; it is simply a way to perform correct inference on a multiply
connected graph by transforming to a singly connected structure. Carrying out the inference on the resulting
junction tree may still be computationally intractable. For example, the junction tree representation of a
general two-dimensional Ising model is a single supernode containing all the variables. Inference in this case
is exponentially complex in the number of variables. Nevertheless, even in cases where implementing the
JTA may be intractable, the JTA provides useful insight into the representation of distributions that can
form the basis for approximate inference. In this sense the JTA is key to understanding issues related to
representations and complexity of inference and is central to the development of efficient inference algorithms.

6.1.1 Reparameterisation
Consider the chain

p(a, b, c,d) = p(alb)p(blc)p(c|d)p(d) (6.1.1)
From the definition of conditional probability, we can reexpress this as

_ pla,b) p(b,c) p(c,d) ~ pla,b)p(b, c)p(c,d)
pla-bed) == 0500 v MY T T o)

(6.1.2)

97

Clique Graphs

0 Figure 6.1: (a) Markov network

"Q ¢(a,b,c)9(b, c,d). (b) Clique graph
e b,c representation of (a).
(b)

(a)

A useful insight is that the distribution can therefore be written as a product of marginal distributions, di-
vided by a product of the intersection of the marginal distributions: Looking at the numerator p(a, b)p(b, ¢)p(c, d)
this cannot be a distribution over a,b, ¢, d since we are overcounting b and ¢, where this overcounting of
b arises from the overlap between the sets {a,b} and {b,c}, which have b as their intersection. Similarly,
the overcounting of ¢ arises from the overlap between the sets {b,c} and {c,d}. Intuitively, we need to
correct for this overcounting by dividing by the distribution on the intersections. Given the transformed
representation as a product of marginals divided by a product of their intersection (the right equation in
(6.1.2)), a marginal such as p(a,b) can be read off directly from the factors in the new expression. The aim
of the junction tree algorithm is to form just such a representation of the distribution which contains the
marginals explicitly. We want to do this in a way that works for belief and Markov networks, and also deals
with the multiply connected case. In order to do so, an appropriate way to parameterise the distribution is
in terms of a clique graph, as described in the next section.

6.2 Clique Graphs

Definition 6.1 (Clique Graph). A clique graph consists of a set of potentials, ¢1(X'),...,¢,(X™) each
defined on a set of variables X*. For neighbouring cliques on the graph, defined on sets of variables X’ and
X7, the intersection X* = X" N X7 is called the separator and has a corresponding potential ¢s(X*). A
clique graph represents the function

[1. #e(X°) (6.2.1)

[1, ¢s(X)

For notational simplicity we will usually drop the clique potential index c¢. Graphically clique potentials are
represented by circles/ovals, and separator potentials by rectangles.

@— xtnaz —@ The graph on the left represents ¢(X1)p(X?)/p(X! N X2).

Clique graphs translate Markov networks into structures convenient for carrying out inference. Consider
the Markov network in fig(6.1a)

o(a,b,c)p(b, c,d)
Z

p(a,b,c,d) = (6.2.2)

An equivalent representation is given by the clique graph in fig(6.1b), defined as the product of the numerator
clique potentials, divided by the product of the separator potentials. In this case the separator potential
may be set to the normalisation constant Z. By summing we have

Zp(a,b,c) = ¢(a,b,c) Y (b, ¢, d), Zp(b,¢,d) = ¢(b,c,d) Y _ ¢(a,b,c) (6.2.3)
d a

Multiplying the two expressions, we have

Z%p(a,b,c)p(b, ¢,d) = <¢(a, bc) > (b, d)> <¢(b, ¢,d)> " ¢(a,b, c)> = Z%p(a,b,c,d) Y pla,b,c,d)
d a

a,d

98 DRAFT June 18, 2013

Clique Graphs

(6.2.4)

In other words

p(a,b,c)p(b, c,d)
p(e,b)

The important observation is that the distribution can be written in terms of its marginals on the variables
in the original cliques and that, as a clique graph, it has the same structure as before. All that has changed is
that the original clique potentials have been replaced by the marginals of the distribution and the separator
by the marginal defined on the separator variables ¢(a,b,c) — p(a,b,c), ¢(b,c,d) — p(b,c,d), Z — p(c,b).
The usefulness of this representation is that if we are interested in the marginal p(a, b, ¢), this can be read off
from the transformed clique potential. To make use of this representation, we require a systematic way of
transforming the clique graph potentials so that at the end of the transformation the new potentials contain
the marginals of the distribution.

p(a‘7 b7c7d) =

(6.2.5)

Remark 6.1. Note that, whilst visually similar, a Factor Graph and a Clique Graph are different rep-
resentations. In a clique graph the nodes contain sets of variables, which may share variables with other
nodes.

6.2.1 Absorption

Consider neighbouring cliques V and W, sharing the variables § in common. In this case, the distribution
on the variables XY = VUW is

¢ (V)o (W)
¢ (S)

and our aim is to find a new representation

p(X) = (6.2.6)

¢ (S)
in which the potentials are given by
d(V)=p(V), dW)=pW), (S)=0p(S) (6.2.8)

In the figures on the above right we denote also the potentials in the cliques to emphasise how the potentials
update under absorption. In this example, we can explicitly work out the new potentials as function of the
old potentials by computing the marginals as follows:

(V) (W) 2ns @ (V)
W) = (X)=)» — I —=pgW)—"— (6.2.9)
g Vz\f V% 0 (S) 0 (S)
and
W
)= px)=3" QW _ ¢(V)ZW¢\)"’E;() (6.2.10)

W\S W\S

There is a symmetry present in the two equations above — they are the same under interchanging V and
W. One way to describe these equations is through ‘absorption’. We say that the cluster W ‘absorbs’
information from cluster V by the following updating procedure. First we define a new separator

7 (S) = 6V) (6.2.11)

WS
and refine the W potential using

9" (S)
¢ (S)

DRAFT June 18, 2013 99

(W) =o (W)

(6.2.12)

Clique Graphs

Figure 6.2: An example absorption schedule on a
Q clique tree. Many valid schedules exist under the con-

straint that messages can only be passed to a neigh-

bour when all other messages have been received.
The advantage of this interpretation is that the new representation is still a valid clique graph representation
of the distribution since

6W)o W) _oMOMGS oMoy _) 6213
¢ (S) o (S) os) -

For this simple two clique graph, we see that after ¥V absorbs information from V then ¢* (W) = p(W),
which can be verified by comparing the right of equation (6.2.9) with equation (6.2.12). With these new
updated potentials, we now go back along the graph, from W to V. After V absorbs information from W
then ¢* (V) contains the marginal p(V). After the separator S has participated in absorption along both
directions, then the separator potential will contain p(S) (this is not the case after only a single absorption).
To see this, consider absorbing from W to V using the updated potentials ¢* (W) and ¢* (S)

-) o (W)9* (S) pW)o (V)
PT(S) =) PW) =) ——Fet = T = p(S) (6.2.14)
2 D TP DR

Continuing, we have the new potential ¢* (V) given by

b (V) = ¢ (V)™ (S) 2(V) Xyms @ W) (5)/6(S) Xoms @ (V)o (W)
(S ¢* (S) B ¢ (S) B

Hence, in terms of equation (6.2.7), the new representation is ¢ (V) = ¢* (V), ¢(S) = ¢** (S), ¢(W) =
¢ (W).

Definition 6.2 (Absorption).

Let V and W be neighbours in a clique graph, let S be their
separator, and let ¢ (V), ¢ (W) and ¢ (S) be their potentials.
Absorption from V to W through S replaces the tables ¢ (S) and
¢ (W) with

9" (S) ¢ (S)=> ¢ (V) o* (W) =¢ (W)i((;) (6.2.16)

WS

We say that clique W absorbs information from clique V. The
potentials are written on the clique graph (left) to highlight the
potential updating.

6.2.2 Absorption schedule on clique trees

Having defined the local message propagation approach, we need to define an update ordering for absorption.
In general, a node V can send exactly one message to a neighbour W, and it may only be sent when V has
received a message from each of its other neighbours. We continue this sequence of absorptions until a
message has been passed in both directions along every link. See, for example, fig(6.2). Note that there are
many valid message passing schemes in this case.

100 DRAFT June 18, 2013

Junction Trees

<> (o)
@ Ty T4 Ty T4
& B G
(a) (b) (c)

Figure 6.3: (a): Singly connected Markov network. (b): Clique graph. (c): Clique tree.

Definition 6.3 (Absorption Schedule). A clique can send a message to a neighbour, provided it has already
received messages from all other neighbours.

6.3 Junction Trees

There are a few stages we need to go through in order to transform a distribution into an appropriate
structure for inference. Initially we explain how to do this for singly connected structures before moving
onto the multiply connected case.

Consider the singly connected Markov network, fig(6.3a)
p(z1, T2, 23, 1) = P21, 24)P(22, 24)P(23, T4) (6.3.1)
The clique graph of this singly connected Markov network is multiply connected, fig(6.3b), where the sep-

arator potentials are all set to unity. Nevertheless, let’s try to reexpress the Markov network in terms of
marginals. First we have the relations

plar,za) = Y plar, 29,33, 34) = $(a1,24) Z¢ (w2, 74) Zqﬁ (23, 74) (6.3.2)
z2,T3

plaz, x4) = Y p(wr, 2,33, 34) = 22,24 Z¢ T1,24 Z¢ T3, 4) (6.3.3)
Z1,T3

p(z3,x4) = Z p(x1, 22,3, 24) = ¢(T3, 24 ng) x1,24 ng) T2, T4) (6.3.4)
1,22

Taking the product of the three marginals, we have

2
p(x1, 24)p(22, 24)p(23, 74) = G(21, 24) P (22, 24)P(23, 74) <Z¢ T1, T4 Z¢ T2, T4 Z¢ 3,4) (6.3.5)

p(x4)?

This means that the Markov network can be expressed in terms of marginals as

p(x1, 4)p(22, T4)p(T3, T4)

p(za)p(z4)

Hence a valid clique graph is also given by the representation fig(6.3c). Indeed, if a variable (here z4) occurs
on every separator in a clique graph loop, one can remove that variable from an arbitrarily chosen separator
in the loop. If this leaves an empty separator, we may then simply remove it. This shows that in such cases
we can transform the clique graph into a clique tree (i.e. a singly connected clique graph). Provided that
the original Markov network is singly connected, one can always form a clique tree in this manner.

p(x1, e, 3, 14) = (6.3.6)

DRAFT June 18, 2013 101

Junction Trees

6.3.1 The running intersection property

Sticking with the above example, consider the clique tree in fig(6.3)

¢($3a $4)¢(:E1? $4)¢(:E2v $4)
¢1(z4)P2(24)

as a representation of the distribution (6.3.1) where we set ¢1(x4) = ¢a(z4) = 1 to make this match. Now
perform absorption on this clique tree:

(6.3.7)

We absorb (x3,z4) ~ (21, 24). The new separator is

$1(xa) = dlws,) (6.3.8)

and the new potential is

¢} (24
o1(z4

Now (x1,24) ~ (22,24). The new separator is

~—

¢* (21, 24) = ¢(71, 24) = ¢(z1, 24) 97 (24) (6.3.9)

~—

$5(xa) = ¢* (w1, 24) (6.3.10)

and the new potential is

@5 (x4
P2(x4)

Since we’ve ‘hit the buffers’ in terms of message passing, the potential ¢(x2,z4) cannot be updated further.
Let’s examine more carefully the value of this new potential,

~—

¢* (w2, 74) = P(22, 74) = P(x2, 74)P5(74) (6.3.11)

¢" (12, 24) = $(w2, 20)$5(2a) = d(w2,24) Y ¢ (w1, 24) (6.3.12)
= d(w,wa) Y D1, ma) Y dlaz,xa) = Y plw1, w2, x3,21) = p(w2, 4) (6.3.13)

Hence the new potential ¢*(z2,z4) contains the marginal p(z2, z4).

To complete a full round of message passing we need to have passed messages in a valid schedule along both
directions of each separator. To do so, we continue as follows:

We absorb (x2,x4) ~ (21,24). The new separator is

5 (wa) = Y 6" (w2, w4) (6.3.14)
and
¢ (-Tl,le) - ¢ (1'17,1,‘4) ¢§($4) (6315)

Note that ¢5"(z4) = >, ¢"(72,24) = > ., p(x2,74) = p(x4) so that now, after absorbing through both
directions, the separator contains the marginal p(x4). The reader may show that ¢*™* (1, x4) = p(z1, z4).

Finally, we absorb (z1,24) ~ (x3,24). The new separator is

(1) =Y 6™ (21, 34) = p(24) (6.3.16)

102 DRAFT June 18, 2013

Junction Trees

and

" (23, 24) = P(x3, 964)@ = p(x3,74) (6.3.17)
1 (24)

Hence, after a full round of message passing, the new potentials all contain the correct marginals.

The new representation is consistent in the sense that for any (not necessarily neighbouring) cliques V and
W with intersection Z, and corresponding potentials ¢ (V) and ¢ (W),

doW)=> oW (6.3.18)

VI W\Z

Note that bidirectional absorption following a valid schedule guarantees local consistency for neighbouring
cliques, as in the example above, provided that we started with a clique tree which is a correct representation
of the distribution. To ensure global consistency, if a variable occurs in two cliques it must be present in all
cliques on any path connecting these cliques. An extreme example would be if we removed the link between
cliques (z3,z4) and (x1,z4). In this case this is still a clique tree; however global consistency could not
be guaranteed since the information required to make clique (x3,x4) consistent with the rest of the graph
cannot reach this clique.

Formally, the requirement for the propagation of local to global consistency is that the clique tree is a
++ junction tree, as defined below. See also exercise(6.12).

Definition 6.4 (Junction Tree). A clique tree is a junction tree if, for each pair of nodes, V and W, all nodes
on the path between V and W contain the intersection ¥V NW. This is also called the running intersection

property.

From this definition local consistency will be passed on to any neighbours and the distribution will be
globally consistent. Proofs for these results are contained in [161].

Example 6.1 (A consistent junction tree). To gain some intuition about the meaning of consistency,
consider the junction tree in fig(6.4d). After a full round of message passing on this tree, each link is
consistent, and the product of the potentials divided by the product of the separator potentials is just the
original distribution itself. Imagine that we are interested in calculating the marginal for the node abc. That
requires summing over all the other variables, defgh. If we consider summing over A then, because the link
is consistent,

> ¢ (e,h) =" (e) (6.3.19)
h

so that the ratio), (’5(;5?6’)1) is unity, and the effect of summing over node h is that the link between eh and
dce can be removed, along with the separator. The same happens for the link between node eg and dce,
and also for c¢f to abc. The only nodes remaining are now dce and abc and their separator ¢, which have so
far been unaffected by the summations. We still need to sum out over d and e. Again, because the link is
consistent,

> ¢ (d,ce) = ¢ (c) (6.3.20)
de

so that the ratio) de (z’;(fl (’36) = 1. The result of the summation of all variables not in abc therefore produces
unity for the cliques and their separators, and the summed potential representation reduces simply to the
potential ¢* (a,b, c) which is the marginal p(a,b,c). It is clear that a similar effect will happen for other
nodes. We can then obtain the marginals for individual variables by simple brute force summation over the

other variables in that potential, for example p(f) =>__.¢* (¢, f).

DRAFT June 18, 2013 103

Constructing a Junction Tree for Singly-Connected Distributions

¢ e ¢ e

o o e
e e e e
(c) (d)

Figure 6.4: (a): Belief Network. (b): Moralised version of (a). (c): Clique graph of (b). (d):
A junction tree. This satisfies the running intersection property that for any two nodes which contain a
variable in common, any clique on the path linking the two nodes also contains that variable.

6.4 Constructing a Junction Tree for Singly-Connected Distributions

6.4.1 Moralisation

For belief networks an initial step is required, which is not required in the case of undirected graphs.

Definition 6.5 (Moralisation). For each variable z add an undirected link between all parents of x and
replace the directed link from x to its parents by undirected links. This creates a ‘moralised” Markov
network.

6.4.2 Forming the clique graph

The clique graph is formed by identifying the cliques in the Markov network and adding a link between
cliques that have a non-empty intersection. Add a separator between the intersecting cliques.

6.4.3 Forming a junction tree from a clique graph

For a singly connected distribution, any maximal weight spanning tree of a clique graph is a junction tree.

Definition 6.6 (Junction Tree). A junction tree is obtained by finding a maximal weight spanning tree of
the clique graph. The weight of the tree is defined as the sum of all the separator weights of the tree, where
the separator weight is the number of variables in the separator.

If the clique graph contains loops, then all separators on the loop contain the same variable. By continuing
to remove loop links until a tree is revealed, we obtain a junction tree.

104 DRAFT June 18, 2013

Junction Trees for Multiply-Connected Distributions

c abc ac acd

(a) (b) () (d) (e)

Figure 6.5: (a): An undirected graph with a loop. (b): Eliminating node d adds a link between a
and ¢ in the subgraph. (c): The induced representation for the graph in (a). (d): Equivalent induced
representation. (e): Junction tree for (a).

Example 6.2 (Forming a Junction Tree). Consider the Belief Network in fig(6.4a). The moralisation
procedure gives fig(6.4b). Identifying the cliques in this graph, and linking them together gives the clique
graph in fig(6.4c). There are several possible junction trees one could obtain from this clique graph, and
one is given in fig(6.4d).

6.4.4 Assigning potentials to cliques

Definition 6.7 (Clique Potential Assignment). Given a junction tree and a function defined as the product
of a set of potentials ¢ (X 1), .., 0 (X™), a valid clique potential assignment places potentials in JT cliques
whose variables can contain them such that the product of the JT clique potentials, divided by the JT
separator potentials, is equal to the function.

A simple way to achieve this assignment is to list all the potentials and order the JT cliques arbitrarily.
Then, for each potential, search through the JT cliques until the first is encountered for which the potential
variables are a subset of the JT clique variables. Subsequently the potential on each JT clique is taken as
the product of all clique potentials assigned to the JT clique. Lastly, we assign all JT separators to unity.
This approach is taken in jtassignpot.m. Note that in some instances it can be that a junction tree clique
is assigned to unity.

Example 6.3. For the belief network of fig(6.4a), we wish to assign its potentials to the junction tree
fig(6.4d). In this case the assignment is unique and is given by

¢ (abc) = p(a)p(b)p(c|a,b)
¢ (dce) = p(d)p(eld,c)
o(cf) = p(fle) (6.4.1)
¢(eg) = plgle)

¢ (eh) = p(hle)

All separator potentials are initialised to unity.

6.5 Junction Trees for Multiply-Connected Distributions

When the distribution contains loops, the construction outlined in section(6.4) does not result in a junction
tree. The reason is that, due to the loops, variable elimination changes the structure of the remaining graph.

DRAFT June 18, 2013 105

Junction Trees for Multiply-Connected Distributions

To see this, consider the following distribution,

p(a,b,c,d) = ¢(a,b)o(b, c)p(c,d)d(d, a) (6.5.1)

as shown in fig(6.5a). Let’s first try to make a clique graph. We have a choice about which variable first to
marginalise over. Let’s choose d:

p(a, b, C) = ¢(a7b)¢(b7 C)Z ¢(C7 d)¢(d7 CL) (6-5-2)
d

The remaining subgraph therefore has an extra connection between a and c, see fig(6.5b). We can express
the joint in terms of the marginals using

B p(a,b,c) . .
p(a,b,c,d) = S o(e, d)o(d, a)gb(,d)o(d, a) (6.5.3)

To continue the transformation into marginal form, let’s try to replace the numerator terms with probabil-
ities. We can do this by considering

p(a, = d) - ¢(C7 d)¢(d7 CL) Z¢<avb)¢(b7 C) (6'5'4)
b

Plugging this into the above equation, we have

pla,b,c,d) = pla,b, cJpla, . d) (6.5.5)

-~ a (e, d)g(d, a) 3, d(a, b)o(b, c)

We recognise that the denominator is simply p(a, ¢), hence

p(a, b, c)p(a,c,d)
pla,c) '

p(a,b,c,d) = (6.5.6)
This means that a valid clique graph for the distribution fig(6.5a) must contain cliques larger than those
in the original distribution. To form a JT based on products of cliques divided by products of separators,
we could start from the induced representation fig(6.5c). Alternatively, we could have marginalised over
variables a and ¢, and ended up with the equivalent representation fig(6.5d).

Generally, the result from variable elimination and re-representation in terms of the induced graph is that a
link is added between any two variables on a loop (of length 4 or more) which does not have a chord. This
is called triangulation. A Markov network on a triangulated graph can always be written in terms of the
product of marginals divided by the product of separators. Armed with this new induced representation,
we can form a junction tree.

Example 6.4. A slightly more complex loopy distribution is depicted in fig(6.6a),

p(a;b, ¢ d,e, f) = ¢(a, b)d(b, c)p(c, d)p(d, e)¢(e, f)(a, f)o(b, €) (6.5.7)

There are different induced representations depending on which variables we decide to eliminate. The reader
may convince herself that one such induced representation is given by fig(6.6b).

a ()
Figure 6.6: (a): Loopy ‘ladder’
Markov network. (b): Induced rep-
f &) resentation.

106 DRAFT June 18, 2013

Junction Trees for Multiply-Connected Distributions

Definition 6.8 (Triangulated (Decomposable) Graph). An undirected graph is triangulated if every loop
of length 4 or more has a chord. An equivalent term is that the graph is decomposable or chordal. From
this definition, one may show that an undirected graph is triangulated if and only if its clique graph has a
junction tree.

6.5.1 Triangulation algorithms

When a variable is eliminated from a graph, links are added between all the neighbours of the eliminated
variable. A triangulation algorithm is one that produces a graph for which there exists a variable elimination
order that introduces no extra links in the graph.

For discrete variables the complexity of inference scales exponentially with clique sizes in the triangulated
graph since absorption requires computing tables on the cliques. It is therefore of some interest to find
a triangulated graph with small clique sizes. However, finding the triangulated graph with the smallest
maximal clique is a computationally hard problem for a general graph, and heuristics are unavoidable.
Below we describe two simple algorithms that are generically reasonable, although there may be cases where
an alternative algorithm may be considerably more efficient[56, 28, 206].

Remark 6.2 (‘Triangles’). Note that a triangulated graph is not one in which ‘squares in the original graph
have triangles within them in the triangulated graph’. Whilst this is the case for fig(6.6b), this is not true
for fig(6.10d). The term triangulation refers to the fact that every ‘square’ (i.e. loop of length 4) must have
a ‘triangle’, with edges added until this criterion is satisfied. See also fig(6.7).

Greedy variable elimination

An intuitive way to think of triangulation is to first start with simplical nodes, namely those which, when
eliminated do not introduce any extra links in the remaining graph. Next consider a non-simplical node of
the remaining graph that has the minimal number of neighbours. Then add a link between all neighbours
of this node and then eliminate this node from the graph. Continue until all nodes have been eliminated.
(This procedure corresponds to Rose-Tarjan Elimination[250] with a particular node elimination choice).
By labelling the nodes eliminated in sequence, we obtain a perfect ordering (see below). In the case that
(discrete) variables have different numbers of states, a more refined version is to choose the non-simplical
node i which, when eliminated, leaves the smallest clique table size (the product of the size of all the state
dimensions of the neighbours of node 7). See fig(6.8) for an example.

Procedure 6.1 (Variable Elimination). In Variable Elimination, one simply picks any non-deleted node x
in the graph, and then adds links to all the neighbours of . Node x is then deleted. One repeats this until
all nodes have been deleted[250].

Definition 6.9 (Perfect Elimination Order). Let the n variables in a Markov network be ordered from 1 to
n. The ordering is perfect if, for each node i, the neighbours of ¢ that are later in the ordering, and i itself,
form a (maximal) clique. This means that when we eliminate the variables in sequence from 1 to n, no
additional links are induced in the remaining marginal graph. A graph which admits a perfect elimination
order is decomposable, and vice versa.

Figure 6.7: This graph is not triangulated, despite its ‘triangular’
appearance. The loop a — b — ¢ — d — a does not have a chord.

DRAFT June 18, 2013 107

The Junction Tree Algorithm

Figure 6.8: (a): Markov network for which we seek a triangulation via greedy variable elimination. We
first eliminate the simplical nodes a,e,l. (b): We then eliminate variables b, d since these only add a
single extra link to the induced graph. (c): There are no simplical nodes at this stage, and we choose to
eliminate f and i, each elimination adding only a single link. (d): We eliminate g and h since these are
simplical. (e): The remaining variables {c, j, k} may be eliminated in any order. (f): Final triangulation.
The variable elimination (partial) order is {a,e,l},{b,d},{f,i},{g,h},{c, j, k} where the brackets indicate
that the order in which the variables inside the bracket are eliminated is irrelevant. Compared with the
triangulation produced by the max-cardinality checking approach in fig(6.10d), this triangulation is more
parsimonious.

Whilst this variable elimination guarantees a triangulated graph, its efficiency depends heavily on the se-
quence of nodes chosen to be eliminated. Several heuristics for this have been proposed, including the one
below, which corresponds to choosing x to be the node with the minimal number of neighbours.

Maximum cardinality checking

Algorithm(6.1) terminates with success if the graph is triangulated. Not only is this a sufficient condition
for a graph to be triangulated, but it is also necessary [287]. It processes each node and the time to process
a node is quadratic in the number of adjacent nodes. This triangulation checking algorithm also suggests
a triangulation construction algorithm — we simply add a link between the two neighbours that caused the
algorithm to FAIL, and then restart the algorithm. The algorithm is restarted from the beginning, not just
continued from the current node. This is important since the new link may change the connectivity between
previously labelled nodes. See fig(6.10) for an example!.

6.6 The Junction Tree Algorithm

We now have all the steps required for inference in multiply connected graphs, given in the procedure below.

Procedure 6.2 (Junction tree algorithm).

!This example is due to David Page www.cs.wisc.edu/~dpage/cs731

108 DRAFT June 18, 2013

The Junction Tree Algorithm

,,, —

cfg

chi
Figure 6.9: Junction tree formed from the triangulation fig(6.8f).
ck

o One may verify that this satisfies the running intersection prop-

? erty.

jk

Algorithm 6.1 A check if a graph is decomposable (triangulated). The graph is triangulated if, after
cycling through all the n nodes in the graph, the FAIL criterion is not encountered.

AN

: Choose any node in the graph and label it 1.
: for i =2 ton do

Choose the node with the most labeled neighbours and label it 3.
If any two labeled neighbours of i are not adjacent to each other, FAIL.

end for

Where there is more than one node with the most labeled neighbours, the tie may be broken arbitrarily.

Moralisation Marry the parents. This is required only for directed distributions. Note that all the parents

of a variable are married together — a common error is to marry only the ‘neighbouring’ parents.

Triangulation Ensure that every loop of length 4 or more has a chord.

Junction Tree Form a junction tree from cliques of the triangulated graph, removing any unnecessary

links in a loop on the cluster graph. Algorithmically, this can be achieved by finding a tree with
maximal spanning weight with weight w;; given by the number of variables in the separator between
cliques ¢ and j. Alternatively, given a clique elimination order (with the lowest cliques eliminated
first), one may connect each clique ¢ to the single neighbouring clique j > ¢ with greatest edge weight
Wy .

Potential Assignment Assign potentials to junction tree cliques and set the separator potentials to unity.

Message Propagation Carry out absorption until updates have been passed along both directions of every

link on the JT. The clique marginals can then be read off from the JT.

An example is given in fig(6.11).

6.6.1 Remarks on the JTA

e The algorithm provides an upper bound on the computation required to calculate marginals in the

graph. There may exist more efficient algorithms in particular cases, although generally it is believed
that there cannot be much more efficient approaches than the JTA since every other approach must
perform a triangulation[160, 187]. One particular special case is that of marginal inference for a binary
variable Markov network on a two-dimensional lattice containing only pure quadratic interactions. In
this case the complexity of computing a marginal inference is O (n3) where n is the number of variables
in the distribution. This is in contrast to the pessimistic exponential complexity suggested by the JTA.

One might think that the only class of distributions for which essentially a linear time algorithm is
available are singly connected distributions. However, there are decomposable graphs for which the
cliques have limited size meaning that inference is tractable. For example an extended version of the
‘ladder’ in fig(6.6a) has a simple induced decomposable representation fig(6.6b), for which marginal
inference would be linear in the number of rungs in the ladder. Effectively these structures are hyper
trees in which the complexity is then related to the tree width of the graph[86].

DRAFT June 18, 2013 109

The Junction Tree Algorithm

'i;"!&!“
VY
%

(c) (d)

SERE/
VA

(a)

Figure 6.10: Starting with the Markov network in (a), the maximum cardinality check algorithm proceeds
until (b), where an additional link is required, see (c). One continues until the fully triangulated graph (d)
is found.

Figure 6.11: (a): Original loopy Belief Network.
(b): The moralisation links (dashed) are between
nodes e and f and between nodes f and g. The other
additional links come from triangulation. The clique
size of the resulting clique tree (not shown) is four.

e Ideally, we would like to find a triangulated graph which has minimal clique size. However, it can be
shown to be a computationally hard problem to find the most efficient triangulation. In practice, most
general purpose triangulation algorithms are chosen to provide reasonable, but clearly not always
optimal, generic performance.

e Numerical over/under flow issues can occur under repeated multiplication of potentials. If we only
care about marginals we can avoid numerical difficulties by normalising potentials at each step; these
missing normalisation constants can always be found under the normalisation constraint. If required
one can always store the values of these local renormalisations, should, for example, the global nor-
malisation constant of a distribution be required, see section(6.6.2).

e After clamping variables in evidential states, running the JTA returns the joint distribution on the
non-evidential variables X, in a clique with all the evidential variables clamped in their evidential
states, p(X,, evidence). From this conditionals are straightforward to calculate.

e Representing the marginal distribution of a set of variables X which are not contained within a single
clique is in general computationally difficult. Whilst the probability of any state of p(X) may be
computed efficiently, there are in general an exponential number of such states. A classical example in
this regard is the HMM, section(23.2) which has a singly connected joint distribution p(V, H). However
the marginal distribution p(V) is fully connected. This means that for example whilst the entropy of
p(V,H) is straightforward to compute, the entropy of the marginal p(V) is intractable.

