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LOGIT AND PROBIT REGRESSION (BINARY CASE)

o We model directly the conditional class probabilities
p(C11x) :V(WT X ) after a (nonlinear) mapping of the

features ¢(x) = ¢1(X), ..., dm(X).a- )
e Common choices for f are the |ogistic or logit function

@ela(a) = 1755\ and the probit function D

vsap(a) = [ N(60,1)de. "q:
@ We will focus on logistic regression. g
@ The non-linear embedding is an important step
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LOGISTIC REGRESSION \ o\ =
o We assume p(C1l¢) =()#) ]/;_i\where ¢ = ¢(x) and
_ ¢ X| \_/"')
o As y = y(¢(x)) € [0,1] we interpret is as the probability of
aSS|gn|ng input x to class 1, so that the likelihood is

Y k" é)\o‘k) ({LV"“ -QL«_

0 1 ;

o (G QL p(tiw) = l_lw_y’/t
her 1 ekt
where y; = (W’ ;). LD 4 €y

e We need to minimise minus the log-likelihood, i.e.

E(w) = —log p(tiw) = Z t; Iogy, (1-t)log(1 - i)
TEQUN: el -4y Vk* <y )

de o0 -
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NUMERICAL OPTIMISATION imq» ﬂo)[b-ﬂo.\)

e The gradient of E(w) is VE(w) = Z, 1(y, )¢i. The
equation|VE(w) = Q has no closed form solution, so we
need to solve it numerically.

—_— ~——

@ One possibility is gradient descend. We ini’[ialisé\wO to any
value and then update it by

wt! —w” ; I]VE(Wn)

where the method converges for  small.

@ We can also use stochastic gradient descent for online
training, using the update rule for w:

wt = w" 4V, E(w"),

with]@: (Vi = ta)dbn < ~r



LOGISTIC REGRESSION 16/52

LOGISTIC REGRESSION: OVERFITT
JI (T L T
1

o {If we allocate each point x to the class with highest
probability, i.e. maximising o-(w’ ¢(x)), then the separating
surface is an hyperplane in the feature space and is given
by the equation w”¢(x) = 0.

o If the data is linearly separable in the feature space, then
any separable hyperplane is a solution, and the magnitude
of w tends to go to infinity during optimisation. In this case,
the logistic function converges to the Heaviside function.

o To avoid this issue, we can add a isation term to
E(w), thus minimising E(w) - ow’w. | é

.
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NEWTON-RAPSON METHOD

@ As an alternative optimisation, we can use the
Newton-Rapson method, which has better convergence
properties.

e The update rule reads:
wew — Wold _’\H—1VE(wold)

where H is the Hessian of E(w).

° F%%istic regression, we have VE(w) :ld)T(y - t)Xand
.| H=9¢'{Ro,\with @iagonal matrix with elements

ARn_n = yn(1 - yn)'ﬁ"‘

o lItis easy to check that the Hessian is positive definite,

hence the function E(w) is convex and has a unique
minimum.

17752
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MULTI-CLASS LOGISTIC REGRESSION

@ We can model directly the multiclass conditional @t»
probability, using the soft-max function: vV, &
—~a NN '

L R exp(ax) ' wid0
SR,7 o | P(CKIX) | = Yk(X) = —F—=
\L/ﬁ” 55 ( ) k( ) Z]exp(a]) |
. —)
with( 3 = Wi (x)\ It holds 2400 13 (54~ y;) .
@ Using the boolean encoding of the outputs, the likelihood is

T Y A - S

N
A p(Tiwy,...,WK) = l—[ np(cklfﬁn@: W‘]l/"‘::':

n=1 k=1

=X

=

KK

o Hence we need to minimise

2

K
E(wq,...,w Ztnkbgynk
n=1k=1

—_
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MULTI-CLASS LOGISTIC REGRESSION

e E(wjq,...,Wk) has gradient

@E(wh...,wK)
n=1

e and Hessian with blocks given by ]
r N v
_ , , T
Vwkvw,- E(wq,...,wk) = - Z Ynk(lkj - Yn/)¢n¢n
n=1
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@ Also in this case the Hessian is positive definite, and we
can use the Newton-Rapson algorithm for optimisation
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LAPLACE APPROXIMATION - 1 DIMENSION F%:

e lItis a general technique to locally approximate a general
distribution around a mode with a Gau33|an

e Consider a 1d distribution p(z) = jwhere 4(?» O
Z= me( )dz is the normalisati stant. < zz /d“k/g.

o Pick a mode@f f(z), i.e. a point such that dzf(ZO)

