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In these lectures: contents 
•  After completing the discussions of charge-carrier concentrations 

in semiconductors at equilibrium, now: 

•  Introduction to drift and diffusion 

•  Electrons in a real crystal 
–  Scattering of electrons by: 

•  “defects” (elastic) 
•  “phonons” (inelastic) 
•  electrons ? 

–  Boltzmann transport equation and the “relaxation time” approximation 
–  Electrical conductivity in metals and in semiconductors 
–  Integrals of the Boltzmann equation and drift-diffusion equation for the 

current density J  
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Textbooks: references 
•  Simplified approach to transport phenomena (drift and diffusion): 

–  D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd 
ed., 2003, p.154-180 (5.1 Carrier drift, 5.2 Carrier diffusion, 5.3 Graded 
impurity distribution) 

–  R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall, 
2003, 2nd ed., p. 175-210 (6.1 Drift, 6.2 Diffusion). 

–  S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley & 
Sons, 2nd ed., 1985, p. 30-43 (2.1 Drift, 2.2 Diffusion). 

•  Transport phenomena including the Boltzmann transport 
equation: 
–  H.Ibach, H.Luth, Solid State Physics, 3rd ed., Springer, p.241-250 (9.4 

The Boltzmann Equation and Relaxation Time, 9.5 The Electrical 
Conductivity of Metals), p.409-415 (12.5 Conductivity of 
Semiconductors) 

–  J.M.Feldman, The Physics and Circuit Properties of Transistors, 
J.Wiley&Sons, 1972, p.152-194 (4 The Motion of electrons in Real 
Crystals) 

Introduction 

Transport of charge carriers: 
Drude Model (simplified) 

Drift and Diffusion 
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Drude Model 
•  Conduction electrons: 

–  Ideal classical gas, confined in the crystal 
–  Collisions with the walls and with crystal imperfections 
–  Characteristic mean time τ between collisions taken as a 

constant 

•  Why should it be at least partially OK? 
–  Response of electrons to external forces: classical dynamics, 

provided effective mass is used 
–  Occupation probability of conduction band states for non-

degenerate s.c.: Fermi-Dirac pdf approximated by the classical 
Boltzmann pdf  

•  Weak points 
–  Quantum approach needed for collision probabilities 
–  Mean time: complicated function of energy τ(E) 

Drift 
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Drift current density (Drude model) 
Random thermal motion 
Statistical mechanics:  
equipartition theorem 
for electrons 

Drift combined with thermal motion 
“classical electron”: 
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Drift current density and conductivity 
•  “average” behaviour of 

individual carriers in an 
external electrical field: drift 
velocity, mobility 

•  collective behaviour: current 
density (electrons and holes) 
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Resistivity and conductivity: 

electrons holes 
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Diffusion 
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Diffusion process 
•  Qualitatively:  

–  If  there is a space variation of carrier concentration in the 
semiconductor material: then carriers tend to move 
predominantly from a region of high concentration to a region 
of low concentration  

Microscopic scale: in each section,  
- equal out-flow to +x and -x  
- different in-flow from right and left 
Net effect:  
carrier concentrations tend to level out 
 

Macroscopic scale:  
current densities 
Jn,diff 
Jp,diff 
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Diffusion process (simplified) 
Quantitative flux, for electrons: 

Left to right through plane at  x = 0 
 
 
 
Right to left through the same 

plane 
 
 
 
Net rate of carrier flow at  x = 0 
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Diffusion equations 
•  Diffusion current, electrons (1-dimensional case): 

•  Similarly, holes: 

•  Diffusivity: 

dx
dn

DqFqJ nxn =−=,

Jp,x = q F = − q Dp
dp
dx

if positive gradient  
dn/dx > 0 
then: positive current  
Jn,x > 0 

if positive gradient  
dp/dx > 0 
then: negative current  
Jp,x < 0 
 

Dn ≡ vth,nln = vth,n
2 τ

Dp ≡ vth, plp = vth, p
2 τ

Dimensionally OK; 
a more complete 3-d 
analysis gives a 
numerical coefficient 
(1/3) 
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Drift and Diffusion 

Drift and diffusion are correlated: 
Einstein’s relation 
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Mobility and Diffusivity 
•  Mobility: 

•  Diffusivity: 

•  Einstein’s relations 

µ =
q τ
m*

(For electrons, holes) 
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1
3
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Mobility and diffusivity  
are correlated ! 
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Electrons in real crystals 

Scattering on 
defects, phonons, other electrons 

Boltzmann equation 
Relaxation time approximation 

Electrical conductivity 
Drift-diffusion equation  
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Scattering of electrons 
•  Classical theory (Drude, 1900): 

–  Scattering expected from positive ions in the lattice 
–  Predicted mean free path (1-5 Å) … 
–  Mean free path from data: 2 orders of magnitude higher! 