6.6.2 Computing the normalisation constant of a distribution

For a Markov network
1
p(¥) = 7 [Jo(x) (6.6.1)

how can we find Z efficiently? If we used the JTA on the unnormalised distribution [[, ¢(X;), we would
have the equivalent representation:

1 é(x)
Z 1, o(X5)

110 DRAFT June 18, 2013

p(X) (6.6.2)

The Junction Tree Algorithm

where s and ¢ are the separator and clique indices. Since the distribution must normalise, we can obtain Z
from

Lo
Z B ; 1_[8 ¢(XS) (6'6.3)

For a consistent JT, summing first over the variables of a simplical JT clique (not including the separator
variables), the marginal clique will cancel with the corresponding separator to give a unity term so that the
clique and separator can be removed. This forms a new JT for which we then eliminate another simplical
clique. Continuing in this manner we will be left with a single numerator potential so that

7 — Z B(X,) (6.6.4)
Xe

This is true for any clique ¢, so it makes sense to choose one with a small number of states so that the
resulting raw summation is efficient. Hence in order to compute the normalisation constant of a distribution
one runs the JT algorithm on an unnormalised distribution and the global normalisation is then given by
the local normalisation of any clique. Note that if the graph is disconnected (there are isolated cliques), the
normalisation is the product of the connected component normalisation constants.

6.6.3 The marginal likelihood

Our interest here is the computation of p()) where V C X is a subset of the full variable set X'. Naively,
one could carry out this computation by summing over all the non-evidential variables (hidden variables
H = X\V) explicitly. In cases where this is computationally impractical an alternative is to use

p(V, H)
p(V)

One can view this as a product of clique potentials divided by the normalisation p(V), for which the general
method of section(6.6.2) may be directly applied. See demoJTree.m.

p(H|V) = (6.6.5)

6.6.4 Some small JTA examples

Example 6.5 (A simple example of the JTA).
Consider running the JTA on the simple graph

aJé— b J&— cC
p(a, b, ¢) = p(alb)p(blc)p(c) (6.6.6)

The moralisation and triangulation steps are trivial, and the JTA is given
immediately by the figure on the right. A valid assignment is

ab)/ b be
& (a,b) = plalb), () = 1, 6 (b, ¢) = p(BlP() (6.6.7)
To find a marginal p(b) we first run the JTA:
e Absorbing from ab through b, the new separator is ¢* (b) = > ¢ (a,b) = > p(alb) = 1.
e The new potential on (b, c) is given by
b (b b 1

¢ (b) 1

e Absorbing from be through b, the new separator is

¢ (b) =Y _ ¢ (b,e) =D _ p(blo)p(c) (6.6.9)

DRAFT June 18, 2013 111

The Junction Tree Algorithm

e The new potential on (a,b) is given by

5 () — £@:D"0) _ plalh) T p(ble)p(e) "

¢* (b) 1

This is therefore indeed equal to the marginal since) .p(a,b,c) = p(a,b).
The new separator ¢** (b) contains the marginal p(b) since

¢ (0) = Y _pble)p(c) =) p(b,c) = p(b) (6.6.11)

Example 6.6 (Finding a conditional marginal). Continuing with the distribution in example(6.5), we
consider how to compute p(bla = 1,¢ = 1). First we clamp the evidential variables in their states. Then we
claim that the effect of running the JTA is to produce on a set of clique variables X the marginals on the
cliques p(X,V). We demonstrate this below:

e In general, the new separator is given by ¢* (b) = >, ¢ (a,b) = >, p(alb) = 1. However, since
a is clamped in state a = 1, then the summation is not carried out over a, and we have instead
¢" (b) = p(a = 1|b).

e The new potential on the (b, c) clique is given by

o =2 (b,c)¢™ (b) _ p(ble = 1)p(c = 1)p(a = 1) (6.6.12)

¢ (b) 1

e The new separator is normally given by
¢ (0) =D _ " (b,e) =Y _ p(ble)p(c) (6.6.13)

However, since c is clamped in state 1, we have instead
@™ (b) = p(ble = 1)p(c = 1)p(a = 1|b) (6.6.14)
e The new potential on (a,b) is given by

¢ (a,0)¢™ (b) _ pla = 1|b)p(blc = 1)p(c = 1)p(a = 1|b)

Fled) =" - pa=1p)

= p(a = 1{b)p(ble = 1)p(c = 1)
(6.6.15)

The effect of clamping a set of variables V in their evidential states and running the JTA is that, for a clique
1 which contains the set of non-evidential variables H", the consistent potential from the JTA contains the
marginal p(H?, V). Finding a conditional marginal is then straightforward by ensuring normalisation.

Example 6.7 (finding the likelihood p(a = 1,¢ = 1)). One may also use the JTA to compute the marginal
likelihood for variables not in the same clique since the effect of clamping the variables in their evidential
states and running the JTA produces the joint marginals, such as ¢* (a,b) = p(a = 1,b,¢ = 1). Then
calculating the likelihood is easy since we just sum out over the non-evidential variables of any converged

potential : pla=1,c=1)=>,¢*(a,b) =) ypla=1,b,c=1).

112 DRAFT June 18, 2013

Finding the Most Likely State

6.6.5 Shafer-Shenoy propagation

Consider the Markov network in fig(6.12a) for which a junction tree is given in fig(6.12b). We use the
obvious notation shortcut of writing the variable indices alone. In the absorption procedure, we essentially
store the result of message passing in the potentials and separators. An alternative message passing scheme
for the junction tree can be derived as follows: Consider computing the marginal on the variables 2, 3,4,
which involves summing over variables 1,5, 6:

p(2,3,4) = > 6(1,2,5)6(1,3,6)6(1,2,3)$(2,3,4) (6.6.16)

1,5,6

=3 " 6(1,2,5) Y 6(1,3,6) 6(1,2,3) $(2,3,4) (6.6.17)
1 5 6

A125-123 A136—123

A1235234

In general, for a clique 7 with potential ¢(V;), and neighbouring clique j with potential ¢(V;), provided we
have received messages from the other neighbours of i, we can send a message

Nisj = Z o(Vi) H Ak—si (6.6.18)

Vi\V; k#j

Once a full round of message passing has been completed, the marginal of any clique is given by the product
of incoming messages.

This message passing scheme is called Shafer-Shenoy propagation and has the property that no division of
potentials is required, unlike absorption. On the other hand, to compute a message we need to take the
product of all incoming messages; in absorption this is not required since the effect of the message passing
is stored in the clique potentials. The separators are not required in the Shafer-Shenoy approach and we
use them here only to indicate which variables the messages depend on. Both absorption and Shafer-Shenoy
propagation are valid message passing schemes on the junction tree and the relative efficacy of the approaches
depends on the topology of the junction tree[187].

6.7 Finding the Most Likely State

It is often of interest to compute the most likely joint state of a distribution:

argmax p(xi,...,Ty) (6.7.1)

T1ye5Tm

Figure 6.12: (a): Markov network. (b): Junction tree. Under absorption, once we have absorbed from
125 to 123 and 136 to 123, the result of these absorptions is stored in the new potential on 123. After this
we can absorb from 123 to 234 by operating on the 123 potential and then sending this information to 234.
(¢): In Shafer-Shenoy updating, we send a message from a clique to a neighbouring clique based on the
product of all incoming messages.

DRAFT June 18, 2013 113

Reabsorption : Converting a Junction Tree to a Directed Network

Since the development of the JTA is based around a variable elimination procedure and the max operator
distributes over the distribution as well, eliminating a variable by maximising over that variable will have
the same effect on the graph structure as summation did. This means that a junction tree is again an
appropriate structure on which to perform max operations. Once a JT has been constructed, one then uses
the Max Absorption procedure (see below), to perform maximisation over the variables. After a full round
of absorption has been carried out, the cliques contain the distribution on the variables of the clique with
all remaining variables set to their optimal states. The optimal local states can then be found by explicit
optimisation of each clique potential separately.

Note that this procedure holds also for non-distributions — in this sense this is an example of a more general
dynamic programming procedure applied in a case where the underlying graph is multiply connected. This
demonstrates how to efficiently compute the optimum of a multiply connected function defined as the product
on potentials.

Definition 6.10 (Max Absorption).
Let V and W be neighbours in a clique graph, let S be their

separator, and let ¢ (V), ¢ (W) and ¢ (S) be their potentials.

& (S) Absorption replaces the tables ¢ (S) and ¢ (W) with

Q) — £) — ¢ (S)
¢ (5)—13\%%‘;@(17) ¢ (W)—¢(W)¢(5)

Once messages have been passed in both directions over all separators, according to a valid schedule, the
most-likely joint state can be read off from maximising the state of the clique potentials. This is implemented
in absorb.m and absorption.m where a flag is used to switch between either sum or max absorption.

6.8 Reabsorption : Converting a Junction Tree to a Directed Network

It is sometimes useful to be able to convert a consistent JT (in which a full round of message passing has
occurred) back to a BN of a desired form. For example, if one wishes to draw samples from a Markov
network, this can be achieved by ancestral sampling on an equivalent directed structure, see section(27.2.2).

Definition 6.11 (Reabsorption).

O——® - O~

Let V and W be neighbouring cliques in a directed consistent JT in which each clique in the tree has at
most one parent. Furthermore, let S be their separator, and ¢ (V), ¢ (W) and ¢ (S) be the potentials.
Reabsorption into VW removes the separator and forms a (set) conditional distribution

¢ (W)

pOV\SIY) = o (6.8.1)

We say that clique W reabsorbs the separator S.

Revisiting the example from fig(6.4), we have the JT given in fig(6.13a). To find a valid directed represen-
tation we first orient the JT edges consistently away from a chosen root node (see singleparenttree.m),
thereby forming a directed JT which has the property that each clique has at most one parent clique.
Consider fig(6.13a) which represents

p(e, 9)p(d, c,e)p(a, b, c)p(c, f)p(e, h)

p(a, b,c,d,e, f,g, h) = p(e)p(c)p(C)P(e)

(6.8.2)

114 DRAFT June 18, 2013

\
)

@@

Q@

The Need For Approximations

g@g\@ e
dbdb

(c)

Figure 6.13: (a): Junction tree. (b): Directed junction tree in which all edges are consistently oriented
away from the clique (abc). (c): A set chain formed from the junction tree by reabsorbing each separator
into its child clique.

We now have many choices as to which clique re-absorbs a separator. One such choice would give

pla,b,c,d,e, f, g,h) = p(gle)p(d; e[c)p(a, b, c)p(flc)p(hle) (6.8.3)

This can be represented using a so-called set chain[184] in fig(6.13c) (set chains generalise Belief Networks
to a product of clusters of variables conditioned on parents). By writing each of the set conditional proba-
bilities as local conditional BNs, one may also form a BN. For example, one such would be given from the
decomposition

p(cla, b)p(bla)p(a)p(gle)p(flc)p(hle)p(de, c)p(elc) (6.8.4)

6.9 The Need For Approximations

The JTA provides an upper bound on the complexity of (marginal/max) inference and attempts to exploit
the structure of the graph to reduce computations. However, in a great deal of interesting applications the
use of the JTA algorithm would result in clique-sizes in the triangulated graph that are prohibitively large.
A classical situation in which this can arise are disease-symptom networks. For example, for the graph in
fig(6.14), the triangulated graph of the diseases is fully connected, meaning that no simplification can occur
in general. This situation is common in such bipartite networks, even when the children only have a small
number of parents. Intuitively, as one eliminates each parent, links are added between other parents, me-
diated via the common children. Unless the graph is highly regular, analogous to a form of hidden Markov
model, this fill-in effect rapidly results in large cliques and intractable computations.

Dealing with large cliques in the triangulated graph is an active research topic and we’ll discuss strategies
for approximate inference in chapter(28).

6.9.1 Bounded width junction trees

In some applications we may be at liberty to choose the structure of the Markov network. For example,
if we wish to fit a Markov network to data, we may wish to use as complex a Markov network as we
can computationally afford. In such cases we desire that the clique sizes of the resulting triangulated
Markov network are smaller than a specified ‘tree width’ (considering the corresponding junction tree as
a hypertree). This results in a ‘thin’ junction tree. A simple way to do this is to start with a graph and
include a randomly chosen edge provided that the size of all cliques in the resulting triangulated graph is
below a specified maximal width. See demoThinJT.m and makeThinJT.m which assumes an initial graph G
and a graph of candidate edges C, iteratively expanding G until a maximal tree width limit is reached. See
also [10] for a discussion on learning an appropriate Markov structure based on data.

DRAFT June 18, 2013 115

Code

Figure 6.14: 5 diseases giving rise to 3 symptoms. The triangulated graph
contains a 5 clique of all the diseases.

6.10 Summary

e The junction tree is a structure on clusters of variables such that, under inference operations such as
marginalisation, the junction-tree structure remains invariant. This resolves the fill-in issue when using
message-passing on a multiply connected graph.

e The key stages are moralisation, triangulation, potential assignment, and message-passing.

e There are different propagation algorithms, including absorption and Shafer-Shenoy. These are both valid
message-passing algorithms on the junction tree and differ in their efficiency depending on the branch-
structure of the junction tree.

e The junction tree algorithm does not make a difficult inference problem necessarily any easier. It is simply
a way to organise the computations required to correctly carry out message-passing. The computational
complexity is dominated by the clique-size and there is no guarantee that one can find cliques with small
sizes in general.

e The junction tree algorithm is clever, but not clairvoyant. It provides only an upper bound on the com-
putational complexity of inference. It may be that there are problems which possess additional structure,
not immediately apparent, that can be exploited to reduce the computational complexity of inference much
below that suggested by the junction-tree approach.

6.11 Code

absorb.m: Absorption update ¥V — S — W

absorption.m: Full absorption schedule over tree

jtree.m: Form a junction tree

triangulate.m: Triangulation based on simple node elimination

6.11.1 Utility routines

Knowing if an undirected graph is a tree, and returning a valid elimination sequence is useful. A connected
graph is a tree if the number of edges plus 1 is equal to the number of nodes. However, for a possibly discon-
nected graph this is not the case. The code istree.m deals with the possibly disconnected case, returning a
valid elimination sequence if the graph is singly connected. The routine is based on the observation that any
singly connected graph must always possess a simplical node which can be eliminated to reveal a smaller
singly connected graph.

istree.m: If graph is singly connected return 1 and elimination sequence
elimtri.m: Node elimination on a triangulated graph, with given end node
demoJTree.m: Chest clinic demo

116 DRAFT June 18, 2013

FExercises

6.12 Exercises

O
Exercise 6.1. Show that the Markov network @‘@ is not perfect elimination ordered and give a perfect
elimination labelling for this graph.

Exercise 6.2. Consider the following distribution:

p(z1, 72, 23, 4) = d(71, 22)P(T2, 73) (73, T4) (6.12.1)
1. Draw a clique graph that represents this distribution and indicate the separators on the graph.

2. Write down an alternative formula for the distribution p(x1,z2,3,24) in terms of the marginal prob-
abilities p(r1,72), p(xe, x3), p(r3,24), p(T2), P(T3)

Exercise 6.3. Consider the distribution
p(x1, 2,23, 24) = P21, 22) (22, 23) P (23, T4) P24, 71) (6.12.2)
1. Write down a junction tree for the above distribution.

2. Carry out the absorption procedure and demonstrate that this gives the correct result for the marginal
p(z1).

Exercise 6.4. Consider the distribution
p(a,b,c.d,e, f,g,h,i) = p(a)p(bla)p(cla)p(d|a)p(e|b)p(f|c)p(gld)p(hle, f)p(ilf, g) (6.12.3)
1. Draw the belief network for this distribution.
2. Draw the moralised graph.

3. Draw the triangulated graph. Your triangulated graph should contain cliques of the smallest size pos-
sible.

4. Draw a junction tree for the above graph and verify that it satisfies the running intersection property.
5. Describe a suitable initialisation of clique potentials.

6. Describe the absorption procedure and write down an appropriate message updating schedule.

Exercise 6.5. This question concerns the distribution
p(a; b, ¢, d e, f) = p(a)p(bla)p(clb)p(d|c)p(e|d)p(fla,) (6.12.4)
1. Draw the Belief Network for this distribution.
2. Draw the moralised graph.

3. Draw the triangulated graph. Your triangulated graph should contain cliques of the smallest size pos-
sible.

4. Draw a junction tree for the above graph and verify that it satisfies the running intersection property.
5. Describe a suitable initialisation of clique potentials.
6. Describe the Absorption procedure and an appropriate message updating schedule.

7. Show that the distribution can be expressed in the form
p(alf)p(bla, c)p(cla, d)p(d|a, e)p(ela, f)p(f) (6.12.5)

DRAFT June 18, 2013 117

Exercises

Exercise 6.6.

For the undirected graph on the square lattice as shown, draw a triangulated graph with
the smallest clique sizes possible.

Exercise 6.7.

Consider a binary variable Markov Random Field p(z) = Z~! [Lis; ¢(zisx;), defined
on the n x n lattice with ¢(x;, x;) = =231 for i a neighbour of j on the lattice and
i > j. A naive way to perform inference is to first stack all the variables in the t*
column and call this cluster variable X;, as shown. The resulting graph is then singly

connected. What is the complexity of computing the normalisation constant based on 1 11

this cluster representation? Compute log Z for n = 10.

Exercise 6.8. Given a consistent junction tree on which a full round of message passing has occurred,
explain how to form a belief network from the junction tree.

Exercise 6.9. The file diseaseNet.mat contains the potentials for a disease bi-partite belief network, with
20 diseases d1,...,dog and 40 symptoms, s1,...,849. The disease variables are numbered from 1 to 20 and
the symptoms from 21 to 60. Fach disease and symptom is a binary variable, and each symptom connects
to 8 parent diseases.

1. Using the BRMLTOOLBOX, construct a junction tree for this distribution and use it to compute all the
marginals of the symptoms, p(s; = 1).

2. Explain how to compute the marginals p(s; = 1) in a way more efficient than using the junction tree
formalism. By implementing this method, compare it with the results from the junction tree algorithm.

3. Symptoms 1 to 5 are present (state 1), symptoms 6 to 10 not present (state 2), and the rest not known.
Compute the marginal p(d; = 1|s1.10) for all diseases.

Exercise 6.10. Consider the distribution
T
P(y|331a e a'xT)p(:Cl) Hp($t|$t—l)
t=2

where all variables are binary.

1. Draw a junction tree for this distribution and explain the computational complexity of computing p(xr),
as suggested by the junction tree algorithm.

2. By using an approach different from the plain JTA above, explain how p(zr) can be computed in time
that scales linearly with T .

Exercise 6.11. Analogous to jtpot=absorption(jtpot,jtsep,infostruct), write a routine

[jtpot jtmess]=ShaferShenoy(jtpot,infostruct) that returns the cligue marginals and messages for a
junction tree under Shafer-Shenoy updating. Modify demoJTree.m to additionally output your results for
marginals and conditional marginals alongside those obtained using absorption.

Exercise 6.12 (Clique elimination). Since a junction tree is indeed a tree, it must have an extremal (‘edge’)
clique Xy that connects to only one other clique through their separator S1. More generally, we must be able
to label the cliques in an elimination order, 1,2,...,n such that by eliminating clique i we only have cliques
left with label greater than i. For a separator connected to two cliques j and k, we then number this separator
the lower of the two values, min (j, k). Using this elimination ordering of the cliques we can write the JT in
the form

o(X1) [esa o(Xe)

P = 560 Tan A2

(6.12.6)

118 DRAFT June 18, 2013

++

FExercises

1. Now eliminate cliqgue 1 by summing over all variables in clique 1 that are not in the separator Si.
Show that this gives a new JT on cliques ¢ > 2 and separators s > 2 of the form

/ Hc>2 c#d ¢(XC)
X 22 6.12.7
¢ (d) HSZ2 ¢(Xs) ()
where d is the clique neighbouring clique 1 and
/ ¢(‘)(d> E){j\sl ¢<Sl)
X)) — 6.12.8
¢’ (Xa) 5(S)) ()

and relate this to the absorption procedure.

2. Show that by continuing in this manner, eliminating cliques one by one, the last clique must contain
the marginal p(X,,).

3. Ezxplain how by now reversing the elimination schedule, and eliminating cliques one by one, updating
their potentials in a similar manner to Equation(6.12.8), the updated cliques ¢(X;) will contain the
marginals p(Xj).

4. Hence explain why, after updating cliques according to the forward and reversed elimination schedules,
the cliques must be globally consistent.

DRAFT June 18, 2013 119

Exercises

120 DRAFT June 18, 2013

CHAPTER [

Making Decisions

So far we’ve considered modelling and inference of distributions. In cases where we need to make decisions
under uncertainty, we need to additionally express how useful making the right decision is. In this chapter
we are particularly interested in the case when a sequence of decisions need to be taken. The corresponding
sequential decision theory problems can be solved using either a general decision tree approach or by ex-
ploiting structure in the problem based on extending the belief network framework and the corresponding
inference routines. The framework is related to problems in control theory and reinforcement learning.

7.1 Expected Utility

This chapter concerns situations in which decisions need to be taken under uncertainty. Consider the
following scenario: you are asked if you wish to take a bet on the outcome of tossing a fair coin. If you
bet and win, you gain £100. If you bet and lose, you lose £200. If you don’t bet, the cost to you is
zero. We can set this up using a two state variable z, with dom(z) = {win, lose}, a decision variable d with
dom(d) = {bet, no bet} and utilities as follows:

U(win, bet) = 100, U(lose,bet) = —200, U(win,no bet) =0, U(lose, no bet) =0 (7.1.1)

Since we don’t know the state of z, in order to make a decision about whether or not to bet, arguably the
best we can do is work out our expected winnings/losses under the situations of betting and not betting[257].
If we bet, we would expect to gain

U(bet) = p(win) x U(win, bet) + p(lose) x U(lose, bet) = 0.5 x 100 — 0.5 x 200 = —50
If we don’t bet, the expected gain is zero, U(no bet) = 0. Based on taking the decision which maximises

expected utility, we would therefore be advised not to bet.

Definition 7.1 (Subjective Expected Utility). The utility of a decision is

U(d) = (U(d,z)) (7.1.2)

p(z)

where p(x) is the distribution of the outcome x and d represents the decision.

7.1.1 Utility of money

You are a wealthy individual, with £1,000,000 in your bank account. You are asked if you would like to
participate in a fair coin tossing bet in which, if you win, your bank account will become £1,000, 000, 000.

121

Decision Trees

08 Y5 _< 100

\

Rain (0.4) o Figure 7.1: A decision tree containing chance nodes (denoted

y \ 500 with ovals), decision nodes (denoted with rectangles) and utility
nodes (denoted with diamonds). Note that a decision tree is not

Party a graphical representation of a belief network with additional
K e 0 nodes. Rather, a decision tree is an explicit enumeration of the
y possible choices that can be made, beginning with the leftmost

Rain (0.4) o decision node, with probabilities on the links out of chance nodes.

/

50

However, if you lose, your bank account will contain only £1000. Assuming the coin is fair, should you take
the bet? If we take the bet our expected bank balance would be

U(bet) = 0.5 x 1,000,000, 000 + 0.5 x 1000 = 500, 000, 500.00 (7.1.3)

If we don’t bet, our bank balance will remain at £1,000,000. Based on expected utility, we are therefore
advised to take the bet. (Note that if one considers instead the amount one will win or lose, one may show
that the difference in expected utility between betting and not betting is the same, exercise(7.7)).

Whilst the above makes mathematical sense, few people who are millionaires are likely to be willing to risk
losing almost everything in order to become a billionaire. This means that the subjective utility of money is
not simply the quantity of money. In order to better reflect the situation, the utility of money would need
to be a non-linear function of money, growing slowly for large quantities of money and decreasing rapidly
for small quantities of money, exercise(7.2).

7.2 Decision Trees

Decision trees (DTs) are a way to graphically organise a sequential decision process. A decision tree contains
decision nodes, each with branches for each of the alternative decisions. Chance nodes (random variables)
also appear in the tree, with the utility of each branch computed at the leaf of each branch. The expected
utility of any decision can then be computed on the basis of the weighted summation of all branches from
the decision to all leaves from that branch.

Example 7.1 (Party). Consider the decision problem as to whether or not to go ahead with a fund-raising
garden party. If we go ahead with the party and it subsequently rains, then we will lose money (since very
few people will show up); on the other hand, if we don’t go ahead with the party and it doesn’t rain we’re
free to go and do something else fun. To characterise this numerically, we use:

p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4 (7.2.1)
The utility is defined as
U (party, rain) = —100, U (party, no rain) = 500, U (no party, rain) =0, U (no party, no rain) = 50 (7.2.2)

We represent this situation in fig(7.1). The question is, should we go ahead with the party? Since we don’t
know what will actually happen to the weather, we compute the expected utility of each decision:

U (party) = Z U (party, Rain)p(Rain) = —100 x 0.6 + 500 x 0.4 = 140 (7.2.3)
Rain
U (no party) = Z U(no party, Rain)p(Rain) = 0 x 0.6 4+ 50 x 0.4 = 20 (7.2.4)
Rain

122 DRAFT June 18, 2013

Decision Trees

Based on expected utility, we are therefore advised to go ahead with the party. The maximal expected
utility is given by (see demoDecParty.m)

max p(Rain)U(Party, Rain) = 140 (7.2.5)
Party R

Example 7.2 (Party-Friend). An extension of the Party problem is that if we decide not to go ahead with
the party, we have the opportunity to visit a friend. However, we’re not sure if this friend will be in. The
question is should we still go ahead with the party?

We need to quantify all the uncertainties and utilities. If we go ahead with the party, the utilities are as
before:

Uparty (party, rain) = —100, Uparty (party, no rain) = 500 (7.2.6)
with
p(Rain = rain) = 0.6, p(Rain = no rain) = 0.4 (7.2.7)

If we decide not to go ahead with the party, we will consider going to visit a friend. In making the decision
not to go ahead with the party we have utilities

Uparty (no party, rain) = 0, Upqarty (N0 party, no rain) = 50 (7.2.8)
The probability that the friend is in depends on the weather according to

p(Friend = in|rain) = 0.8, p(Friend = in|no rain) = 0.1, (7.2.9)
The other probabilities are determined by normalisation. We additionally have

Uvisit (friend in, visit) = 200, Uy;si (friend out, visit) = —100 (7.2.10)

with the remaining utilities zero. The two sets of utilities add up so that the overall utility of any decision
sequence is Upgrty + Uyisit. The decision tree for the Party-Friend problem is shown is fig(7.2). For each
decision sequence the utility of that sequence is given at the corresponding leaf of the DT. Note that the
leaves contain the total utility Upariy + Upisit- Solving the DT corresponds to finding for each decision
node the maximal expected utility possible (by optimising over future decisions). At any point in the tree
choosing that action which leads to the child with highest expected utility will lead to the optimal strategy.
Using this, we find that the optimal expected utility has value 140 and is given by going ahead with the
party, see demoDecPartyFriend.m.

Mathematically, we can express the optimal expected utility for the Party-Friend example by summing over
un-revealed variables and optimising over future decisions:

max p(Rain) max Z p(Friend|Rain) [Uparey(Party, Rain) + Uyisit(Visit, Friend)l [Party = no]]
Party Rain Visit Friend

(7.2.11)

where the term I[Party = no] has the effect of curtailing the DT if the party goes ahead. To answer the
question as to whether or not to go ahead with the party, we take that state of Party that corresponds to
the maximal expected utility above. The way to read equation (7.2.11) is to start from the last decision
that needs to be taken, in this case Visit. When we are at the Visit stage we assume that we will have
previously made a decision about Party and also will have observed whether or not it is raining. However,

DRAFT June 18, 2013 123

Decision Trees

-100 -100

Figure 7.2: Solving a Decision Tree. (a):
Decision Tree for the Party-Friend problem,
example(7.2). (b): Solving the DT cor-
responds to making the decision with the
highest expected future utility. This can be
achieved by starting at the leaves (utilities).
For a chance parent node x, the utility of
the parent is the expected utility of that
variable. For example, at the top of the DT
we have the Rain variable with the children
—100 (probability 0.6) and 500 (probabil-
ity 0.4). Hence the expected utility of the
Rain node is —100 x 0.6 4+ 500 x 0.4 = 140.
For a decision node, the value of the node
is the optimum of its child values. One re-
curses thus backwards from the leaves to
the root. For example, the value of the
Rain chance node in the lower branch is
given by 140x0.6+50x0.4 = 104. The opti-
mal decision sequence is then given at each
decision node by finding which child node
has the maximal value. Hence the overall
best decision is to decide to go ahead with
the party. If we decided not to do so, and
it does not rain, then the best decision we
could take would be to not visit the friend
(which has an expected utility of 50). A
more compact description of this problem
is given by the influence diagram, fig(7.4).
See also demoDecPartyFriend.m.

Party Party(140)

we don’t know whether or not our friend will be in, so we compute the expected utility by averaging over
this unknown. We then take the optimal decision by maximising over Visit. Subsequently we move to the
next-to-last decision, assuming that what we will do in the future is optimal. Since in the future we will
have taken a decision under the uncertain F'riend variable, the current decision can then be taken under
uncertainty about Rain and maximising this expected optimal utility over Party. Note that the sequence
of maximisations and summations matters — changing the order will in general result in a different problem
with a different expected utility!.

For the Party-Friend example the DT is asymmetric since if we decide to go ahead with the party we will not
visit the friend, curtailing the further decisions present in the lower half of the tree. Whilst the DT approach
is flexible and can handle decision problems with arbitrary structure, a drawback is that the same nodes are
often repeated throughout the decision tree. For a longer sequence of decisions, the number of branches in
the tree can grow exponentially with the number of decisions, making this representation impractical.

'If one only had a sequence of summations, the order of the summations is irrelevant — likewise for the case of all maximi-
sations. However, summation and maximisation operators do not in general commute.

124 DRAFT June 18, 2013

Extending Bayesian Networks for Decisions

Figure 7.3: An influence diagram which contains random vari-
Party @ ables (denoted with ovals/circles) Decision nodes (denoted with
\ rectangles) and Utility nodes (denoted with diamonds). Con-
trasted with fig(7.1) this is a more compact representation of the
Utility structure of the problem. The diagram represents the expres-
sion p(rain)u(party,rain). In addition the diagram denotes an
ordering of the variables with party < rain (according to the

convention given by equation (7.3.1)).

7.3 Extending Bayesian Networks for Decisions

An influence diagram is a Bayesian Network with additional Decision nodes and Utility nodes [149, 161, 175].
The decision nodes have no associated distribution and the utility nodes are deterministic functions of their
parents. The utility and decision nodes can be either continuous or discrete; for simplicity, in the examples
here the decisions will be discrete.

A Dbenefit of decision trees is that they are general and explicitly encode the utilities and probabilities
associated with each decision and event. In addition, we can readily solve small decision problems using
decision trees. However, when the sequence of decisions increases, the number of leaves in the decision tree
grows and representing the tree can become an exponentially complex problem. In such cases it can be
useful to use an Influence Diagram (ID). An ID states which information is required in order to make each
decision, and the order in which these decisions are to be made. The details of the probabilities and utilities
are not specified in the ID, and this can enable a more compact description of the decision problem.

7.3.1 Syntax of influence diagrams

Information Links An information link from a random variable into a decision node

indicates that the state of the variable X will be known before decision D is taken. Information links
from another decision node d in to D similarly indicate that decision d is known before decision D is
taken. We use a dashed link to denote that decision D is not functionally related to its parents.

