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BAYESIAN LINEAR REGRESSION REVISITED

Bayesian linear regression places a (Gaussian) prior over
the weights vector, and computes the (Gaussian) posterior
distribution over weights.
What does this mean? Consider linear basis functions. In
this case, the regression line is a random line, with the
property that the output prediction at any point is a
Gaussian random variable
This concept can be generalised: taking linear
combinations of basis functions with (Gaussian) random
coefficients leads to a (Gaussian) random function
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RANDOM FUNCTIONS TERMINOLOGY

A random function is an infinite collection of random
variables indexed by the argument of the function
A popular alternative name is a stochastic process
When considering the random function evaluated at a
(finite) set of points, we get a random vector
The distribution of this random vector is called finite
dimensional marginal
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IMPORTANT EXERCISE

Let �0(x), . . . , �M�1(x) be a fixed set of functions, and let
f (x) =

P
wi�i(x). If w ⇠ N(0, I), compute:

1 The single-point marginal distribution of f (x)
2 The two-point marginal distribution of f (x1), f (x2)
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THE GRAM MATRIX

Generalising the exercise to more than two points, we get
that any finite dimensional marginal of this process is
multivariate Gaussian
The covariance matrix of this function is given by
evaluating a function of two variables at all possible pairs
The function is defined by the set of basis functions

k(xi , xj) = �(xi)
T�(xj)

The covariance matrix is often called Gram matrix and is
(necessarily) symmetric and positive definite
Bayesian prediction in regression then is essentially the
same as computing conditionals for Gaussians (more later)
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MAIN LIMITATION OF BAYESIAN REGRESSION

Choice of basis functions inevitably impacts what can be
predicted
Suppose one wishes the basis functions to tend to zero as
x ! 1
Then, necessarily, very large input values will have
predicted outputs near zero with high confidence!
Ideally, one would want a prior over functions which would
have the same uncertainty everywhere
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FUNCTION SPACE VIEW

In order to construct such priors, one possibility would be
to construct a countable sequence of basis functions. We
can partition the full Rn in compact sets, and define a finite
number of basis functions supported in each compact set
so that the variance in each point of the state space is a
constant (partition of unity).
This approach, called the weights space view, is
unpractical, but it demonstrates the existence of truly
infinite dimensional Gaussian Processes.
In general, it is more useful to take the dual point of view,
and work with kernels rather than with basis functions.
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GP DEFINITION

A Gaussian Process (GP) is a stochastic process indexed
by a continuous variable x s.t. all finite dimensional
marginals are multivariate Gaussian
A GP is uniquely defined by its mean and covariance
functions, denoted by µ(x) and k(x , x 0):

f ⇠ GP(µ, k)$ f = (f (x1), . . . , f (xN)) ⇠ N (µ,K ) ,

µ = (µ(x1), . . . , µ(xN)), K = (k(xi , xj))i ,j

The covariance function must satisfy some conditions
(Mercer’s theorem), essentially it needs to evaluate to a
symmetric positive definite function for all sets of input
points
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AN EXAMPLE

Consider a 1-dimensional GP with mean function µ(x) ⌘ 0, and with
Gaussian covariance function:

k(x , x 0) = exp
"
�1

2
|x � x 0|2

#C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a�ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f� according to the
prior is �

f
f�

�
� N

�
0,

�
K(X, X) K(X, X�)
K(X�, X) K(X�, X�)

��
. (2.18)

If there are n training points and n� test points then K(X, X�) denotes the
n � n� matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X�, X�) and K(X�, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

The variance at each point x is
k(x , x) = 1. If we consider a test set
X ⇤ = x1, . . . xn, then the joint
distribution of f⇤ = (f (x1), . . . , f (xn)) is

f⇤ ⇠ N(0,K (X ⇤,X ⇤))

where K (X ⇤,X ⇤) is the Gram matrix,
Kij = k(xi , xj), which is symmetric and
positive definite.
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NOISE-FREE PREDICTION

Suppose now to observe the exact value of the GP at N different
points, X = x1, . . . , xN , with observations f = f (x1), . . . , f (xN).

Consider also the test points X ⇤ = x1, . . . xn, with function values
f⇤ = (f (x1), . . . , f (xn)) (unobserved, to be estimated).

The joint prior distribution of f on inputs X and test points X ⇤ is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a�ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f� according to the
prior is �

f
f�

�
� N

�
0,

�
K(X, X) K(X, X�)
K(X�, X) K(X�, X�)

��
. (2.18)

If there are n training points and n� test points then K(X, X�) denotes the
n � n� matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X�, X�) and K(X�, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

If we observe the values at X , then we need to condition on
these values. Hence the conditional f⇤|f is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

16 Regression

though this strategy would not be computationally very e�cient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f�|X�, X, f � N

�
K(X�, X)K(X, X)�1f ,

K(X�, X�) � K(X�, X)K(X, X)�1K(X, X�)
�
.

