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LOGIT AND PROBIT REGRESSION (BINARY CASE)

We model directly the conditional class probabilities
p(C1|x) = f (wT�(x)), after a (nonlinear) mapping of the
features �(x) = �1(x), . . . , �m(x).
Common choices for f are the logistic or logit function
�(a) = 1

1+e�a and the probit function
 (a) =

R a
�1N(✓|0,1)d✓.

We will focus on logistic regression.
The non-linear embedding is an important step204 4. LINEAR MODELS FOR CLASSIFICATION
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Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions �1(x) and �2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(�1, �2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions �(x). The resulting decision boundaries will be linear in
the feature space �, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space �(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the
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LOGISTIC REGRESSION

We assume p(C1|�) = y(�) = �(wT�) where � = �(x) and
�i = �(xi).
As y = y(�(x)) 2 [0,1] we interpret is as the probability of
assigning input x to class 1, so that the likelihood is

p(t|w) =
NY

i=1

yti
i (1 � yi)

1�ti

where yi = �(wT�i).
We need to minimise minus the log-likelihood, i.e.

E(w) = � log p(t|w) = �
NX

i=1

ti log yi + (1 � ti) log(1 � yi)
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NUMERICAL OPTIMISATION

The gradient of E(w) is rE(w) =
PN

i=1(yi � ti)�i . The
equation rE(w) = 0 has no closed form solution, so we
need to solve it numerically.
One possibility is gradient descend. We initialise w0 to any
value and then update it by

wn+1 = wn + ⌘rE(wn)

where the method converges for ⌘ small.
We can also use stochastic gradient descent for online
training, using the update rule for w:

wn+1 = wn + ⌘rn+1E(wn),

with rnE(w) = (yn � tn)�n
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LOGISTIC REGRESSION: OVERFITTING

If we allocate each point x to the class with highest
probability, i.e. maximising �(wT�(x)), then the separating
surface is an hyperplane in the feature space and is given
by the equation wT�(x) = 0.
If the data is linearly separable in the feature space, then
any separable hyperplane is a solution, and the magnitude
of w tends to go to infinity during optimisation. In this case,
the logistic function converges to the Heaviside function.
To avoid this issue, we can add a regularisation term to
E(w), thus minimising E(w) + ↵wT w.
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NEWTON-RAPSON METHOD

As an alternative optimisation, we can use the
Newton-Rapson method, which has better convergence
properties.
The update rule reads:

wnew = wold � H�1rE(wold)

where H is the Hessian of E(w).
For logistic regression, we have rE(w) = �T (y � t) and
H = �T R�, with R diagonal matrix with elements
Rnn = yn(1 � yn).
It is easy to check that the Hessian is positive definite,
hence the function E(w) is convex and has a unique
minimum.
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MULTI-CLASS LOGISTIC REGRESSION

We can model directly the multiclass conditional
probability, using the soft-max function:

p(Ck |x) = yk (x) =
exp(ak )

P
j exp(aj)

with ak = wk�(x). It holds @yk (x)
@aj

= yk (�kj � yj)

Using the boolean encoding of the outputs, the likelihood is

p(T|w1, . . . ,wK) =
NY

n=1

KY

k=1

p(Ck |�n)
tnk = ytnk

nk

Hence we need to minimise

E(w1, . . . ,wK) = �
NX

n=1

KX

k=1

tnk log ynk
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MULTI-CLASS LOGISTIC REGRESSION

E(w1, . . . ,wK) has gradient

rwjE(w1, . . . ,wK) =
NX

n=1

(ynj � tnj)�n

and Hessian with blocks given by

rwkrwjE(w1, . . . ,wK) = �
NX

n=1

ynk (Ikj � ynj)�n�
T
n

Also in this case the Hessian is positive definite, and we
can use the Newton-Rapson algorithm for optimisation
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LAPLACE APPROXIMATION - 1 DIMENSION

It is a general technique to locally approximate a general
distribution around a mode with a Gaussian.
Consider a 1d distribution p(z) = 1

Z f (z) where
Z = sin f (z)dz is the normalisation constant.
Pick a mode z0 of f (z), i.e. a point such that d

dz f (z0) = 0.
As the logarithm of the Gaussian density is quadratic, we
consider a Taylor expansion of log f (z) around z0:

log f (z) ⇡ log f (z0) �
1
2

A(z � z0)
2

with A = � d2

dz2 log f (z0)
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LAPLACE APPROXIMATION - 1 DIMENSION

Hence we have f (z) ⇡ f (z0) exp(�1
2A(z � z0)2). Now, we

seek the best Gaussian q(z) approximating p(z) around
the model z0, requiring A > 0. This is clearly given by

q(z) =

 
A
2⇡

! 1
2

exp(�1
2

A(z � z0)
2)