Random Variables Random variables may depend on the states of parental random variables (as in belief
networks), but also decision node states:

OO

As decisions are taken, the states of some random variables will be revealed. To emphasise this we
typically shade a node to denote that its state will be revealed during the sequential decision process.

Utilities A utility node is a deterministic function of its parents. The parents can be either random

variables or decision nodes.
D ¥ U 4 < X ,

In the party example, the BN trivially consists of a single node, and the Influence Diagram is given in fig(7.3).
The more complex Party-Friend problem is depicted in fig(7.4). The ID generally provides a more compact
representation of the structure of problem than a DT, although details about the specific probabilities and
utilities are not present in the ID.

DRAFT June 18, 2013 125

Extending Bayesian Networks for Decisions

Figure 7.4: An influence diagram for the Party-Friend problem,
example(7.2). The partial ordering is Party* < Rain < Visit* <
Friend. The dashed-link from party to visit is not strictly nec-
essary but retained in order to satisfy the convention that there
is a directed path connecting all decision nodes.

Uparty Uyisit

Partial ordering

An 1D defines a partial ordering of the nodes. We begin by writing those variables Xy whose states are
known (evidential variables) before the first decision D;. We then find that set of variables X} whose states
are revealed before the second decision Dy. Subsequently the set of variables X} is revealed before decision
Dyy1. The remaining fully-unobserved variables are placed at the end of the ordering:

Xo<D1<X1<Dg,....< X1 <D, <X, (7.3.1)

with X being the variables revealed between decision Dy and Djy1q. The term ‘partial’ refers to the fact
that there is no order implied amongst the variables within the set X},. For notational clarity, at points
below we will indicate decision variables with * to reinforce that we maximise over these variables, and sum
over the non-starred variables. Where the sets are empty we omit writing them. For example, in fig(7.5a)
the ordering is T'est* < Seismic < Drill* < Oil.

The optimal first decision D; is determined by computing

U(D1|X) = max... > nll)axz [P (@ilpa () > U; (pa(uy)) (7.3.2)
A1

X1 " X, i€ jeT

for each state of the decision Dy, given AXp. In equation (7.3.2) above Z denotes the set of indices for the
random variables, and J the indices for the utility nodes. For each state of the conditioning variables, the
optimal decision D; is found using

argmax U(D1|Xp) (7.3.3)
D,

Remark 7.1 (Reading off the partial ordering). Sometimes it can be tricky to read the partial ordering from
the ID. A method is to identify the first decision D; and then any variables Xy that need to be observed to
make that decision. Then identify the next decision Dy and the variables X7 that are revealed after decision
D is taken and before decision Dy is taken, etc. This gives the partial ordering Xy < D1 < X1 < Do,
Place any unrevealed variables at the end of the ordering.

Implicit and explicit information links

The information links are a potential source of confusion. An information link specifies explicitly which
quantities are known before that decision is taken?. We also implicitly assume the no forgetting assumption
that all past decisions and revealed variables are available at the current decision (the revealed variables are
necessarily the parents of all past decision nodes). If we were to include all such information links, IDs would
get potentially rather messy. In fig(7.5), both explicit and implicit information links are demonstrated. We
call an information link fundamental if its removal would alter the partial ordering.

2Some authors prefer to write all information links where possible, and others prefer to leave them implicit. Here we largely
take the implicit approach. For the purposes of computation, all that is required is a partial ordering; one can therefore view
this as ‘basic’ and the information links as superficial (see [72]).

126 DRAFT June 18, 2013

Extending Bayesian Networks for Decisions

Test Oil)—— U, Test Oil J—— Uz
Uy Seismic J===== ¥ Drill Ur Seismic Jm===- > Drill

(a) (b)

Figure 7.5: (a): The partial ordering is Test* < Seismic < Drill* < Oil. The explicit information links
from Test to Seismic and from Seismic to Drill are both fundamental in the sense that removing either
results in a different partial ordering. The shaded node emphasises that the state of this variable will be
revealed during the sequential decision process. Conversely, the non-shaded node will never be observed.
(b): Based on the ID in (a), there is an implicit link from Test to Drill since the decision about Test is
taken before Seismic is revealed.

Causal consistency

For an Influence Diagram to be consistent a current decision cannot affect the past. This means that any
random variable descendants of a decision D in the ID must come later in the partial ordering. Assuming
the no-forgetting principle, this means that for any valid ID there must be a directed path connecting all
decisions. This can be a useful check on the consistency of an ID.

Asymmetry

IDs are most convenient when the corresponding DT is symmetric. However, some forms of asymmetry
are relatively straightforward to deal with in the ID framework. For our Party-Friend example, the DT is
asymmetric. However, this is easily dealt with in the ID by using a link from Party to Uy;s;¢ which removes
the contribution from U,;s;+ when the party goes ahead.

More complex issues arise when the set of variables that can be observed depends on the decision sequence
taken. In this case the DT is asymmetric. In general, Influence Diagrams are not well suited to modelling
such asymmetries, although some effects can be mediated either by careful use of additional variables, or
extending the ID notation. See [72] and [161] for further details of these issues and possible resolutions.

Example 7.3 (Should I do a PhD?). Consider a decision whether or not to do PhD as part of our education
(E). Taking a PhD incurs costs, Uc both in terms of fees, but also in terms of lost income. However, if
we have a PhD, we are more likely to win a Nobel Prize (P), which would certainly be likely to boost our
Income (I), subsequently benefitting our finances (Up). This setup is depicted in fig(7.6a). The ordering is
(excluding empty sets)

E* < {I,P} (7.3.4)
and

dom(FE) = (do PhD,no PhD), dom(I) = (low, average, high), dom(P) = (prize, no prize) (7.3.5)
The probabilities are

p(win Nobel prize|no PhD) = 0.0000001 p(win Nobel prize|[do PhD) = 0.001 (7.3.6)

high|do PhD, no prize) = 0.4
high|no PhD, no prize) = 0.2
high|do PhD, prize) = 0.95
high|no PhD, prize) = 0.95

b
p
p
p

low|do PhD, no prize) = 0.1 p(average|do PhD, no prize) = 0.5 p
low|no PhD, no prize) = 0.2 p(average|no PhD, no prize) = 0.6 p
low|do PhD, prize) = 0.01 p(average|do PhD, prize) =0.04 p
low|no PhD, prize) = 0.01 p(average|no PhD, prize) = 0.04 p

(7.3.7)

N R
A~

DRAFT June 18, 2013 127

Extending Bayesian Networks for Decisions

E——(P E——{P }----1 > S
l \l 1 l / l Figure 7.6: (a): Education E incurs some
Ue I Ue I Us cost, but also gives a chance to win a pres-
tigious science prize. Both of these affect
l, J, our likely Incomes, with corresponding long
term financial benefits. (b): The start-up
Us Up .
scenario.
(a) (b)
The utilities are
Uc (do PhD) = —50000, Uc (no PhD) =0, (7.3.8)
Up (low) = 100000, Up (average) = 200000, Up (high) = 500000 (7.3.9)
The expected utility of Education is
U(E) =Y p(|E. P)p(P|E) [Uc(E) + Up(I)] (7.3.10)

I1,P

so that U(do phd) = 260174.000, whilst not taking a PhD is U(no phd) = 240000.0244, making it on average
beneficial to do a PhD. See demoDecPhD.m.

Example 7.4 (PhDs and Start-up companies). Influence Diagrams are particularly useful when a
sequence of decisions is taken. For example, in fig(7.6b) we model a new situation in which someone
has first decided whether or not to take a PhD. Ten years later in their career they decide whether
or not to make a start-up company. This decision is based on whether or not they won the Nobel
Prize. The start-up decision is modelled by S with dom(S) = (tr,fa). If we make a start-up, this will
cost some money in terms of investment. However, the potential benefit in terms of our income could be high.

We model this with (the other required table entries being taken from example(7.3)):

p(low|start up, no prize) = 0.1 p(average|start up, no prize) = 0.5 p(high|start up, no prize) = 0.4
p(low|no start up, no prize) = 0.2 p(average|no start up, no prize) = 0.6 p(high|no start up, no prize) = 0.2
p(low|start up, prize) = 0.005 p(average|start up, prize) = 0.005 p(high|start up, prize) = 0.99
p(low|no start up, prize) = 0.05 p(average|no start up, prize) = 0.15 p(high|no start up, prize) = 0.8
(7.3.11)
and
Us (start up) = —200000, Us (no start up) =0 (7.3.12)

Our interest is to advise whether or not it is desirable (in terms of expected utility) to take a PhD, now
bearing in mind that later one may or may not win the Nobel Prize, and may or may not make a start-up
company.
The ordering is (eliding empty sets)

E*<P<S"<I (7.3.13)
The expected optimal utility for any state of F is

U(E) = " max 3 p(118, P)p(PIE) [Us(S) + Uc(E) + Up(D) (7.3.14)
P I

128 DRAFT June 18, 2013

Solving Influence Diagrams

where we assume that the optimal decisions are taken in the future. Computing the above, we find
U(do PhD) = 190195.00, U(no PhD) = 240000.02 (7.3.15)

Hence, we are better off not doing a PhD. See demoDecPhd .m.

7.4 Solving Influence Diagrams

Solving an influence diagram means computing the optimal decision or sequence of decisions. The direct
variable elimination approach is to take equation (7.3.2) and perform the required sequence of summations
and maximisations explicitly. Due to the causal consistency requirement the future cannot influence the
past. To help matters with notation, we order the variables and decisions such that we may write the belief
network of the influence diagram as

T
peir, dir) = | [p(ad2ie-1, dia) (7.4.1)
=1

For a general utility u(x1.7,d1.7), solving the ID the corresponds to carrying out the operations

max maxZHp xe|x1.—1, dig)u(xy.p, di) (7.4.2)

d
1 T t=1

Let’s look at eliminating first x7 and then dr. Our aim is to write a new ID on the reduced variables
r1.7-1,d1.7—1. Since zp and dp only appear in the final factor of the belief network, we can write

max 2 ZI;EEXJCZ tl—[lp Tyl @11, dize) maXZp zr|z1r-1, dur)u(zrr, dir) (7.4.3)
T-1

which is then a new ID

max max T|x ,d x ,d 7.4.4
P x;ml_llp t|T1e-1, die)u(zrr-1, dir—1) (7.4.4)

with modified potential

(11, diro1) = max Y plerleir o1, dur)u(@rr, dir) (7.4.5)
dr 4=

This however doesn’t exploit the fact that the utilities will typically have structure. Without loss of gen-
erality, we may also write the utility as one that is independent of 7, dr and one that depends on x7, dr:

u(z1.r, dir) = uo(T1.7-1, d1:7—1) + wp(21:7, d1T) (7.4.6)

Then eliminating z, d7 updates the utility to

w(z1:7-1, dir-1) = Ua(Trr-1, diir—1) + HcllaXZP(ﬂﬁT!iUl:Tfla dy:r)up(z 17, dir) (7.4.7)
T

T

7.4.1 Messages on an ID

For an ID with two sets of variables X7, X5 and associated decision sets Dy and Dy, we can write the belief
network as

p(X|D) = p(X2|X1, D1, Da)p(X1|D1) (7.4.8)

DRAFT June 18, 2013 129

Solving Influence Diagrams

where D1 < X1 < Dy < X, and corresponding utilities
u(X,D) = u(X1,D) + u(Xy, Xa, D) (7.4.9)

The optimal utility is given by

uPt = max § max § p(X|D)u(X, D) (7.4.10)
1 2
X1 Xo

After eliminating X5 and Do, we obtain the ID
p(X1[D1) [u(X1, D) + max > u(Xy, Xe, D) (7.4.11)
Do g

which we can express in terms of the original distribution p(X|D) as

* *

1
> p(x|D) u(Xl,D)+Z* D) > p(X|D)u(X1, Xy, D) (7.4.12)
(X,D), (X.D), b (X,D),

where Z;, refers to summing first over the chance variables in) and then maximising over the decision
variables in)). These updates then define an ID on a reduced set of variables and can be viewed as messages.
The potential usefulness of equation (7.4.12) is that it may be applied to IDs that are causally consistent
(future decisions cannot affect the past) but which are not expressed directly in a causal form.

7.4.2 Using a junction tree

In complex IDs computational efficiency in carrying out the series of summations and maximisations may
be an issue and one therefore seeks to exploit structure in the ID. It is intuitive that some form of junction
tree style algorithm is applicable. The treatment here is inspired by [159]; a related approach which deals
with more general chain graphs is given in [72]. We can first represent an ID using decision potentials which
consist of two parts, as defined below.

Definition 7.2 (Decision Potential). A decision potential on a clique C' contains two potentials: a probability
potential po and a wutility potential puco. The joint potentials for the junction tree are defined as

p=1] re p=>pc (7.4.13)

ceC ceC
with the junction tree representing the term ppu.
In this case there are constraints on the triangulation, imposed by the partial ordering which restricts the

variables elimination sequence. This results in a so-called strong Junction Tree. The sequence of steps
required to construct a JT for an ID is given by the following procedure:

Procedure 7.1 (Making a strong junction tree).

Remove Information Edges Parental links of decision nodes are removed.
Moralization Marry all parents of the remaining nodes.
Remove Utility Nodes Remove the utility nodes and their parental links.

Strong Triangulation Form a triangulation based on an elimination order which obeys the partial ordering
of the variables.

Strong Junction Tree From the strongly triangulated graph, form a junction tree and orient the edges
towards the strong root (the clique that appears last in the elimination sequence).

130 DRAFT June 18, 2013

Solving Influence Diagrams

The cliques are then ordered according to the sequence in which they are eliminated. The separator prob-
ability cliques are initialised to the identity, with the separator utilities initialised to zero. The probability
cliques are then initialised by placing conditional probability factors into the lowest available clique (that is
the probability factors are placed in the cliques closest to the leaves of the tree, furthest from the root) that
can contain them, and similarly for the utilities. Remaining probability cliques are set to the identity and
utility cliques to zero.

Example 7.5 (Junction Tree). An example of a junction tree for an ID is given in fig(7.7a). The
moralisation and triangulation links are given in fig(7.7b). The orientation of the edges follows the
partial ordering with the leaf cliques being the first to disappear under the sequence of summations and
maximisations.

A by-product of the above steps is that the cliques describe the fundamental dependencies on previous
decisions and observations. In fig(7.7a), for example, the information link from f to Dy is not present in the
moralised-triangulated graph fig(7.7b), nor in the associated cliques of fig(7.7c). This is because once e is
revealed, the utility Uy is independent of f, giving rise to the two-branch structure in fig(7.7b). Nevertheless,
the information link from f to D5 is fundamental since it specifies that f will be revealed — removing this
link would therefore change the partial ordering.

Absorption

By analogy with the definition of messages in section(7.4.1), for two neighbouring cliques C1 and Cj, where
(1 is closer to the strong root of the JT (the last clique defined through the elimination order), we define

ps = Z PCsys ps = Z PCyUCy (7.4.14)
C\S C\S
new new HS
pet = pey ps, pes = pey + s (7.4.15)

In the above)"/, is a ‘generalised marginalisation’ operation — it sums over those elements of clique C' which
are random variables and maximises over the decision variables in the clique. The order of this sequence of
sums and maximisations follows the partial ordering defined by <.

Absorption is then carried out from the leaves inwards to the root of the strong JT. The optimal setting
of a decision D; can then be computed from the root clique. Subsequently backtracking may be applied to
infer the optimal decision trajectory. The optimal decision for D can be obtained by working with the clique
containing D which is closest to the strong root and setting any previously taken decisions and revealed
observations into their evidential states. See demoDecAsia.m for an example.

Example 7.6 (Absorption on a chain). For the ID of fig(7.8), the moralisation and triangulation steps are
trivial and give the JT:

3: x1,T9,d; — Ty —(2: x9,x3,dy)— T3 —(1: x3,234,d3

where the cliques are indexed according the elimination order. The probability and utility cliques are
initialised to
ps (x1,22,d1) = p(x2|z1,di) ps (@1, 22,d1) =0
p2 (z2,73,d2) = p(x3|w2,d2) p2 (T2, 23,d2) = u(z2) (7.4.16)
p1 (23,4, d3) = p(zalz3, d3) p1 (T3, 74,d3) = u(x3) + u(z4)

DRAFT June 18, 2013 131

Solving Influence Diagrams

Figure 7.7: (a): Influence Diagram, adapted from [159]. Causal consistency is satisfied since there is a
directed path linking all decisions in sequence. The partial ordering is b < Dy < (e, f) < Dy < (-) < D3 <
g < D4 < (a,c,d, h,i,j,k,0). (b): Moralised and strongly triangulated graph. Moralisation links are in
green, strong triangulation links are in red. (c): Strong Junction Tree. Absorption passes information
from the leaves of the tree towards the root.

with the separator cliques initialised to

pr-2(x3) =1 p1-o(x3) =0
po2—3(x2) =1 po—3(x2) =0 (7.4.17)

Updating the separator we have the new probability potential

p1—2 (z3)" = n}gXZpl (T3, 74,d3) =1 (7.4.18)

T4

and utility potential

pi—2 (z3)* = r%;:XZpl (x3,x4,ds3) p1 (z3,24,d3) = n}iz;pr(:m]acg, d3) (u(zs) + u(zq)) (7.4.19)
= m (u@s) + ;P(Mms, d3)u($4)) (7.4.20)

At the next step we update the probability potential

p2 (z2, 3, d2)" = p2 (2, x3,d2) p1—2 (x3)" = p(v3|z2,d) (7.4.21)

132 DRAFT June 18, 2013

Markov Decision Processes

\ Figure 7.8: Markov Decision Process. These can be
used to model planning problems of the form ‘how

do I get to where I want to be incurring the lowest
1 1 1 total cost?’. They are readily solvable using a message
passing algorithm.

RN

and utility potential

o (T, 3, do)* = g (T2, x3,ds) + m = u(x2) + Irigx <u(:c3) + Zp(a:4|x3, dg)u(a:4)> (7.4.22)

T4

The next separator decision potential is

p2—3 (z2)" = HzlaXZm (w2,23,d2)" =1 (7.4.23)
2/
3
po-3 (z2)" = H}iaxz p2 (02,23, d2) p2 (2, 23, d2)" (7.4.24)
2
3

= Hzgx;p(xg‘lj, ds) <u($2) + e (u(:vy,) + Zp(m\:v;;, dg)u(x4)>> (7.4.25)

T4
Finally we end up with the root decision potential
p3 (x1,22,d1)" = p3 (z1,22,d1) pa—3 (x2)" = p(x2|®1,dy) (7.4.26)
and

po—3 (z2)"
pa—3 (z2)*

= nb?x%;p(x;;]wg, ds) <u(x2) + s <u(a:3) + Zp(m]xg, dg)u(x4)>> (7.4.28)

T4

ps (71,2, d1)" = p3 (w2, 71,d1) + (7.4.27)

From the final decision potential we have the expression

p3 (x1,22,d1)" p3 (21, 72,d1)" (7.4.29)

which is equivalent to that which would be obtained by simply distributing the summations and maximi-
sations over the original ID. At least for this special case, we therefore have verified that the JT approach
yields the correct root clique potentials.

7.5 Markov Decision Processes

Consider a Markov chain with transition probabilities p(zi+1 = i|xy = j). At each time ¢ we consider an
action (decision), which affects the state at time ¢ + 1. We describe this by

p(rer1 =iy = j,dp = k) (7.5.1)

Associated with each state x; is a utility u(z;), and is schematically depicted in fig(7.8). More generally
one could consider utilities that depend on transitions and decisions, u(zi+1 = i, = j,d; = k) and also

DRAFT June 18, 2013 133

Markov Decision Processes

time dependent versions of all of these, pi(xi41 = t|zr = j,dy = k), (w1 = i, = j,dp = k). We'll stick
with the time-independent (stationary) case here since the generalisations are conceptually straightforward
at the expense of notational complexity. Markov Decision Processes (MDPs) can be used to solve planning
tasks such as how to get to a desired goal state as quickly as possible.

For positive utilities, the total utility of any state-decision path x1.7,d;.7 is defined as (assuming we know
the initial state x)

T
Ulzir) =) ul@) (7.5.2)
t=2

and the probability with which this happens is given by

T-1

p(zar|r1, dir-1) = H P(Tt41|7e, di) (7.5.3)
t=1

At time t = 1 we want to make that decision d; that will lead to maximal expected total utility

Ul(dy|z1) ZmameaxZ mapr xor|xy, dir—1)U(x1.7) (7.5.4)

Our task is to compute U(d;|z1) for each state of d; and then choose that state with maximal expected
total utility. To carry out the summations and maximisations efficiently, we could use the junction tree
approach, as described in the previous section. However, in this case, the ID is sufficiently simple that a
direct message passing approach can be used to compute the expected utility.

7.5.1 Maximising expected utility by message passing
Consider the time-dependent decisions (non-stationary policy) MDP

T-1 T

H p(@ega|ze, de)) u(z) (7.5.5)
t=1 =2

For the specific example in fig(7.8) the joint model of the BN and utility is

p(xa|zs, d3)p(x3|xe, d2)p(xa|2i, dr) (w(x2) + u(xz) + u(xs)) (7.5.6)

To decide on how to take the first optimal decision, we need to compute

U(dy|z1) = Z mex Z rrbz;pr(m]wg, d3)p(xs|za, do)p(x2|z1, dr) (u(z2) + u(xs) + u(zs)) (7.5.7)
xr2 T3 T4
Since only u(x4) depends on x4 explicitly, we can write
U(di]z1) Z maXZp (x3|z2, d2)p(22|21, d1) (u(azg) + u(xz) + H(ligxz:p(:cdxg, dg)u(:c4)> (7.5.8)
@4

Defining a message and corresponding value

uzeq(x3) = n}lz;XZp(xﬂxg, ds)u(xy), v(xs) = u(xs) + ugea(zs) (7.5.9)

we can write

U(dq|x1) Z maXZp x3|ze, d2)p(x2|x1, di) (u(z2) + v(x3)) (7.5.10)

In a similar manner, only the last term depends on x3 and hence

Ul(dy|z1) Zp xalx1,dr) (u(xg) + II;&;XZp(J:gMg, d2)U(£L‘3)) (7.5.11)
a3

134 DRAFT June 18, 2013

Temporally Unbounded MDPs

Defining similarly the value

v(xe) = u(ze) + Hilfszp(xg‘x% da)v(x3) (7.5.12)

then

U(di|r) = p(alas, di)v(zs) (7.5.13)

Given U(d;|z1) above, we can then find the optimal decision d; by

di(z1) = argmax U (d1|z1) (7.5.14)

dy

7.5.2 Bellman’s equation

In a Markov Decision Process, as above, we can define utility messages recursively as

Ut—1t(Tt-1) = Iclllaxzp(ﬂfﬂfﬁt—l, di-1) [u(@e) + wrery1(21)] (7.5.15)
t—1

It is more common to define the value of being in state z; as

ve(xy) = ulxy) + wperp1(xe), vp(zr) = u(xry) (7.5.16)

and write then the equivalent recursion
1 (xp—1) = u(xe—1) + I(]iaapr(a:tkct_l, di—1)ve(ze) (7.5.17)
t—1
Tt

The optimal decision dj is then given by

d; (z¢) = argmax Zp(xt+1]:vt, dy)vps1(xee1) (7.5.18)

de Tit1

Equation(7.5.17) is called Bellman’s equation[30]?.

7.6 Temporally Unbounded MDPs

In the previous discussion about MDPs we assumed a given end time, 7', from which one can propagate
messages back from the end of the chain. The infinite T case would appear to be ill-defined since the sum
of utilities

w(zy) +u(ze) + ... + u(xp) (7.6.1)

will in general be unbounded. There is a simple way to avoid this difficulty. If we let u* = max;u(s) be the
largest value of the utility and consider the sum of modified utilities for a chosen discount factor 0 < v <1

T

T T 1 ~
t * t_ x L+
;1 Yu(zy) <wu ;1 V= (7.6.2)

where we used the result for a geometric series. In the limit 7" — oo this means that the summed modified
utility y'u(z;) is finite. The only modification required to our previous discussion is to include a factor
in the message definition. Assuming that we are at convergence, we define a value v(z; = s) dependent
only on the state s, and not the time. This means we replace the time-dependent Bellman’s value recursion
equation (7.5.17) with the time-independent equation

v(s) = u(s) + ’ymjLXZp(xt = S/|$t—1 =s,di_1 = d)U(S') (7.6.3)

S

3The continuous-time analog has a long history in physics and is called the Hamilton-Jacobi equation.

DRAFT June 18, 2013 135

Temporally Unbounded MDPs

1 11 21 31 41 51 61 71 81 91

0| 0| 0| 0 0 1 0 0| 0| 0|
2 12 22 32 42 52 62 72 82 92
o o o o o o o o o 1
I N T O N S Figure 7.9: States defined on a two dimensional grid. In each square the top
1| o o o o o o 1 o o . K K . .
TN Y e left value is the state number, and the bottom right is the utility of being
of o o o o Aol o o o 0 K . K

S I O I 1 I Ol T in that state. An ‘agent’ can move from a state to a neighbouring state, as
0| 0| 0| 0| 0 0 0 0| 0| 0|

b [1o o [o oW e [re [so foo indicated. The task is to solve this problem such that for any position (state)
(o] 0| 0| 0| 1 0 0 0| 0| 0|

A A A T A A A A one knows how to move optimally to maximise the expected utility. This
0| 0| 0| 0 0 0 0 0| 0| 0|

bl e e e e e e fe e means that we need to move towards the goal states (states with non-zero

o |19 |29 |9 |49 |59 [e9 [0 |89 oo utlhty) See demoMDP.

We then need to solve equation (7.6.3) for the value v(s) for all states s. The optimal decision policy when
one is in state x; = s is then given by

d*(s) = argmax Y p(zi1 = |z = s,dy = d)o(s) (7.6.4)
d

sl
For a deterministic transition p (i.e. for each decision d, only one state s’ is available), this means that the
best decision is the one that takes us to the accessible state with highest value.

Equation(7.6.3) seems straightforward to solve. However, the max operation means that the equations
are non-linear in the value v and no closed form solution is available. Two popular techniques for solving
equation (7.6.3), are Value and Policy iteration, which we describe below. When the number of states S
is very large, approximate solutions are required. Sampling and state-dimension reduction techniques are
described in [61].

7.6.1 Value iteration

A naive procedure is to iterate equation (7.6.3) until convergence, assuming some initial guess for the values
(say uniform). Omne can show that this value iteration procedure is guaranteed to converge to a unique
optimum|35]. The convergence rate depends on v — the smaller 7 is, the faster is the convergence. An
example of value iteration is given in fig(7.10).

7.6.2 Policy iteration

In policy iteration we first assume we know the optimal decision d*(s) for any state s. We may use this in
equation (7.6.3) to give

v(s) = u(s) + vzp(aﬁt =¢|zi_1 =s,d*(s))v(s) (7.6.5)

The maximisation over d has disappeared since we have assumed we already know the optimal decision for
each state s. For fixed d*(s), equation (7.6.5) is now linear in the value. Defining the value v and utility u
vectors and transition matrix P,

v]s = v(s), [ulg = u(s), [Plg s = p(s'ls,d™ () (7.6.6)
in matrix notation, equation (7.6.5) becomes
T T !
v=u-+-P V@(I—VP)v:u@V:O—’yP) u (7.6.7)

These linear equations are readily solved with Gaussian Elimination. Using this, the optimal policy is
recomputed using equation (7.6.4). The two steps of solving for the value, and recomputing the policy are
iterated until convergence. The procedure may be initialised by guessing an initial d*(s), then solve the
linear equations (7.6.5) for the value, or alternatively guessing the initial values and solving for the initial
policy.

136 DRAFT June 18, 2013

Variational Inference and Planning

Figure 7.10: Value Iteration on a set of 225 states,
corresponding to a 15 x 15 two dimensional grid. De-
terministic transitions are allowed to neighbours on
the grid, {stay, left, right,up,down}. There are three
goal states, each with utility 1 — all other states have
utility 0. Plotted is the value v(s) for v = 0.9 after
30 updates of Value Iteration, where the states index
a point on the x — y grid. The optimal decision for
any state on the grid is to go to the neighbouring state
with highest value. See demoMDP.

Example 7.7 (A grid-world MDP). We define a set of states on a grid with corresponding utilities for each
state, as given in fig(7.9). The agent is able to deterministically move to a neighbouring grid state at each
time step. After initialising the value of each grid state to unity, the converged value for each state is given
in fig(7.10). The optimal policy is then given by moving to the neighbouring grid state with highest value.

7.6.3 A curse of dimensionality

Consider the following Tower of Hanoi problem. There are 4 pegs a,b,c,d and 10 disks numbered from 1
to 10. You may move a single disk from one peg to another — however, you are not allowed to put a bigger
numbered disk on top of a smaller numbered disk. Starting with all disks on peg a, how can you move them
all to peg d in the minimal number of moves?

This would appear to be a straightforward Markov decision process in which the transitions are allowed disk
moves. If we use x to represent the state of the disks on the 4 pegs, naively this has 40 = 1048576 states
(some are equivalent up to permutation of the pegs, which reduces this by a factor of 2). This large number
of states renders this naive approach computationally problematic.

Many interesting real-world problems suffer from this large number of states issue so that a naive approach
to find the best decision is computationally infeasible. Finding efficient exact and also approximate state
representations is a key aspect to solving large scale MDPs, see for example [208].

7.7 Variational Inference and Planning

For the finite-horizon stationary policy MDP, learning the optimal policy can be addressed by a variety of
methods. Two popular approaches are policy gradients and EM style procedures — see for example [109]
and section(11.2).