@ As the logarithi of the Gaussian density is quadratlc, we
consider a Taylor expansion o around zp:

| log(2) ~log (z0) - YAz - 2

with A = H—;@]
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LAPLACE APPROXIMATION - 1 DIMENSION

seek the best Gaussia @, matingpfz) around
the modée} zy, requiring A< 0. This is clearly given by

-
o We also have that Z ~ f(ZO)l(%z/\ V( laydy =
. [earcjqen e
0.4 ((h\(
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LAPLACE APPROXIMATION - N DIMENSION

e In ndimensions, we proceed in the same way. Given a
density p(z) = 3f(z), we find a mode zq (so that
Vlog f(zg) = 0, and approximate log f(z) around zg by
Taylor expansion, obtaining

l0g 1(2) = log f(20) ~ 5(2 ~ 20)  A(z - 20)

-~

wheriA = -VVlog f(zp).
o This gives a Gaussian a

ion around zg by

o Furthermore Z ~ =+
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MODEL COMPARISON

o We can use Laplace approximation for the marginal
likelihood in @ model comparison framework.

@ Consider data © and a model M depending on parameters
6. We fix a prior £(6) over 6 and compute the posterior by
Bayes theorem:

p(DI6)p(6)

p(61D) = (D)

° HereE)(Z)) = fp(Z)le)p(e)deiis the marginal likelihood. It
fits inthe previous framework by setting Z = p(D), and

£ = p(DI)p(6).

24/52
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BIC

e By Laplace approximation around the maximum
a-posteriori estimate 0yap:

M 1
v log p(D) ~ log p(Dlbmap)+log P(HMAP)JFE |09(27T)—§ log IAD

where]A = —VVp(Z)|6MAp)p(9MAij The last three terms in
the sum penalise the log likelihood in terms of model
complexity.
@ A crude approximation of them is
~ 7~
logp(D) ~ log p(Difuar) - FWlog N
which is known as Bayesian Information Content, and can

be used to penalise log likelihood w.r.t. model complexity,
to compare different models.
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THE BAYESIAN WAY \}j‘ (o, @(/L>
pl?

@ To recast logistic regression in a Bayesian framework, we need
to put a prior on@ of the coefficients w of o-(w”¢(x)) and
compute the posterior distribution on w by Bayes theorem., Then
we can make predictions by integrating out the parameters.

@ Assume a Gaussian priorfp(w) = N(w|mg, Sp)./ The posterior is
wit) o< p(w)p(tlw), and the log-posterior is
p(wt) o p(W)p(tw) grp

. 1 “y N
+log p(wit) = LMSM) D ltilog yi+(1-t) log(1-yi)lc
j=1_

where[y,- = G(W¢(Xi);!- -

@ Computing the marginal likelihood and the normalisation
constant is analytically intractable, due to quadratic and logistic
terms. Hence we do a Laplace approximation of the posterior.
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LAPLACE APPROXIMATION OF THE POSTERIOR

o Given log p(wlt), we first find the maximum a-posteriori
Wwnmap, by running a numerical optimisation, and then
obtain the Laplace approximation computing the Hessian
matrix at wyap and inverting it, obtaining

N
@ vy Iog@ — g7 4%2 Yn(1 = ¥n)9(Xn)#(Xn)"|
n=1 X

evaluated at w = wyap. o :
@ Hence, the Laplace approximation of the posterior is

q(w) = N(WWmap, Sn)
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PREDICTIVE DISTRIBUTION T (j? ((I\
~rle
W LIC I

@ The predictive distribution for class C is given by

pcion L [ PClo(, a(w)ow ? \@@ﬂv J

e This multi-dimensional integral can be simplified by noting
that it depends on w only on the 1-dim projection
\Wand that g restricted to this direction is still a
mnbutloqq W|th mean and variance

i
- \,ua—WMAP P(x \tT (x) "Sno(x) J Y

—
o Hence we have

ws( pcrio.t) = [ o(ag(a)oa
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o
PROBIT APPROXIMATION \J((o\: g W(2] o)t
o

5‘(6\31") k? (;\C‘)
e The integral p(Cil¢.t) = [ o(a)q(a)da can be
approximated by approxmatmg the logistic function by the

probit: o-(a) = \Il@a), where A is obtained by matching
derivatives at zero and is 1° = /8.
o We then use

i ol |

and approximate back to the logistic to get

D(Cil.1) ~ o(x((ré)ua)\d/
(—E:,—ﬁlﬁ

with k(02) = (1 + no2/8)?




