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BAYESIAN LINEAR REGRESSION REVISITED
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@ Bayesian linear regression places a (Gaussian) prior over
the weights vector, and computes the (Gaussian) posterior
distribution over weights.

o What does this mean? Consider linear basis functions. In
this case, the regression line is a random line, with the
property that the output prediction at any point is a
Gaussian random variable

@ This concept can be generalised: taking linear
combinations of basis functions with (Gaussian) random
g? \13 coefficients leads to a (Gaussian) random function
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RANDOM FUNCTIONS TERMINOLOGY
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@ A random function is an infinite collection of random
variables indexed by the argument of the function

@ A popular alternative name is aEtocﬁast/c processs KM o \Y lf;,k

}@ When considering the random function evaluated at a
(finite) set of points, we get a random vector

o The distribution of this random vector is called finite
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IMPORTANT EXERCISE

Let ¢0( ) ., ®m-1(x) be a fixed set of functions, and let
-1fw ~ N(0, /), compute:

o ihe smgle point marginal distribution of f(x) G

@ The two- point marginal distribution of f(x1), f(X2) «_
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THE GRAM MATRIX

e Generalising the exercise to more than two points, we get
that any finite dimensional marginal of this process is
multivariate Gaussian

@ The covariance matrix of this function is given by
evaluating a function of two variables at all possible pairs

@ The function is defined by the set of basis functions

Ko k) = 900700%)

o The covariance matrix is often called Gram matrix and is
(necessarily) symmetric and positive definite

Bayesian prediction in regression then is essentially the
same as computing conditionals for Gaussians (more later)

A
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MAIN LIMITATION OF BAYESIAN REGRESSION l)&-xd\l
XL~ 1¥M %*-\(*\\Ck[) = 7{ \
o P 1%&4&;&) =0
* "7[90

@ Choice of basis functions inevitably impacts what can be
predicted T

@ Suppose one wishes the basis functions to tend to zero as
X — oo,

e Then, necessarily, veryalues will have

predicted outputs near zero with high confidence!

o Ideally, one would want a prior over functions which would
have the same uncertainty everywhere
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FUNCTION SPACE VIEW

@ In order to construct such priors, one possibility would be
to construct a countable sequence of basis functions. We
can partition the full R" in compact sets, and define a finite
number of basis functions supported in each compact set
so that the variance in each point of the state space is a
constant (partition of unity).

e This approach, called the weights space view, is
unpractical, but it demonstrates the existence of truly
infinite dimensional Gaussian Processes.

o In general, it is more useful to take the dual point of view,
and work with kernels rather than with basis functions.
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(e PP o et i

@ A Gaussian Process (GP) /s a stochastic process indexed
by a continuous variable x's.t. all finite dimensional )
marginals are multivariate Gaussian R Fm w__}',:ux\r

e A GP is uniquely defined by its mean and covarianc
, X”UQ‘ functions, denoted by u(x) and k(x, x’):

GP DEFINITION
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@ The covariance function must satisfy some conditions

(Mercer’s theorem), essentially it needs to evaluate to a
symmetric positive definite function for all sets of input
points
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AN EXAMPLE
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Consider a 1-dimensional GP with mean function u(x) = 0, and with

Gaussian covariance function:

k(x,x") =exp

\ output, f(x)

Pesidais

1 0
_§|X_Xr|2 A~ C

The variance at each point x is

k(x, x) = 1. If we consider a test set

X* = Xi,...Xp,then the joint
istribution of f* = (f(x1),...,f(xn)) is

'~ N0, K(X*, X*))eyrm
where K(X*, X*) is the Gram matrix,

Kij = k(xi, X;), which is symmetric and
positive definite.
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T _ .l .
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@ Suppose now to observe the exact value of the GP at N different
points, X = xi,..., Xy, with observations f = f(x1),..., f(xn). A—J

@ Consider also the test pomts X* = Xy,. .. Xn, with function values
f* = (f(x1).. ... f(xn)). (unobserved, to be estimated).

