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OPTIMISATION

LAGRANGE MULTIPLIERS

@ Suppose we want to optimise
f(x) subject to the constraint V(%)
g(x)=0.

e g(x) = 0 defines a surface and
Vg(x) is always orthogonal to it.

XA

@ In a point of this surface in which
f(x) is optimal, it must hold that
[VFx) = WVg(x),|i.e. the 7 e g(x) =0
.0 projection of VF(x) on the tangent

L !\l\“"m space of the surface is zero.
- -

At " e We can then optimise the Lagrangian function
_o R .
NI o |Lx) =00 + 29| &
- lkn,o

AN \/ Deriving w.r.t x gives the condition on gradients, deriving
w.r.t A the constraint.
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OPTIMISATION

KARUSH-KUHN-TUCKER CONDITIONS

@ Suppose we want to optimise
f(x) subject to the constraint

(X) = 0 V()
f: R t: t. f. [—z’/jzzlﬂ XA

e If an optimum x satisfies|g(x) > 0\ ¢ :
(inactive constraint), then'//ﬂ Vg(x)

ﬁv?(i) = 0and1 =0, if instead @

~ g(x) = 0 (active constraint), then
[VF(x) = -AVg(x), 1 > 0 because (%) >0 glx) =0
e H
an increase of f cannot bring
inside the feasible region. v

e Inany caseMg(x) = OEfor an optimum point.

(@We can then optimiséthe Lagran function
L(x, ) = f(x) + 2g(x) subject -w X =0
known as the Karush-Kuhn-TuckerK?

e To minimise f(x), we minimise L(x, 1) = f(X) — 1g(x)
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THE DUAL FORMULATION

o The dual formulation of the constrained minimisation

}f*) problem with Lagrangian|L(x, 1) = 7(X) — 3; /l/gj(xyis given
by

2L(1) = inf L(x, Yo o adn,

XeD Powb

A
£ oJ L(aY'is a lower bound on f(x). The dual optimisation
L‘{‘L problem is to maximise, L(1) w@
t e If the original problem isTonvex (single global optimum),
a5 and under regularity conditions on the constraints (e.g.
linear), then the solution of the dual gives exactly the
minimum of the primal.
e For non-convex problems, there can be a/duality gap|
/J ( For quadratic objective functions and linear constralnts the
") A~
dual objective can be computed easily, because
s [OL(X, /l)/axlgives a linear system that can be solvedto
express x as a function of A’'s




SUPPORT VECTOR MACHINES
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KERNEL TRICK FOR CLASSIFI(\ZATION

s

o The trick works similarly as for regression. Consider clasgm")(“J
conditionals p(C1Ix) = o(w' ¢(x)).

o We can make the assumption that W= Zﬁ:1 é}n’my(this
is consistent, as the ML solution will belong to the Space
spanned by ¢(xy)), thus getting

N
/ p(CqIx) = G'[Z ank(X, Xn)]

n=1

where we define the kernel function /k(x, x") = ¢(x)T¢(x’)/
Tk

e We can write also p(C1|x) = o(a’k(x)). The maximum
likelihood solution can be found using the optimisation

scheme introduced before. <
L (X7
| {X\)/ ‘ﬁ]((‘(/ wa
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MAXIMUM MARGIN CLASSIFIERS

o We have 2-class data xp, 5, with f, € {—1,1}. We assume
for the moment that the data is linearly separable in a
feature space after applying the non-linear mapping ¢(x).

e There may be many hyperplanes separating the data. An
effective choice is to select the one WW’
i.e. the smallest distance between the separating
hyperplane and the data points.

e Only closest data points are needed to determine it.

y=1
4=0
y=-1 \

margin
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MAXIMUM MARGIN CLASSIFIERS

o Writely(x) = w’g(x) + b

o The distance between a point and the separatingd;&
hyperplane w’¢ + b is

o As we want to classify correctly all points, it will hold that
fhy(Xn) > 0/ by the choice o@,)encoding.

@ Hence, to find the maximum margin, we need to find w and

b such that: /ﬂ/____{_

p
[” wi mln{tnw ¢(xn) + b}]

@ The solution is defined up to an arbitrary rescaling of w and

b, so we can set to 1 the margin, obtaining the constraint

[tan¢(xn)+bz1, n=1,....N
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MAXIMUM MARGIN CLASSIFIERS

— 1z ¢

o The constraintsW ﬂknown as the canonical _
representation. Points for which equality wolds are
called @ he others

e The maximisation above is equivalent to minimise [Iw][2:

subject to canonical con will be set via the
constraints.
e To solve this quadratic program, we introduce a Langrange

multiplier a,, for each constraint, resulting in the following

Lagrangia’ﬁ/‘
L

L(w. b.) = JIWIP ~ > anltw”o(xa) + b 1]
n=1

which has to be minimised w.r.t w and b, and maximised
w.r.ta.



