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KERNELS

The notion of kernel comes from the theory of integral operators
on a space X with measure µ. A real kernel k : X ⇥ X! R
defines an integral operator Tk (applied to integrable f ) as:

(Tk f )(x) =
Z

X
k(x,y)f (y)dµ(y)

A kernel is positive semidefinite if, for all f 2 L2(X, µ):
Z

X⇥X
k(x,y)f (x)f (y)dµ(x)dµ(y) � 0

Equivalently, a kernel is positive (semi)definite if for any
collection of n points {xi | i = 1, . . . ,n}, the Gram matrix K ,
Kij = l(xi,xj) is positive (semi)definite (Mercer’s theorem).

The Gram matrix of a symmetric kernel, k(x,y) = k(y,x), is
symmetric.
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EIGENFUNCTIONS

An eigenfunction � with eigenvalue � of k satisfies
Z

k(x,y)�(x)dµ(x) = ��(y)

There can be an infinite number of eigenfunctions, which can be
ordered w.r.t. decreasing eigenvalues, and they can be chosen
orthogonal, i.e. such that

R
�i(x)�j(x)dµ(x) = �ij

A kernel can be decomposed using eigenfunctions:
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4.3 Eigenfunction Analysis of Kernels

We first define eigenvalues and eigenfunctions and discuss Mercer’s theorem
which allows us to express the kernel (under certain conditions) in terms of these
quantities. Section 4.3.1 gives the analytical solution of the eigenproblem for the
SE kernel under a Gaussian measure. Section 4.3.2 discusses how to compute
approximate eigenfunctions numerically for cases where the exact solution is
not known.

It turns out that Gaussian process regression can be viewed as Bayesian
linear regression with a possibly infinite number of basis functions, as discussed
in chapter 2. One possible basis set is the eigenfunctions of the covariance
function. A function �(·) that obeys the integral equation

�
k(x,x�)�(x) dµ(x) = ��(x�), (4.36)

is called an eigenfunction of kernel k with eigenvalue � with respect to measure10eigenvalue,
eigenfunction µ. The two measures of particular interest to us will be (i) Lebesgue measure

over a compact subset C of RD, or (ii) when there is a density p(x) so that
dµ(x) can be written p(x)dx.

In general there are an infinite number of eigenfunctions, which we label
�1(x), �2(x), . . . We assume the ordering is chosen such that �1 � �2 � . . ..
The eigenfunctions are orthogonal with respect to µ and can be chosen to be
normalized so that

�
�i(x)�j(x) dµ(x) = �ij where �ij is the Kronecker delta.

Mercer’s theorem (see, e.g. König, 1986) allows us to express the kernel kMercer’s theorem

in terms of the eigenvalues and eigenfunctions.

Theorem 4.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and
k � L�(X 2, µ2) be a kernel such that Tk : L2(X , µ) � L2(X , µ) is positive
definite (see eq. (4.2)). Let �i � L2(X , µ) be the normalized eigenfunctions of
Tk associated with the eigenvalues �i > 0. Then:

1. the eigenvalues {�i}�
i=1 are absolutely summable

2.

k(x,x�) =
��

i=1

�i�i(x)��
i (x

�), (4.37)

holds µ2 almost everywhere, where the series converges absolutely and
uniformly µ2 almost everywhere. �

This decomposition is just the infinite-dimensional analogue of the diagonaliza-
tion of a Hermitian matrix. Note that the sum may terminate at some value
N � N (i.e. the eigenvalues beyond N are zero), or the sum may be infinite.
We have the following definition [Press et al., 1992, p. 794]

10For further explanation of measure see Appendix A.7.
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REPRODUCING KERNEL HILBERT SPACES
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We start with a formal definition of a RKHS, and then describe two specific
bases for a RKHS, firstly through Mercer’s theorem and the eigenfunctions of
k, and secondly through the reproducing kernel map.

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X . Then H is called a reproducing
kernel Hilbert space endowed with an inner product �·, ·�H (and norm �f�H =�

�f, f�H) if there exists a function k : X �X � R with the following properties:

1. for every x, k(x,x�) as a function of x� belongs to H, and

2. k has the reproducing property �f(·), k(·,x)�H = f(x). �reproducing property

See e.g. Schölkopf and Smola [2002] and Wegman [1982]. Note also that as
k(x, ·) and k(x�, ·) are in H we have that �k(x, ·), k(x�, ·)�H = k(x,x�).