•  Bloch waves or Bloch packets:  
–  Separable solutions, describe unperturbed electron propagation 

if the periodicity is perfect 
–  Possible origin of perturbations of stationary Bloch waves: 

•  One-electron approximation (non-interacting electrons): 
–  Lattice defects, fixed in time and space 
–  Time-dependent deviations from periodicity: lattice vibrations  

•  Electron-electron collisions 
–  Usually much less probable! (Pauli principle at work) 

•  We will give a qualitative picture of these processes  
–  Quantitative treatment: beyond our scope 
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Scattering: transition probabilities 
•  ingredients of the general method to compute “transition 

probabilities” from “perturbation theory”: 
–  Potential H’  representing the additional interaction as a small 

perturbation of the periodic potential (Hamiltonian H ) 
–  Initial (k ) and final (k’ ) stationary Bloch states for electrons  
–  Recipe to compute the probability wk’k  that the initial state (k ) is 

scattered into the final state (k’ ), from perturbation theory: 

–  These probabilities can be entered in a statistical description of 
how the population of electrons in available states is influenced 
by the scattering process, moving electrons between stationary 
states according to probability wk’k  
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Scattering on  
lattice defects 
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Scattering of electrons on lattice defects - 1 

•  Qualitatively:  
–  Impurities and defects are fixed. For charged impurities: 
–  The electron mass is much smaller than the ion mass 
–  Elastic scattering is expected, with electrons retaining their 

initial energy 

Only the velocity (or k) direction of the 
electron changes:  
the scattering angle depends on the initial 
velocity of the electron: slower electrons  
are scattered on average at larger angles. 
 

b: impact parameter 
θ: scattering angle 
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Scattering of electrons on lattice defects - 2 

Results (semi-quantitative): 
•  scattering angle θ 

–   inversely proportional to: 
•   v0

2
    (squared speed) 

•   b       (impact parameter) 

•  “relaxation” time τR 
–  After a large number of scattering events:  

•  the speed (energy) distribution of electrons does not 
change, but 

•  the direction is randomized 
–  Fast electrons: redistributed slowly  (larger τR ) 
–  Slow electrons: redistributed quickly  (smaller τR ) 
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Scattering on 
phonons 
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Scattering of electrons on “phonons” - 1 
•  What is a “phonon” ? qualitatively:  

–  A “phonon” is a quantum of energy associated to a lattice vibration 
mode, equivalent in many respects to the “photon” as a quantum of 
“electromagnetic vibrations”:  

–  both photons and phonons are bosons, and share similar wave 
properties (Planck and DeBroglie relations) 

•  Electron (fast) and atom (slow) dynamics: 
–  Some physical properties of crystals are determined mainly by the 

relatively slow movement of atoms about their equilibrium position 
(for example: sound velocity and thermal properties like specific 
heat, thermal expansion, thermal conductivity) 

–  Electrical conductivity in metals and semiconductors requires an 
understanding of the interaction between atom dynamics and 
electron dynamics, via “electron scattering on phonons” 

λ
νω

hkphE ==== !!
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Scattering of electrons on “phonons” - 2 
•  To compute the electron-phonon scattering probability: 

(1) From the analysis of vibrations of atomic chains:  
–  derive E-k dispersion relations for phonons, and represent 

them in Brillouin zones (similar to what we have done for 
electrons!); 

–  classify phonons (higher energy: “optical”; lower energy: 
“acoustic”; polarization: “longitudinal”, “transverse”) 

(2) Find the number (or density) of phonons as a function of 
temperature, using Bose statistics (phonons = bosons) 

(3) Understand the conditions that must be satisfied for electron-
phonon scattering to take place 

(4) Evaluate the scattering probability by counting the number of ways 
each scattering event could take place 

 
–  Since the potential representing the interaction of electrons and 

phonons is time-dependent, their scattering is expected to be 
eminently inelastic : the electron changes energy. 
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(1) E(k) for phonons - 1 

Simplest model:  
1-d lattice of equal 
atoms (mass M) 
interacting only with 
nearest neighbours by 
linear springs of 
strength K. 
 