SVM

THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

e Starting from the Lagrangian L(w, b, a) we compute
derivatives w.r.t. w and b and set them to zero, obtaining
constraints

~(3)- Do)
e By substituting them in the Lagrangian, we obtain the dual
representation

subject to the constraints

/V\Eﬁgig:%ggil n= 1, ey pJ; ﬁg: éintn ::j?—\K
n

o K(Xn,Xm) = ¢(Xn) " ¢(xm) is the kernel function.
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THE DUAL FORMULATION OF THE MAXIMUM MARGIN
PROBLEM

e This optimisation problem can be solved in O(N?®) time. Its
main advantage is that it depends on the kernel, not on
basis functions, hence it can be applied for more general
kernels.

e The prediction for a new point x is obtained by using the
dual formulation of w, giving

4@}




SVM

SPARSITY OF THE SOLUTION

e The optlmlsatlon problem satisfies the KKT conditions:

o This implies that either [thy(xn) = 1] (the vector X is at
minimum distance from the margin) or a, = 0 (it does not
contribute to the predictions).

o Let us indicate with S the set of support vectors.
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DETERMINING b

o From any x, € S, by usingltny(xn) = 1, we can determine

b by solving
tn % amtmk(Xn,Xm)i—F tnb == 1

o To have a more stable solution, one multiplies by ?,7’ uses
t2 = 1, and averages for the different support vectors:

Z[t,, > amtmk(Xn, Xm) 2]

neS meS
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EXAMPLE OF SVM i 2
5 Pl ) = Q*PL— 18% —all /ﬂj

o Example of data linearly separable in the space defined by
the Gaussian kernel function.

@ Sparsity: only support vectors define the maximum margin
hyperplane: moving the other is irrelevant, as far as they
remain on the same side.

Example of synthetic data from
two classes in two dimensions
showing contours of constant | A
y(x) obtained from a support
vector machine having a Gaus-
sian kernel function. Also shown
are the decision boundary, the

margin boundaries, and the sup- X ]
port vectors.
X x
L/ \ j
X

N

b3

X
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SOFT MARGIN SVM

o If class conditionals overlap, then an exact (non-linear)
separation of training data may result in poor

generalisation. It is better to allow some training points to
be misclassified, by relaxing the constraint|t,y(xn) > 1 ’

@ We will do this by introducing N new slack variables &, > 0,
rewriting constraint as|t,y(Xn) > 1 —gn..

e For points correctly classified and
inside the margin, we have &, = 0,
while for other points we have

It follows that
misclassified points will have
while &, = 1 only if a point lies in the
separating hyperplane.

OLE,E;!S an upper bound on/x

i sified training points.
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SOFT MARGIN SVM

&
<
e The primal objective function is modified to penalise they [« X x
number of misclassified points: c|\AY >
N
2
CY ént 5IWI

e Cis aregularisation term: it controls the trade-off between
correct classification of training points and model
complexity. For C — oo, we recover the previous SVM.

e The Lagrangian L(w, b, a, ) is now given by

N N N
1
Can + §||W||'2 - Z an[t-w’ ¢(Xn) + b -1+ &) - ZW@
n-1 n=1 n=1

with magrange multipliers. We omit the KKT
conditions.
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SOFT MARGIN SVM: DUAL FORMULATION

/s
o By taking partial derivatives w.r.t w, b, and &5, we obtain
the dual formulation:

N 1 N N é
— Z an — Z Z anamtntmk(xn, Xm)
n=1

—1 m=1

which has to satisfy the following box constraints

( O<an<C?n_1 N@)

{In the solution, we can have a, = 0 (points inside the
—_—

margin , for which &, = 0), 0 < a, < C (points

\;nargln for which &, = 0), ora, = C (points on the wrong

ide of the marginm!. ~t T
@ b can be determined as for the hard margin case, by]

restricting to support vectors on the margin.

47152
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SVM: COMMENTS

e The quadratic problem is convex, hence has a unique
minimum, but a classic optimisation can be challenging for
large problems (N large). Specialised methods have been
developed, that try to decompose the problem into simpler
pieces. E.g. Sequential minimal optimisation works by
optimising two a,’s at time.

@ SVM are hard to generalise to multi-class problems
(one-versus-the-rest approach being the typical approach)

e SVM do not have a probabilistic interpretation, and some
ad-hoc processing is required.

@ SVM can be quite sensitive to outliers (misclassified points
deeply inside the other’s class region).