The RKHS uniquely determines k, and vice versa, as stated in the following
theorem:

Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let X be an in-
dex set. Then for every positive definite function k(·, ·) on X � X there exists
a unique RKHS, and vice versa. �

The Hilbert space L2 (which has the dot product �f, g�L2 =
�

f(x)g(x)dx)
contains many non-smooth functions. In L2 (which is not a RKHS) the delta
function is the representer of evaluation, i.e. f(x) =

�
f(x�)�(x�x�)dx�. Kernels

are the analogues of delta functions within the smoother RKHS. Note that the
delta function is not itself in L2; in contrast for a RKHS the kernel k is the
representer of evaluation and is itself in the RKHS.

The above description is perhaps rather abstract. For our purposes the key
intuition behind the RKHS formalism is that the squared norm �f�2

H can be
thought of as a generalization to functions of the n-dimensional quadratic form
f�K�1f we have seen in earlier chapters.

Consider a real positive semidefinite kernel k(x,x�) with an eigenfunction
expansion k(x,x�) =

�N
i=1�i�i(x)�i(x�) relative to a measure µ. Recall from

Mercer’s theorem that the eigenfunctions are orthonormal w.r.t. µ, i.e. we have�
�i(x)�j(x) dµ(x) = �ij . We now consider a Hilbert space comprised of linear

combinations of the eigenfunctions, i.e. f(x) =
�N

i=1fi�i(x) with
�N

i=1f
2
i /�i <

�. We assert that the inner product �f, g�H in the Hilbert space betweeninner product
�f, g�H functions f(x) and g(x) =

�N
i=1gi�i(x) is defined as

�f, g�H =
N�

i=1

figi

�i
. (6.1)

Thus this Hilbert space is equipped with a norm �f�H where �f�2
H = �f, f�H =�N

i=1f
2
i /�i. Note that for �f�H to be finite the sequence of coe�cients {fi}

must decay quickly; e�ectively this imposes a smoothness condition on the
space.
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RKHS AND EIGENFUNCTIONS

The functions belonging to the RKHS associated with a kernel k
can be written as a linear combination of the eigenfunctions �j of
k : f (x) =

P
j fj�j(x), with

P
j f 2

j /�j < 1 (this is a smoothness
constraint).

Such functions define an Hilbert space H with inner product
hf ,giH =

P
j

fj gj

�j

This Hilbert space is the RKHS corresponding to kernel k :
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We now need to show that this Hilbert space is the RKHS corresponding to
the kernel k, i.e. that it has the reproducing property. This is easily achieved
as

�f(·), k(·,x)�H =
N�

i=1

fi�i�i(x)

�i
= f(x). (6.2)

Similarly

�k(x, ·), k(x�, ·)�H =
N�

i=1

�i�i(x)�i�i(x�)

�i
= k(x,x�). (6.3)

Notice also that k(x, ·) is in the RKHS as it has norm
�N

i=1(�i�i(x))2/�i =
k(x,x) < �. We have now demonstrated that the Hilbert space comprised of
linear combinations of the eigenfunctions with the restriction

�N
i=1f

2
i /�i < �

fulfils the two conditions given in Definition 6.1. As there is a unique RKHS
associated with k(·, ·), this Hilbert space must be that RKHS.

The advantage of the abstract formulation of the RKHS is that the eigenbasis
will change as we use di�erent measures µ in Mercer’s theorem. However, the
RKHS norm is in fact solely a property of the kernel and is invariant under
this change of measure. This can be seen from the fact that the proof of the
RKHS properties above is not dependent on the measure; see also Kailath
[1971, sec. II.B]. A finite-dimensional example of this measure invariance is
explored in exercise 6.7.1.

Notice the analogy between the RKHS norm �f�2
H = �f, f�H =

�N
i=1f

2
i /�i

and the quadratic form f�K�1f ; if we express K and f in terms of the eigen-
vectors of K we obtain exactly the same form (but the sum has only n terms if
f has length n).

If we sample the coe�cients fi in the eigenexpansion f(x) =
�N

i=1fi�i(x)
from N (0, �i) then

E[�f�2
H] =

N�

i=1

E[f2
i ]

�i
=

N�

i=1

1. (6.4)

Thus if N is infinite the sample functions are not in H (with probability 1)
as the expected value of the RKHS norm is infinite; see Wahba [1990, p. 5]
and Kailath [1971, sec. II.B] for further details. However, note that although
sample functions of this Gaussian process are not in H, the posterior mean after
observing some data will lie in the RKHS, due to the smoothing properties of
averaging.

