

Università di Trieste

Trieste, 29/30-09-2015

Expectation values and uncertainties - 1 $\hat{H}\psi_n(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi_n(x) = E_n\psi_n(x)$ We found the energy "eigenfunctions" and "eigenvalues": what happens if the particle state is $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$ $E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2$ described by such an eigenfunction? $\left\langle \hat{H} \right\rangle = \int_{0}^{a} \Psi_{n}^{*} \left(\hat{H} \Psi_{n} \right) dx = \int_{0}^{a} \Psi_{n}^{*} \left(E_{n} \Psi_{n} \right) dx = E_{n}$ Rather easy to compute: energy "expectation values" $\left\langle \hat{H}^2 \right\rangle = \int_0^a \Psi_n^* \left(\hat{H} \left(\hat{H} \Psi_n \right) \right) dx = \int_0^a \Psi_n^* \left(E_n^2 \Psi_n \right) dx = E_n^2$ and "uncertainty" $\sigma_H^2 = \left\langle \hat{H}^2 \right\rangle - \left\langle \hat{H} \right\rangle^2 = E_n^2 - E_n^2 = 0$ No uncertainty! E_n is "certain" 29/30-09-2015 L.Lanceri - Complementi di Fisica - Lectures 5, 6 28

Wave mechanics: outlook - 2		
 We started "wavefunc 	ess, but still many unanswered que from photons: what about them? What tion": the e.m. field? What is their "Schuis it somehow derived from Maxwell's	is their rödinger' s
	of photoelectric effect, Compton, elect air creation, etc?	ron-
 Photons an is not! 	re intrinsically relativistic, Schrödinger'	s equation
even in its	an be created (emitted) and destroyed (a multi-particle version, the wave functio I describes a fixed number of particles	
however re described experimen	e included in Schrödinger's equation, t emains intrinsically non-relativistic: it ca effects observed at high speed and ene tally we know that also particles like the eated" or "destroyed"! How can we acc	annot rgies: e electron

The Big Picture (just a hint!)

What is missing? Quantum Mechanics, General Postulates Second Quantization