 
In this model: dispersion 
relation E(k): 
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(1) E(k) for phonons - 2 

 
In this model:  
dispersion relation E(k): 
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ω 2 = 2 K
M
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E = !ω
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M d2xn

dt 2 = −K xn − xn +1( ) − xn−1 − xn( )[ ]

xn t( ) = Aei ωt−k⋅nd( ) , where x n = nd is the average position

⇒−Mω 2xn = KAei ωt−k nd( ) eikd + e− ikd − 2[ ] = 2Kxn coskd −1[ ]
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x n
Classical equation for the position of the n-th atom (elastic forces) 
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(1) Lattice model for Ge, Si 

More realistic model,  
approaching the 
properties of Ge, Si 
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⇒ two relations for E(k): 
+ “optical branch” (higher energy) 
- “acoustic branch” (lower energy)  
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(1) Phonon classification 
“real life” for Ge, Si: 
Transverse (T) and 
Longitudinal (L) 
oscillation modes for 
Acoustic branch (A) and  
Optical branch (O)  

at small k: 
Acoustic phonons have 
frequencies characteristic 
of sound waves  
Optical phonons can 
couple via ion dipole 
moments to infrared 
photons: 
hν ≈ (36×10-16 ×1013) eV 
      ≈ 4 meV 

1/2×(1st Brillouin zone) 
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(2) Number of phonons and (3) scattering regimes  
•  Number of phonons = (number of “modes”) × (number of phonons 

in each mode) 
–  Number of “modes” = number of lattice cells in the crystal         

(computation similar to number of “states” for electrons) 
–  Number of phonons in each mode at temperature T:                      

Bose-Einstein probability distribution function (phonons=bosons!) 

•  From an analysis of energy (E) and momentum (k) conservation in 
electron-phonon scattering: 
–  At moderate T and low electric field: scattering rate dominated by 

low-energy acoustic phonons 
–  Larger T and/or electric field: also electrons jumping between band 

minima (“valleys”) contribute (with large change in k) 
–  Large electric fields: electron drift velocity saturation due to 

spontaneous emission of (higher energy) optical phonons 
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(4) electron-phonon scattering rate 
•  From a more detailed analysis (FELD p.181, WANG p.216) 

–  Dominant contribution from acoustic phonons:                   
rate = 1 / (“mean free time” between collisions): 

–  The electron-phonon scattering rate is proportional to the 
temperature T  and to the electron speed ve  

e
c

kTvR ∝=
τ
1
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Conclusion 

•  Comparing the rates at different temperatures  

–  Impurity scattering is dominant at low T 

–  Phonon scattering is dominant at high T 
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Electron-electron scattering 
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Electron-electron scattering 
•  Naively one would expect it to be important, but: 

–  It is elastic, does not change the energy and total momentum 
–  Despite their high density, electrons are partially screened by 

the lattice, and 
–  The Pauli principle allows electrons to scatter only if they can 

find appropriate empty final states !!! 

•  As a result: 
–  Many orders of magnitude less probable than scattering on 

defects and phonons 
–  To a good approximation, in most conditions electron-electron 

scattering can be neglected!  
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The Boltzmann Equation 
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Basic idea 
•  In the statistical approach, all properties of a system (i.e.: 

electrons in a semiconductor crystal) can be deduced, once 
the probability density function f of its components 
(electrons) in the appropriate “phase-space” (position and 
momentum or wave number) is known: 
–  For instance, drift velocity of electrons in a semiconductor: 

computed as the average of the (group) velocities of individual 
electrons, weighted by the pdf f ; 

–  Electrical current density: similar method… (see later) 

•  The first common task is to find the pdf, on- and off-(thermal) 
equilibrium 
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Carriers distribution off-equilibrium ? 
•  What happens when…  

–  … the distribution of carriers, originally in thermal equilibrium, is 
altered by the presence of external forces and by scattering 
processes ? 