For many MDPs of interest the optimal policy is deterministic[283], so that methods which explicitly seek
for deterministic policies are of interest. For this reason and to remain close to our discussion on policy
and value iteration, which involved deterministic policies, we focus on this case in our brief discussion here,
referring the reader to other texts [81, 298, 107, 108] for the details on the non-deterministic case. For a
time-independent deterministic policy d(s) that maps a state s to a decision d (which we write as 7 for
short), we have the expected utility

T t
Um) =YY w(z) > [[plzelzr, d(z-1)) (7.7.1)

t=1 x¢ T1:4—1 7=1

with the convention p(z1|zg,d(xo)) = p(x1). Viewed as a factor graph, this is simply a set of chains, so

DRAFT June 18, 2013 137

Variational Inference and Planning

that for any policy m, the expected utility can be computed easily. In principle one could then attempt to
optimise U with respect to the policy directly. An alternative is to use an EM style procedure[107]. To do
this we define a (trans-dimensional) distribution

t

p(l'l iyt :ET|$T 1, fol)) (772)

The normalisation constant Z () of this distribution is

ZZut Ty H (xr|zre1,d(zr-1) ZZut Ty H (xr|xr—1,d(zr-1)) = U(m) (7.7.3)

t=1 x1:¢ =1 t=1 x1:¢ =1

If we now define a variational distribution g(z1.,t), and consider
KL(g(21:4,)[p(21:4, 1)) > 0 (7.7.4)

this gives the lower bound

logU(m) > —H(q(x14,t)) + <log ug(xy) Hp(x7|x771, d(:ch))> (7.7.5)
=1

q(xlztzt)

where H(q(x14,t)) is the entropy of the distribution g(x14,t). In terms of an EM algorithm, the M-step
requires the dependency on 7 alone, which is

T t
E(r) =Y (logp(e-|tr—1,d(xr-1))) gar 20 1) (7.7.6)
t=1 =1
T t
=3 qlzr =52, 1 =s,t)logp(zr =|zr_1 =s,d(x;1) =d) (7.7.7)
t=1 1=1

For each given state s we now attempt to find the optimal decision d, which corresponds to maximising
T ¢
B(dls) =3 {Z >l =201 = s,t>} log p(s/s, d) (7.7.8)
s’ t=1 7=1
Defining
T t
'Is) o Z Z q(xy =5 2,21 =s,t) (7.7.9)
t=1 =1

we see that for given s, up to a constant, E(d|s) is the Kullback-Leibler divergence between ¢(s'|s) and
p(s'|s,d) so that the optimal decision d is given by the index of the distribution p(s’|s,d) most closely aligned
with ¢(s's):

d*(s) = argrdnin KL(q(s'|s)|p(s|s, d)) (7.7.10)

The E-step concerns the computation of the marginal distributions required in the M-step. The optimal ¢
distribution is proportional to p evaluated at the previous decision function d:

Q(xlsty t) 0.8 ut(xt) H p($r|937-71, d(x‘rfl)) (7711)
T=1

For a constant discount factor v at each time-step and an otherwise time-independent utility?

ug(z1) = y'u(ry) (7.7.12)

“In the standard MDP framework it is more common to define u;(z) = v*~'u(z:) so that for comparison with the standard
Policy/Value routines one needs to divide the expected utility by .

138 DRAFT June 18, 2013

Financial Matters

Figure 7.11: Options pricing: An asset has market value £S5 at time
S. t = 1. We assume that the asset will have market value either £85,
or £S5y at time T. The owner and ‘options buyer’ (client) agree that
if the market value is greater than the ‘strike price’ £S5, at time T,
S the client has the right to purchase the asset for £95,. The question
is: how much should the owner of the asset charge the client for the
privilege of having the right to purchase the asset?

1 T
using this
t
q(w1.4,t) o< yu(ay) H p(rr|zr—1,d(xr-1)) (7.7.13)
T=1

For each t this is a simple Markov chain for which the pairwise transition marginals required for the M-step,
equation (7.7.9) are straightforward. This requires inference in a series of Markov models of different lengths.
This can be done efficiently using a single forward and backward pass [298, 109].

EM and related methods follow closely the spirit of inference in graphical models, but can exhibit disappoint-
ingly slow convergence. More recently, an alternative method using Lagrange Duality shows very promising
performance and the reader is referred to [110] for details. Note that this EM algorithm formally fails in
the case of a deterministic environment (the transition p(z¢|z;—1,d;—1) is deterministic) — see exercise(7.8)
for an explanation and exercise(7.9) for a possible resolution.

Remark 7.2 (Solving an MDP — easy or hard?). The discussion in section(7.5.1) highlights that solving a
linear-chain influence diagram (finding the optimal decision at each timestep) is straightforward, and can
be achieved using a simple message passing algorithm, scaling linearly with the length of the chain. In
contrast, finding the optimal time-independent policy 7 typically is much more complex — hence the reason
for many different algorithms that attempt to find optimal policies in areas such as time-independent control,
reinforcement learning and games. Mathematically, the reason for this difference is that the constraint in the
time-independent case that the policy must be the same over all time steps, leads to a graphical structure
that is no longer a chain, with all timepoints connected to a single w. In this case, in general, no simple
linear time message passing algorithm is available to optimise the resulting objective.

7.8 Financial Matters

Utility and decision theory play a major role in finance, both in terms of setting prices based on expected
future gains, but also in determining optimal investments. In the following sections we briefly outline two
such basic applications.

7.8.1 Options pricing and expected utility

An owner has an asset currently priced by the market at £S. The owner wants to give us the opportunity
to purchase this asset at time T for an agreed price of £S5,. At time T, if the market price goes ‘up’ beyond
the strike price to £S5, we will decide to purchase the asset from the owner for £S5, and sell the asset at
this increased value, see fig(7.11). If, however, the price remains ‘down’ below the strike price at £S5, we
will walk away, leaving the owner with the asset. The question is, how much should the owner charge, £C
for this option of us being able to buy the asset for the agreed price at time 77 To help answer this, we also
need to know how much a risk-free investment would make over the same time period (i.e. how much we
would get from putting money in a safe bank). We assume the interest rate R is known for the time period
T, say 0.06. We call the two people the owner and the client (who may or may not buy the asset).

DRAFT June 18, 2013 139

Financial Matters

Two possibilities case

For simplicity, we assume the asset can take only the prices S, or Sy at time T'. We also assume we know
the probabilities of these events (see below), namely p and 1 — p. Let’s work out the expected utilities for
both parties:

Asset goes up:

U (up, client) = Sy — Sk - C - CR (7.8.1)

immediate profit from selling option cost lost interest on option cost

U(up, owner) = Sy — 8 + \C,'./ + CR - SR (7.8.2)

immediate loss from sale option cost gained interest on option cost lost interest

The final SR term above comes from entering into the option deal — otherwise the owner could have just
sold the asset at time 1, and then put the resulting sum in the bank.

Asset goes down:

U(down,client) =— C — CR (7.8.3)

option cost lost interest on option cost

The above follows since in this case the client doesn’t act on his option to sell the asset.

U (down, owner) = Sqg— S + C, + CR - SR (7.8.4)

change in asset value option cost gained interest on option cost lost interest

The expected utility for the client is

U (client) = p x U(up,client) + (1 — p) x U(down, client) (7.8.5)
=p(Su—8—-C—-CR)+(1—-p)(—C—-CR) (7.8.6)
=p(Su—54) —C(Q+R) (7.8.7)

The expected utility for the owner is

U(owner) = p x U(up,owner) 4+ (1 — p) x U(down, owner) (7.8.8)
=p(Sx—S+C+CR—-SR)+(1—p)(Sq—S+C+CR—-SR) (7.8.9)
=p(Sc—S4)+S4—5S+C(1+R)—SR (7.8.10)

It seems reasonable to assume that both the client and the owner should have the same expected benefit,
U (client) = U(owner). Hence

p(Sy—S5:)—C(A+R)=p(Sc—84)+Sa—S+C(1+R)—- SR (7.8.11)

Solving for C', we find

Su—28c+8S3) —Sqg+S(1+R)

ol
¢= 2(1+ R)

(7.8.12)

All the quantities required to price the option are assumed known, except for p. One way to set this is
described below.

Setting p

It seems reasonable to expect p to be set by some process which describes the true probability of the price
increase. However, given a value for p and knowing the two possible prices S, and Sy, the owner can compute
the expected utility of just holding on to the asset. This is

pSu+ (1= p)Sq—S (7.8.13)

140 DRAFT June 18, 2013

Financial Matters

Alternatively, the owner could sell the asset for £S5 and put his money in the bank, collecting the interest
RS at time T. In a fair market we must have that the expected reward for holding on to the asset is the
same as the risk-free return on the asset:

S(14+ R)— Sq

u 1— — = =
pSu+(1—p)Sg—S=RS = p S5,

(7.8.14)
Using this value to price the option in equation (7.8.12) ensures that the expected gain from offering the
option and not offering the option is the same to the owner and, furthermore that if the option is available,
the expected reward for both parties is the same.

7.8.2 Binomial options pricing model

If we have more than two timepoints, we can readily extend the above. It’s easiest to assume that at each
time ¢t we have two price change possibilities — either the price can go up by a factor v > 1 or down by
a factor d < 1. For T timesteps, we then have a set of possible values the asset can take at time 7T. For
some of them the client will sell the asset (when S7 > S,) otherwise not. We need to work out the expected
gains for both the owner and client as before, assuming first that we know p (which is the probability of the
price increasing by a factor u in one time step). For a sequence of n ups and 7' — n downs, we have a price
St = Sud’ ™. If this is greater than S, then the client will sell the asset and have utility

I[Su"d"™" > S.] (Su"d"" - S, —C(1+R)) (7.8.15)

The probability of n ups and T'— n downs is
T n T—n
B(Tn,p)={ |P"(1=p) (7.8.16)

where (Z) is the binomial coefficient. Hence the total expected utility for the client on the upside is

T
U(client,up) = > B(T,n, p)I [Su"d" ™" > S,] (Su™d" " — 5, — C(1+ R)) (7.8.17)
n=0
Similarly,
T
U(client,down) = —C(1+ R) >~ B(T,n, p)I [Su"d" ™" < S,] (7.8.18)
n=0

The total expected utility for the client is then
U (client) = U(client, up) + U (client, down) (7.8.19)

Similarly, for the owner

T
U(owner,up) = (S, — S(1+ R) + C(1+ R)) > _ B(T,n, p)I [Su"d" ™ > S.] (7.8.20)
n=0
and
T
U (owner,down) = —C(1+ R) Z B(T,n, p)I [Su™d" ™™ < S,] (Su"d" ™™ — S(1+ R) + C(1+ R)) (7.8.21)
n=0
and
U (owner) = U (owner, up) + U (owner, down) (7.8.22)
Setting
U (client) = U (owner) (7.8.23)

results in a simple linear equation for C.

DRAFT June 18, 2013 141

Financial Matters

35 40

Figure 7.12: (a): Two assets through time — a risky asset whose value fluctuates wildly, and a stable asset
that grows slowly. (b): The wealth of our portfolio over time, based on investing with the hope to achieve
a wealth of 1.5 at T'=40. (c): The optimal investment decisions through time, with 1 corresponding to
placing all wealth in the safe asset and 0 placing all the money on the risky asset.

Setting p

To set p, we can use a similar logic as in the two timestep case. First we compute the expected value of the
asset at time T', which is

T
> B(T,n,p)Surd" " (7.8.24)

n=0
and equate the expected gain equal to the gain from a risk free investment in the asset:

T T
> B(Tn,p)Surd" " —S=RS = > B(T.n,pu"d" " =R+1 (7.8.25)

n=0 n=0

Knowing u and d, we can solve the above for p, and then use this in the equation for C. We can learn u and
d from past observed data (in the literature they are often related to the observed variance in the prices|74]).

The binomial options pricing approach is a relatively simplistic way to price options. The celebrated Black-
Scholes method [45] is essentially a limiting case in which the number of timepoints becomes infinite[150].

7.8.3 Optimal investment

Another example of utility in finance, and which is related to Markov decision processes, is the issue of
how best to invest your wealth in order to maximise some future criterion. We’ll consider here a very
simple setup, but one which can be readily extended to more complex scenarios. We assume that we have
two assets, a and b with prices at time t given by s¢, s?. The prices are assumed to independently follow
Markovian updating:

st =sia(l+e) = p(silsip,ef) =0 (sf — (1+ef)siy) (7.8.26)
where §(-) is the Dirac delta function. The price increments follow a Markov transition

b b by b
plefseflef—1, 1) = pleglet_1)p(erle/ 1) (7.8.27)

Using this one can model effects such as price increments being likely to stay the same (as in bank interest)
or more variable (as in the stock market).

We have an investment decision 0 < d; < 1 that says what fraction of our current wealth w; we buy of asset
a at time t. We will invest the rest of our wealth in asset b. If asset a is priced at s? and we decide to use
a fraction d; of our current wealth w; to purchase a quantity ¢f of asset a and quantity q? of asset b, these
are given by

d 1-d
gf = L g = el =) (7.8.28)

a b
St St

142 DRAFT June 18, 2013

Financial Matters

At time step t + 1, the prices of assets a and b will have changed to s¢, {, sf 1, so that our new wealth will
be

dyw; s wi(1 — dy)s®
Wee = g i st = <y i1 _ oy, (A1 +) + (1= di)(1+ efy)) (7.8.29)
t t

This can be expressed as a transition

plwrsrwn, €1, by di) = 8 (win = wp (d(1+ €f0) + (1= d)(1+ €f))) (7.8.30)

At an end time T we have a utility u(wr) that expresses our satisfaction with our wealth. Given that we
start with a wealth w; and assume we know €, €%, we want to find the best decision d; that will maximise
our expected utility at time 7. To do so, we also bear in mind that at any intermediate time 1 <t < T we
can adjust the fraction d; of wealth in asset a. The Markov chain is given by (see also section(23.1))

p(etf:Ta€§:T7w2:T|6(117€l1)7w1ad1:T 1 Hp |Et 1 6t|€t 1) (wt’wt*hei‘l?eg?dt*l) (7831)

The expected utility of a decision d; is

Uldy|ed, éh,wy) = Z .- Inax Z max p(edr, €., wour|ed, €, wy, dip_1)u(wr) (7.8.32)
55763711)2 — 6'(11“_1761%‘_1711)7’—1 o 6%763—,7’11}7‘

which, for the corresponding influence diagram, corresponds to the ordering
d; < {6%,63,11)2} <dy<...< {6%71,6%71,101“_1} <dp_1 < {6%,6%,1071} (7833)
To compute U(d|e], el{, w1), we first can carry out the operations at 7' to give a message

’7T—1<—T(6%—1aeg“—17wT 1 max Z 6T|6T 1 (6%|€%—1)p(wT|wT—l7E%UEg“adT—l)u(wT) (7834)

6TaewaT

And, generally,

Ye—tet(€f1, €1, wi-1) maX Z eflet_)p(erlet_y)p(wilwi—1, €f, €, 1) e s (ef s €, wi) (7.8.35)
Et,Et,’wt
so that
Uldile, &wi) = > plehle)p(ehled)plwalwn, ¢, e, di)rae 3(€5, ch, wn) (7.8.36)
a /b
€5,€9,W2

Note that this process is not equivalent to a ‘myopic’ strategy which would make an investment decision to
maximise the expected next-period wealth.

For a continuous wealth w; the above messages are difficult to represent. A simple strategy, therefore, is to
discretise all wealth values and also the price changes €7, ¢? and investment decisions d;, see exercise(7.13).
In this case, one needs to approximate the delta function §(z) by the distribution which is zero for every
state except that discrete state which is closest to the real value .

Example 7.8 (Optimal investment). We demonstrate a simple optimal portfolio investment problem in
fig(7.12), in which there is a safe bank asset and a risky ‘stock market’ asset. We start with a unit wealth
and wish to obtain a wealth of 1.5 at time ¢ = 40. If we place all our money in the bank, we will not be
able to reach this desired amount, so we must place some of our wealth at least in the risky asset. In the
beginning the stock market does poorly, and our wealth is correspondingly poor. The stock market picks
up sufficiently so that after around ¢ = 20, we no longer need to take many risks and may place most of our
money in the bank, confident that we will reach our investment objective.

DRAFT June 18, 2013 143

Further Topics

Figure 7.13: An example Partially Observable Markov
Decision Process (POMDP). The ‘hidden’ variables h
are never observed. In solving the Influence Diagram

@ we are required to first sum over variables that are
1« never observed; doing so will couple together all past
observed variables and decisions; any decision at time

@ t will then depend on all previous decisions. Note that

the no-forgetting principle means that we do not need
U u3 Uy to explicitly write that each decision depends on all
previous observations — this is implicitly assumed.

7.9 Further Topics

7.9.1 Partially observable MDPs

In a POMDP there are states that are not observed. This seemingly innocuous extension of the MDP case
can lead however to computational difficulties. Let’s consider the situation in fig(7.13), and attempt to
compute the optimal expected utility based on the sequence of summations and maximisations. The sum
over the hidden variables couples all the decisions and observations, meaning that we no longer have a simple
chain structure for the remaining maximisations. For a POMDP of length ¢, this leads to an intractable
problem with complexity exponential in ¢. An alternative view is to recognise that all past decisions and
observations v;.,dj.4—1, can be summarised in terms of a belief in the current latent state, p(h¢|vi.g, di¢—1).
This suggests that instead of having an actual state, as in the MDP case, we need to use a distribution
over states to represent our current knowledge. One can therefore write down an effective MDP albeit over
belief distributions, as opposed to finite states. Approximate techniques are required to solve the resulting
‘infinite’ state MDPs, and the reader is referred to more specialised texts for a study of approximation
procedures. See for example [161, 164].

7.9.2 Reinforcement learning

Reinforcement Learning deals mainly with time-independent Markov Decision Processes. The added twist
is that the transition p(s'|s,d) (and possibly the utility) is unknown. Initially an ‘agent’ begins to explore
the set of states and utilities (rewards) associated with taking decisions. The set of accessible states and
their rewards populates as the agent traverses its environment. Consider for example a maze problem with a
given start and goal state, though with an unknown maze structure. The task is to get from the start to the
goal in the minimum number of moves on the maze. Clearly there is a balance required between curiosity
and acting to maximise the expected reward. If we are too curious (don’t take optimal decisions given the
currently available information about the maze structure) and continue exploring the possible maze routes,
this may be bad. On the other hand, if we don’t explore the possible maze states, we might never realise
that there is a much more optimal short-cut to follow than that based on our current knowledge. This
exploration-exploitation tradeoff is central to the difficulties of RL. See [283] for an extensive discussion of
reinforcement learning.

From model based to model free learning

Consider a MDP with state transitions p(x¢y1|xt, d:) and policy p(d¢|xt). For simplicity we consider utilities
that depend only on the state x;. The expected utility of taking decision d; in state x¢, U(x¢,dy), can be
derived using a similar argument as in section(7.5.2), for a discount factor . As a shortcut, consider

U, di) = u(zy) + ’qu(iﬁt+1)p($t+1|wt, dt)

Tt41

+7° max Z w(2t12)P(Tt42|Tev1, di1)P(dera [Te1)p(Tesa |z, de) + ... (7.9.1)
o+ Tt+1,Tt+2

144 DRAFT June 18, 2013

Further Topics

Similarly,

U@is1,de) = w(en) +7)_ul@o)p(zeraleie,)
Tt42
+y%max > w(riy3)p(Tigslere, di2)p(deyalwe2)p(@eeli, dip) + ... (7.9.2)

di42
Tt42,Tt43

From these we derive a Bellman recursion for the expected utility of taking decision d; in state x;:

Uz, dy) = u(wy) + 7 max ZU(xt_H, A)p(xy1|xe, di) (7.9.3)

Tt+1

If we know the model p(zy41|z¢, di) we can solve equation (7.9.3) for U(z,d). Given this solution, when we
are in state x, the optimal policy is to take the decision d that maximises U(z,d): d = argmaxy U(z,d). In
the case that we do not wish to explicitly store or describe a model p(x¢41|z¢,d;) we can use a sample from
this transition to approximate equation (7.9.3); if we are in state x; and take decision d; the environment
returns for us a sample z441. This gives the one-sample estimate to equation (7.9.3):

Ulxy,dy) = ulzy) + 7 max U(xis1,d) (7.9.4)

This gives a procedure called Q-learning for updating the approximation to U based on samples from the
environment. This is a simple and powerful scheme and as such is one of the most popular model-free methods
in reinforcement learning. A complicating factor is that if we select a decision based on d = arg maxg U (z,d)
this influences the sample that will be next drawn. Nevertheless, under certain conditions (essentially all
decisions are repeatedly sampled for each state), this sample estimate U(z, d) converges to the exact U (z, d)
in the limit ¢ — oo [311].

Bayesian reinforcement learning

For a given set of environment data X (observed transitions and utilities) one aspect of the RL problem
can be considered as finding the policy that maximises expected reward, given only prior belief about the
environment and observed decisions and states. If we assume we know the utility function but not the
transition, we may write

U(w|X) = (U(7]6)) ,2) (7.9.5)
where 6 represents the environment state transition,

0 = p(xpq1|ae, dy) (7.9.6)
Given a set of observed states and decisions,

p(0]X) o< p(X[0)p(0) (7.9.7)

where p(f) is a prior on the transition. Similar techniques to the EM style training can be carried through
in this case as well[81, 298, 108]. Rather than the policy being a function of the state and the environment
6, optimally one needs to consider a policy p(di|z, b(f)) as a function of the state and the belief in the
environment, b(f#) = p(f#|X). This means that, for example, if the belief in the environment has high
entropy, the agent can recognise this and explicitly carry out decisions/actions to explore the environment.
A further complication in RL is that the data collected X depends on the policy 7. If we write ¢ for an
‘episode’ in which policy 7y is followed and data &} collected, then the utility of the policy 7 given all the
historical information is

U(r|me, X1) = <U(7T’9)>p(9\/'\-’1:t,771:t) (7.9.8)

Depending on the prior on the environment, and also on how long each episode is, we will have different
posteriors for the environment parameters. If we then set

mir1 = argmax U (7|m1., X1.t) (7.9.9)

DRAFT June 18, 2013 145

Code

s = Smoking
x = Positive X-ray
d = Dyspnea (Shortness of breath)
e = Either Tuberculosis or Lung Cancer
t = Tuberculosis
[= Lung Cancer
b = Bronchitis
a = Visited Asia
dp, = Hospitalise?
d, = Take X-ray?

Figure 7.14: Influence Diagram for the ‘Chest Clinic’ Decision example.

this affects the data we collect at the next episode Xyy1. In this way, the trajectory of policies 71, mo, ... can
be very different depending on the episodes and priors.

7.10 Summary

e One way to take decisions is to take that decision that maximises the expected utility of the decision.

e Sequential decision problems can be modelled using decision trees. These are powerful but unwieldy in long
decision sequences.

e Influence diagrams extend belief networks to the decision arena. Efficient inference approaches carry over
to this case as well, including extensions using the strong junction tree formalism.

e The sequence in which information is revealed and decisions are taken is specified in the influence diagram.
The optimal utility is not invariant to the corresponding partial-ordering.

e Markov decision processes correspond to a simple chain-like influence diagram, for which inference is
straightforward, and corresponds to the classical Bellman equations.

e Reinforcement learning can be considered an extension of the Markov decision framework when the model
of the environment in which the agent acts needs to be learned on the basis of experience.

In this chapter we discussed planning and control as an inference problem with particular attention to
discrete variables. See example(28.2) for an application of approximate inference to continuous control.

7.11 Code

7.11.1 Sum/Max under a partial order

maxsumpot.m: Generalised elimination operation according to a partial ordering
sumpotID.m: Sum/max an ID with probability and decision potentials
demoDecParty.m: Demo of summing/maxing an ID

7.11.2 Junction trees for influence diagrams

There is no need to specify the information links provided that a partial ordering is given. In the code
jtreeID.m no check is made that the partial ordering is consistent with the influence diagram. In this

146 DRAFT June 18, 2013

Code

case, the first step of the junction tree formulation in section(7.4.2) is not required. Also the moralisation
and removal of utility nodes is easily dealt with by defining utility potentials and including them in the
moralisation process.

The strong triangulation is found by a simple variable elimination scheme which seeks to eliminate a variable
with the least number of neighbours, provided that the variable may be eliminated according to the specified
partial ordering. The junction tree is constructed based only on the elimination clique sequence Cy,...,Cxy.
obtained from the triangulation routine. The junction tree is then obtained by connecting a clique C; to
the first clique j > i that is connected to this clique. Clique C; is then eliminated from the graph. In this
manner a junction tree of connected cliques is formed. We do not require the separators for the influence
diagram absorption since these can be computed and discarded on the fly.

Note that the code only computes messages from the leaves to the root of the junction tree, which is
sufficient for taking decisions at the root. If one desires an optimal decision at a non-root, one would need
to absorb probabilities into a clique which contains the decision required. These extra forward probability
absorptions are required because information about any unobserved variables can be affected by decisions
and observations in the past. This extra forward probability schedule is not given in the code and left as an
exercise for the interested reader.

jtreeID.m: Junction Tree for an Influence Diagram

absorptionID.m: Absorption on an Influence Diagram

triangulatePorder.m: Triangulation based on a partial ordering

demoDecPhD.m: Demo for utility of Doing PhD and Startup

7.11.3 Party-Friend example

The code below implements the Party-Friend example in the text. To deal with the asymmetry the Visit
utility is zero if Party is in state yes.
demoDecPartyFriend.m: Demo for Party-Friend

7.11.4 Chest Clinic with Decisions

The table for the Chest Clinic Decision network, fig(7.14) is taken from exercise(3.4), see [131, 72]. There is
a slight modification however to the p(x|e) table. If an x-ray is taken, then information about z is available.
However, if the decision is not to take an x-ray no information about x is available. This is a form of
asymmetry. A straightforward approach in this case is to make d, a parent of the x variable and set the
distribution of x to be uninformative if d, = fa.

x =trle =tr,d, =fa) =0.5 x =trle =fa,d, =fa) =0.5
p(d =trle=tr,b=1tr) = 0.9 p(d =trle =tr,b="fa) =0.3
=trle =fa,b=fa) =0.1

3

pla=tr) =0.01 p(s=tr) =0.5
p(t = trla = tr) = 0.05 p(t = trla = fa) = 0.01
p(l =trls =tr) = 0.1 p(l = tr|s = fa) = 0.01
p(b=trl]s=1tr) =0.6 p(b=trls=fa)=0.3 (7.11.1)
p(z =trle=tr,d, =tr) =0.98 p(x =trle =fa,d, =tr) =0.05 o
(p(
((
((d

p(d=trle=fa,b=1tr)=02 p

The two utilities are designed to reflect the costs and benefits of taking an x-ray and hospitalising a patient:

dp,=tr t=1tr [=1tr | 180
dp=1tr t=1tr [=1fa|120

dp=1tr t=fa [=tr| 160 dy=tr t=1tr |0
dp=1tr t=fa [=1fa|15 d, =tr t=fal|l
dp="fa t=tr [=tr|2 (7.11.2) d, =fa t=tr |10 (7.11.3)
dp,=fa t=tr [=fal|4 d, =fa t=1fa |10

dp=fa t=fa [=1tr |0
dp,=fa t=fa [=fa|40

DRAFT June 18, 2013 147

Exercises

We assume that we know whether or not the patient has been to Asia, before deciding on taking an x-ray.
The partial ordering is then

a<dy < {d,xz} <dp < {bel, st} (7.11.4)
The demo demoDecAsia.m produces the results:

utility table:

yes takexray = yes 49.976202
asia = no takexray = yes 46.989441
asia no 48.433043
asia = no takexray = no 47.460900

asia

yes takexray

which shows that optimally one should take an x-ray only if the patient has been to Asia.
demoDecAsia.m: Junction Tree Influence Diagram demo

7.11.5 Markov decision processes

In demoMDP.m we consider a simple two dimensional grid in which an ‘agent’ can move to a grid square either
above, below, left, right of the current square, or stay in the current square. We defined goal states (grid
squares) that have high utility, with others having zero utility.

demoMDPclean.m: Demo of Value and policy iteration for a simple MDP

MDPsolve.m: MDP solver using value or policy iteration

Routines for efficient MDP variational solvers are available from the book website. There is also code for
fast Lagrange duality techniques, which are beyond the scope of our discussion here.

7.12 Exercises

Exercise 7.1. You play a game in which you have a probability p of winning. If you win the game you gain
an amount £5 and if you lose the game you lose an amount £5. Show that the expected gain from playing
the game is £(2p —1)S.

Exercise 7.2. It is suggested that the utility of money is based, not on the amount, but rather how much we
have relative to other people. Assume a distribution p(i), i = 1,...,10 of incomes using a histogram with 10
bins, each bin representing an income range. Use a histogram to roughly reflect the distribution of incomes
in society, namely that most incomes are around the average with few very wealthy and few extremely poor
people. Now define the utility of an income x as the chance that income x will be higher than a randomly
chosen income y (under the distribution you defined) and relate this to the cumulative distribution of p.
Write a program to compute this probability and plot the resulting utility as a function of income. Now
repeat the coin tossing bet of section(7.1.1) so that if one wins the bet one’s new income will be placed in the
top histogram bin, whilst if one loses one’s new income is in the lowest bin. Compare the optimal expected
utility decisions under the situations in which one’s original income is (i) average, and (ii) much higher
than average.

Exercise 7.3.

Derive a partial ordering for the ID on the right, and l
explain how this ID differs from that of fig(7.5). T
Drill

Test U,
CSeismic D

Uy

Exercise 7.4. This question follows closely demoMDP.m, and represents a problem in which a pilot wishes
to land an airplane. The matriz U(x,y) in the file airplane.mat contains the utilities of being in position
x, y and is a very crude model of a runway and taxiing area. The airspace is represented by an 18 x 15 grid
(Gz = 18, Gy = 15 in the notation employed in demoMDP.m). The matriz U(8,4) = 2 represents that position

148 DRAFT June 18, 2013

e)

Q@

\=

FExercises

(8,4) is the desired parking bay of the airplane (the vertical height of the airplane is not taken in to account).
The positive values in U represent runway and areas where the airplane is allowed. Zero utilities represent
neutral positions. The negative values represent unfavourable positions for the airplane. By examining the
matriz U you will see that the airplane should preferably not veer off the runway, and also should avoid two
small villages close to the airport.

At each timestep the plane can perform one of the following actions stay up down left right:
For stay, the airplane stays in the same x,y position.

For up, the airplane moves to the x,y + 1 position.

For down, the airplane moves to the x,y — 1 position.

For left, the airplane mowves to the x — 1,y position.

For right, the airplane moves to the x 4+ 1,y position.

A move that takes the airplane out of the airspace is not allowed, and the plane remains in its current
position x,y. For example, if we issue the right action, then we stay at x,y if v+ 1,y is out of the airspace.

1. The airplane begins in at point x = 1,y = 13. Assuming that an action deterministically results in the
intended grid move, find the optimal x¢,y; sequence for timest = 1,..., for the position of the aircraft.

2. The pilot tells you that there is a fault with the airplane for the right action. Provided x + 1,y is in
the airspace for current position x,y:
If x,y + 1 is out of the airspace, then we go right to x + 1,y with probability 1.
If x,y+1 is in the airspace, we go right to x+ 1,y with probability 0.9 and up to x,y+ 1 with probability

0.1.
Assuming again that the airplane begins at point x = 1,y = 13, return the optimal x;,y; sequence for
timest =1,..., for the position of the aircraft.

Exercise 7.5.