Another view of the RKHS can be obtained from the reproducing kernel
map construction. We consider the space of functions f defined as

�
f(x) =

n�

i=1

�ik(x,xi) : n � N, xi � X , �i � R
�

. (6.5)

Furthermore, the norm of k(x, ·) is k(x,x) < 1: it belongs to H.
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KERNEL FUNCTIONS: CLASSIFICATION

A kernel k(x,y) can be classified w.r.t dependence on x and y.

Stationary kernel: it is a function of x � y (invariant to
translations).

Isotropic kernel: it is a function of kx � yk (invariant to rigid
motions).

Dot-product kernel: it is a function of xT y (invariant w.r.t.
rotations with respect to the origin).

Continuity properties of the GPs and kernels k .

Continuity in mean square of a process f at x: for each xk ! x, it
holds that E[kf (xk) � f (x)k2]! 0.

A process is continuous in m.s. at x iff k is continuous at k(x,x).
For stationary kernels, k must be continuous at zero.

If k is 2k th differentiable, than f is k th differentiable (in m.s.).
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GAUSSIAN KERNEL

The Gaussian or Squared Exponential kernel is defined by

k(x,y) = ↵exp
"
�kx � yk2
�2

#

↵ is called the amplitude, it regulates the magnitude of variance
at each point x. �, instead, is the characteristic length-scale,
which regulates the speed of decay of the correlation between
points.

The Gaussian kernel is isotropic and among the most used in
computational statistics, and its RKHS is dense in the space of
continuous functions over a compact set in Rn.

The Automatic-Relevance Detection Gaussian Kernel
generalises the GK as

k(x,y) = ↵exp

2
66666664�
X

j

|xj � yj |2
�2

j

3
77777775
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MATÉRN KERNEL

The Matérn kernel is defined by
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The SE kernel is infinitely divisible in that (k(r))t is a valid kernel for allinfinitely divisible

t > 0; the e�ect of raising k to the power of t is simply to rescale �.

We now digress briefly, to show that the squared exponential covariance
function can also be obtained by expanding the input x into a feature space
defined by Gaussian-shaped basis functions centered densely in x-space. Forinfinite network

construction for SE
covariance function

simplicity of exposition we consider scalar inputs with basis functions

�c(x) = exp
�
� (x � c)2

2�2
�
, (4.10)

where c denotes the centre of the basis function. From sections 2.1 and 2.2 we
recall that with a Gaussian prior on the weights w � N (0, �2

pI), this gives rise
to a GP with covariance function

k(xp, xq) = �2
p

N�

c=1

�c(xp)�c(xq). (4.11)

Now, allowing an infinite number of basis functions centered everywhere on an
interval (and scaling down the variance of the prior on the weights with the
number of basis functions) we obtain the limit

lim
N��

�2
p

N

N�

c=1

�c(xp)�c(xq) = �2
p

� cmax

cmin

�c(xp)�c(xq)dc. (4.12)

Plugging in the Gaussian-shaped basis functions eq. (4.10) and letting the in-
tegration limits go to infinity we obtain

k(xp, xq) = �2
p

� �

��
exp

�
� (xp � c)2

2�2
�
exp

�
� (xq � c)2

2�2
�
dc

=
�

���2
p exp

�
� (xp � xq)2

2(
�

2�)2
�
,

(4.13)

which we recognize as a squared exponential covariance function with a
�

2
times longer length-scale. The derivation is adapted from MacKay [1998]. It
is straightforward to generalize this construction to multivariate x. See also
eq. (4.30) for a similar construction where the centres of the basis functions are
sampled from a Gaussian distribution; the constructions are equivalent when
the variance of this Gaussian tends to infinity.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given byMatérn class

kMatern(r) =
21��

�(�)

��
2�r

�

��
K�

��
2�r

�

�
, (4.14)

with positive parameters � and �, where K� is a modified Bessel function
[Abramowitz and Stegun, 1965, sec. 9.6]. This covariance function has a spectral
density

S(s) =
2D�D/2�(� + D/2)(2�)�

�(�)�2�

�2�

�2
+ 4�2s2

��(�+D/2)
(4.15)

If ⌫ > h, then the process with Matérn kernel is h times
differentiable (in m.s.) For ⌫! 1, then the MK becomes the GK.
Examples of Matern Kernel:
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di�erent values of
�, with � = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for � � � we obtain
the SE covariance function e�r2/2�2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di�erentiable if and only if � > k. The Matérn covariance
functions become especially simple when � is half-integer: � = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k�=p+1/2(r) = exp
�
�

�
2�r

�

� �(p + 1)

�(2p + 1)

p�

i=0

(p + i)!

i!(p � i)!