 
Thermal equilibrium: 

Fermi distribution 
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Away from equilibrium: 
Boltzmann distribution function 
= probability of finding an electron  

in a small phase space volume 
(dx dy dz dkx dky dkz)  

at position r, momentum k and time t : 
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⇒  Set up a differential continuity equation (Boltzmann equation,  
describing in general all transport phenomena) for the pdf  f   
⇒  Book-keeping of all possible changes with time of the number of  
electrons in a given phase space (d3r d3k ) volume  
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The Boltzmann Equation - 1d version 
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Net particle flux in-out 
phase-space element 
due to velocity 
(change in position) 

Net particle flux in-out 
phase-space element 
due to acceleration 
(change in velocity or k) 

Net particle flux in-out 
phase-space element 
due to scattering 
(change in velocity or k) 

With the additional scattering contribution,  
for electrons in an external electric field: 
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Boltzmann Equation solutions 
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Boltzmann Equation solutions 
•  To understand how this equation works, and the 

meaning of “relaxation time”, let us consider a 
“simple” case with no dependence on the position in 
the crystal, and let us find the solutions for the non-
equilibrium pdf f  in two interesting cases: 

1)  An applied electric field brings the system to a non-
equilibrium stationary condition (steady current) 

2)  The electric field is switched off and the system “relaxes 
back” to the equilibrium state, in a characteristic time.  
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Non-equilibrium stationary solution 
Non-equilibrium 

stationary solution 
 fstat 

Equilibrium: f =
1

1+ e− E−EF( ) kT
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Relaxation to the equilibrium distribution (2) 
At t=0, when the system is in the stationary non-equilibrium  
condition fstat, the external field is switched off (initial condition). 

€ 

∂f
∂t

= −
f − f0
τ

f t = 0( ) = f stat

The Boltzmann equation in the “relaxation approximation” 
is then reduced to, for t > 0: 

Solution: 

€ 

f − f0 = f stat − f0( )e− t τ

The meaning of τ is now clear: it is the characteristic time  
needed by the system to “relax back”  
from the stationary non-equilibrium state to the equilibrium state,  
under the action of all the different scattering processes  
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Relaxation to equilibrium 

Conductivity  
in metals and semiconductors 
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Electrical conductivity - old 
•  In a previous lecture:  

–  we wrote down a relation between carrier drift velocity and 
external electric field, introducing conductivity and mobility 

–  It was based on simple assumptions about not well identified 
scattering processes for electrons, every τ seconds 

–  The original model (Drude, 1900) assumed an ideal electron gas 
with all free electrons contributing to conduction (This point of 
view is in contradiction with the Pauli principle!), in the presence 
of a “frictional” force leading to a constant average drift velocity: 

Drude 
model: 

average 
velocity: 

external field “friction” acceleration 
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Electrical conductivity - new 
•  Let us consider the implications of the new concepts:  

–  Electrons in crystals are a Fermi gas: due to the Pauli principle 
only the electrons close to the Fermi surface can contribute! 

–  The current density can be computed summing the contributions 
of all states in the first Brillouin zone, and assuming for small 
fields the approximate linearized solution to the Boltzmann 
equation just discussed (assume electric field E = Ex) 
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Electrical conductivity in metals - 1 
•  Developing these expressions: 

–  The integral becomes a surface integral at the Fermi 
surface in k-space 

–  Only the properties at the Fermi surface are important 
•  Electron velocity, Relaxation time, Effective mass 

–  The result is (explicit derivation beyond our scope, see 
Ibach p.245-249) 

•  Formally equivalent to the Drude model, but now: 
–  Well defined relaxation time (electrons at the Fermi level) 
–  Effective mass instead of free electron mass 
–  n = total concentration of electrons in the “conduction band” 
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Electrical conductivity in metals - 2 
•  From these expressions: 

•  Correct orders of magnitude! 
•  Correct temperature-dependence of conductivity 

–  Concentration n of carriers in metals: not dependent on T 
–  T-dependence entirely from the relaxation time, evaluated at 

the Fermi energy EF 

( ) ( )
∗∗

≅≅
Ε

=
m
Ee

n
m
Eej FF

x

x τ
µ

τ
σ ,

2

( ) defph
defectsphonons

1111
ρρρ

τττσ
ρ +=⇒+=∝≡ T

phonons contribution: 
approx. linear in T 

defects contribution: 
approx. constant in T At “high” T 
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Electrical conductivity in metals - 3 