@ The joint prior distribution of f on inputs X and test points X* is

£ (X X K(X, X,)
]~ w(o [5G0 S0)). e
@ If we observe the values at X, then we need to condition on
these values. Hence the conditional\fjﬂs ( & &)
&L\X:,X,f ~ N(K(X., X)W (X, X)"|f, b—’ 1 (2.19)
/’) (X, Xu) — - X)K(X, X)T K (X, X.)).

which is obtained by the standard formula for the conditional of a
Gaussian.

~
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AN EXAMPLE

Consider again the 1-dimensional GP with mean function

u(x) =0, and with Gaussian covariance function:

1
k(x,x') = exp|-5Ix - x|
» X
Y
1
= X5
g0
2
3
-\ N
2
i {
input, x input, x

(a), prior

(b), posterior

13743
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NOISY PREDICTIONS

@ Suppose we cannot observe the values f of a GP at points X,
but a perturbed version of them:

DREE)
where & ~ N(0,02) ~

I
@ The the covariance of observations is’cov(y) =IK(X, X) @
@ The prior between observations X and test points X* is then

RN {f] N N(o, {K(f)g())(( K(X,X.) DO) o)

£, K(X.,X.)

@ Conditioning on observations y, we get 0
Ay 67

£]X,y, X, ~ N(E, cov(f.)), where (2.22)

f. 2 Ef|Xy X.] = K(XMX)[M’W, (2.23)

cov(f,) = K(X,,X.) - K(X,, X)[K(X, X) + 02I] 'K(X,X.). (2.24)
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COMMENTS: LINEAR PREDICTOR

@ For a single point x*, the predictive distribution reads
~s fo AWK + 02Dty | (2.25)
Vifi] = Fx.,x.) — k] (K +021) 7k, (2.26)

where k. = (k(X*,X1), .., k(X*, Xx))

@ It can be seen that the average prediction is a linear combination
of the kernels evaluated on the input points:

-_ N < 5/
f(x*) = Z@j(x*,xi)

(
where @ = (K + a2l Iy | g~
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COMMENTS:LP/OW S

o ltis easy to see that the posterior process fly is again a

Gaussian process, with mean «
5 ElY] :IK()’(, X)(K + o2y
and covariance A/

s R(xX) = k(x.X') = K(x, X)(K + %) TK(X. X))

output, f(x)
o
post. covariance, cov(f(x),f(x’))

-2

-5 0 5 -5 0 5
input, x input, x

(a), posterior (b), posterior covariance
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KERNELS

@ The notion of kernel comes from the theory of integral operators
on a space X with measure u. Areal kernel k : X x X - R
defines an integral operator Tx (applied to integrable f) as:

T, L=l Vel Motz peom
- (TN )= [ KERDIDGty) e

@ A kernel is(posmve semldefmlte if, for aIIOe Lo(X, p):

AN

k(. y) 0Ty Fly)du(x)du(y EX

XxX

@ Equivalently, a kernel is positive (semi)definite if for any
collection of n points {x; | i = 1,..., n}, the Gram matrix K,
Kij =¥(xi,X;) is positive (semi)definite (Mercer’s theorem).

@ The Gram matrix of a symmetric kernel, k(x y) k(y,X), is ‘/
symmetric. .
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EIGENFUNCTIONS

@ An elgenfuncnon ¢ with eigenvalue A of k satisfies
f K(X.Y)6(X)du(X) = 0(y)

@ There can be an infinite number of eigenfunctions, which can be
ordered w.r.t. decreasing eigenvalues and they can be chosen
orthogonal, i.e. such that [ ¢;(X)g;(X)du(X) = 6j

@ A kernel can be decomposed usmg eigenfunctions:

Theorem 4.2 (Mercer’s theorem). Let (X, p) be a finite measure space and
k € Loo(X2,1%) be a kernel such that Ty : La(X,p) — Lo(X, ) is positive
definite (see eq. (4.2)). Let ¢; € Lo(X, ) be the normalized eigenfunctions of
@associated with the eigenvalues \; > 0. Then:

1. the eigenvalues {\;}32, are absolutely summable& ™

2.
fev’
k(x,x") = ZA ¢i(x) 9% (%), (4.37)

A i—1

holds 1? almost everywhere, where the series converges absolutely and
uniformly p? almost everywhere. O



