

Livio Lanceri Università di Trieste

Trieste, 29/30-09-2015

29/30-09-2015 L.Lanceri - Complementi di Fisica - Lectures 5, 6 21 **Time-independent Schrödinger equation - 2** $i\hbar \frac{1}{T}$ *T*(*t*) $\frac{\partial T(t)}{\partial t} = E.$ \Rightarrow $i\hbar \frac{\partial T(t)}{\partial t} = ET(t)$ $rac{1}{\psi(x)} \left(-\frac{\hbar^2}{2m} \right)$ $\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x)+U(x)\psi(x)\right)$) $\left| -E_{\cdot} \right| \Rightarrow \left| -\frac{\hbar^2}{2m} \right|$ $\frac{\partial^2}{\partial x^2} \psi(x) + U(x) \psi(x) = E \psi(x)$ $\hat{H} = -\frac{\hbar^2}{2m}$ ariable **^{⁴** Hamiltonian" operator $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x)$
⇔ classical dynamic variable} $Ψ(x,t) = ψ_E(x)e^{-iEt/h}$ Prototype of "eigenvalue equation"
 E: "eigenvalue" $ψ_E$: "eigenfunctio $T(t) = e^{-iEt/\hbar}$ solution of : *ih* $\frac{\partial T(t)}{\partial t}$ $\frac{\partial^2 f(t)}{\partial t} = ET(t)$ $\psi(x) = \psi_E(x)$ solution of : $\overline{\hat{H}\psi_E(x)} = E\psi_E(x)$ ↔ **classical dynamic variable total energy** *K + U E***:** "**eigenvalue**" ψ*E* **:** "**eigenfunction**"

29/30-09-2015 L.Lanceri - Complementi di Fisica - Lectures 5, 6 28 € **Expectation values and uncertainties - 1** • We found the energy "eigenfunctions" and "eigenvalues": what happens if the particle state is described by such an eigenfunction? Rather easy to compute: energy "expectation values" and "uncertainty" No uncertainty! *En* is "certain" $\hat{H}\psi_n(x) = -\frac{\hbar^2}{2m}$ ∂^2 $\frac{\partial}{\partial x^2}\psi_n(x) = E_n\psi_n(x)$ $\psi_n(x) = \sqrt{\frac{2}{a}}$ $\sin \left(\frac{n\pi}{2} \right)$ *a* $\int \frac{n\pi}{x}$ $\left(\frac{n\pi}{a}x\right)$ $E_n = \frac{\pi^2h^2}{2ma^2}n^2$ $\langle \hat{H} \rangle$ = $\int_{0}^{\cdot} \Psi_{n}^{*} (\hat{H} \Psi_{n})$ $\int_a^a \Psi_n^* \left(\hat{H} \Psi_n \right) dx = \int_a^a \Psi_n^* \left(E_n \Psi_n \right)$ 0 $\int^a \Psi_n^*(E_n\Psi_n)dx = E_n$ $\langle \hat{H}^2 \rangle$ = $\int_0^1 \Psi_n^* \Big(\hat{H} \Big(\hat{H} \Psi_n \Big) \Big)$ $\int_{0}^{a} \Psi_{n}^{*} \left(\hat{H} \left(\hat{H} \Psi_{n} \right) \right) dx = \int_{0}^{a} \Psi_{n}^{*} \left(E_{n}^{2} \Psi_{n} \right)$ $\int^a \Psi_n^* \left(E_n^2 \Psi_n \right) dx = E_n^2$ $\sigma_H^2 = \langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2 = E_n^2 - E_n^2 = 0$

The Big Picture (just a hint!)

What is missing? Quantum Mechanics, General Postulates Second Quantization