(2.19)

Function values f� (corresponding to test inputs X�) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + �.8

Assuming additive independent identically distributed Gaussian noise � with
variance �2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + �2
n�pq or cov(y) = K(X, X) + �2

nI, (2.20)

where �pq is a Kronecker delta which is one i� p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

�
y
f�

�
� N

�
0,

�
K(X, X) + �2

nI K(X, X�)
K(X�, X) K(X�, X�)

��
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f�|X,y, X� � N
�
f̄�, cov(f�)

�
, where (2.22)

f̄� � E[f�|X,y, X�] = K(X�, X)[K(X, X) + �2
nI]�1y, (2.23)

cov(f�) = K(X�, X�) � K(X�, X)[K(X, X) + �2
nI

��1
K(X, X�). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

which is obtained by the standard formula for the conditional of a
Gaussian.
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AN EXAMPLE

Consider again the 1-dimensional GP with mean function
µ(x) ⌘ 0, and with Gaussian covariance function:

k(x , x 0) = exp
"
�1

2
|x � x 0|2

#
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/� in eq. (2.16) for some positive constant � we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a�ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f� according to the
prior is �

f
f�

�
� N

�
0,

�
K(X, X) K(X, X�)
K(X�, X) K(X�, X�)

��
. (2.18)

If there are n training points and n� test points then K(X, X�) denotes the
n � n� matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X�, X�) and K(X�, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection
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NOISY PREDICTIONS

Suppose we cannot observe the values f of a GP at points X ,
but a perturbed version of them:

y(x) = f (x) + ",

where " ⇠ N(0,�2)

The the covariance of observations is cov(y) = K (X ,X ) + �2I

The prior between observations X and test points X ⇤ is then

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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though this strategy would not be computationally very e�cient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f�|X�, X, f � N

�
K(X�, X)K(X, X)�1f ,

K(X�, X�) � K(X�, X)K(X, X)�1K(X, X�)
�
.

(2.19)

Function values f� (corresponding to test inputs X�) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + �.8

Assuming additive independent identically distributed Gaussian noise � with
variance �2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + �2
n�pq or cov(y) = K(X, X) + �2

nI, (2.20)

where �pq is a Kronecker delta which is one i� p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

�
y
f�

�
� N

�
0,

�
K(X, X) + �2

nI K(X, X�)
K(X�, X) K(X�, X�)

��
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f�|X,y, X� � N
�
f̄�, cov(f�)

�
, where (2.22)

f̄� � E[f�|X,y, X�] = K(X�, X)[K(X, X) + �2
nI]�1y, (2.23)

cov(f�) = K(X�, X�) � K(X�, X)[K(X, X) + �2
nI

��1
K(X, X�). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

Conditioning on observations y, we get
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It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + �.8

Assuming additive independent identically distributed Gaussian noise � with
variance �2

n, the prior on the noisy observations becomes
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where �pq is a Kronecker delta which is one i� p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

�
y
f�

�
� N

�
0,

�
K(X, X) + �2

nI K(X, X�)
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��
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Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression
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�
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�
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K(X, X�). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
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COMMENTS: LINEAR PREDICTOR

For a single point x⇤, the predictive distribution reads

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
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Figure 2.3: Graphical model (chain graph) for a GP for regression. Squares rep-
resent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation yi is conditionally
independent of all other nodes given the corresponding latent variable, fi. Because of
the marginalization property of GPs addition of further inputs, x, latent variables, f ,
and unobserved targets, y�, does not change the distribution of any other variables.

Notice that we now have exact correspondence with the weight space view in
eq. (2.12) when identifying K(C, D) = �(C)��p�(D), where C, D stand for ei-
ther X or X�. For any set of basis functions, we can compute the corresponding correspondence with

weight-space viewcovariance function as k(xp,xq) = �(xp)��p�(xq); conversely, for every (posi-
tive definite) covariance function k, there exists a (possibly infinite) expansion
in terms of basis functions, see section 4.3.

The expressions involving K(X, X), K(X, X�) and K(X�, X�) etc. can look compact notation

rather unwieldy, so we now introduce a compact form of the notation setting
K = K(X, X) and K� = K(X, X�). In the case that there is only one test
point x� we write k(x�) = k� to denote the vector of covariances between the
test point and the n training points. Using this compact notation and for a
single test point x�, equations 2.23 and 2.24 reduce to

f̄� = k�
� (K + �2

nI)�1y, (2.25)

V[f�] = k(x�,x�) � k�
� (K + �2

nI)�1k�. (2.26)

Let us examine the predictive distribution as given by equations 2.25 and 2.26. predictive distribution

Note first that the mean prediction eq. (2.25) is a linear combination of obser-
vations y; this is sometimes referred to as a linear predictor . Another way to linear predictor

look at this equation is to see it as a linear combination of n kernel functions,
each one centered on a training point, by writing

f̄(x�) =
n�

i=1

�ik(xi,x�) (2.27)

where � = (K + �2
nI)�1y. The fact that the mean prediction for f(x�) can be

written as eq. (2.27) despite the fact that the GP can be represented in terms
of a (possibly infinite) number of basis functions is one manifestation of the
representer theorem; see section 6.2 for more on this point. We can understand representer theorem

this result intuitively because although the GP defines a joint Gaussian dis-
tribution over all of the y variables, one for each point in the index set X , for

where k⇤ = (k(x⇤,x1), . . . , k(x⇤,xN))