��
8�r

�

�p�i
. (4.16)

It is possible that the most interesting cases for machine learning are � = 3/2
and � = 5/2, for which

k�=3/2(r) =
�
1 +

�
3r

�

�
exp

�
�

�
3r

�

�
,

k�=5/2(r) =
�
1 +

�
5r

�
+

5r2

3�2

�
exp

�
�

�
5r

�

�
,

(4.17)

since for � = 1/2 the process becomes very rough (see below), and for � � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of � � 7/2 (or even to distinguish between finite
values of � and � � �, the smooth squared exponential, in this case). For
example a value of � = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting � = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/�). The corresponding process
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MATÉRN AND EXPONENTIAL KERNEL

Typical choice for MK is ⌫ = p + 1/2, giving
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in D dimensions. Note that the scaling is chosen so that for � � � we obtain
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f(x) is k-times MS di�erentiable if and only if � > k. The Matérn covariance
functions become especially simple when � is half-integer: � = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k�=p+1/2(r) = exp
�
�

�
2�r

�

� �(p + 1)

�(2p + 1)

p�

i=0

(p + i)!

i!(p � i)!

��
8�r

�

�p�i
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It is possible that the most interesting cases for machine learning are � = 3/2
and � = 5/2, for which

k�=3/2(r) =
�
1 +

�
3r

�

�
exp

�
�

�
3r

�

�
,

k�=5/2(r) =
�
1 +

�
5r

�
+

5r2

3�2

�
exp

�
�

�
5r

�

�
,

(4.17)

since for � = 1/2 the process becomes very rough (see below), and for � � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of � � 7/2 (or even to distinguish between finite
values of � and � � �, the smooth squared exponential, in this case). For
example a value of � = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting � = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/�). The corresponding process

for ⌫ = 1/2, we get the Exponential Kernel

k(x,y) = exp [kx � yk/�]

which in one dimension corresponds to the Ornstein-Ulembeck
process (the model of velocity of a particle undergoing Brownian
motion), which is continuous but nowhere differentiable.
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POLYNOMIAL KERNEL

Simple dot-products kernels are the polynomial kernel, for p
integer:

k(x,x0) = (xT x0)p

This corresponds to a kernel obtained by a set of polynomial
basis functions:
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by concatenating a constant. We write

k(x,x�) = (x · x�)p =
� D�

d=1

xdx
�
d

�p
=

� D�

d1=1

xd1x
�
d1

�
· · ·

� D�

dp=1

xdpx�
dp

�

=
D�

d1=1

· · ·
D�

dp=1

(xd1 · · · xdp)(x�
d1

· · · x�
dp

) � �(x) · �(x�). (4.23)

Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1 · · · xdp is unimportant, e.g. for
p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

�D
i=1 mi = p. Thus

�m(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD
D . The degeneracy of �m(x) is p!

m1!...mD! (where as usual we define
0! = 1), giving the feature map

�m(x) =

�
p!

m1! · · · mD!
xm1

1 · · · xmD
D . (4.24)

For example, for p = 2 in D = 2, we have �(x) = (x2
1, x

2
2,

�
2x1x2)�. Dot-

product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved e�ective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [�1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b +
NH�

j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of

The basis functions �m are given by all monomials of degree p,
i.e.
P

mj = p:
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Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1 · · · xdp is unimportant, e.g. for
p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

�D
i=1 mi = p. Thus

�m(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD
D . The degeneracy of �m(x) is p!

m1!...mD! (where as usual we define
0! = 1), giving the feature map

�m(x) =

�
p!

m1! · · · mD!
xm1

1 · · · xmD
D . (4.24)

For example, for p = 2 in D = 2, we have �(x) = (x2
1, x

2
2,

�
2x1x2)�. Dot-

product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved e�ective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [�1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b +
NH�

j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of
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COMPOSITION OF KERNELS

Kernels can be composed according to certain rules, giving rise to
new kernels.