( ) defph
defectsphonons

1111
ρρρ

τττσ
ρ +=⇒+=∝≡ T

phonons contribution: 
approx. linear in T 

defects contribution: 
approx. constant in T At “high” T 
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Electrical conductivity in semiconductors - 1 

•  Both electrons in lower conduction band and 
holes in upper valence band contribute: 

The expression for the mobility is obtained (…) averaging 
over the appropriate states at the edges of the 
conduction (electrons) or valence (holes) band 

Qualitatively: performing this computation (…) one obtains: 

  

€ 

! 
j = e nµn + pµp( )

! 
E µ =

e
m∗

τ
! 
k ( )v 2

! 
k ( )

v 2
! 
k ( )

€ 

µ∝τ , 1
τ
∝ v Σ

phonons : v ∝ T , Σph ∝T
defects : v ∝ T , Σdef ∝ v −4

∝T−2

€ 

⇒
phonons : µph ∝T

−3 2

defects : µdef ∝T
3 2

Average  
velocity 

scattering  
“cross-section” 
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T – dependence of mobility in semiconductors  
 
 

Scattering on 
phonons (lattice):  
µph ∝ τph ∝ T-3/2 

 
Scattering on 
defects (impurities):  
µdef ∝ τdef ∝ T3/2 
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Lectures 22-23 – summary - 1 
•  We revisited the properties of electrons, treated as Bloch waves, and 

holes, in a “perfect crystal”: effective mass, currents 

•  The description of electrons in “real” crystals has to take into 
account scattering processes on impurities or defects and on 
phonons (lattice deformations corresponding to vibration modes) 

•  The Boltzmann equation governs the probability distribution function 
for electrons in “phase-space” (position and momentum), when the 
system is brought away from thermal equilibrium (Fermi pdf) 

•  We considered two typical non-equilibrium solutions: steady-state 
and relaxation towards equilibrium, in the relaxation-time 
approximation 
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Lectures 22-23 – summary - 2 
•  The qualitative and quantitative features of electrical conductivity in 

metals and semiconductors (for instance: conductivity, mobility, 
temperature dependence) are well described by considering 
electrons as Bloch waves and computing the relevant average 
quantities (drift velocity, current density etc) over k-space. 

•  Formally, the expressions found for conductivity and mobility are 
similar to those of the classical Drude model; crucial differences are 
the properties of relaxation time (for conductors: computed at the 
Fermi surface!), and the effective mass. 

•  Finally, averaging over k-space the Boltzmann transport equation, 
also for Bloch waves or packets one obtains the “drift-diffusion 
equation” for electric current densities: a detailed derivation predicts 
additional terms with respect to those we already discussed, for 
instance a diffusion term depending on temperature gradient; this 
treatment can be further extended. 
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Lectures 22-23 – summary - 3 
•  The drift-diffusion continuity equation obtained from the 

Boltzmann equation explicitly contains the “Einstein relation” 
between drift and diffusion coefficients, that can be also 
justified in simpler terms 

•  The Boltzmann transport equation is the basis for simulations, 
both in the “averaged mode” (continuity equation for current 
densities), and in a “Monte Carlo” mode (tracing individual 
wave packets). 

•  This second mode is relevant for simulating very small 
devices, where carriers undergo a small number of collisions. 
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Lectures 28-30 - exercises 
•  Exercise 1: From slide 19, figure 4.6: determine the order of 

magnitude of phonon energies in Silicon in the different branches, 
at k = kmax. What is the order of magnitude for kmax in Silicon (1st 
Brillouin zone)? 

•  Exercise 2: Write down the expression of conductivity and 
mobility in the classical Drude model. What changes in these 
expressions in the quantum theory of conductivity for metals? 
And for semiconductors?  

•  Exercise 3: Write down the Boltzmann transport equation and 
the drift-diffusion continuity equation. Discuss qualitatively the 
meaning of each term.  