The influence diagram depicted describes the first stage of a game. The decision
variable dom(dy) = {play, not play}, indicates the decision to either play the first
stage or not. If you decide to play, there is a cost ci(play) = C1, but no cost oth-
erwise, ci(no play) = 0. The variable x1 describes if you win or lose the game, dy
dom(zx1) = {win, lose}, with probabilities:

p(z1 = win|d; = play) = p1, p(w1 = win|dy = no play) = 0 (r-12.1) GD

The utility of winning/losing is

’LL1(331 = Win) = Wl, Ui (1131 = /ose) =0 (7122) Uy

Show that the expected utility gain of playing this game is
U(dl = p/ay) = p1W1 — Cl (7.12.3)

Exercise 7.6. Exercise(7.5) above describes the first stage of a new two-stage game. If you win the first
stage x1 = win, you have to make a decision dy as to whether or not play in the second stage dom(ds) =
{play, not play}. If you do not win the first stage, you cannot enter the second stage. If you decide to play
the second stage, you win with probability ps:

p(x2 = win|z1 = win, ds = play) = po (7.12.4)
If you decide not to play the second stage there is no chance to win:
p(x2 = win|z1 = win,da = not play) = 0 (7.12.5)

DRAFT June 18, 2013 149

Exercises

The cost of playing the second stage is
c2(da = play) = Cy, c2(d2 = no play) =0 (7.12.6)
and the utility of winning/losing the second stage is
ug(xe = win) = Wy, uz(x2 = lose) = 0 (7.12.7)
1. Draw an Influence Diagram that describes this two-stage game.

2. A gambler needs to decide if he should even enter the first stage of this two-stage game. Show that
based on taking the optimal future decision ds the expected utility based on the first decision is:

p1(p2Wa — C2) +p1W1 = C1 if poWa—C2 >0
U(dy = play) = . 7.12.8
(d = play) {p1W1—C1 if paWo—Co <0 ()
Exercise 7.7. You have £B in your bank account. You are asked if you would like to participate in a bet in
which, if you win, your bank account will become £W . However, if you lose, your bank account will contain
only £L. You win the bet with probability p,,.

1. Assuming that the utility is given by the number of pounds in your bank account, write down a formula
for the expected utility of taking the bet, U(bet) and also the expected utility of not taking the bet,
U(no bet).

2. The above situation can be formulated differently. If you win the bet you gain £(W — B). If you lose
the bet you lose £(B — L). Compute the expected amount of money you gain if you bet Ugqin (bet) and
if you don’t bet Ugqin(no bet).

3. Show that U(bet) — U(no bet) = Ugqin(bet) — Ugqin(no bet).
Exercise 7.8. Consider an objective

F(0) =) Ulx)p(x|0) (7.12.9)

for a positive function U(zx) and that our task is to mazimise F with respect to 6. An FEzpectation-
Mazimisation style bounding approach (see section(11.2)) can be derived by defining the auziliary distribution

p(z|0) = W (7.12.10)
so that by considering KL(q(z)|p(x)) for some variational distribution q(x) we obtain the bound

log F(0) > — (log q())y(y) + (log U(x)) 4y + (log p(]6)) 4y (7.12.11)
The M-step states that the optimal q distribution is given by

q(z) = p(2|0o1a) (7.12.12)

At the E-step of the algorithm the new parameters Ope,, are given by maximising the ‘energy’ term

Onew = argmax (log p(16)) 5(216,10) (7.12.13)
Show that for a deterministic distribution
p(x|) =6 (z, f(0)) (7.12.14)

the E-step fails, giving Onew = Oo14-

150 DRAFT June 18, 2013

FExercises

Exercise 7.9. Consider an objective

Fe(0) =) U(z)pe(x|0) (7.12.15)

for a positive function U(x) and
pe(z|0) = (1 —€)d (x, f(0)) + en(z), 0<e<1 (7.12.16)

and an arbitrary distribution n(x). Our task is to maximise F with respect to 0. As the previous exercise
showed, if we attempt an EM algorithm in the limit of a deterministic model € = 0, then no-updating occurs
and the EM algorithm fails to find 0 that optimises Fy(6).

1. Show that
F.(0) = (1—)Fp(0) + €Y n(x)U(x) (7.12.17)

and hence
Fe(Onew) — Fe(0o1q) = (1 — €) [Fo(Onew) — Fo(Oo1a)] (7.12.18)

2. Show that if for € > 0 we can find a Opey such that Fe(Onew) > Fe(0p1a), then necessarily Fo(Opew) >
Fo(Oota)-

3. Using this result, derive an EM-style algorithm that guarantees to increase Fe(0) (unless we are already
at an optimum) for € > 0 and therefore guarantees to increase Fy(0). Hint: use

U(z)pe(z|0)
Fe(0)

and consider KL(q(x)|p(x)) for some variational distribution q(x).

#(z]6) = (7.12.19)

Exercise 7.10. The file IDjensen.mat contains probability and utility tables for the influence diagram of
fig(7.7a). Using BRMLTOOLBOX, write a program that returns the mazximal expected utility for this ID using
a strong junction tree approach, and check the result by explicit summation and mazimisation. Similarly,
your program should output the mazximal expected utility for both states of di, and check that the computation
using the strong junction tree agrees with the result from explicit summation and maximisation.

Exercise 7.11. For a POMDP, explain the structure of the strong junction tree, and relate this to the
complexity of inference in the POMDP.

Exercise 7.12.

(i) Define a partial order for the ID depicted. (ii) Draw a (strong) junction
tree for this ID. i

Exercise 7.13. exerciseInvest.m contains the parameters for a simple investment problem in which the
prices of two assets, a and b follow Markovian updating, as in section(7.8.3). The transition matrices of
these are given, as is the end time T', initial wealth wy, and initial price movements €}, el{, wealth and
investment states. Write a function of the form

[d1 val]=optdec(epsilondl,epsilonBl,desired,T,wl,pars)
where desired is the desired wealth level at time T. The end utility is defined by

~J 10000 wr > 1.5wy
u(wr) —{ 0 wr < 15w, (7.12.20)

Using your routine, compute the optimal expected utility and decision at time 1. Draw also an influence
diagram that describes this Markov decision problem.

DRAFT June 18, 2013 151

Exercises

152 DRAFT June 18, 2013

Part 11

Learning in Probabilistic Models

153

Introduction to Part 11

In Part II we address how to learn a model from data. In particular we will discuss
learning a model as a form of inference on an extended distribution, now taking into
account the parameters of the model.

Learning a model or model parameters from data forces us to deal with uncertainty
since with only limited data we can never be certain which is the ‘correct’ model. We
also address how the structure of a model, not just its parameters, can in principle be
learned.

In Part IT we show how learning can be achieved under simplifying assumptions, such
as maximum likelihood that set parameters by those that would most likely reproduce
the observed data. We also discuss the problems that arise when, as is often the case,
there is missing data.

Together with Part I, Part II prepares the basic material required to embark on under-

standing models in Machine Learning, having the tools required to learn models from
data and subsequently query them to answer questions of interest.

DRAFT June 18, 2013

155

Undirected

Graphical
model

Directed

Maximum likelihood algorithms for learning in graphical models.

156

decomposable

complete
data

incomplete
data

gradient

complete
data

incomplete
data

described in Part II.

counting IPF

limited IS
cliques

unconstr.

constr.

gradient

non-

decomposable

gradient
(difficult)

exp. IS

decomposable .
form

gradient

non
decomposable

IPF
(difficult)

gradient
(difficult)

counting

Variational
EM

The leaf nodes denote specific algorithms

DRAFT June 18, 2013

CHAPTER 8

Statistics for Machine Learning

In this chapter we discuss some classical distributions and their manipulations. In previous chapters we’ve
assumed that we know the distributions and have concentrated on the inference problem. In machine
learning we will typically not fully know the distributions and need to learn them from available data. This
means we need familiarity with standard distributions, for which the data will later be used to set the
parameters.

8.1 Representing Data

The numeric encoding of data can have a significant effect on performance and an understanding of the
options for representing data is therefore of considerable importance. We briefly outline three central
encodings below.

8.1.1 Categorical

For categorical (or nominal) data, the observed value belongs to one of a number of classes, with no intrinsic
ordering, and can be represented simply by an integer. An example of a categorical variable would be the
description of the type of job that someone does, e.g. healthcare, education, financial services, transport,
homeworker, unemployed, engineering etc. which could be represented by the values 1,2,...,7. Another
way to transform such data into numerical values would be to use 1-of-m encoding. For example, if there
are four kinds of jobs: soldier, sailor, tinker, spy, we could represent a soldier as (1,0,0,0), a sailor as (0,1,0,0),
a tinker as (0,0,1,0) and a spy as (0,0,0,1). In this encoding the distance between the vectors representing
two different professions is constant. Note that 1-of-m encoding induces dependencies in the profession
attributes since if one of the attributes is 1, the others must be zero.

8.1.2 Ordinal

An ordinal variable consists of categories with an ordering or ranking of the categories, e.g. cold, cool, warm,
hot. In this case, to preserve the ordering, we could use say -1 for cold, 0 for cool, +1 for warm and +2 for
hot. This choice is somewhat arbitrary, and one should bear in mind that results may be dependent on the
numerical coding used.

8.1.3 Numerical

Numerical data takes on values that are real numbers, e.g. a temperature measured by a thermometer, or
the salary that someone earns.

157

Distributions

8.2 Distributions

Distributions over discrete variables, section(1.1) have been the focus of much of the book up to this point.
Here we discuss also distributions over continuous variables, for which the concepts of marginalisation and
conditioning carry over from the discrete case, simply on replacing summation over the discrete states with
integration over the continuous domain of the variable.

Definition 8.1 (Probability Density Functions). For a continuous variable z, the probability density p(z)
is defined such that

0o b
@020, [pade=1 pla<e<t)= [pa)ds (8.2.1)

We will also refer to continuous probability densities as distributions.

Definition 8.2 (Averages and Expectation).

(F(2) () (8.2.2)

denotes the average or expectation of f(x) with respect to the distribution p(z). A common alternative
notation is

E(f(z)) (8.2.3)
When the context is clear, one may drop the notational dependency on p(z). The notation
(f()]y) (8.2.4)

is shorthand for the average of f(x) conditioned on knowing the state of variable y, i.e. the average of f(x)
with respect to the distribution p(z|y).

An advantage of the expectation notations is that they hold whether the distribution is over continuous or
discrete variables. In the discrete case

(f(x)) =) flz=x)p(x = x) (8.2.5)
and for continuous variables,
)= [s (5.2.6)

The reader might wonder what (z) means when z is discrete. For example, if dom(xz) = {apple, orange, pear},
with associated probabilities p(x) for each of the states, what does (z) refer to? Clearly, (f(x)) makes sense
if f(r = x) maps the state x to a numerical value. For example f(x = apple) = 1, f(z = orange) = 2,
f(xz = pear) = 3 for which (f(x)) is meaningful. Unless the states of the discrete variable are associated
with a numerical value, then (z) has no meaning.

Result 8.1 (Change of variables). For a univariate continuous random variable z with distribution p(z)
the transformation y = f(x), where f(x) is a monotonic function, has distribution

4

-1
d$> , m:f_l(y) (8.2.7)

p(y) = p(z) (

For multivariate x and bijection f(x), then y = f(x) has distribution
of

158 DRAFT June 18, 2013

-1

ply) =p(x=1"'(y)) (8.2.8)

Distributions

where the Jacobian matrix has elements

of] 0fi(x)
[&(L]’ - O

(8.2.9)

Sometimes one needs to consider transformations between different dimensions. For example, if z has lower
dimension than x, then one may introduce additional variables z’ to define a new multivariate y = (z,2’)
with the same dimension as x. Then one applies the above transformation to give the distribution on the
joint variables y, from which p(z) can be obtained by marginalisation.

Definition 8.3 (Moments). The k* moment of a distribution is given by the average of z* under the
distribution:

<$k>p(x) (8.2.10)

For k = 1, we have the mean, typically denoted by p,

p = (x) (8.2.11)

Definition 8.4 (Cumulative Distribution Function). For a univariate distribution p(x), the CDF is defined
as

cdf (y) = plz < y) = Iz <yl (82.12)

For an unbounded domain, cdf(—o0) = 0 and cdf (o0) = 1.

Definition 8.5 (Moment Generating Function). For a distribution p(x), we define the moment generating
function ¢(t) as

9(t) = (€")) (8.2.13)
The usefulness of this is that by differentiating g(t), we ‘generate’ the moments,

. dF k

}E}(l) ﬁg(t) = <:z: >p(:1:) (8.2.14)

Definition 8.6 (Mode). The mode ., of a distribution p(z) is the state of x at which the distribution takes
its highest value, z, = arg max,; p(z). A distribution could have more than one mode (be multi-modal). A
widespread abuse of terminology is to refer to any isolated local maximum of p(z) to be a mode.

Definition 8.7 (Variance and Correlation).

o2 = <(m - <x>)2> (8.2.15)

p(z)

The variance measures the ‘spread’ of a distribution around the mean. The square root of the variance, o
is called the standard deviation and is a natural length scale suggesting how far typical values drawn from
p(x) might be from the mean. The notation var(x) is also used to emphasise for which variable the variance
is computed. The reader may show that an equivalent expression is

o? = (2?) — (z)” (8.2.16)

DRAFT June 18, 2013 159

Distributions

For a multivariate distribution the matrix with elements

Sij = (i — i) (2 — 1)) (8.2.17)

where p; = (z;) is called the covariance matriz. The diagonal entries of the covariance matrix contain the
variance of each variable. An equivalent expression is

Sij = (wixs) — (@3) (x;) (8.2.18)
The correlation matriz has elements

pis = <($i — i) (5 — /Lj)> (8.2.19)

T 0j

where o; is the deviation of variable x;. The correlation is a normalised form of the covariance so that each
element is bounded —1 < p;; < 1. The reader will note a resemblance of the correlation coefficient and the
scalar product, equation (29.1.3). See also exercise(8.40).

For independent variables z; and xj, x; 1L x; the covariance ¥;; is zero. Similarly independent variables
have zero correlation — they are ‘uncorrelated’. Note however that the converse is not generally true — two
variables can be uncorrelated but dependent. A special case is for when z; and ; are Gaussian distributed
for which independence is equivalent to being uncorrelated, see exercise(8.2).

Definition 8.8 (Skewness and Kurtosis). The skewness is a measure of the asymmetry of a distribution:

xr — (X 3
"= <(<Ui) >p(g”) (8.2.20)

where o2 is the variance of x with respect to p(x). A positive skewness means the distribution has a heavy
tail to the right. Similarly, a negative skewness means the distribution has a heavy tail to the left.

The kurtosis is a measure of how peaked around the mean a distribution is:

—{x 4
Y2 = <() >”(m) -3 (8.2.21)

ol

A distribution with positive kurtosis has more mass around its mean than would a Gaussian with the same
mean and variance. These are also called super Gaussian. Similarly a negative kurtosis (sub Gaussian)
distribution has less mass around its mean than the corresponding Gaussian. The kurtosis is defined such
that a Gaussian has zero kurtosis (which accounts for the -3 term in the definition).

Definition 8.9 (Delta function). For continuous x, we define the Dirac delta function
O(z — xg) (8.2.22)

which is zero everywhere except at xg, where there is a spike. ffooo d(x — xo)dx = 1 and
o0
/ 5z — wo) f(@)dz = f(x0) (8.2.23)
—0oQ
One can view the Dirac delta function as an infinitely narrow Gaussian: §(z —) = lims_,o N (x\xo, 02).

The Kronecker delta,
Oz 0 (8.2.24)

is similarly zero everywhere, except for d,, 5, = 1. The Kronecker delta is equivalent to 5 5, = Iz = z¢].
We use the expression § (z,xg) to denote either the Dirac or Kronecker delta, depending on the context.

160 DRAFT June 18, 2013

Distributions

Definition 8.10 (Empirical Distribution). For a set of datapoints x!,2V, which are states of a random
variable x, the empirical distribution has probability mass distributed evenly over the datapoints, and zero

elsewhere.

For a discrete variable = the empirical distribution is, see fig(8.1),

where NN is the number of datapoints.

For a continuous distribution we have
1 N
r)=—=>» d(z—2a"
(@) =+ n§1 ()

where 0 (z) is the Dirac Delta function.

The mean of the empirical distribution is given by the sample mean of the datapoints

1 N
=y
N

Similarly, the variance of the empirical distribution is given by the sample variance

1 N
A2 _ ~\2
o = Nn§:1 (" — 1)

For vectors the sample mean vector has elements

and sample covariance matrix has elements

N

~ 1 R .

Yij = N Z (@} = fu) (25 — i)
n=1

8.2.1 The Kullback-Leibler Divergence KL(¢|p)

(8.2.25)

(8.2.26)

(8.2.27)

(8.2.28)

(8.2.29)

(8.2.30)

The Kullback-Leibler divergence KL(g|p) measures the ‘difference’ between distributions ¢ and p[71].

Definition 8.11 (KL divergence). For two distributions ¢(x) and p(z)

KL(q|p) = (log q(z) — log p(x)) 45y = 0

(8.2.31)

Figure 8.1: Empirical distribution over a discrete variable with
T T T 4 states. The empirical samples consist of n samples at each

of states 1,2,4 and 2n samples at state 3 where n > 0. On

1 2 3 4 normalising this gives a distribution with values 0.2,0.2,0.4,0.2

over the 4 states.

DRAFT June 18, 2013

161

Distributions

The KL divergence is > 0

The KL divergence is widely used and it is therefore important to understand why the divergence is positive.

3
To see this, consider the following linear bound on the function log(x)

log(z) <x—1 (8.2.32) |
as plotted in the figure on the right. Replacing = by p(z)/q(z) in the above bound or
-1
px) _ 1> log@ (8.2.33)
q(x) q(x) -

Since probabilities are non-negative, we can multiply both sides by ¢(x) to obtain

p(e) — a(x) > q(a) logp(x) — g(z) g q() (8231 L |

We now integrate (or sum in the case of discrete variables) both sides. Using [p(z)dz =1, [g(z)dz = 1,

112 (logp(x) — log a(a)), (8.2.35)

Rearranging gives

(log g(x) —log p()) 4(»y = KL(q|p) = 0 (8.2.36)

The KL divergence is zero if and only if the two distributions are exactly the same.

Definition 8.12 (a-divergence). For two distributions ¢(x) and p(x) and real o the a-divergence is defined

as
= L

a(l —a) -

Da(plg) = (8.2.37)
The Kullback-Leibler divergence KL(p|q) corresponds to D;(p|q) and KL(¢|p) = Dy(p|q), which is readily
verified using L’Hopital’s rule.

8.2.2 Entropy and information

For both discrete and continuous variables, the entropy is defined as

H(p) = — (log p(z)) () (8.2.38)

For continuous variables, this is also called the differential entropy, see also exercise(8.34). The entropy is
a measure of the uncertainty in a distribution. One way to see this is that

H(p) = —KL(p|u) + const. (8.2.39)

where v is a uniform distribution. Since KL(p|u) > 0, the less like a uniform distribution p is, the smaller
will be the entropy. Or, vice versa, the more similar p is to a uniform distribution, the greater will be the
entropy. Since the uniform distribution contains the least information a priori about which state p(x) is
in, the entropy is therefore a measure of the a priori uncertainty in the state occupancy. For a discrete
distribution we can permute the state labels without changing the entropy. For a discrete distribution the
entropy is positive, whereas the differential entropy can be negative.

The mutual information is a measure of dependence between (sets of) variables X and), conditioned on
variables Z.

162 DRAFT June 18, 2013

NY
\=/
=
©

AN A
Q@

Classical Distributions

Definition 8.13 (Mutual Information).
MI(X; Y1 2) = (KL(p(X, Y| 2)Ip(X| 2)p(V|2))), 2 = 0 (8.2.40)

If X 1L Y| Z is true, then MI(X;Y|Z) is zero, and vice versa. When Z = (), the average over p(Z) is absent
and one writes MI(&X; V).

8.3 Classical Distributions

Definition 8.14 (Bernoulli Distribution). The Bernoulli distribution concerns a discrete binary variable z,
with dom(z) = {0,1}. The states are not merely symbolic, but real values 0 and 1.

plx=1)=10 (8.3.1)
From normalisation, it follows that p(z = 0) = 1 — 6. From this

() =0xplx=0)+1xplx=1)=40 (8.3.2)
The variance is given by var(z) = 6 (1 — 6).

Definition 8.15 (Categorical Distribution). The categorical distribution generalises the Bernoulli distribu-
tion to more than two (symbolic) states. For a discrete variable x, with symbolic states dom(x) = {1,...,CY},

p(z =c) =6, ZGC =1 (8.3.3)

The Dirichlet is conjugate to the categorical distribution.

Definition 8.16 (Binomial Distribution). The Binomial describes the distribution of a discrete two-state
variable z, with dom(z) = {1,0} where the states are symbolic. The probability that in n Bernoulli Trials
(independent samples), z!, ..., 2" there will be k ‘success’ states 1 observed is

p(y = k|0) = (Z) ok (1 —6)"*, Y= ZH (2" = 1] (8.3.4)

where (}) = n!/(k!(n — k)!) is the binomial coefficient. The mean and variance are
(y) = ndb, var(y) =né (1 —0) (8.3.5)

The Beta distribution is the conjugate prior for the Binomial distribution.

Definition 8.17 (Multinomial Distribution). Consider a multi-state variable z, with dom(z) ={1,..., K},

with corresponding state probabilities 601,...,0x. We then draw n samples from this distribution. The
probability of observing the state 1 y; times, state 2 yo times, ..., state K yx times in the n samples is
n K
() = 11 (5:36)

where n = Z,A:lyz
(yi) = nbs, var(ys) = nbi (1 —0:), (yiy;) — (i) (y;) = —nbib; (i # j) (8:37)

DRAFT June 18, 2013 163

Classical Distributions

;
A=02 A=02
151 08} 2=05 |1
.0 06}
0.4}
05}
02}
0

Figure 8.2: (a): Exponential distribution. (b): Laplace (double exponential) distribution.

The Dirichlet distribution is the conjugate prior for the multinomial distribution.

Definition 8.18 (Poisson Distribution). The Poisson distribution can be used to model situations in which
the expected number of events scales with the length of the interval within which the events can occur. If A
is the expected number of events per unit interval, then the distribution of the number of events z within
an interval tA is

1
pla = k|\) = He*” ()", k=0,1,2,... (8.3.8)

For a unit length interval (¢t = 1),
(x)y =\, var(z) = A (8.3.9)

The Poisson distribution can be derived as a limiting case of a Binomial distribution in which the success
probability scales as # = A\/n, in the limit n — oo.

Definition 8.19 (Uniform distribution). For a variable z, the distribution is uniform if p(x) = const. over
the domain of the variable.

Definition 8.20 (Exponential Distribution). For = > 0, see fig(8.2a),
p(z|\) = e (8.3.10)

One can show that for rate A
1 1
(x) = It var(z) = 2 (8.3.11)

The alternative parameterisation b = 1/ is called the scale.

Definition 8.21 (Gamma Distribution).

wls

a—1
Gam (z|a, B) = BFl(a) <g> e B, x>0,aa>0,6>0 (8.3.12)

« is called the shape parameter, 3 is the scale parameter and the Gamma function is defined as

I(a) = / t7 e tdt (8.3.13)
0

164 DRAFT June 18, 2013

Classical Distributions

5 ‘ ‘ 5 :
a=1p=0.2 =2 B=0.1

4 a=2p=02 | 4t —_— 205 |
=5 B=0.2 —_—

3} 0=10p=0.2 | R

ol

1

0 o~

0 1 2 3 4 5
(a)

Figure 8.3: Gamma distribution. (a): varying « for fixed 5. (b): varying S for fixed a.

The parameters are related to the mean and variance through

o= (H)Q, =" (8.3.14)

S

where p is the mean of the distribution and s is the standard deviation. The mode is given by (o — 1) S,
for a > 1, see fig(8.3).

An alternative parameterisation uses the inverse scale

Gam® (z]a, B) = Gam (z]a, 1/8) o< 2% Le™P® (8.3.15)

Definition 8.22 (Inverse Gamma distribution).

1,
InvGam (z|a, f) = mxa“e /e (8.3.16)
This has mean /(o — 1) for @ > 1 and variance #2(0{_2) for a > 2.
Definition 8.23 (Beta Distribution).
1 —1
p(z|lo, B) = B(z]a,) = ——2 (1 —2)’t, 0<z<1 8.3.17
(ze, B) = B (zla, B) Bla.B) (1—x) ()
where the Beta function is defined as
[(a)T(5)
B(a,f) = =———= 8.3.18
(@.8) = ps s (8318)
3 T 3 T T
—0=0.1p=0.1 01 p=2
o5 —a=1p=1 ! 25} —a=1p=2
—a=2p=2 —a=2p=2
ol ——a=5p=5 g 2 ——a=5 p=2
1.5¢ 151
1 1
0.5 0.5
00 012 014 0‘.6 018 1 00 0.2 014 0.6 0.8 1
(a) (b)

Figure 8.4: Beta distribution. The parameters o and S can also be written in terms of the mean and
variance, leading to an alternative parameterisation, see exercise(8.16).

DRAFT June 18, 2013 165

Classical Distributions

Figure 8.5: Top: 200 datapoints z!,. .., 220 drawn from a Gaussian distribution.
Each vertical line denotes a datapoint at the corresponding x value on the hori-
zontal axis. Middle: Histogram using 10 equally spaced bins of the datapoints.
0 Bottom: Gaussian distribution N (z|p = 5,0 = 3) from which the datapoints
02 were drawn. In the limit of an infinite amount of data, and limitingly small bin
o1 size, the normalised histogram tends to the Gaussian probability density function.

and I'(z) is the Gamma function. Note that the distribution can be flipped by interchanging x for 1 — z,
which is equivalent to interchanging o and (3. See fig(8.4).

The mean and variance are given by

= @ var\xr) = Olﬁ
(z) = () TR iiTT (8.3.19)

Definition 8.24 (Laplace Distribution).

p(z|A) = AesloH (8.3.20)
For scale b
(x) = w, var(z) = 2b° (8.3.21)

The Laplace distribution is also known as the Double Exponential distribution, fig(8.2b).

Definition 8.25 (Univariate Gaussian Distribution).

1

2mo?

Pl 0®) = N (xlp,0%) = ez (8.3.22)

|

where p is the mean of the distribution, and o2 the variance. This is also called the normal distribution.
One can show that the parameters indeed correspond to
2 2
- = - 8.3.23
= Oy, = () (8.3.23)

For =0 and o = 1, the Gaussian is called the standard normal distribution. See fig(8.5) for a depiction of
the univariate Gaussian and samples therefrom.

Definition 8.26 (Student’s ¢-distribution).

v+1

INE==t 3 o\2]
p(z|p, A\, v) = Student (z|p, \,v) = é(lz)) <V);T> [1 +)\(fUVM) (8.3.24)
where p is the mean, v the degrees of freedom, and A scales the distribution. The variance is given by
var(z) = ﬁ, for v > 2 (8.3.25)

For v — oo the distribution tends to a Gaussian with mean p and variance 1/\. As v decreases the tails of
the distribution become fatter.

166 DRAFT June 18, 2013

Classical Distributions

Figure 8.6: Dirichlet distribution with parameter (uj,us,us) displayed on the simplex xi,z2,z3 > 0,21 +
x2 + w3 = 1. Black denotes low probability and white high probability. (a): (3,3,3) (b): (0.1,1,1). (c):
(4,3,2). (d): (0.05,0.05,0.05).

The t-distribution can be derived from a scaled mizture

p(z|p, a,b) = / N (z|p, 771) Gam™ (t]a,b) dr (8.3.26)
7=0
o0 1
— T N2 —Z(z—p)?pa,—br _a—1 1
/To (27r) e 2 be T —F(a)dT (8.3.27)
b T(a+3) 1
= 8.3.28
L(a) 271 at3 ()

(b+ Lz — u)2)

This matches equation (8.3.24) on setting v = 2a and A\ = a/b.

Definition 8.27 (Dirichlet Distribution). The Dirichlet distribution is a distribution on probability distri-
butions, a = (a1, ..., aqQ), a; >0, >, a; = 1:

Q Q
pla) = Z(1u)6 (Z} a; — 1) q]:[lagq‘lﬂ [y > 0] (8.3.29)
where
Z(u) = M (8.3.30)
r (ZqQ:1 “q>
It is conventional to denote the distribution as
Dirichlet (a|u) (8.3.31)

The parameter u controls how strongly the mass of the distribution is pushed to the corners of the simplex.
Setting ug = 1 for all ¢ corresponds to a uniform distribution, fig(8.6). In the binary case @ = 2, this is
equivalent to a Beta distribution.

The product of two Dirichlet distributions is another Dirichlet distribution
Dirichlet (@|u;) Dirichlet (@|uy) = Dirichlet (@|u; + us) (8.3.32)

The marginal of a Dirichlet is also Dirichlet:

/ Dirichlet (|u) = Dirichlet (6 ;|u ;) (8.3.33)
0

DRAFT June 18, 2013 167

Multivariate Gaussian

4 0.12
0.14
0.12 i 04
0.1 2t
0.08 nl 0.08
0.06
0.04 : \ or 0.06
0.02 . 7" "“‘\“\\\\ Ll
0 /I/I :‘:‘:“8&&‘& \ 0.04
, (i \\\ -2}

-4 4 4 _é _é —1‘ 6 1‘ é é 4
(a) (b)

Figure 8.7: (a): Bivariate Gaussian with mean (0,0) and covariance [1,0.5;0.5,1.75]. Plotted on the
vertical axis is the probability density value p(x). (b): Probability density contours for the same bivariate
Gaussian. Plotted are the unit eigenvectors scaled by the square root of their eigenvalues, v/);.

The marginal of a single component 6; is a Beta distribution:

p(0;) = B | Olui, > u; (8.3.34)
j#i
8.4 Multivariate Gaussian

The multivariate Gaussian plays a central role in data analysis and as such we discuss its properties in some
detail.

Definition 8.28 (Multivariate Gaussian Distribution).

1 1 Ts—1
x|, B) =N (x|p,) = ——— e s ZT(xp) 8.4.1
Pl) = A (x11. B) = o (s.4.)

where p is the mean vector of the distribution, and ¥ the covariance matrix. The inverse covariance X!
is called the precision.

One may show

p= s S (e meem) (8.4.2)

Note that det (pM) = pPdet (M), where M is a D x D matrix, which explains the dimension independent
notation in the normalisation constant of definition(8.28).