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x�) and k2(x,x�), the following new kernels will also
be valid:

k(x,x�) = ck1(x,x�) (6.13)
k(x,x�) = f(x)k1(x,x�)f(x�) (6.14)
k(x,x�) = q (k1(x,x�)) (6.15)
k(x,x�) = exp (k1(x,x�)) (6.16)
k(x,x�) = k1(x,x�) + k2(x,x�) (6.17)
k(x,x�) = k1(x,x�)k2(x,x�) (6.18)
k(x,x�) = k3 (�(x), �(x�)) (6.19)
k(x,x�) = xTAx� (6.20)
k(x,x�) = ka(xa,x�

a) + kb(xb,x
�
b) (6.21)

k(x,x�) = ka(xa,x�
a)kb(xb,x

�
b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, �(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x�) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x� according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x�) =
�
xTx��2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x�) =�
xTx� + c

�2
with c > 0, then the corresponding feature mapping �(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x�) =
�
xTx��M

contains all monomials of order M . For instance, if x and x� are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x�) =

�
xTx� + c

�M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x�) = exp
�
��x � x��2/2�2

�
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is
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MARGINAL LIKELIHOOD

In order to do model selection (e.g. between different
kernels) we can use the marginal likelihood.
This can be used also to set hyperparameters of the kernel
functions, like the amplitude or the lengthscale of the
Gaussian kernel.
For GP, we can compute the marginal likelihood
analytically:

L = log p(y|X ) = log
Z

p(f|X )p(y|f,X )df

which gives

L = �1
2

yT (K + �2I)�1y � 1
2

log |(K + �2I)| � N
2

log 2⇡

This follows also by observing that y ⇠ N(0,K + �2I).
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MARGINAL LIKELIHOOD

The log marginal likelihood

L = �1
2

yT (K + �2I)�1y � 1
2

log |(K + �2I)| � N
2

log 2⇡

has three terms
�1

2yT (K + �2I)�1y is the data fit.

�1
2 log |(K + �2I)| is a complexity penalty.

�N
2 log 2⇡ is a constant.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (�, �f , �n) = (1, 1, 0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter � (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for di�erent sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.

and we re-state the result here

log p(y|X, �) = �1

2
y�K�1

y y � 1

2
log |Ky| � n

2
log 2�, (5.8)

where Ky = Kf + �2
nI is the covariance matrix for the noisy targets y (and Kf

is the covariance matrix for the noise-free latent f), and we now explicitly write
the marginal likelihood conditioned on the hyperparameters (the parameters of
the covariance function) �. From this perspective it becomes clear why we call
eq. (5.8) the log marginal likelihood, since it is obtained through marginaliza- marginal likelihood

tion over the latent function. Otherwise, if one thinks entirely in terms of the
function-space view, the term “marginal” may appear a bit mysterious, and
similarly the “hyper” from the � parameters of the covariance function.4

The three terms of the marginal likelihood in eq. (5.8) have readily inter- interpretation

pretable rôles: the only term involving the observed targets is the data-fit
�y�K�1

y y/2; log |Ky|/2 is the complexity penalty depending only on the co-
variance function and the inputs and n log(2�)/2 is a normalization constant.
In Figure 5.3(a) we illustrate this breakdown of the log marginal likelihood.
The data-fit decreases monotonically with the length-scale, since the model be-
comes less and less flexible. The negative complexity penalty increases with the
length-scale, because the model gets less complex with growing length-scale.
The marginal likelihood itself peaks at a value close to 1. For length-scales
somewhat longer than 1, the marginal likelihood decreases rapidly (note the

4Another reason that we like to stick to the term “marginal likelihood” is that it is the
likelihood of a non-parametric model, i.e. a model which requires access to all the training
data when making predictions; this contrasts the situation for a parametric model, which
“absorbs” the information from the training data into its (posterior) parameter (distribution).
This di�erence makes the two “likelihoods” behave quite di�erently as a function of �.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
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Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to �2

f = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale � = 0.4 and another for long length-scale and noise
�2

n = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for di�erent numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seekmarginal likelihood
gradient the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.

Using eq. (5.8) and eq. (A.14-A.15) we obtain

�

��j
log p(y|X, �) =

1

2
y�K�1 �K

��j
K�1y � 1

2
tr

�
K�1 �K

��j

�

=
1

2
tr

�
(��� � K�1)

�K

��j

�
where � = K�1y.

(5.9)

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n3) for inversion of an n by
n matrix. Once K�1 is known, the computation of the derivatives in eq. (5.9)
requires only time O(n2) per hyperparameter.5 Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data coming
from a sample of
a 1dim GP with
Gaussian kernel
and
hyperparameters
� = 1, ↵ = 1,
� = 0.1.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.5: (a) Data is generated from a GP with hyperparameters (�, �f , �n) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale �, the signal variance �2

f

and the noise variance �2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the e�ects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (�, �f , �n) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.
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HYPERPARAMETER OPTIMISATION

In order to set the hyperparameters, we can maximise the
log marginal likelihood:

L = �1
2

yT (K + �2I)�1y � 1
2

log |(K + �2I)| � N
2

log 2⇡

Its derivative w.r.t. an hyperparameter ✓ is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to �2

f = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale � = 0.4 and another for long length-scale and noise
�2

n = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for di�erent numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seekmarginal likelihood
gradient the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.