Back-up slides 

More details  
on the Boltzmann equation 

and the  
drift-diffusion continuity equation 
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Drift-Diffusion 
Continuity Equation 
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From the Boltzmann Equation… 
•  The Boltzmann equation tells us how the density f of electrons in 

phase space (position, momentum) evolves as a function of time: 

•  But we are mainly interested in the electrical current density in real 
space, related to the drift velocity distribution in position-space: 
how do we get it?  Remember that if the pdf f is known, the drift 
velocity should be computed as an average over k-space of the 
group velocity vg: 

•  The recipe is then clear: multiply each term of the Boltzmann eq. by 
vg and integrate over all k-space, to obtain the “continuity equation” 
for electrical current densities 
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∂t
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F 
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⋅
! 
∇ ! k f −
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External force on electrons 
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…continuity equation! 
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Some rather lengthy calculations: 
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+
1
m
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 For electrons (similar for holes): 
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∂
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introducing: 

  

€ 

! 
F n = −q

! 
E 

! 
F p = q

! 
E 

! 
J n = −qn! u n

! 
J p = −qp! u p

µn = qτ n m µp = qτ p m

and multiplying by qτ: 
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Drift-diffusion continuity equation 
 For electrons (similar for holes), if T is uniform: 

  

€ 

! 
J n = qnµn

! 
E + 1

n
kBT
q
! 
∇ ! r n

# 

$ 
% 

& 
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( = qnµn
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q
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Drift Diffusion 
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Dn = µn
kBT
q

Drift 

Diffusion 

€ 

Jx
drift = Jx,n

drift + Jx,p
drift = qnµnE x + qpµpE x

€ 

Jx
diff = Jx,n

diff + Jx,p
diff = qDn

∂n
∂x

− qDp
∂p
∂x

electrons holes 

“Diffusion coefficient”: 

€ 

here :
q = qe

electrons holes 

“Mobility” and “Diffusivity”  
go together…! 
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Boltzmann equation 

General, 3-d 
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The Boltzmann Equation - 1 

  

€ 

t : ! r ,
! 
k 

" t = t + dt : ! 
" r =
! r + ! v dt,

! 
" k =
! 
k + −e( )

! 
Ε dt "

Time 
evolution 
in phase 
space 

Example of kx changing 
because of an external 
field: d(ħkx) = (-eEx)dt 

x changing because of 
velocity: dx = vxdt 

In the absence of scattering: 



Complementi di Fisica - Lecture 22-23 16/17-11-2015 

L.Lanceri - Complementi di Fisica 31 

16/17-11-2015 L.Lanceri - Complementi di Fisica - Lectures 22-23 61 

The Boltzmann Equation - 2 
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=
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∂t

+
! 
∇ ! r f ⋅

! ˙ r +
! 
∇ ! 

k 
f ⋅
! ˙ k = 0

Conservation of the number of particles (electrons): 

Phase-space volume-element: it can be distorted in shape, but 
(Liouville theorem) its volume remains constant in time!  

Boltzmann Equation 
in compact (gradient) notation 
in the absence of scattering 
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The Boltzmann Equation - 3 
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With the additional scattering contribution,  
for electrons in an external electric field: 
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Net particle flux in-out 
phase-space element 
due to velocity 
(change in position) 

Net particle flux in-out 
phase-space element 
due to acceleration 
(change in velocity or k) 

Net particle flux in-out 
phase-space element 
due to scattering 
(change in velocity or k) 
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Boltzmann Equation: interpretation 

z
f

v
y
f

v
x
f

vfv xyxr ∂

∂
−

∂

∂
−

∂

∂
−=∇⋅− !

!!

What is the meaning of the terms containing gradients, for instance: 

Net particle flux (in-out) a phase-space element: consider for example the 
x-projection, for the position part:  Incoming electrons:  

Outgoing electrons:  

Net flux (in-out):  
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k vxdt( )
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! 
k dt =

= −vx
∂f
∂x

dx dy dz d3
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Similar for the other 
projections of position 
and k ! 