We also have that Z ⇡ f (z0)
⇣

A
2⇡

⌘� 1
2 4.4. The Laplace Approximation 215
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) � exp(�z2/2)�(20z + 4)
where �(z) is the logistic sigmoid function defined by �(z) = (1 + e�z)�1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient �f(z)
will vanish. Expanding around this stationary point we have

ln f(z) � ln f(z0) � 1

2
(z � z0)

TA(z � z0) (4.131)

where the M � M Hessian matrix A is defined by

A = � �� ln f(z)|z=z0
(4.132)

and � is the gradient operator. Taking the exponential of both sides we obtain

f(z) � f(z0) exp

�
�1

2
(z � z0)

TA(z � z0)

�
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2�)M/2
exp

�
�1

2
(z � z0)

TA(z � z0)

�
= N (z|z0,A

�1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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LAPLACE APPROXIMATION - N DIMENSION

In n dimensions, we proceed in the same way. Given a
density p(z) = 1

Z f (z), we find a mode z0 (so that
r log f (z0) = 0, and approximate log f (z) around z0 by
Taylor expansion, obtaining

log f (z) = log f (z0) �
1
2
(z � z0)

T A(z � z0)

where A = �rr log f (z0).
This gives a Gaussian approximation around z0 by

q(z) = N(z|z0,A�1)

Furthermore Z ⇡ (2⇡)n/2

|A|1/2 f (z0)
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MODEL COMPARISON

We can use Laplace approximation for the marginal
likelihood in a model comparison framework.
Consider data D and a modelM depending on parameters
✓. We fix a prior P(✓) over ✓ and compute the posterior by
Bayes theorem:

p(✓|D) =
p(D|✓)p(✓)

p(D)

Here p(D) =
R

p(D|✓)p(✓)d✓ is the marginal likelihood. It
fits in the previous framework by setting Z = p(D), and
f = p(D|✓)p(✓).
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BIC

By Laplace approximation around the maximum
a-posteriori estimate ✓MAP :

log p(D) ⇡ log p(D|✓MAP)+log p(✓MAP)+
M
2

log(2⇡)�1
2

log |A|

where A = �rrp(D|✓MAP)p(✓MAP). The last three terms in
the sum penalise the log likelihood in terms of model
complexity.
A crude approximation of them is

logp(D) ⇡ log p(D|✓MAP) � 1
2

M log N

which is known as Bayesian Information Content, and can
be used to penalise log likelihood w.r.t. model complexity,
to compare different models.
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THE BAYESIAN WAY

To recast logistic regression in a Bayesian framework, we need
to put a prior on p(w) of the coefficients w of �(wT�(x)) and
compute the posterior distribution on w by Bayes theorem. Then
we can make predictions by integrating out the parameters.

Assume a Gaussian prior p(w) = N(w|m0,S0). The posterior is
p(w|t) / p(w)p(t|w), and the log-posterior is

log p(w|t) = �1
2

(w�m0)
T S�1

0 (w�m0)+
NX

i=1

[ti log yi+(1�ti) log(1�yi)]+c

where yi = �(w�(xi)).

Computing the marginal likelihood and the normalisation
constant is analytically intractable, due to quadratic and logistic
terms. Hence we do a Laplace approximation of the posterior.
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LAPLACE APPROXIMATION OF THE POSTERIOR

Given log p(w|t), we first find the maximum a-posteriori
wMAP, by running a numerical optimisation, and then
obtain the Laplace approximation computing the Hessian
matrix at wMAP and inverting it, obtaining

SN = �rr log p(w|t) = S0
�1 +

NX

n=1

yn(1 � yn)�(xn)�(xn)T

evaluated at w = wMAP.
Hence, the Laplace approximation of the posterior is

q(w) = N(w|wMAP,SN)
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PREDICTIVE DISTRIBUTION

The predictive distribution for class C1 is given by

p(C1|�, t) =

Z
p(C1|�,w, t)q(w)dw =

Z
�(wT�(x))q(w)dw

This multi-dimensional integral can be simplified by noting
that it depends on w only on the 1-dim projection
a = wT�(x), and that q restricted to this direction is still a
Gaussian distribution q(a) with mean and variance

µa = wMAP
T�(x) �2

a = �(x)T SN�(x)

Hence we have

p(C1|�, t) =

Z
�(a)q(a)da
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PROBIT APPROXIMATION

The integral p(C1|�, t) =
R
�(a)q(a)da can be

approximated by approximating the logistic function by the
probit: �(a) =  (�a), where � is obtained by matching
derivatives at zero and is �2 = ⇡/8.
We then use

Z
 (a)N(a|µ,�2) =  

 
µ

(��2 + �2)1/2

!

and approximate back to the logistic to get

p(C1|�, t) ⇡ �((�2
a)µa)

with (�2
a) = (1 + ⇡�2

a/8)�1/2