The moment representation uses pu and 3 to parameterise the Gaussian. The alternative canonical repre-
sentation

p(x|b, M, ¢) = ce~ 2% Mxtxb (8.4.3)
is related to the moment representation via

1
T=M1 p=M"b, —ceaP™MTD (8.4.4)
det (27X)

168 DRAFT June 18, 2013

Multivariate Gaussian

The multivariate Gaussian is widely used and it is instructive to understand the geometric picture. This
can be achieved by viewing the distribution in a different co-ordinate system. First we use the fact that
every real symmetric matrix D x D has an eigen-decomposition

> =EAE' (8.4.5)

where ETE =T and A = diag (\1,...,Ap). In the case of a covariance matrix, all the eigenvalues); are
positive. This means that one can use the transformation

y=AZET (x — p) (8.4.6)
so that
(x—p)" = (x—p)=(x—p) EATET (x—p) =y'y (8.4.7)

Under this transformation, the multivariate Gaussian reduces to a product of D univariate zero-mean unit
variance Gaussians (since the Jacobian of the transformation is a constant). This means that we can view a
multivariate Gaussian as a shifted, scaled and rotated version of a ‘standard’ (zero mean, unit covariance)
Gaussian in which the centre is given by the mean, the rotation by the eigenvectors, and the scaling by the
square root of the eigenvalues, as depicted in fig(8.7b). A Gaussian with covariance X = pl for some scalar
p is an example of an isotropic meaning ‘same under rotation’. For any isotropic distribution, contours of
equal probability are spherical around the origin.

Result 8.2 (Product of two Gaussians). The product of two Gaussians is another Gaussian, with a multi-
plicative factor, exercise(8.35):

exp (—% (g — o) 74 (g — MQ))

N (x|p, 2N (X pe, Bo) =N (x|, Z 8.4.8
(x|p, B1) N (x| po, 32) (x|p, X) det (279) ()

where S = ¥ + ¥9 and the mean and covariance are given by
=318y + oSy » =381 (8.4.9)

8.4.1 Completing the square

A useful technique in manipulating Gaussians is completing the square. For example, the expression
1
exp (—QXTAX + bTx> (8.4.10)

can be transformed as follows. First we complete the square:

1 1 1
~x"TAx—b'x==(x—A"B)TA(x—A b)—-b"A b (8.4.11)
2 2 2
Hence
1 1
exp <—2XTAX —~ bTx) =N (x|A7'b, A7) \/det (2rA ™)exp (QbTAlb) (8.4.12)

From this one can derive

1 1
/exp <—2xTAx + bTx> dx = {/det (27TA_1)exp <2bTA1b> (8.4.13)

DRAFT June 18, 2013 169

Multivariate Gaussian

Result 8.3 (Linear Transform of a Gaussian). Let y be linearly related to x through
y=Mx+n (8.4.14)

where x 1L.m, n ~ N (p,), and x ~ N (p,, X;). Then the marginal p(y) = [, p(y[x)p(x) is a Gaussian

p(y) =N (Y\Mux +p, MEMT + 2) (8.4.15)

Result 8.4 (Partitioned Gaussian). Consider a distribution N (z|u, X) defined jointly over two vectors x
and y of potentially differing dimensions,

z= < ;) (8.4.16)

with corresponding mean and partitioned covariance

M= (Ha) = (Doz Hay > (8.4.17)
Fy Vye Dy
where ¥, = E;Cry. The marginal distribution is given by
p(x) = N (x| pty, Baz) (8.4.18)

and conditional

p(X|y) = N (X‘p,x + Exyzgjyl (y - “y)? Exx - Exyggjylxyx) (8.4.19)

Result 8.5 (Gaussian average of a quadratic function).

T T
A =p Ap+t AY 8.4.20
<x X>N(xm,2) p' Ap + trace (AX) ()

8.4.2 Conditioning as system reversal

For a joint Gaussian distribution p(x,y), consider the conditional p(x|y). The formula for this Gaussian is
given in equation (8.4.19). An equivalent and useful way to write this result is to consider a ‘reversed’ linear
system of the form

X = Xy +%, where ¥ ~ N (W‘ﬁ, E) (8.4.21)

and show that the marginal over the ‘reverse’ noise % is equivalent to conditioning. That is, for a Gaussian

pxly) = [3 (x =Ky = 57) (D). o) =N (775, 5) (3422

(_
for suitably defined A, &7, § To show this, we need to make the statistics of x under this linear system
match those given by the conditioning operation, (8.4.19). The mean and covariance of the linear system
equation (8.4.21) are given by

%
u, = Ay + i, S.=S (8.4.23)
We can make these match equation (8.4.19) by setting
e _ _ _
A=%,%), Sox, %308, §=p -5, (8.4.24)

This means that we can write an explicit linear system of the form equation (8.4.21) where the parameters
are given in terms of the statistics of the original system. This is particularly useful in deriving results in
inference with Linear Dynamical Systems, section(24.3).

170 DRAFT June 18, 2013

Exponential Family

8.4.3 Whitening and centering

For a set of data x',...,x", with dimx™ = D, we can transform this data to y!,...,y" with zero mean
using centering:
y'=x"—-m (8.4.25)

where the mean m of the data is given by

1 N
m =+ nzlx" (8.4.26)

1

Furthermore, we can transform to values z', ..., z" that have zero mean and unit covariance using whitening

z" =S72 (x" —m) (8.4.27)
where the covariance S of the data is given by

S=+ 3 (x"—m)(x"—m)’ (8.4.28)

n=1

An equivalent approach is to compute the SVD decomposition of the matrix of centered datapoints

UsvT =Y, Y=[y'...,¥y"] (8.4.29)
then for the D x N matrix

Z = v/Ndiag (1/S11,...,1/Spp)UTY (8.4.30)
the columns of Z = (zl, o zN) have zero mean and unit covariance, see exercise(8.32).

Result 8.6 (Entropy of a Gaussian). The differential entropy of a multivariate Gaussian p(x) = NV (x|, X)
is

H(x) = — (log p(x)) () = %log det (273) + g (8.4.31)

where D = dim x. Note that the entropy is independent of the mean p.

8.5 Exponential Family

A theoretically convenient class of distributions are the exponential family, which contains many standard
distributions, including the Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial.

Definition 8.29 (Exponential Family). For a distribution on a (possibly multidimensional) variable x
(continuous or discrete) an exponential family model is of the form

p(z(0) = h(z)exp <Z 1 (0) Ty(x) — ¢(9)> (8.5.1)

0 are the parameters, T;(z) the test statistics, and 1 (0) is the log partition function that ensures normali-
sation

¥ (0) = log / h(z)exp (Z " (a)z;-(@). (8.5.2)

One can always transform the parameters to the form n () = 6 in which case the distribution is in canonical
form:

p(28) = h(z)exp (GTT(x) 3 (0)) (8.5.3)

DRAFT June 18, 2013 171

Learning distributions

For example the univariate Gaussian can be written

1 1 2\ _ L oo p p 1 2

Defining t1(z) = x, to(z) = —2%/2 and , 01 = u, 63 = 02, h(z) = 1, then

2
m@O =g m@) =g e = (g +ognts) (555

Note that the parameterisation is not necessarily unique — we can for example rescale the functions T;(z)
and inversely scale 7; by the same amount to arrive at an equivalent representation.

8.5.1 Conjugate priors

For an exponential family likelihood

p(2]0) = h(z)exp (BTT(a:) — (9)) (8.5.6)
and prior with hyperparameters a, v,
p(6la,y) ox exp (8Tac — 71 () (8.5.7)
the posterior is
p(6l, o 7) ox p(x]8)p(Blac,7) o exp (67 [T(w) +] [y + 1] (6)) (8:5.8)
— p(6]T(x) + o, 1+) (8.5.9)

so that the prior, equation (8.5.7), is conjugate for the exponential family likelihood equation (8.5.6); that
is, the posterior is of the same form as the prior, but with modified hyperparameters. Whilst the likelihood
is in the exponential family, the conjugate prior is not necessarily in the exponential family.

8.6 Learning distributions

For a distribution p(x|#), parameterised by 6, and data X = {xl, N }, learning corresponds to inferring
the 6 that best explains the data X'. There are various criteria for defining this:

Bayesian Methods In this one examines the posterior p(6|X) o p(X'|6)p(0). This gives rise to a distribu-
tion over #. The Bayesian method itself says nothing about how to best summarise this posterior.

Maximum A posteriori This is a summarisation of the posterior, that is
OMAP — argmax p(A]X) (8.6.1)
0
Maximum Likelihood Under a flat prior, p(6) = const., the MAP solution is equivalent to setting 6 to
that value that maximises the likelihood of observing the data
oML — argmax p(X|6) (8.6.2)
0

Moment Matching Based on an empirical estimate of a moment (say the mean), 6 is set such that the
moment (or moments) of the distribution matches the empirical moment.

Pseudo Likelihood For multivariate x = (z1,...,zy), one sets the parameters based on
N D
6 = argmax Z Z log p(xi'|2;,0) (8.6.3)
O n=1i=1

The pseudo-likelihood method is sometimes used when the full likelihood p(x|#) is difficult to compute.

172 DRAFT June 18, 2013

Learning distributions

In seeking the ‘best’ single parameter 6, we are often required to carry out a numerical optimisation. This
is not necessarily a trivial step, and considerable effort is often spent either in attempting to define models
for which the resulting computational difficulties are minimal, or in finding good approximations that find
useful optima of complex objective functions, see section(29.5).

In this book we focus on the Bayesian methods and maximum likelihood. We first reiterate some of the
basic ground covered in section(1.3), in which the Bayesian and maximum likelihood methods are related.

Definition 8.30. Prior, Likelihood and Posterior

For data X and variable 6, Bayes’ rule tells us how to update our prior beliefs about the variable 6 in light
of the data to a posterior belief:

p(X16) p(0)
— ~~

likelihood prior

p(0|X) = o) (8.6.4)
posterior e Vad
evidence

The evidence is also called the marginal likelihood. Note that the term ‘evidence’ is (rather unfortunately)
used for both the marginal likelihood of observations and the observations themselves.

The term ‘likelihood’ is used for the probability that a model generates observed data. More fully, if we

condition on the model M, we have

p(X10, M)p(6] M)
p(X|M)

p(0|X, M) =
where we see the role of the likelihood p(X|6, M) and model likelihood p(X|M).

The most probable a posteriori (MAP) setting is that which maximises the posterior,

OMAP — argmax p(0|X, M) (8.6.5)
0

For a ‘flat prior’, p(6|M) being a constant, the MAP solution is equivalent to mazimum likelihood namely
that 0 that maximises p(X|6, M),

oML — argmax p(X|0, M) (8.6.6)
0

Definition 8.31 (conjugacy). If the posterior is of the same parametric form as the prior, then we call
the prior the conjugate distribution for the likelihood distribution. That is, for a prior on parameter 6,
with hyperparameter «, p(|«), the posterior given data D is the same form as the prior, but with updated
hyperparameters, p(6|D, a) = p(0|c/).

Definition 8.32 (Independent and Identically distributed). For a variable x, and a set of i.i.d. observations,

z', ..., xN, conditioned on 6, we assume there is no dependence between the observations
N
plat, ..., 2N0) =][p(2"6) (8.6.7)
n=1

For non-Bayesian methods which return a single value for 0, based on the data X, it is interesting to know
how ‘good’ the procedure is. Concepts that can help in this case are ‘bias’ and ‘consistency’. The bias

DRAFT June 18, 2013 173

Properties of Maximum Likelihood

measures if the estimate of @ is correct ‘on average’. The property of an estimator such that the parameter
6 converges to the true model parameter ° as the sequence of data increases is termed consistency.

Definition 8.33 (Unbiased estimator). Given data X = {3:1, N }, formed from ii.d. samples of a
distribution p(x|@) we can use the data X' to estimate the parameter 6 that was used to generate the data.
The estimator is a function of the data, which we write §(X). For an unbiased (parameter) estimator

<é(x>>p(w) Sy (8.6.8)

More generally, one can consider any function of the distribution p(x), with scalar value 6, for example the
mean 6 = (z),,y. Then #(X) is an unbiased estimator of 6 with respect to the data distribution p(X) if

<é(zc)>~ — 0.

p(X)

A classical example for estimator bias are those of the mean and variance. Let

N 1 n
aX) = ; z (8.6.9)
This is an unbiased estimator of the mean (z),, since, for iid data
1 & 1
() Z Yoy = NV (2)p(a) = (2)p(a) (8.6.10)
n:l

On the other hand, consider the estimator of the variance,

1 N
=5 > " = px))? (8.6.11)
n=1

This is biased since (omitting a few lines of algebra)
N
1 N -1
) Z)2 2

8.7 Properties of Maximum Likelihood

A crude summary of the posterior is given by a distribution with all its mass in a single most likely state,
) (9, gMAP), see definition(8.30) . In making such an approximation, potentially useful information concern-
ing the reliability of the parameter estimate is lost. In contrast the full posterior reflects our beliefs about
the range of possibilities and their associated credibilities.

The term ‘maximum likelihood’ refers to the parameter 6 for which the observed data is most likely to be
generated by the model. One can motivate MAP from a decision theoretic perspective. If we assume a
utility that is zero for all but the correct 6,

U(Qtruev 0) =1 [etrue = 0] (871)
then the expected utility of 6 is

U(Q) = Z I [Qtrue = 9}p(9true|X) = p(0|X) (872)

Otrue

This means that the maximum utility decision is to return that 6 with the highest posterior value.

174 DRAFT June 18, 2013

Properties of Maximum Likelihood

When a ‘flat’ prior p(6) = const. is used the MAP parameter assignment is equivalent to the maximum
likelihood setting

OML — argmax p(X|0) (8.7.3)
0

Since the logarithm is a strictly increasing function, then for a positive function f(0)

Oopt = argmax f(6) < O,y = argmax log f(0) (8.7.4)
0 0

so that the MAP parameters can be found either by optimising the MAP objective or, equivalently, its
logarithm,

log p(0]X) = log p(X|0) + log p(f) — log p(X) (8.7.5)

where the normalisation constant, p(&X'), is not a function of . The log likelihood is convenient since, under
the i.i.d. assumption, it is a summation of data terms,

logp(0|X) = Zlogp "10) + log p(0) — log p(X) (8.7.6)

so that quantities such as derivatives of the log-likelihood w.r.t. 0 are straightforward to compute.

8.7.1 Training assuming the correct model class

Consider a dataset X = {z",n=1,..., N} generated from an underlying parametric model p(z|6°). Our
interest is to fit a model p(x|f) of the same form as the correct underlying model p(x|6°) and examine if,
in the limit of a large amount of data, the parameter # learned by maximum likelihood matches the correct
parameter #°. Our derivation below is non-rigorous, but highlights the essence of the argument.

Assuming the data is i.i.d., the scaled log likelihood is

log p(X]0) = Zlogp z"|0) (8.7.7)

In the limit N — oo, the sample average can be replaced by an average with respect to the distribution
generating the data

L(6) Y= (log p(210)) p(a/g0) = —KL(p(2[6°)|p(|6)) + (log p(z16”)) 10y (8.7.8)

Up to a negligible constant, this is the Kullback-Leibler divergence between two distributions in z, just
with different parameter settings. The 6 that maximises L(#) is that which minimises the Kullback-Leibler
divergence, namely § = #°. In the limit of a large amount of data we can therefore, in principle, learn the
correct parameters (assuming we know the correct model class). That is, maximum likelihood is a consistent
estimator.

8.7.2 Training when the assumed model is incorrect

We write ¢(z|f) for the assumed model, and p(z|¢) for the correct generating model. Repeating the above
calculations in the case of the assumed model being correct, we have that, in the limit of a large amount of
data, the scaled log likelihood is

L(0) = (log q([0)) 114y = —KL(p(x[¢)|q(x]0)) + (log p(x[9)) (4)s) (8.7.9)

Since g and p are not of the same form, setting 6 to ¢ does not necessarily minimise KL(p(z|p)|q(z|f)), and
therefore does not necessarily optimize L(9).

DRAFT June 18, 2013 175

Learning a Gaussian

8.7.3 Maximum likelihood and the empirical distribution

Given a dataset of discrete variables X = {xl, oz } we define the empirical distribution as

N
1
n=1
in the case that x is a vector of variables,

=" = H]I [z; =z (8.7.11)

The Kullback-Leibler divergence between the empirical distribution ¢(z) and a distribution p(z) is

KL(q|p) = (log q(x)) 4(z) — (0g p(x)) () (8.7.12)

Our interest is the functional dependence of KL(g|p) on p. Since the entropic term (log ¢(z)) o(z) 18 indepen-
dent of p(x) we may consider this constant and focus on the second term alone. Hence

1 n
KL(g|p) = — (log p(2)) () + const. = N Z log p(z™) + const. (8.7.13)

We recognise Egzl log p(x™) as the log likelihood under the model p(x), assuming that the data is i.i.d. This
means that setting parameters by maximum likelihood is equivalent to setting parameters by minimising the
Kullback-Leibler divergence between the empirical distribution and the parameterised distribution. In the
case that p(x) is unconstrained, the optimal choice is to set p(z) = ¢(z), namely the maximum likelihood
optimal distribution corresponds to the empirical distribution.

8.8 Learning a Gaussian

Given the importance of the Gaussian distribution, it is instructive to explicitly consider maximum likelihood
and Bayesian methods for fitting a Gaussian to data.

8.8.1 Maximum likelihood training

Given a set of training data X = {xl, .. ,xN}, drawn from a Gaussian N (x|p,) with unknown mean p
and covariance X, how can we find these parameters? Assuming the data are drawn i.i.d. the log likelihood
is

—_

N
N
Zlogp x|p, = Z X" —)T e (x" —) — 5 log det (27X0) (8.8.1)
n=1

[\.’J

Optimal @

Taking the partial derivative with respect to the vector u we obtain the vector derivative

N
$)=) (" p) (8.8.2)

Equating to zero gives that at the optimum of the log likelihood,

N
Y B x"=Nus! (8.8.3)

and therefore, optimally p is given by the sample mean
N
=¥ > x" (8.8.4)
n=1

176 DRAFT June 18, 2013

Learning a Gaussian

35

w
o

w
w

N
o
N
o

2

N

o

15

precision
precision

o
o
o
o

o

5 <4 = =2 4 0 1 2 3 4 5 5 4 3 =2 4 0 1 2 3 4 5
mean mean
(a) Prior (b) Posterior

Figure 8.8: Bayesian approach to inferring the mean and precision (inverse variance) of a Gaussian based
on N = 10 randomly drawn datapoints. (a): A Gauss-Gamma prior with yg =0, a =2, =1, v = 1.
(b): Gauss-Gamma posterior conditional on the data. For comparison, the sample mean of the data is 1.87
and maximum likelihood optimal variance is 1.16 (computed using the N normalisation). The 10 datapoints
were drawn from a Gaussian with mean 2 and variance 1. See demoGaussBayes.m.

Optimal X

The derivative of L with respect to the matrix X requires more work. It is convenient to isolate the
dependence on the covariance, and also parameterise using the inverse covariance, X1,

N
1 N
L= —itrace »-! g (x"—p)x"—p)" | + 5 log det (27r=71) (8.8.5)
n=1

=M
Using M = M, we obtain

0 1 N

Equating the derivative to the zero matrix and solving for ¥ gives the sample covariance

N
S= 30w ()T (887)
n=1

Equations (8.8.4) and (8.8.7) define the maximum likelihood solution mean and covariance for training data
X. Consistent with our previous results, in fact these equations simply set the parameters to their sample
statistics of the empirical distribution. That is, the mean is set to the sample mean of the data and the
covariance to the sample covariance.
8.8.2 Bayesian inference of the mean and variance
For simplicity we here deal only with the univariate case. Assuming i.i.d. data the likelihood is
1 1 &
2 n 2
P, 0%) = ————exp (—= S (@ —) (8.8.8)
(2mo2) N/ 20 g

For a Bayesian treatment, we require the posterior of the parameters

p(p, 0?1 X) o< p(X|p, 02)p(p, 0°) = p(X|p, 0)p(plo?)p(o?) (8.8.9)

Our aim is to find conjugate priors for the mean and variance. A convenient choice for a prior on the mean
w is that it is a Gaussian centred on pg:

1 1
2 2
Lo, 05) = ——=exp | —=—5 (o — p 8.8.10

DRAFT June 18, 2013 177

Learning a Gaussian

The posterior is then

(1, 0%|) - —cexp (—12 (o~)P~ g O (" u)2>p(02) (8.8.11)

200
It is convenient to write this in the form
p(p, 0| X) = p(plo?, X)p(a?| X) (8.8.12)

Since equation (8.8.11) has quadratic contributions in in the exponent, the conditional posterior p(u|o?, X)
is Gaussian. To identify this Gaussian we multiply out the terms in the exponent to arrive at

1
exp (—2 (ap® — 2bp + c)) (8.8.13)
with
1 N fo | Do x" T (z")°
_ L N 2, _ M 8.8.14
“ ol o ol o2 0 ¢ o2 * ; o2 ()

Using the identity

) b\? b2
ap® —2bp+c=a pe +lc—— (8.8.15)

we can write

(1, 0% X) o /aexp (—;a <u _ Z>2> \}6exp <—; <c _ Zi))alogljvp(0'2) (8.8.16)

p(ulX,02) p(e?]X)

We encounter a difficulty in attempting to find a conjugate prior for o2 because the term b2 /a is not a simple
expression of o2. For this reason we constrain

02 = yo? (8.8.17)

for some fixed hyperparameter . Defining the constants

1 ~ 2
i=—+N, b:%+zﬁ, e:%+z<xn>2 (8.8.18)

o1 b?

Using this expression in equation (8.8.16) we obtain

72
p(c?|X) (02)71\7/2 exp (—2}‘2 <5 — b~>>p(02) (8.8.20)

An inverse Gamma distribution for the prior p(c?) is therefore conjugate. For a Gauss-Inverse-Gamma,
prior:

p(p,0%) =N (,u\,uo, 702) InvGam (02|a, ﬁ) (8.8.21)

the posterior is also Gauss-Inverse-Gamma with

72
) InvGam <02|a + %,B + % (N - 2)) (8.8.22)

178 DRAFT June 18, 2013

Y

Qi o
= 9,

p(p, o%|) —N<u

Learning a Gaussian

8.8.3 Gauss-Gamma distribution
It is common to use a prior on the precision, defined as the inverse variance

1

A= (8.8.23)

g

If we then use a Gamma prior

1 1

p(Na, B) = Gam (Na, B) = (0] ATl B (8.8.24)
the posterior will be

p(\|X, a, 8) = Gam ()\|a +N/2, B) (8.8.25)
where

1 1 1 b?

The Gauss-Gamma prior distribution

P, Ao, @, 8,7) = N (ulpo, yA™1) Gam (Aev, B) (8.8.27)

is therefore the conjugate prior for a Gaussian with unknown mean p and precision A. The posterior for
this prior is a Gauss-Gamma distribution with parameters

b 1
a’ a\

Pl M, 0, 0, B,7) = N (u) Gam (Mo + N2, 5) (8.8.28)

The marginal p(u|X, o, cv, 8,7y) is a Student’s ¢t-distribution. An example of a Gauss-Gamma prior/posterior
is given in fig(8.8). The maximum likelihood solution is recovered in the limit of a ‘flat’ prior ug = 0,y —
oo, = 1/2, 8 — o0, see exercise(8.23). The unbiased estimators for the mean and variance are given using
the prior pg = 0,7 — oo, =1, 8 — 00, exercise(8.24).

For the multivariate case, the extension of these techniques uses a multivariate Gaussian distribution for
the conjugate prior on the mean, and an Inverse Wishart distribution for the conjugate prior on the
covariance[136].

8.9 Summary

e Classical univariate distributions include the exponential, Gamma, Beta, Gaussian and Poisson.
e A classical distribution of distributions is the Dirichlet distribution.

e Multivariate distributions are often difficult to deal with computationally. A special case is the multivariate
Gaussian, for which marginals and normalisation constants can be computed in time cubic in the number
of variables in the model.

o A useful measure of the difference between distributions is the Kullback-Leibler divergence.

e Bayes' rule enables us to achieve parameter learning by translating a priori parameter belief into a posterior
parameter belief based on observed data.

e Bayes' rule itself says nothing about how best to summarise the posterior distribution.

e Conjugate distributions are such that the prior and posterior are from the same distribution, just with
different parameters.

e Maximum likelihood corresponds to a simple summarisation of the posterior under a flat prior.

DRAFT June 18, 2013 179

Exercises

e Provided that we are using the correct model class, maximum likelihood will learn the optimal parameters
in the limit of a large amount of data — otherwise there is no such guarantee.

8.10 Code

demoGaussBayes.m: Bayesian fitting of a univariate Gaussian
logGaussGamma.m: Plotting routine for a Gauss-Gamma distribution

8.11 Exercises

Exercise 8.1. In a public lecture, the following phrase was uttered by a Professor of Experimental Psy-
chology: ‘In a recent data survey, 90% of people claim to have above average intelligence, which is clearly
nonsense!” [Audience Laughs]. Is it theoretically possible for 90% of people to have above average intelli-
gence? If so, give an example, otherwise explain why not. What about above median intelligence?

Exercise 8.2. Consider the distribution defined on real variables x,y:

p(z,y) x (x2 + y2)2e_x2—92’ dom(z) = dom(y) = {—o0...00} (8.11.1)

Show that (x) = (y) = 0. Furthermore show that x and y are uncorrelated, (xy) = (x) (y). Whilst x and y
are uncorrelated, show that they are nevertheless dependent.

Exercise 8.3. For a variable x with dom(x) = {0, 1}, and p(x = 1) = 6, show that in n independent draws

T1,...,Ty from this distribution, the probability of observing k states 1 is the Binomial distribution
<Z> 0% (1— gy * (8.11.2)

Exercise 8.4 (Normalisation constant of a Gaussian). The normalisation constant of a Gaussian distribu-
tion is related to the integral

I:/ e 2% dy (8.11.3)

—0o0

By considering

IQ:/ 65““"2dx/ eédey:/ / =3 (7 47) dady (8.11.4)

—o0 —o0 —00 J —o0
and transforming to polar coordinates,
x=rcos, y=rsinbd, drdy — rdrdd, r=0,...,00, 6=0,...,27
show that
1. I=+2r
o [R gy _ i
Exercise 8.5. For a uniariate Gaussian distribution, show that

1 p= <x>./\/(m\,u,0'2)

2. 0% = <(J: — u)2>N(xm702)

180 DRAFT June 18, 2013

FExercises

Exercise 8.6. Using
xTAx = trace <AXXT> (8.11.5)
derive result(8.5).

Exercise 8.7. Show that the marginal of a Dirichlet distribution is another Dirichlet distribution:

/ Dirichlet (6|u) = Dirichlet (6, ;]u ;) (8.11.6)
0;

Exercise 8.8. For a Beta distribution, show that

<wk> _ B(a—i—k,ﬁ): (a+k—-1)(a+k—-2)...(a) (8.11.7)
B(a,) (a+B+k—1)(a+B+Ek)...(a+p)
where we used I'(xz + 1) = z'(x).
Exercise 8.9. For the moment generating function g(t) = <etz>p(x), show that
. d k
lim rg(t) = <x >p($) (8.11.8)

Exercise 8.10 (Change of variables). Consider a one dimensional continuous random variable x with
corresponding p(z). For a variable y = f(x), where f(x) is a monotonic function, show that the distribution
of y is

-1
p(y) = p(x) (3‘};) , w=f"y) (8.11.9)

More generally, for vector variables, and y = f(x), we have:

_ of \ |~
p(y) = plox = £ et () (8.11.10)
x
where the Jacobian matriz has elements
ot ofi(x)
— | = 8.11.11
[ax] ij Oz ()
Exercise 8.11 (Normalisation of a Multivariate Gaussian). Consider
Y 1 Ts—1
I= exp | —5 (x—p)' X7 (x—p) | dx (8.11.12)
By using the transformation
z2=3"3(x— p) (8.11.13)

show that

I = \/det (27%) (8.11.14)

Exercise 8.12. Consider the partitioned matrix

M = < ‘é g) (8.11.15)

for which we wish to find the inverse M. We assume that A is m x m and invertible, and D is n x n and
invertible. By definition, the partitioned inverse

M = < g 2) (8.11.16)

DRAFT June 18, 2013 181

Exercises

must satisfy

<ég><§§>:<lg Ii) (8.11.17)

where ly, is the m x m identity matriz, and 0 the zero matrix of the same dimension as D. Using the above,
derive the results

1 1

P=(A-BD'C)”

Q=-A"'"B(D-CA'B)”
R=-D'C(A-BD!C)"" S (8.11.18)

— (D-CcA'B)™"

Exercise 8.13. Show that for Gaussian distribution p(z) = N (azm, 02) the skewness and kurtosis are both
Z€ero.

Exercise 8.14. Consider a small interval of time 6t and let the probability of an event occurring in this
small interval be 60t. Derive a distribution that expresses the probability of at least one event in an interval
from 0 to t.

Exercise 8.15. Consider a vector variable x = (z1,. .., mn)T and set of functions defined on each component
of x, ¢i(x;). For example for x = (x1,22)T we might have

d1(z1) = — 1|, da(x2) = —23 (8.11.19)

Consider the distribution
1 T
p(x/0) = —exp (9 ¢(x)) (8.11.20)

where ¢(x) is a vector function with i component ¢;(x;), and 0 is a parameter vector. Each component is
tractably integrable in the sense that

/OO exp (quﬁ,(a:z))daﬁz (8.11.21)

—o0
can be computed either analytically or to an acceptable numerical accuracy. Show that
1. x; L.
2. The normalisation constant Z can be tractably computed.
3. Consider the transformation

x = My (8.11.22)

for an invertible matrix M. Show that the distribution p(y|M, @) is tractable (its normalisation con-
stant is known), and that, in general, y;My;. Explain the significance of this in deriving tractable
multivariate distributions.

Exercise 8.16. Show that we may reparameterise the Beta distribution, definition(8.23) by writing the
parameters o and B as functions of the mean m and variance s using

a = B, vy=m/(1—m) (8.11.23)

1 Y
5_1+7<S(1+7)2 1> (8.11.24)

Exercise 8.17. Consider the function
fr+a,8,0) =011 —g)~5! (8.11.25)

182 DRAFT June 18, 2013

FExercises

show that
: 9 _ pa—1 Bs—1
lim — f(y+a,B3,0) =0 (1 -0)" "logt (8.11.26)
¥—0 8’7
and hence that

/ea (1 -6 loghdo = hm /f v+ a,f,0)do aa/f(a,,é’, 0)do (8.11.27)
e
Using this result, show therefore that
0
where B(a, B) is the Beta function. Show additionally that
0
(log (1 = 0)) p(g|a,p) = a3 log B(a, B) (8.11.29)

Using the fact that

L'(a)l(8)
Bla,) = —22 8.11.30
R (5.11.30)
where T'(x) is the gamma function, relate the above averages to the digamma function, defined as
d
Y(z) = ——logI'(x) (8.11.31)

dx

Exercise 8.18. Using a similar ‘generating function’ approach as in exercise(8.17), explain how to compute

<10g 0i>Dirichlet(0\u) (81132)

Exercise 8.19. Consider the function

flz) = /OOO b <Zn: 0; — x) [16: " a6, ... a6, (8.11.33)
=1 [

Show that the Laplace transform f fooo e 5 f(x)dx is
~ n oo 1 n
i=1 70 S A
By using that the inverse Laplace transform of 1/s'19 is 29/T(1 + q), show that
[T, T () .o,
flz) = Zo=——"as ™ (8.11.35)
Hence show that the normalisation constant of a Dirichlet distribution with parameters u is given by
n
T (us
iy () (8.11.36)

Exercise 8.20. Derive the formula for the differential entropy of a multi-variate Gaussian.
Exercise 8.21. Show that for a gamma distribution Gam (z|c, 8) the mode is given by

=(a-1)p (8.11.37)
provided that o > 1.