Using eq. (5.8) and eq. (A.14-A.15) we obtain

�

��j
log p(y|X, �) =

1

2
y�K�1 �K

��j
K�1y � 1

2
tr

�
K�1 �K

��j

�

=
1

2
tr

�
(��� � K�1)

�K

��j

�
where � = K�1y.

(5.9)

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n3) for inversion of an n by
n matrix. Once K�1 is known, the computation of the derivatives in eq. (5.9)
requires only time O(n2) per hyperparameter.5 Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.

The derivative is relatively cheap to compute, once we
invert the matrix K . Hence we can use gradient methods to
optimise L.
Purely Bayesian methods (giving a prior on
hyperparameters) are complicated by the in general
complex functional form (no conjugate prior).
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NON-CONSTANT PRIOR MEAN

The typical choice for the prior mean is the zero function. Data is
processed by subtracting the sample mean from the
observations.

As an alternative, one can either use a deterministic function for
the priori mean (and subtract if from data, adding it back to
predictions), or use a generalised linear model for the prior
mean:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coe�cients, �, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)��, where f(x) � GP
�
0, k(x,x�)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � � N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) � GP
�
h(x)�b, k(x,x�) + h(x)�Bh(x�)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X�) = H�
� �̄ + K�

� K�1
y (y � H��̄) = f̄(X�) + R��̄,

cov(g�) = cov(f�) + R�(B�1 + HK�1
y H�)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H� all test)
cases, �̄ = (B�1 + HK�1

y H�)�1(HK�1
y y + B�1b), and R = H� � HK�1

y K�.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 � O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X�) = f̄(X�) + R��̄,

cov(g�) = cov(f�) + R�(HK�1
y H�)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H�)�1HK�1

y y. Notice that predictions under
the limit B�1 � O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a�ecting its condition
number.

If we put a Gaussian prior over coefficients �, we can treat them
in a Bayesian way, and get a GP:
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NON-CONSTANT PRIOR MEAN

In this way, we obtain the following predictive distribution at a
point x⇤:
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g(x) = f(x) + h(x)��, where f(x) � GP
�
0, k(x,x�)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � � N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) � GP
�
h(x)�b, k(x,x�) + h(x)�Bh(x�)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X�) = H�
� �̄ + K�

� K�1
y (y � H��̄) = f̄(X�) + R��̄,

cov(g�) = cov(f�) + R�(B�1 + HK�1
y H�)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H� all test)
cases, �̄ = (B�1 + HK�1

y H�)�1(HK�1
y y + B�1b), and R = H� � HK�1

y K�.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 � O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X�) = f̄(X�) + R��̄,

cov(g�) = cov(f�) + R�(HK�1
y H�)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H�)�1HK�1

y y. Notice that predictions under
the limit B�1 � O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a�ecting its condition
number.

The new predictive distribution has mean HT
⇤ �̄ (from the linear

model) plus a term coming from the GP model of residuals.
Taking a flat prior (limit for B�1! matrix of zeros):
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FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

The idea behind GP classification is to extend logistic (or probit)
regression, by assuming the following model for the class
conditionals:

⇡(x) = p(C1|x) = �(f (x)) where f ⇠ GP(µ, k)

f is often call latent function. Note that ⇡ is a random function, as
f is.
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Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability �(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in �, in
particular for test cases �(x�). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f�|X,y,x�) =

�
p(f�|X,x�, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f� to produce a
probabilistic prediction

�̄� � p(y� =+1|X,y,x�) =

�
�(f�)p(f�|X,y,x�) df�. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

Let X ,y the observations, with yi 2 {0,1}.
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GP CLASSIFICATION

f is often call latent or nuisance function. It is not observed
directly. We only observe at a point x the realisation of a
Bernoulli random variable with probability ⇡(x).

Inference at a test point x⇤ is done, as usual in a Bayesian
setting, in two steps:

1 Compute the posterior f ⇤ of f at the prediction point x⇤.
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8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

with p(f|X ,y) = p(y|f)p(f|X )/p(y/X ) by Bayes theorem.
2 Compute the predictive distribution at x⇤
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