Drift-diffusion 
continuity equation 

Derivation  
from the Boltzmann equation 



Complementi di Fisica - Lecture 22-23 16/17-11-2015 

L.Lanceri - Complementi di Fisica 33 

16/17-11-2015 L.Lanceri - Complementi di Fisica - Lectures 22-23 65 

From the Boltzmann Equation… 
•  The continuity equations for the electrical current density in 

semiconductors can be obtained from the Boltzmann 
equation: 

•  Multiplying by the group velocity and integrating over the 
momentum space dkx dky dkz: 

•  One obtains the “continuity 
equation”                           (detailed derivation: see FELD p.
187-194, MOUT p.100-104) 
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Force on electrons 
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16/17-11-2015 L.Lanceri - Complementi di Fisica - Lectures 22-23 66 

…integrals… 
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Boltzmann equation for the pdf f: 

Multiplying by vg, integrating over k-space, and expressing the 
results in terms of the average velocities u and of the 
concentrations n (if you are really interested, hints about integral 
computations are given in the back-up slides) one obtains (next 
slide)… 
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…integrals (1, 2)… 
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Do not depend  
on time  First term: 

Second term: 

Kinetic energy, equipartition theorem: 
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…integrals (3, 4)… 
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Integrating 
by parts  Third term: 

Fourth term: 

average velocity = 0 
at equilibrium  

  

€ 

! 
k f[ ]

−∞

+∞

= 0   

€ 

f d3
! 
k ∫ = 4π 3n



Complementi di Fisica - Lecture 22-23 16/17-11-2015 

L.Lanceri - Complementi di Fisica 35 

16/17-11-2015 L.Lanceri - Complementi di Fisica - Lectures 22-23 69 

…continuity equation! 
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Substituting in: 
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 For electrons (similar for holes): 
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and multiplying by qτ: 
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Drift-diffusion continuity equation 

relaxation time τ is small: 
This new term can be neglected 
if frequency is not too high 
(few hundred MHz) 

 For electrons (similar for holes): 
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Drift Diffusion 

Temperature gradient: 
We did not discuss this before: 
also a temperature gradient  
can drive an electric current! 

 The two familiar terms 
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Other details 
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Scattering of electrons on lattice defects - 2 

•  Quantitative result: scattering angle 
–  From energy and angular momentum conservation (…):     for 

a given “impact parameter b ” and “initial speed v0” of the 
incident particle (see FELD p.157-162, WANG p.214): 

–  The scattering angle is inversely proportional to the square 
of the incident particle’s initial speed v0 , at a given impact 
parameter b, and increases with decreasing b 
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Scattering of electrons on lattice defects - 3 
•  Quantitative result: randomization or “relaxation” time: 

–  After a large number of scattering events:  
•  the speed (energy) distribution of the electron population does 

not change, but 
•  the direction is randomized, for example: 

–  Switch on an external electric field Ex ⇒ average v0x ≠ 0 
–  After switching off Ex ⇒ average vx is brought back to 0 
–  Exponential law: average vx = v0x exp(-t / τR) 

–  Randomization or “relaxation time” (see FELD p.157-162): 

–  Fast electrons are redistributed slowly  (larger τR ) and vice-versa 
–  Speed (scalar): absolute value of velocity (vector)  

€ 

τR ∝
v0
3

log 1+ v0
4bm

2 a2( )

bm ≈ 1 2( )N−1 3

a =
q2

4πεm∗

bm: max. impact parameter 
N: defects concentration 
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The Boltzmann Equation - 1 
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Time 
evolution 
in phase 
space 

Example of kx changing 
because of an external 
field: d(ħkx) = (-eEx)dt 

x changing because of 
velocity: dx = vxdt 

In the absence of scattering: 
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Scattering term & relaxation-time approx. 
Scattering term: in principle computed from scattering probability wkk’ 
and from the pdf f ; the net effect is in general: 
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“relaxation time approximation” 
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k’ → k  k → k’ 

For the scattering to take place (Pauli Principle):  
the initial state must be filled (f ), the final state must be empty (1-f ) 

Assumptions on the effect of collisions:  
restore the local equilibrium described by f0,  
changing f  back to f0 exponentially,         
with a relaxation time of the order                
of the time between collisions 
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Stationary non-equilibrium solution (1) 

0=
∂

∂

t
f(not dep. on position) (stationary) 

Under the influence of an external field, a stationary non-equilibrium  
condition can be reached: in a simple case with f not dependent on position: 
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The Boltzmann equation (1-d version for simplicity) is reduced to: 
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Approximate linearized solution for small fields: 
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Results from the action of the external field E 
and includes the effects of scattering (τ) 

Approximate solution: 
the normal Fermi 
function, computed at 
shifted values of k  
(see next slide) 