Exercise 8.22. Consider a distribution p(x|0) and a distribution p(z|0 +) for small §.

DRAFT June 18, 2013 183

Exercises

1. Take the Taylor expansion of

KL(p(x|6)|p(z]0 + 0)) (8.11.38)
for small § and show that this is equal to
52 < 0?
22 logp(x\9)> (8.11.39)
2\ 00 p(af)

2. More generally for a distribution parameterised by a vector with elements 0; + 0;, show that a small
change in the parameter results in

> 52‘;3’3' (8.11.40)

(2

where the Fisher Information matriz is defined as

82
F; =— < 10gp(:v|9)> (8.11.41)
J 96,99 p(al6)
3. Show that the Fisher information matrix is positive semidefinite by expressing it equivalently as
0 0
Fij = 77 logp(x]0) - log p(x(6) (8.11.42)
% % p(alt)

Exercise 8.23. Consider the joint prior distribution

p(:uv)\‘,uo, «, 577) =N (,u,‘,uo,'y)_l) Gam (>\|O[,ﬂ) (81143)

Show that for py =0, v — oo, B — o0, then the prior distribution becomes ‘flat’ (independent of p and \)
for oo =1/2. Show that for these settings the mean and variance that jointly maximise the posterior equation
(8.8.28) are given by the standard mazimum likelihood settings

1 1
e = %7 Z:L‘n, 0?2 = N Z (2™ — p1y)? (8.11.44)
n n

Exercise 8.24. Show that for equation (8.8.28) in the limit pop = 0,7 — oo, = 1,8 — o0, the jointly
optimal mean and variance obtained from

argmax p(p, A|X, po,a, B,7) (8.11.45)
HoA
s given by
_ 1 n 2 _ 1 n 2

where 02 = 1/\.. Note that these correspond to the standard ‘unbiased’ estimators of the mean and variance.

Exercise 8.25. For the Gauss-Gamma posterior p(u, A|po, v, 8, X) given in equation (8.8.28) compute the
marginal posterior p(p|po, o, 8, X). What is the mean of this distribution?

Exercise 8.26. This exercise concerns the derivation of equation (8.4.15).

1. By considering

p(y) = [poxpx)i (8.11.47)
x [e (; (v~ Mx— @) S (y ~ Mx—)~ (x— 1) 7 (x - m)dx
(8.11.48)
show that
p(y) ox exp (—;yT21y> /exp <—;xTAx +x" (By + c)) (8.11.49)

for suitably defined A, B, c.

184 DRAFT June 18, 2013

FExercises

2. Using equation (8.4.13), show that

1 e 1 _
p(y) o exp (—QyTE y - §(BY+C)TA ! (By+0)>

3. This establishes that p(y) is Gaussian. We now need to find the mean and covariance of this Gaussian.
We can do this by the lengthly process of completing the square. Alternatively, we can appeal to

(y) =M(x) +(n) =Mp, + p

By considering
(v =) = N7y = ((Mx+19 — Mp, —) (Mx+ 17— My, — 1) ") (8.11.50)

and the independence of x and m, derive the formula for the covariance of p(y).

Exercise 8.27. Consider the multivariate Gaussian distribution p(x) ~ N (x|u, X) on the vector x with

components Ti,...,Tn:
1 1 Ts—1
— = o3xm)'ET N (x—p)
X) = e 2 8.11.51
Plx) det (27X) ()
Calculate p(x;|xy1, ..., i1, Tit1,...,2Tn). Hint: make use of equation (8.4.19).

Exercise 8.28. Observations yo, . ..,Yn—1 are noisy i.i.d. measurements of an underlying variable x with
,Yn—1) 18 Gaussian

p(x) ~ N (2|0,08) and p(y;|z) ~ N (yilz,0?) fori=0,...,n—1. Show that p(z|yo,

with mean
(8.11.52)

nog _
p=—5rL—
nog + o2

where = (yo +y1 + - .. + Yn—1)/n and variance o2 such that

1 n 1

o Ay o
Exercise 8.29. Consider a set of data X = z',..., 2N where each x" is independently drawn from a
Gaussian with known mean p and unknown variance o%. Assume a gamma distribution prior on T = 1/02,

p(7) = Gam™ (7|a,b) (8.11.54)

1. Show that the posterior distribution is

N
, N 1
p(T|X) = Gam'® <T|CL + 5 b+ 3 Z (" — u)2> (8.11.55)
n=1
2. Show that the distribution for x is
/
p(z|X) = /p(aj\T)p(T|X)dT = Student <x\,u, A= %, v = 2a’> (8.11.56)

where ’ =a+ 3N, b =b+ %22;1 (z" — p)?.
Exercise 8.30. The Poisson distribution is a discrete distribution on the non-negative integers, with
(8.11.57)

B V4
e A
p(x) = o xr=0,1,2,...

., Ty, tndependently drawn from this distribution. Determine

You are given a sample of n observations x1, ..
the mazimum likelihood estimator of the Poisson parameter .
185

DRAFT June 18, 2013

Exercises

Exercise 8.31. For a Gaussian mizture model

p(x) = piN (x|p,B), pi>0) pi=1 (8.11.58)

show that p(x) has mean
x)=> pits; (8.11.59)

and covariance
Sov (Tt mnl) =Y v Y vin] (8.11.60)
i i j

Exercise 8.32. Show that for the whitened data matriz, given in equation (8.4.30), ZZT = NI.

Exercise 8.33. Consider a uniform distribution p; = 1/N defined on states i = 1,...,N. Show that the
entropy of this distribution is

N
H=—- Zpi logp; =log N (8.11.61)
i=1

and that therefore as the number of states N increases to infinity, the entropy diverges to infinity.

Exercise 8.34. Consider a continuous distribution p(x), x € [0,1]. We can form a discrete approximation
with probabilities p; to this continuous distribution by identifying a continuous value i/N for each state

i=1,...,N. With this

~__p(i/N)
bi = ZZP(Z/N) (8.11.62)

show that the entropy H = — . p;log p; is given by

1 , ' |
H= s ;p(Z/N) log p(i/N) + log Z p(i/N) (8.11.63)

Since for a continuous distribution

/Olp(x)dx =1 (8.11.64)

a discrete approximation of this integral into bins of size 1/N gives

N

1 .
v ;p(z/N) =1 (8.11.65)

Hence show that for large N,

1
H ~ —/ p(z) log p(z)dx + const. (8.11.66)
0

where the constant tends to infinity as N — oo. Note that this result says that as a continuous distribu-
tion has essentially an infinite number of states, the amount of uncertainty in the distribution is infinite
(alternatively, we would need an infinite number of bits to specify a continuous value). This motivates the
definition of the differential entropy, which neglects the infinite constant of the limiting case of the discrete
entropy.

Exercise 8.35. Consider two multivariate Gaussians N (x|p1,21) and N (x|py, X2).

186 DRAFT June 18, 2013

FExercises

1. Show that the log product of the two Gaussians is given by
[-1 T (g1 -1 L/ 151 Ty—1 1
—oxT (B + 25) xxT (27 + B) 5 (m ST+ plSs uz) — 5 log det (27%1) det (27%)
2. Defining A = 21_1 + 22_1 and b = 21_1;11 + 22_1,u2 we can write the above as
1 1 1 1
= (x—A"'b) A (x— A'b) +§bTA_1b— 3 (,Jz;lul + u{zglug) — 5 log det (27331 det (27 %%)

Writing ® = A~ and p = A~'b show that the product of two Gaussians is a Gaussian with covariance

=3 (24 3) ' %, (8.11.67)
mean
p=31 (1 +20) g+ 20 (B 4+)y (8.11.68)

and log prefactor
1 1 1 1
5bTATb - < (,Jz;lul n u;2;1u2) — 5 log det (21) et (27%) + 5 log det (27X)

3. Show that this can be written as

exp <—% (1y — H2)TS*1 1y — NQ))

N (x|, BN (x|,) = N (x|,) —= (8.11.69)
where S = X1 + 9.
Exercise 8.36. Show that
0
5 {108 D(10) g0 lo=w = 0 (8.11.70)

Exercise 8.37. Using (f?(z)) — (f(x))* >0, and a suitably chosen function f(z), show that

(50! oy

for distributions q(x) and p(x). This is related to the o = 2 divergence.
Exercise 8.38. Show that for any o, Do(p|p) = 0 and that Dy(plg) > 0 for any distributions p(z), q(z).

Exercise 8.39. Show that for two D dimensional Gaussians,
2KL(N (x|pa1, B1) [N (X[o, B2)) = trace (35 51) + (11 — po) " By (g — o) +log et (ZpX1 1) — D

Exercise 8.40. For data pairs ("™, y™),n = 1,..., N, the correlation can be considered a measure of the
extent to which a linear relationship holds between x and y. For simplicity, we consider that both x and y
have zero mean, and wish to consider the validity of the linear relation

T =ay (8.11.72)

A measure of the discrepancy of this linear assumption is given by

N
E@)=) (" —ay™)? (8.11.73)

n=1

DRAFT June 18, 2013 187

Exercises

1. Show that the « that minimises E(«) is given by

«_ C
ot = p; (8.11.74)
Y
where
1 n.n 2 1 n\2
c= Zn:x y", o, = Nzn: (y™) (8.11.75)

2. A measure of the ‘linearity’ between x and y is then

(8.11.76)

which is 1 when there is no linear relation (o = 0) and 0 when there is a perfect linear relation (since
then E(a*) =0). Show that the correlation coefficient, definition(8.7), is given by

E(a¥)
=4/1- 8.11.77
p E©) ()
3. Defining the vectors x = (z',..., 2™ 7T, y = (y',...,y™N)T, show that the correlation coefficient is the

cosine of the angle between x and y,

-
p= (8.11.78)
x|yl
and hence show that —1 < p < 1.
4. Show that for the more general relation
v = ay+1 (8.11.79)
for constant offset v, setting v to minimise
N
E(a,v) = Z (2" — ay™ —5)? (8.11.80)
n=1

has the effect of simply replacing x™ by 2™ — x and y™ by y™ —y, where T and y are the mean of the x
and y data respectively.

Exercise 8.41. For wvariables z, y, and z = x + y, show that the correlation coefficients are related by
Prz = Pay- With reference to the correlation coefficient as the angle between two vectors, explain why
P,z = Pry 15 geometrically obvious.

Exercise 8.42. Consider a ‘Boltzman machine’ distribution on binary variables z; € {0,1}, 1 =1,...,D

p(x|W) = exp (XTWX> (8.11.81)

1
Zp(W)

and that we wish to fit another distribution q of the same form to p

1
U)=——— U 11.82
(xIU) = 7y e (x"ux) (8.11.82)
1. Show that
argmin KL(p|q) = argmax trace (UC) — log Z,(U), Cij = (mizj), (8.11.83)
U U

2. Hence show that knowing the ‘cross moment’ matriz C of p is sufficient to fully specify p.

188 DRAFT June 18, 2013

FExercises

3. Generalise the above result to all models in the exponential family.

A Exercise 8.43. Consider a distribution N (z|p,X) defined jointly over two vectors x and'y of potentially

differing dimensions,

z = (x > (8.11.84)
y
with corresponding mean and partitioned covariance
p= (Ha > > = < Zaw Sy > (8.11.85)
Hy yr Xy

where Xy, = E:ETy.
1. By considering p(x|y) x p(x,y), show that
1 T T
pxly) ocexp =5 {(x =) P (x = o) +2(x —)" Qv — m,) (8.11.86)

where

Yo B\ (P Q
(%) (59

2. By completing the square, show that
p(x]y) o exp —% {(X -, + P_lQ (y - ,uy)) TP (x -, + P_IQ (y - l‘y))} (8.11.88)
3. Using partitioned matriz inversion, show that
2.P+3,Q =0 (8.11.89)
and that therefore
PlQ=-3,3%,, (8.11.90)
Show also that
P= (S0 —2,5,)5,,) " (8.11.91)
4. Hence show that
pxly) =N (x| gy + Zay 3y, (v — 1y) s Baw — By Sy, Sy (8.11.92)

Exercise 8.44. As for the question above, consider the joint Gaussian distribution p(z). Consider

p(x) = /p(x,y)dy = /p(Z)dy (8.11.93)

1. Show that

p(x) &exp—;{(X—ux)TP(X—ux)}/eXp—; (2(X—ux)TQ(y—uy) + (y—uy)TS(y—uy))dy

(8.11.94)
2. By completing the square, show that
2(x—) Qy —m,) + (v —m,) Sy —m,) (8.11.95)
= (y —p, +S7'Q7 (x — ux)) "s (y —p, +S7'Q7 (x — uz)) —(x— 1) QS7TIQT (x — 1)
(8.11.96)

DRAFT June 18, 2013 189

Exercises

3. Using the fact that

exp—1 y— +S_1QT(X—IL$) TS y—p +S_1QT(X_Nx) dy = /det (2778_1)
for 2o y

2
(8.11.97)
show that
1 T 1T
p(x) xexp—3 (x—p1,)" (P - QS™'QT) (x — pr,) (8.11.98)
4. Since
-1
Yix Zzy _ P Q
(S) - (o) (8.11.99)
Use partitioned matriz inversion to show that
.. =P-Qs!Q’ (8.11.100)
5. Hence show that
p(x) =N (x|py, Xzz) (8.11.101)

Exercise 8.45. Consider a not necessarily square matriz T and Gaussian distributed x, with p(x) =
N (x|, X). We are interested in the distribution of the variable y = Tx, where dimy < dim x.
Define

z—<§>—<¥>x (8.11.102)

where 1 is any matriz such that M is square and invertible.

1. Show that

p(z) = /p(z|x)p(x)dx = /(5 (z — Mx) p(x)dx o exp —% (M 'y — p) Tyt (M~ 'y — p) (8.11.103)

2. Show that
p(z) =N (z\Mu, MEMT> (8.11.104)
3. Using p(x) = [p(z)dx and the result that the marginal of a Gaussian is a Gaussian (see above

exercise), show that

py) =N (y\Tu, TETT) (8.11.105)

190 DRAFT June 18, 2013

CHAPTER 9

Learning as Inference

In previous chapters we largely assumed that all distributions are fully specified for the inference tasks.
In machine learning and related fields, however, the distributions need to be learned on the basis of data.
Learning is then the problem of integrating data with domain knowledge of the model environment. In this
chapter we discuss how learning can be phrased as an inference problem.

9.1 Learning as Inference

9.1.1 Learning the bias of a coin

Consider data expressing the results of tossing a coin. We write v™ = 1 if on toss n the coin comes up heads,
and v = 0 if it is tails. Our aim is to estimate the probability 6 that the coin will be a head, p(v™ = 1|0) =6

— called the ‘bias’ of the coin. For a fair coin, § = 0.5. The variables in this environment are v',...,v" and
6 and we require a model of the probabilistic interaction of the variables, p(v!,...,v",0). Assuming there
is no dependence between the observed tosses, except through 6, we have the belief network
N
P!, v, 0) = p(0) T] (0" 10) (9.1.1)
n=1

which is depicted in fig(9.1). The assumption that each observation is independent and identically dis-
tributed is called the i.i.d. assumption.

1

Learning refers to using the observations v!,...,vY to infer 6. In this context, our interest is

N) _ p(vl,...,vN,H) _ p(vl,...,vNIQ)p(H)
Pl oY) T p(ol oY)

We still need to fully specify the prior p(f). To avoid complexities resulting from continuous variables, we’ll
consider a discrete 6 with only three possible states, 6 € {0.1,0.5,0.8}. Specifically, we assume

p(0=0.1)=0.15 p0=0.5)=08, p(@=0.8)=0.05 (9.1.3)

(9.1.2)

p(Avt, ... v

as shown in fig(9.2a). This prior expresses that we have 80% belief that the coin is ‘fair’, 5% belief the coin
is biased to land heads (with 6 = 0.8), and 15% belief the coin is biased to land tails (with § = 0.1). The
distribution of € given the data and our beliefs is

N N

p(o],... oY) ocp(0) [p(v"16) = p(o) T] 0" =4 (1 — 0)""=") (9.1.4)
n=1 n=1

o p(0)9Zn=1 10" =1] (1 — g)Znizs Tl =0] (9.1.5)

191

Learning as Inference

e Figure 9.1: (a): Belief network for coin

tossing model. (b): Plate notation equiv-
(a)

alent of (a). A plate replicates the quanti-
ties inside the plate a number of times as
N

specified in the plate.
(b)

In the above 27]:7:1 [[v™ = 1] is the number of occurrences of heads, which we more conveniently denote as
Np. Likewise, 25:1 I[v™ = 0] is the number of tails, N7. Hence
PO, ..., o) o p(0)NH (1 — 0)NT (9.1.6)

For an experiment with Ny = 2, Np = 8, the posterior distribution is

p(0 =0.1|V) =k x 0.15 x 0.12 x 0.9° = k x 6.46 x 1074 (9.1.7)
p(0 =0.5V) =k x 0.8 x 0.5 x 0.5° =k x 7.81 x 10~* (9.1.8)
p(0 =0.8|V) =k x 0.05 x 0.8% x 0.2° = k x 8.19 x 107 (9.1.9)
where V is shorthand for v!,...,v". From the normalisation requirement we have 1 Jk = 6.46 x 107* +

7.81 x 107* +8.19 x 108 = 0.0014, so that
p(6 =0.1|V) = 0.4525, p(0 = 0.5]V) = 0.5475, p(f = 0.8|V) = 0.0001 (9.1.10)

as shown in fig(9.2b). These are the ‘posterior’ parameter beliefs. In this case, if we were asked to choose a
single a posteriori most likely value for 6, it would be 6 = 0.5, although our confidence in this is low since
the posterior belief that § = 0.1 is also appreciable. This result is intuitive since, even though we observed
more Tails than Heads, our prior belief was that it was more likely the coin is fair.

Repeating the above with Ny = 20, N = 80, the posterior changes to
p(0 =0.1V)=1 —1.93 x 107% p(d =0.5]V)=1.93 x 107%, p(d = 0.8/V)~2.13 x 1073 (9.1.11)

fig(9.1c), so that the posterior belief in § = 0.1 dominates. This is reasonable since in this situation, there
are so many more tails than heads that this is unlikely to occur from a fair coin. Even though we a priori
thought that the coin was fair, a posteriori we have enough evidence to change our minds.

9.1.2 Making decisions

In itself, the Bayesian posterior merely represents our beliefs and says nothing about how best to summarise
these beliefs. In situations in which decisions need to be taken under uncertainty we need to additionally
specify what the utility of any decision is, as in chapter(7).

Figure 9.2: (a): Prior encoding our be-
liefs about the amount the coin is biased to
heads. (b): Posterior having seen Ny = 2
heads and Ny = 8 tails. (c): Posterior
‘ having seen Ny = 20 heads and Ny = 80
01 05 08 01 05 08 01 05 08 tails. Assuming any value of 0 < ¢ < 1 is
0 0 0 possible the ML setting is # = 0.2 in both

NH = 2,NT = 8 and NH = QO,NT = 80.

192 DRAFT June 18, 2013

Learning as Inference

In the coin tossing scenario where # is assumed to be either 0.1,0.5 or 0.8, we setup a decision problem as
follows: If we correctly state the bias of the coin we gain 10 points; being incorrect, however, loses 20 points.
We can write this using

U(6,6") =101 [0 = 6°] — 201 [0 # 6" (9.1.12)
where 6° is the true value for the bias. The expected utility of the decision that the coin is # = 0.1 is
U =0.1)=U(0=0.1,0°=0.1)p(¢° = 0.1|V)
+ U6 =0.1,0° = 0.5)p(0° = 0.5|V) + U (0 = 0.1,6° = 0.8)p(¢° = 0.8]V) (9.1.13)

Plugging in the numbers from equation (9.1.10), we obtain

U0 =0.1) =10 x 0.4525 — 20 x 0.5475 — 20 x 0.0001 = —6.4270 (9.1.14)
Similarly

U6 =0.5) =10 x 0.5475 — 20 x 0.4525 — 20 x 0.0001 = —3.5770 (9.1.15)
and

U(# =0.8) =10 x 0.0001 — 20 x 0.4525 — 20 x 0.5475 = —19.999 (9.1.16)

The best (that with the highest utility) is to say that the coin is unbiased, 6 = 0.5.

Repeating the above calculations for Ny = 20, Ny = 80, we arrive at

U0 =0.1) =10 x (1 —1.93 x 107%) — 20 (1.93 x 107% +2.13 x 107%) = 9.9999 (9.1.17)
U0 =0.5) =10 x 1.93 x 1075 — 20 (1 — 1.93 x 107% + 2.13 x 107%) ~ —20.0 (9.1.18)
U =08)=10x213x 107 —-20 (1 —-1.93 x 107°+1.93 x 107%) ~ —20.0 (9.1.19)

so that the best decision in this case is to choose 6§ = 0.1.

As more information about the distribution p(v,#) becomes available the posterior p(6|)) becomes increas-
ingly peaked, aiding our decision making process.
9.1.3 A continuum of parameters

In section(9.1.1) we considered only three possible values for 6. Here we discuss a continuum of parameters.

Using a flat prior

We first examine the case of a ‘flat’ or uniform prior p() = k for some constant k. For continuous variables,
normalisation requires

/p(&)d& =1 (9.1.20)
Since 6 represents a probability we must have 0 < 0 <1,
1
/ p(0)dd =k =1 (9.1.21)
0

Repeating the previous calculations with this flat continuous prior, we have

p(OV) = EGNH (1—o)Nr (9.1.22)
where c is a constant to be determined by normalisation,

c= /OleNH (1—-0)""dd = B(Ng +1,Np + 1) (9.1.23)

where B(a, f3) is the Beta function. See fig(9.3) for an example.

DRAFT June 18, 2013 193

Learning as Inference

10 Figure 9.3: Posterior p(f|V) assuming a flat prior on 6. (blue)
Ny =2, Ny = 8 and (red) Ny = 20, Np = 80. In both cases,

5 the most probable state of the posterior (maximum a posteriori)
is 0.2, which makes intuitive sense, since the fraction of Heads to

00 0:2 04 0.6 0.8 1 Tails in both cases is 0.2. Where there is more data, the posterior

0 is more certain and sharpens around the most probable value.

Using a conjugate prior

Determining the normalisation constant of a continuous distribution requires that the integral of the unnor-
malised posterior can be carried out. For the coin tossing case, it is clear that if the prior is of the form of
a Beta distribution, then the posterior will be of the same parametric form. For prior

1

p(0) = - NG 9o (1 —)71 (9.1.24)
the posterior is

p(0]V) o< 0271 (1 —)1 oNu (1 —)T (9.1.25)
so that

p(0|V) = B(0la+ Nu, B+ Nr) (9.1.26)

The prior and posterior are of the same form (both Beta distributions) but simply with different parameters.
Hence the Beta distribution is ‘conjugate’ to the Binomial distribution.

9.1.4 Decisions based on continuous intervals

To illustrate the use of continuous variables in decision making, we consider a simple decision problem.
The result of a coin tossing experiment is Ny = 2 heads and Ny = 8 tails. You now need to make a
decision: you win 10 dollars if you correctly guess which way the coin is biased — towards heads or tails.
If your guess is incorrect, you lose a million dollars. What is your decision? (Assume an uninformative prior).

We need two quantities, 6 for our guess and 6° for the truth. Then the utility of saying Heads is
U6 >0.560°>0.5)p6° > 0.5/V) + U6 > 0.5,6° < 0.5)p(6° < 0.5|V) (9.1.27)

In the above,

0.5
p(0° < 0.5)V) :/ p(8°)V)de° (9.1.28)
0
0.5
— L / gotNu—1 (1 — g)P+Nr=1 gp (9.1.29)
B(a+ Ny, B+ Nr) Jo
EIQ5(C¥+NH,B+NT> (9130)

where I (a,b) is the reqularised incomplete Beta function. For the case of Ny = 2, Ny = 8, under a flat
prior,

p(0° < 0.5V) = Ins5(Ng + 1, Np + 1) = 0.9673 (9.1.31)

Since the events are exclusive, p(#° > 0.5/V) = 1 — 0.9673 = 0.0327. Hence the expected utility of saying
heads is more likely is

10 x 0.0327 — 1000000 x 0.9673 = —9.673 x 10°. (9.1.32)
Similarly, the utility of saying tails is more likely can be computed to be

10 x 0.9673 — 1000000 x 0.0327 = —3.269 x 10%. (9.1.33)

194 DRAFT June 18, 2013

Bayesian methods and ML-I1

Oa Os
@ Figure 9.4: (a): A model for the relationship between
lung Cancer, Asbestos exposure and Smoking. (b):
@ Plate notation replicating the observed n datapoints

q‘ In =1:N with the CPTs tied across all datapoints.
0
(a)

Figure 9.5: (a): Standard ML learning. The best parameter 6 is found
by maximising the probability that the model generates the observed data
Oopt = argmaxg p(v|f). (b): ML-II learning. In cases where we have a
prior preference for the parameters 6, but with unspecified hyperparameter
¢', we can find 0’ by 0;,, = arg maxg p(v|') = argmaxg (p(v]0)),g)-

D
_
2 (D—()—e=

Since the expected utility of deciding ‘tails’ is highest, we are better off taking the decision that the coin is
more likely to come up tails.

If we modify the above so that we lose 100 million dollars if we guess tails when in fact it is heads, the
expected utility of saying tails would be —3.27 x 10%. In this case, even though we are more confident that
the coin is likely to come up tails, we would pay such a penalty of making a mistake in saying tails, that it
is fact better to say heads.

9.2 Bayesian methods and ML-11

Consider a parameterised distribution p(v|), for which we wish to the learn the optimal parameters 0 given
some data. The model p(v|f) is depicted in fig(9.5a), where a dot indicates that no distribution is present
on that variable. For a single observed datapoint v, setting # by maximum likelihood corresponds to finding
the parameter 6 that maximises p(v|6).

In some cases we may have an idea about which parameters 6 are more appropriate and can express this prior
preference using a distribution p(). If the prior were fully specified, then there is nothing to ‘learn’ since
p(0|v) is now fully known. However, in many cases in practice, we are unsure of the exact parameter settings
of the prior, and hence specify a parametersised prior using a distribution p(6|6’) with hyperparameter 6.
This is depicted in fig(9.5b). Learning then corresponds to finding the optimal ¢ that maximises the
likelihood p(v]0’) = [, p(v|0)p(#]6). This is known as an ML-II procedure since it corresponds to maximum
likelihood, but at the higher, hyperparameter level[33, 197]. By treating the parameters as variables, one
can view this then as learning under hidden variables, for which the methods of chapter(11) are applicable.
We will encounter examples of this ML-II procedure later, for example in section(18.1.2).

DRAFT June 18, 2013 195

Maximum Likelihood Training of Belief Networks

a S C
I[1]1
1[0]0 Figure 9.6: A database containing information about the Asbestos exposure
8 } é (1 signifies exposure), being a Smoker (1 signifies the individual is a smoker),
1111 and lung Cancer (1 signifies the individual has lung Cancer). Each row
(1) 8 (1] contains the information for each of the seven individuals in the database.

9.3 Maximum Likelihood Training of Belief Networks

Consider the following model of the relationship between exposure to asbestos (a), being a smoker (s) and
the incidence of lung cancer (c)

pla,s,c) = p(cla, s)p(a)p(s) (9.3.1)

which is depicted in fig(9.4a). Each variable is binary, dom(a) = {0, 1}, dom(s) = {0, 1}, dom(c) = {0, 1}.
We assume that there is no direct relationship between Smoking and exposure to Asbestos. This is the
kind of assumption that we may be able to elicit from medical experts. Furthermore, we assume that we
have a list of patient records, fig(9.6), where each row represents a patient’s data. To learn the table entries
p(cla, s) we can do so by counting the number of times variable ¢ is in state 1 for each of the 4 parental
states of a and s:
plc=1la=0,s=0)=0, plc=1la=0,
1

plc=1la=1,5=0)=0.5 plc=1la= (9.3.2)

Similarly, based on counting, p(a = 1) =4/7, and p(s = 1) = 4/7. These three CPTs then complete the full
distribution specification.

Setting the CPT entries in this way by counting the relative number of occurrences corresponds mathemat-
ically to maximum likelihood learning under the i.i.d. assumption, as we show below.

Maximum likelihood corresponds to counting

For a BN there is a constraint on the form of p(z), namely

K
p(x) = [[plwilpa () (9.3.3)
i=1

To compute the maximum likelihood setting of each term p(z;|pa (x;)), as shown in section(8.7.3), we can
equivalently minimise the Kullback-Leibler divergence between the empirical distribution ¢(x) and p(x). For
the BN p(z), and empirical distribution ¢(z) we have

K K
KL(q|p) = - <Zlogp (wi|pa (wi))> +const. = — > (log p (xi[pa (1)) (s, pa(ar)) + CONSE. (9.3.4)
i=1 a(@) i=1

This follows using the general result

(f(X)) gy = (F(X)) g (9.3.5)

which says that if the function f only depends on a subset of the variables, we only need to know the
marginal distribution of this subset of variables in order to carry out the average.

Since ¢(z) is fixed, we can add on entropic terms in ¢ and equivalently mimimize

K

KL(glp) = > [{1og a(ilpa (2))) , pater)) — 108 P (@102 (2) s pa(on) (9.3.6)
1

)

M-

(KL(q(aslpa () Ip(ilpa () s pagen 9.3.7)
1

)

196 DRAFT June 18, 2013

Maximum Likelihood Training of Belief Networks

The final line is a positive weighted sum of individual Kullback-Leibler divergences. The minimal Kullback-
Leibler setting, and that which corresponds to maximum likelihood, is therefore

p(zilpa(z;)) = q(xi|pa (2;)) (9.3.8)
In terms of the original data, this is

N
p(x; = s|pa(z;) =t) x Z]I [z} = s,pa(x}) =t (9.3.9)

n=1

This expression corresponds to the intuition that the table entry p(x;|pa(z;)) can be set by counting the
number of times the state {x; = s, pa(z;) =t} occurs in the dataset (where t is a vector of parental states).
The table is then given by the relative number of counts of being in state s compared to the other states s/,
for fixed joint parental state t.