It can be seen that the average prediction is a linear combination
of the kernels evaluated on the input points:

f̄ (x⇤) =
NX

i=1

↵i k(x⇤,xi)

where ↵ = (K + �2I)�1y.
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COMMENTS: POSTERIOR GP

It is easy to see that the posterior process f |y is again a
Gaussian process, with mean

E[f (x)|y] = K (x,X )(K + �2I)�1y

and covariance

k(x,x0) = k(x,x0) � K (x,X )(K + �2I)�1K (X ,x0)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x�) for the same data for three di�erent values of x�. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x� we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+1)-dimensional
distribution on the observations gives us the desired result. A graphical model
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the di�erence between two terms: the first term K(X�, X�) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y� by addingnoisy predictions

�2
nI to the variance in the expression for cov(f�).

The predictive distribution for the GP model gives more than just pointwisejoint predictions

errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X� denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definitionposterior process

of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b).

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integralmarginal likelihood
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KERNELS

The notion of kernel comes from the theory of integral operators
on a space X with measure µ. A real kernel k : X ⇥ X! R
defines an integral operator Tk (applied to integrable f ) as:

(Tk f )(x) =
Z

X
k(x,y)f (y)dµ(y)

A kernel is positive semidefinite if, for all f 2 L2(X, µ):
Z

X⇥X
k(x,y)f (x)f (y)dµ(x)dµ(y) � 0

Equivalently, a kernel is positive (semi)definite if for any
collection of n points {xi | i = 1, . . . ,n}, the Gram matrix K ,
Kij = l(xi,xj) is positive (semi)definite (Mercer’s theorem).

The Gram matrix of a symmetric kernel, k(x,y) = k(y,x), is
symmetric.
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EIGENFUNCTIONS

An eigenfunction � with eigenvalue � of k satisfies
Z

k(x,y)�(x)dµ(x) = ��(y)

There can be an infinite number of eigenfunctions, which can be
ordered w.r.t. decreasing eigenvalues, and they can be chosen
orthogonal, i.e. such that

R
�i(x)�j(x)dµ(x) = �ij

A kernel can be decomposed using eigenfunctions:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

96 Covariance Functions

4.3 Eigenfunction Analysis of Kernels

We first define eigenvalues and eigenfunctions and discuss Mercer’s theorem
which allows us to express the kernel (under certain conditions) in terms of these
quantities. Section 4.3.1 gives the analytical solution of the eigenproblem for the
SE kernel under a Gaussian measure. Section 4.3.2 discusses how to compute
approximate eigenfunctions numerically for cases where the exact solution is
not known.

It turns out that Gaussian process regression can be viewed as Bayesian
linear regression with a possibly infinite number of basis functions, as discussed
in chapter 2. One possible basis set is the eigenfunctions of the covariance
function. A function �(·) that obeys the integral equation

�
k(x,x�)�(x) dµ(x) = ��(x�), (4.36)

is called an eigenfunction of kernel k with eigenvalue � with respect to measure10eigenvalue,
eigenfunction µ. The two measures of particular interest to us will be (i) Lebesgue measure

over a compact subset C of RD, or (ii) when there is a density p(x) so that
dµ(x) can be written p(x)dx.

In general there are an infinite number of eigenfunctions, which we label
�1(x), �2(x), . . . We assume the ordering is chosen such that �1 � �2 � . . ..
The eigenfunctions are orthogonal with respect to µ and can be chosen to be
normalized so that

�
�i(x)�j(x) dµ(x) = �ij where �ij is the Kronecker delta.

Mercer’s theorem (see, e.g. König, 1986) allows us to express the kernel kMercer’s theorem

in terms of the eigenvalues and eigenfunctions.

Theorem 4.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and
k � L�(X 2, µ2) be a kernel such that Tk : L2(X , µ) � L2(X , µ) is positive
definite (see eq. (4.2)). Let �i � L2(X , µ) be the normalized eigenfunctions of
Tk associated with the eigenvalues �i > 0. Then:

1. the eigenvalues {�i}�
i=1 are absolutely summable

2.

k(x,x�) =
��

i=1

�i�i(x)��
i (x

�), (4.37)

holds µ2 almost everywhere, where the series converges absolutely and
uniformly µ2 almost everywhere. �

This decomposition is just the infinite-dimensional analogue of the diagonaliza-
tion of a Hermitian matrix. Note that the sum may terminate at some value
N � N (i.e. the eigenvalues beyond N are zero), or the sum may be infinite.
We have the following definition [Press et al., 1992, p. 794]

10For further explanation of measure see Appendix A.7.