An alternative method to derive this intuitive result is to use Lagrange multipliers, see exercise(9.4). For
reader less comfortable with the above Kullback-Leibler derivation, a more direct example is given below
which makes use of the notation

f(v1 = 81,72 = 52,3 = 83,...) (9.3.10)

to denote the number of times that states x1 = s1, 22 = s9, 3 = s3,... occur together in the training data.
See also section(10.1) for further examples.

Example 9.1. We wish to learn the table entries of the distribution p(z1, z2,x3) = p(z1|z2, x3)p(x2)p(T3).
We address here how to find the CPT entry p(x; = 1|xa = 1,23 = 0) using maximum likelihood. For i.i.d.
data, the contribution from p(x1|z2,z3) to the log likelihood is

> logp(z}lay, z5)
n

The number of times p(z; = 1l|xzg = 1,23 = 0) occurs in the log likelihood is § (z1 = 1,29 = 1,23 = 0),
the number of such occurrences in the training set. Since (by the normalisation constraint) p(x; = 0|ze =
l,xzs = 0) = 1 —p(x; = 1|z = 1,23 = 0), the total contribution of p(z; = 1|xg = 1,23 = 0) to the log
likelihood is
f(z1 =102 = 1,23 =0)logp(zy = 1wz = 1,23 = 0)
+#(x1 =0,290 = 1,23 =0)1log (1 — p(z1 = 1|zg = 1,23 = 0)) (9.3.11)

Using 0 = p(z1 = 1|za = 1,23 = 0) we have
f(x1 =1,29=1,23 =0)1logf + £ (1 = 0,22 = 1,23 = 0) log (1 — 0) (9.3.12)
Differentiating the above expression w.r.t. 6 and equating to zero gives

i (21 ,x29 23 =0) f(=: 073132_97953 0 _, (9.3.13)

The solution for optimal @ is then

f(x1 =120 =1,23 =0)
ﬁ(l’l :1,$2:1,l‘3:0)—|—ﬁ(1’1 20,1’2:1,$3:0)’

p(z1=1lze = 1,23 =0) = (9.3.14)

corresponding to the intuitive counting procedure.

DRAFT June 18, 2013 197

Maximum Likelihood Training of Belief Networks

T €2 s Tn—1 In . . .
Figure 9.7: A variable y with a large number of parents

T1,...,Ty requires the specification of an exponen-

tially large number of entries in the conditional prob-

ability p(y|z1,...,z,). One solution to this difficulty
Y is to parameterise the conditional, p(y|z1,...,Zn,0).

Conditional probability functions

Consider a binary variable y with n binary parental variables, x = (z1,...,2,), see fig(9.7). There are 2"
entries in the CPT of p(y|z) so that it is infeasible to explicitly store these entries for even moderate values
of n. To reduce the complexity of this CPT we may constrain the form of the table. For example, one could
use a function

1

W (9-3.15)

ply = 1lx,w) =

where we only need to specify the n-dimensional parameter vector w.

In this case, rather than using maximum likelihood to learn the entries of the CPTs directly, we instead
learn the value of the parameter w. Since the number of parameters in w is small (n, compared with 2"
in the unconstrained case), we also have some hope that with a small number of training examples we can
learn a reliable value for w.

Example 9.2. Consider the following 3 variable model p(z1,x2,z3) = p(x1|x2, 3)p(z2)p(x3), where x; €
{0,1},i=1,2,3. We assume that the CPT is parameterised using 6 = (01, 602) with

p($1 =].|332,£L’370) = 6—9%—93(2172—:1)3)2 (9316)

One may verify that the above probability is always positive and lies between 0 and 1. Due to normalisation,
we must have

p(z1 = 0|xe, z3) = 1 — p(z1 = 1|z, x3) (9.3.17)

For unrestricted p(z2) and p(x3), the maximum likelihood setting is p(ze = 1) « §(z2 = 1), and p(x3 =
1) o< §(x3 = 1). The contribution to the log likelihood from the term p(z1|za, 3, 6), assuming i.i.d. data, is

N
L(61,65) = Z]I[x? = 1] (=67 — 05(z5 — 2%)?) + L[z} = 0] log (1 - 679%795(3337%?)2) (9.3.18)

n=1

This objective function needs to be optimised numerically to find the best ; and 5. The gradient is

N 2 2 (T ny2

dL 916*91*92(‘%2 —z%)

o Zl —20 [z} = 1] 61 + 20 [} = O] R (9.3.19)
n—=

a X . S . (2} — 28)2e—01 -8 (a5 —a})?

= > —2l[a} =1]6; (25 — 27)® + 2651 [z} = 0] PR (9.3.20)

n=1

The gradient can be used as part of a standard optimisation procedure (such as conjugate gradients, see
section(29.5)) to find the maximum likelihood parameters 61, 05.

198 DRAFT June 18, 2013

Bayesian Belief Network Training

9.4 Bayesian Belief Network Training

An alternative to maximum likelihood training of a BN is to use a Bayesian approach in which we maintain
a distribution over parameters. We continue with the Asbestos, Smoking, Cancer scenario,

p(a; ¢, s) = p(cla, s)p(a)p(s) (9-4.1)

as represented in fig(9.4a). So far we’ve only specified the independence structure, but not the entries of the
tables p(cla, s), p(a), p(s). Given a set of visible observations, V = {(a",s",¢"),n=1,..., N}, we would
like to learn appropriate distributions for the table entries.

To begin we need a notation for the table entries. With all variables binary we have parameters such as

pla=10y) =0y, plc=1la=0,5=1,6,) =% (9.4.2)

[

. . 11 1
and similarly for the remaining parameters 6.’ ,08’0, 020, For our example, the parameters are

0a,05,0%0,0%1 910 gl (9.4.3)

SyYe sYe 1Ye 1VYe

Oc
In the following section, section(9.4.1), we describe first useful independence assumptions on the general
form of the prior variables, before making a specific numerical prior specification in section(9.4.2).
9.4.1 Global and local parameter independence

In Bayesian learning of BNs, we need to specify a prior on the joint table entries. Since in general dealing
with multi-dimensional continuous distributions is computationally problematic, it is useful to specify only
uni-variate distributions in the prior. As we show below, this has a pleasing consequence that for i.i.d. data
the posterior also factorises into uni-variate distributions.

Global parameter independence

A convenient assumption is that the prior factorises over parameters. For our Asbestos, Smoking, Cancer
example, we assume

p(@a, O, 00) = p(ea)p(es)p(ac) (9'4'4)

Assuming the data is i.i.d., we then have the joint model

P(0a; 05,6, V) = p(0a)p(05)p(6c) | [(0™ (0a)p(s"|05)p(c" |, ", 0c) (9.4.5)

the belief network for which is given in fig(9.8.) A convenience of the factorised prior for a BN is that the
posterior also factorises, since

p(9a7 987 00|V) X p(9a7 987 007 V)

= {p(@a) HP(G"I%)} {p(&s) Hp(anS)} {p(QC) Hp(cn‘3n7ana 90)}

n n

o p(0a|Va)p(0s|Vs)p(6c|Ve) (9.4.6)

so that one can consider each parameter posterior separately. In this case, ‘learning’ involves computing the
posterior distributions p(6;|V;) where V; is the set of training data restricted to the family of variable 1.

The global independence assumption conveniently results in a posterior distribution that factorises over the
conditional tables. However, the parameter 6. is itself 4 dimensional. To simplify this we need to make a

further assumption as to the structure of each local table.

DRAFT June 18, 2013 199

Bayesian Belief Network Training

Figure 9.8: A Bayesian parameter model for the relationship between

@ ‘@ lung Cancer, Asbestos exposure and Smoking with factorised parameter
priors. The global parameter independence assumption means that the

@ prior over tables factorises into priors over each conditional probability ta-

ble. The local independence assumption, which in this case comes into
effect only for p(c|a, s), means that p(6.) factorises in [], ,cp p(6c""), where

P = {(07 0)7 (07 1)’ (L 0)7 (17 1)}

(a, s)eP

Local parameter independence

If we further assume that the prior for the table factorises over all states a, c:

p(6e) = p(62°)p(62°)p(6)p(62) (9.4.7)

then the posterior is given by

P(0cVe) o< p(Vel0)p(02°)p(6:)p (62)p(6:)
a=0,5s=0,c=1 a=0,5=0,c=0 a=0,s=1,c=1 a=0,5s=1,c=0
[Qg,o]ﬁ() [1 B 6’8’0} #()p(OE’O) [90,1]ﬁ() [1 - 9(0),1]t1()p(eo,l)

Cc Cc

-~

op(02°|Ve) oxp(6Ve)
% [950} f(a=1,5=0,c=1) [1 _ 9270]11((1:1,5:0,0:0) p(ei’o) [ei,l]ﬁ(azl,szl,czl) [1 _ 0i71]ﬁ(a:1,s:17c:0) p(ei’l)
op(8e|Ve) ocp(eVe)
(9.4.8)
so that the posterior also factorises over the parental states of the local conditional table.
Posterior marginal table
A marginal probability table is given by, for example,
plc=1la=1,s=0,V) = / ple=1la=1,5=0,0-")p(6.]V.) (9.4.9)
Oc
The integral over all the other tables in equation (9.4.9) is unity, and we are left with
plc=1la=1,s=0V) = /@1 ple=1la=15=0, 0-0)p(6L01V,) = /01 . 0L-%p(01°V,) (9.4.10)

9.4.2 Learning binary variable tables using a Beta prior

We continue the example of section(9.4.1) where all variables are binary, but using a continuous valued table
prior. The simplest case is to start with p(a|6,) since this requires only a univariate prior distribution p(6,).
The likelihood depends on the table variable via

pla = 1]6,) = b, (9.4.11)
so that the total likelihood term is
gile=1) (1 — 0,)He=0) (9.4.12)

200 DRAFT June 18, 2013

Bayesian Belief Network Training

The posterior is therefore
P(0alVa) o p(0a)05 =Y (1 — g,)H*=0) (9.4.13)

This means that if the prior is also of the form 65 (1 — Ga)ﬁ then conjugacy will hold, and the mathematics
of integration will be straightforward. This suggests that the most convenient choice is a Beta distribution,
1
B(aa, fa)

for which the posterior is also a Beta distribution:

p(@a) =B (0a|aaa Ba) = 93“_1 (1 - ea)ﬂa_l (9.4.14)

P(0alVa) = B (Bulaa + (= 1), Ba + £ (a = 0)) (9.4.15)
The marginal table is given by (following similar reasoning as for equation (9.4.10))

ag +i(a=1)
ag+4(a=1)+Pa+1(a=0)

pla=11v) = [p(6vi)6 - (9.4.16)

using the result for the mean of a Beta distribution, definition(8.23).

The situation for the table p(c|a, s) is slightly more complex since we need to specify a prior for each of
the parental tables. As above, this is most convenient if we specify a Beta prior, one for each of the (four)
parental states. Let’s look at a specific table

plc=1la=1,s=0) (9.4.17)
Assuming the local independence property, we have p(@é’oﬂ/c) given by

B0)ac(a=1,s=0)+4(c=1,a=1,5=0),B:(a=1,5s=0)+t(c=0,a=1,5=0)) (9.4.18)
As before, the marginal probability table is then given by

acla=1,s=0)+f(c=1la=1,s=0)
acla=1,s=0)+f(a=1,5s=0)+t(a=1,s=0)

since f(a=1,s=0)=f(c=0,a=1,s=0)+f(c=1,a=1,5s=0).

plc=1la=1,s=0,V,) =

(9.4.19)

The prior parameters ac(a,s) are called hyperparameters. A complete ignorance prior would correspond
to setting o = = 1, see fig(8.4).

It is instructive to examine this Bayesian solution under various conditions:
No data limit N — 0 In the limit of no data, the marginal probability table corresponds to the prior,

which is given in this case by

acla=1,5=0)
acla=1,5=0)+fFc(a=1,5=0)

plc=1lla=1,s=0) = (9.4.20)
For a flat prior a = 8 = 1 for all states a, ¢, this would give a prior probability of p(c = 1jla = 1,s =
0) =0.5.

Infinite data limit NV — oo In this limit the marginal probability tables are dominated by the data counts,
since these will typically grow in proportion to the size of the dataset. This means that in the infinite
(or very large) data limit,

t(c=1l,a=1,5s=0)

:1 :1 :0,
p(C |a s S V)—>ﬁ(C:1,&2133:0)+ﬁ(620’a:178:0)

(9.4.21)

which corresponds to the maximum likelihood solution.

This effect that the large data limit of a Bayesian procedure corresponds to the maximum likelihood
solution is general unless the prior has a pathologically strong effect.

DRAFT June 18, 2013 201

Bayesian Belief Network Training

Zero hyperparameter limit When o, = 5. = 0, the marginal table equation (9.4.19) corresponds to the
maximum likelihood table setting for any amount of data. When a, = 8. = 0, the Beta distribution
places mass 0.5 at 0 and mass 0.5 at 1. Note that this equivalence of the maximum likelihood solution
with the marginal table under zero hyperparameter values contrasts with the equivalence of the MAP
table under uniform hyperparameter values.

Example 9.3 (Asbestos-Smoking-Cancer).

Consider the binary variable network

p(¢, a,s) = p(cla, s)p(a)p(s) (9.4.22)

The data V is given in fig(9.6). Using a flat Beta prior « = § = 1 for all conditional probability tables, the
marginal posterior tables are given by
l1+f(a=1) 1+4 5

= = — =~ 0.556 9.4.23
2+ N 247 9 ()

pla=1V) =

By comparison, the maximum likelihood setting is 4/7 = 0.571. The Bayesian result is a little more
cautious, which squares with our prior belief that any setting of the probability is equally likely, pulling the
posterior towards 0.5.

Similarly,
1+t(s=1) 144 5
—1V) = - =2 ~0.556 9.4.24
p(s =1v) 2+ N 247 9 ()
and
l+8(c=1la=1,s=1) 1+2 3
— g = 1l.g = 1. 79) = = == 9.4.25
ple=1lla=1s)2—|—|j(c:l,azl,s:l)—i—ﬁ(c:o,a:l,s:l) 572 1 (4%
1 =la=1.5=0 1+1 2
ple=1la=1,5=0,V) = tile=la=1s=0) — T2 (9.4.26)

 24f(c=1,a=1,5s=0)+f(c=0,a=1,5=0) 2+1 3

l+8(c=1a=0,s=1) 1+1 1
ple=la=0s=1Y) = o T 0 s fic—0a=0s=1) 232 2 4%

1 =1l.a= = 1 1
plc=1la=0,s=0,V) = tile=la=0s=0) _ 101 (9.4.28)

24+t#(c=1,a=0,s=0)+t(c=0,a=0,s=0 2+1 3

9.4.3 Learning multivariate discrete tables using a Dirichlet prior

The natural generalisation to our discussion of Bayesian learning of BNs is to consider variables that can
take more than two states. In this case the natural conjugate prior is given by the Dirichlet distribution,
which generalises the Beta distribution to more than two states. Again we assume throughout i.i.d. data
and the local and global parameter prior independencies. Since under the global parameter independence
assumption the posterior factorises over variables (as in equation (9.4.6)), we can concentrate on the posterior
of a single variable.

202 DRAFT June 18, 2013

Bayesian Belief Network Training

No parents

Let’s consider a variable v with dom(v) = {1,...,I}. If we denote the probability of v being in state i by
0;, i.e. p(v =1|@) = 6;, the contribution to the posterior from a datapoint v"

1
p(v"|8) = He“” =i, Y 6=1 (9.4.29)
=1

so that the posterior for 8 given a dataset V = {vl, e ,UN}
N I I N g
p(8]V) op(O H H =l = o) [T o7 (9.4.30)
n=1i=1 i=1

It is convenient to use a Dirichlet prior distribution with hyperparameters u
I
p(6)= Dirichlet (6|u) o< [] 65" (9.4.31)
i=1
Using this prior the posterior becomes
I I T I oW el
p(OV) oc [T om0 "= = T oy 1= (9.4.32)
j ' i=1
which means that the posterior is given by
p(0]V) = Dirichlet (8|u + c) (9.4.33)

where c is a count vector with components

c=>» T" =i (9.4.34)

being the number of times state ¢ was observed in the training data.

The marginal table is given by integrating
po=ilv) = [o0 = iowe) = | o) (9.435)

The single-variable marginal distribution of a Dirichlet is a Beta distribution,

p(0:V) = B | ilus + i, Y Juj+ej | (9.4.36)
J#i

The marginal table is then given by the mean of the Beta distribution

u; + ¢

P(U:ﬂv):m
U te

(9.4.37)

which generalises the binary state formula equation (9.4.16).

Parents

To deal with the general case of a variable v with parents pa (v) we denote the probability of v being in
state i, conditioned on the parents being in state j as

p(v =ilpa(v) = j,0) = 0i(v; j) (9.4.38)

DRAFT June 18, 2013 203

Bayesian Belief Network Training

a S C

T[1]2

110]0 Figure 9.9: A database of patient records about Asbestos exposure (1 signifies ex-
8 } é posure), being a Smoker (1 signifies the individual is a smoker), and lung Cancer (0
1112 signifies no cancer, 1 signifies early stage cancer, 2 signifies late state cancer). Each
‘1) 8 (1] row contains the information for each of the seven individuals in the database.

where) . 6;(v;j) = 1. This forms the components of a vector 8(v;j). Note that if v has K parents then
the number of parental states S will be exponential in K.

Writing 0(v) = [@(v;1),...,0(v;S)], local (parental state) independence means
p(8(v)) = [p(6(v;) (9.4.39)
J
and global independence means
p(0) = [[p(6(v)) (9.4.40)

where 8 = (0(v),v =1,...,V) represents the combined table of all the variables.

Parameter posterior

Thanks to the global parameter independence assumption the posterior factorises, with one posterior table
per variable. Each posterior table for a variable v depends only on the data D(v) of the family of the
variable. Assuming a Dirichlet distribution prior

p(0(v; 7)) = Dirichlet (8(v; j)|u(v; 7)) (9.4.41)
the posterior is also Dirichlet

p(8(v)|D(v)) = HDiriChlet (8(v;)0 (v3) (9.4.42)

where the hyperparameter prior term is updated by the observed counts,

wi(v35) = ui(vi j) + 4§ (v = i,pa(v) = j). (9.4.43)
By analogy with the no-parents case, the marginal table is given by
p(v = ilpa(v) = j,D(v)) o< uj(v;j). (9.4.44)

Example 9.4. Consider the p(c|a, s)p(s)p(a) asbestos example with dom(a) = dom(s) = {0,1}, except
now with the variable ¢ taking three states, dom(c) = {0, 1,2}, accounting for different kinds of cancer, see
fig(9.9). The marginal table under a Dirichlet prior is then given by, for example

ula=1,s=1)+f(c=0,a=1,s=1)

plc=0la=1,s=1,V) = - 9.4.45
(|) Yicppyuila=1ls=1)+f(c=da=1s5=1) ()
Assuming a flat Dirichlet prior, which corresponds to setting all components of u to 1, this gives
1+0 1
=0la=1.5s=1.)V)= —— == 9.4.46
pe=Ola=1,5=1V) =10 = (9.4.46)
1+0 1
=lla=1,s=1.V)= —— == 9.4.47
pe=lla=1s=1V)= 3" == (9447
1+2 3
—9a=1.5=1 - = = 4.4
pe=2a=15=1V)= == (94.45)

and similarly for the other three tables p(cla =1,s = 0),p(cla =0,s =1),p(cla =1,s =1).

204 DRAFT June 18, 2013

Structure learning

Algorithm 9.1 PC algorithm for skeleton learning.

1: Start with a complete undirected graph G on the set V of all vertices.

2:.1=0

3: repeat

4 for x € V do

5 for y € Adj {z} do

6. Determine if there is a subset S of size i of the neighbours of = (not including y) for which
' x 1 y|S. If this set exists remove the — y link from the graph G and set S,y = S.

7: end for

8: end for

9: =1+ 1.

10: until all nodes have < ¢ neighbours.

Model likelihood
For a variable v, and i.i.d. data D(v) = {(v"|pa (v"")),n =1,..., N} for the family of this variable,

Hp (v"|pa (v

p [1" pa (™), 6(v)) (9.4.49)

1
q:\q;\

H Z(u v'j)) HGi(v)= HHHO v;) =tpal™) =il (9 4.50)
j ’ i

1 / ot . .
_ 0, (v;)i (i) L H(v=i.pa(v)=5) 9.4.51
H Z(u 0(vsj) H w:J) ()

- (v,J ;
Z(u'(v,
= H v (9.4.52)
] ’

where Z(u) is the normalisation constant of a Dirichlet distribution with hyperparameters u; u’ is as given
in equation (9.4.43).

For a belief network on variables v = (v1,...,vp) the joint probability of all variables factorises into the
local probabilities of each variable conditioned on its parents. The likelihood of a complete set of i.i.d. data
D= {vl, . ,VN} is then given by:

/

HHP vi|pa (v})) HH (' (v (9.4.53)

Z(u(vg; j))

where u’ is given by equation (9.4.43). Expression (9.4.53) can be written explicitly in terms of Gamma
functions, see exercise(9.9). In the above expression in general the number of parental states differs for each
variable v, so that implicit in the above formula is that the state product over j goes from 1 to the number
of parental states of variable vi. Due to the local and global parameter independence assumptions, the
logarithm of the model likelihood is a product of terms, one for each variable v, and parental configuration
7. This is called the likelihood decomposable property.

9.5 Structure learning

Up to this point we have assumed that we are given both the structure of the distribution and a dataset
D. A more complex task is when we need to learn the structure of the network as well. We’ll consider the
case in which the data is complete (i.e. there are no missing observations). Since for D variables, there is
an exponentially large number (in D) of BN structures, it’s clear that we cannot search over all possible
structures. For this reason structure learning is a computationally challenging problem and we must rely on
constraints and heuristics to help guide the search. Whilst in general structure learning is intractable, a cele-
brated tractable special case is when the network is constrained to have at most one parent, see section(9.5.4).

DRAFT June 18, 2013 205

Structure learning

For all but the sparsest networks, estimating the dependencies to any accuracy requires a large amount of
data, making testing of dependencies difficult. Consider the following simple situation of two independent
variables, p(z,y) = p(z)p(y). Based on a finite sample from this joint distribution D = {(z",y"),n =1,...,N},
we want to try to understand if x is independent of y. One way to do this is to compute the empirical mutual
information I(x,y); if this is zero then, empirically, z and y are independent. However, for a finite amount
of data, two variables will typically have non-zero mutual information, so that a threshold needs to be set
to decide if the measured dependence is significant under the finite sample, see section(9.5.2).

Other complexities arise from the concern that a Belief or Markov Network on the visible variables alone
may not be a parsimonious way to represent the observed data if, for example, there may be latent variables
which are driving the observed dependencies. We will not enter into such issues in our discussion here
and limit the presentation to two central approaches, one which attempts to make a network structure
consistent with local empirical dependencies (the PC algorithm), and one which builds a structure that is
most probable for the global data (network scoring).

9.5.1 PC algorithm

The PC algorithm[274] first learns the skeleton of a graph, after which edges may be oriented to form a
(partially oriented) DAG. The procedure to learn the skeleton is based on using the empirical data to test if
two variables are independent. A variety of approaches can be used to ascertain independence, as described
in section(9.5.2).

The PC algorithm begins at the first round with a complete skeleton G and attempts to remove as many
links as possible. At the first step we test all pairs z 1L y| 0. If an = and y pair are deemed independent
then the link z — y is removed from the complete graph. One repeats this for all the pairwise links. In the
second round, for the remaining graph, one examines each x — y link and conditions on a single neighbour
z of x. If = 1L y| z then remove the link x — y. One repeats in this way through all the variables. At each
round the number of neighbours in the conditioning set is increased by one. See algorithm(9.1), fig(9.10)*
and demoPCoracle.m. A refinement of this algorithm, known as NPC for necessary path PC[276] limits the
number of independence checks to remove inconsistencies resulting from the empirical estimates of condi-
tional mutual information.

Given a learned skeleton, a partial DAG can be constructed using algorithm(9.2). Note that this is necessary
since the undirected graph G is a skeleton — not a belief network of the independence assumptions discovered.
For example, we may have a graph G with — z — y in which the x — y link was removed on the basis
zllyld — S;y = 0. As a MN the graph x — z — y (graphically) implies Ty, although this is inconsistent
with the discovery in the first round = 1L y. This is the reason for the orientation part: for consistency, we
must have x — 2z <y, for which z 1l y and zTTy| 2z, see example(9.5). See also fig(9.11).

Example 9.5 (Skeleton orienting).
If x is (unconditionally) independent of y, it must
be that z is a collider since otherwise marginalis-

@{QZ% ing over z would introduce a dependence between
x and y.

zllyld =

If z is independent of y conditioned on z, z must
not be a collider. Any other orientation is ap-
propriate.

zllylz=

'This example appears in [161] and [223] — thanks also to Serafin Moral for his online notes.

206 DRAFT June 18, 2013

Structure learning

Zwll ZWH w zZ w w

Y VYA VAR VAR VRV

(a) (b) (c) (d) () () (8) (h) (i)

VARV aR\Van\Van\va \/ N/

@ (k) U] (m) (n) () (p) (@) (r)

Figure 9.10: PC algorithm. (a): The BN from which data is assumed generated and against which
conditional independence tests will be performed. (b): The initial skeleton is fully connected. (c-1):
In the first round (¢ = 0) all the pairwise mutual informations z Ll y|) are checked, and the link between
x and y removed if deemed independent (green line). (m-o0): ¢ = 1. We now look at connected subsets
on three variables x,y, z of the remaining graph, removing the link x — y if x 1l y| z is true. Not all steps
are shown. (p,q): @ = 2. We now examine all z 1l y|{a,b}. The algorithm terminates after this round
(when i gets incremented to 3) since there are no nodes with 3 or more neighbours. (r): Final skeleton.
During this process the sets Sy =0, Sz0 = 0,50 =y, Szt = {2z, w}, Sy = {z,w} were found. See also
demoPCoracle.m

Algorithm 9.2 Skeleton orientation algorithm (returns a DAG).

Unmarried Collider: Examine all undirected links x — z —y. If 2 € Sy set x — 2 < y.
repeat
Tz—Yy=>Tr— 2>y
For z — y, if there is a directed path from x to y orient x — y
If for x — z — y there is a w such that + — w, y — w, z — w then orient z — w
until No more edges can be oriented.
The remaining edges can be arbitrarily oriented provided that the graph remains a DAG and no additional
colliders are introduced.

N s wenhe

Example 9.6. In fig(9.10) we describe the processes of the PC algorithm in learning the structure for a
belief network on the variables x,y, z, w, t. In this case, rather than using data to assess independence, we
assume that we have access to an ‘oracle’ that can correctly answer any independence question put to it.
In practice, of course, we will not be so fortunate! Once the skeleton has been found, we then orient the
skeleton, as in fig(9.11).

9.5.2 Empirical independence
Mutual information test

Given data we can obtain an estimate of the conditional mutual information by using the empirical distri-
bution p(z,y, z) estimated by simply counting occurrences in the data. In practice, however, we only have
a finite amount of data to estimate the empirical distribution. This means that for data sampled from a
distribution for which the variables truly are independent, the empirical mutual information will neverthe-
less typically be greater than zero. An issue therefore is what threshold to use for the empirical conditional
mutual information to decide if this is sufficiently far from zero to be caused by dependence. A frequen-
tist approach is to compute the distribution of the conditional mutual information and then see where the

DRAFT June 18, 2013 207

Structure learning

sample value is compared to the distribution. According to [178], under the null hypothesis that the vari-
ables are independent, 2NMI(x; y|z) is Chi-square distributed with (X —1)(Y —1)Z degrees of freedom with
dim () = X, dim (y) =Y, dim (z) = Z. This can then be used to form a hypothesis test; if the sample value
of the empirical mutual information is ‘significantly’ in the tails of the chi-square distribution, we deem that
the variables are conditionally dependent. This classical approach can work well for large amounts of data,
but is less effective in the case of small amounts of data. An alternative pragmatic approach is to estimate
the threshold based on empirical samples of the MI under controlled independent/dependent conditions —
see demoCondindepEmp.m for a comparison of these approaches.

O (D © (» @ (V) @ (V) Figure 9.11: Skeleton orientation algorithm. (a):
J The skeleton along with Sy, = 0,5z, = 0,5, =
(=5 (v) G (v) G (v) G () Y, Sz = {z,w}, Sy = {z,w}. (b): 2 ¢ Sy, so form
\ collider. (c): t & S, 4, so form collider. (d): Final

O &) O

(a) (b) (d)

0) partially oriented DAG. The remaining edge may be
oriented as desired, without violating the DAG condi-
(c) tion. See also demoPCoracle.m.

Bayesian conditional independence test

A Bayesian approach to testing for independence can be made by comparing the likelihood of the data under
the independence hypothesis, versus the likelihood under the dependent hypothesis. For the independence
hypothesis, fig(9.12a), we have a joint distribution over variables and parameters:

p(fL', Y, 2, H‘Hindep) = p(:r\z, 9x|z)p<y‘zv Qy\z)p(z‘02)p<9x|z)p(0y|z)p<92) (951)

For categorical distributions, it is convenient to use a prior Dirichlet (6|u) on the parameters #, assuming also
local as well as global parameter independence. For a set of assumed i.i.d. data (X,Y, Z) = (™, y", 2"),n =
1,..., N, the likelihood is then given by integrating over the parameters 6:

p(?(, YV, Z‘Hindep) = /)[)(9|Hin(lep) Hl)(«’l?n; yn7 2" 0, Hindep)
J6 n

Thanks to conjugacy, this is straightforward and gives the expression

Z(uz +1 (Z)) H Z(uz|z +4 (xa Z)) Z(uy\z +1 (y7 Z))

p(X,y,Z"Hindep) = Z(uz) Z(uazlz) Z(Uy|z)

(9.5.2)

where wu,, is a hyperparameter matrix of pseudo counts for each state of = given each state of z. Z(v) is
the normalisation constant of a Dirichlet distribution with vector parameter v.

For the dependent hypothesis, fig(9.12b), we have

p(@"a Y, 279‘Hdep) = p(x,y, Z|9x,y,z)p(9:v,y,2) (9'5'3)
The likelihood is then

Z(uzy, +#(2,9,2))

p(X, Y, Z[Hdep) = 9.5.4
(2 M) = =) (954
Assuming each hypothesis is equally likely, for a Bayes’ Factor
X, Y, Z|H;
p(Y ‘ mdep) (9.5.5)

p(Xa y7 Z‘,Hdep>

greater than 1, we assume that conditional independence holds; otherwise we assume the variables are con-
ditionally dependent. demoCondindepEmp.m suggest