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KERNELS

@ The notion of kernel comes from the theory of integral operators <——
on a space X with measure u. Areal kernel k : X x X - R
defines an integral operator Tx (applied to integrable f) as:

T, L=l Vel Motz peom
- (TN )= [ KERDIDGty) e

@ A kernel is(posmve semldefmlte if, for aIIOe Lo(X, p):

AN

k(. y) 0Ty Fly)du(x)du(y EX

XxX

@ Equivalently, a kernel is positive (semi)definite if for any
collection of n points {x; | i = 1,..., n}, the Gram matrix K,
Kij =¥(xi,X;) is positive (semi)definite (Mercer’s theorem).

@ The Gram matrix of a symmetric kernel, k(x y) k(y,X), is ‘/
symmetric. .
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EIGENFUNCTIONS

@ An elgenfuncnon ¢ with eigenvalue A of k satisfies
(Twd (gfk (X Y)$(X)du(x) = 26(y)

@ There can be an infinite number of e|genfunct|ons, which can be
ordered w.r.t. decreasing eigenvalues and they can be chosen
orthogonal, i.e. such that [ ¢;(X)g;(X)du(X) = 6j

—. @ A kernel can be decomposed usmg eigenfunctions: 3
) ] [ ‘:l)l' (kJJ &\
Theorem 4.2 (Mercer’s theorem). Let (X, p) be a finite measure space and e /A =1
k € Loo(X2, %) be a kernel such that Ty : La(X,p) — Lo(X, ) is positive
definite (see eq. (4.2)). Let ¢; € Lo(X, 1) be the normalized eigenfunctions o,
Wocmted with the eigenvalues Ai > 0. Then:

~S 1. the eigenvalues {\;}52, are absolutely summableé& N
2.

—

fe’
”*L k(x,x') = ZA 6i(x) 6 (%), (4.37)

i=1

holds 1? almost everywhere, where the series converges absolutely and
uniformly p? almost everywhere. O
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REPRODUCING KERNEL HILBERT SPACES

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X. Then H is called a reproducing
kernel Hilbert space endowed with an inner product {-,-)% (and norm ||f|n =
VS, ) if there exists a function k : X x X — R with the following properties:

1. for every x, k(x,x’) as a function of x" belongs to H, and

N
~y 2. k has the reproducing property (f(-), k(*,x))n =\f(x). O

See e.g. Scholkopl and Smola [2002] and Wegman [1982]. Note also that as
~49 k(x,-) and k(x',-) are in H we have that (k(x,-), k(x',"))n = k(x,x).
The RKHS uniquely determines &, and vice versa, as stated in the following
theorem:

dex set. Then for every positive definite function[k(-"J jon X x X there exists

[ Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let X be an in-
a unique RKHS, and vice versa. O
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RKHS AND EIGENFUNCTIONS

@ The functions belonging to the RKHS associated with a kernel k
can be written as a linear combination of the eigenfunctions ¢; of

f(x) Z figi(X), with\ 3 f2//l/ (this is a smoothness

@ Such functions define an Hilbert space H with inner product

@ This Hilbert space is the\RKHS corresponding to kernel k:

e

L
nT ()RR = Zf”lf:( ) — f). (62)

@ Furthermore, the norm of'k(x,-) is(k(x, x) 4 oo: it belongs td@
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KERNEL FUNCTIONS: CLASSIFICATION

A kernel k(x,y) can be classified w.r.t dependence on x and y.

@ Stationary kernel: it is a function of x — y (invariant to .
translations).

@Isotropic kernel: it is a function of ||x — y|| (invariant to rigid
motions).

@ Dot-product kernel: it is a function of@nvariant w.r.t.
rotations with respect to the origin).

Continuity properties of the GPs and kernels k.
AN

@ Continuity in mean square of a process f at x: for each xx — X, it
holds that E[||f(xk) — f(x)II?] — O.

@ A process is continuous in m.s. at x iff k is continuous at k(x, x).
For stationary kernels, k must be continuous at zero.

lg pr?()s 2kth differentiable, than fﬁis kth differentiable (in m.s.).

1 |
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GAUSSIAN KERNEL %/k/
@ The Gaussian or Squared Exponential kernel is defined by

lx - yllz] 4—

\—-‘
K- L”)(—J‘all) k(x, y) xp

(M @ « is called the amplitude, it regulates the magnitude of variance
at each point x. 4, instead, is the characteristic length-scale,
which regulates the speed of decay of the correlation between

z
Qc_’nl/”\/ points.
5 @ The Gaussian kernel is isotropic and among the most used in

computational statistics, and its RKHS is dense in the space of

- continuous functions over 4 compac i IE SN

qUN\d‘EﬂQkL(\‘/’

@ The Automatic-Relevance Detection Gaussian Kernel
generalises the GK as

R
k(x,y) = aexp [—Z % — Y]

0,
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MATERN KERNEL

r
@ The Matérn kernel is defined by ~N: o~ \]D"LN
VU ’Vh‘\ 1
vESS /
J 1-v v o~
5/‘}" ~-7klvlatern(r) = f-\ I/)( QZVT) Ky‘( \/37r>7 (414)

with positive parameter nd(?, where K, is a modified Bessel function

e TS0l
o m !then the process with Matérn kernel is h times

able (in m.s.) For v — oo, then the MK becomes the,GK.
o Examples of Matern Kernel:

covariance, k(r)
output, f(x)

1 2 0
input distance, r input, x

(a) (b)
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MATERN AND EXPONENTIAL KERNEL

@ Typical choice for MK is|v = p + 1/2,|giving
Y

P

A4 r . &
i B 2ury T'(p+1) (p+1)! 8ur\p—i
Fu=ptaya(r) = e"p(f [ )F(2p+l) Zoi!(pfi)!< [ ) - (416)
- -
It is possible that the most interesting cases for machine learning are v = 3/2
and v = 5/2, for which S
N~

\ busar) = (14 \/egr) exp (- @) TS (4.17)
kysya(r) = (1 + ‘/Er + ‘;;2) exp (, @)c,—

° fo@ we get the Exponential Kernel
|l
| k(x.y)  oxp i Bicel

which in one.dimension corresponds to thel Ornstein-Ulembeck /

process (the model of velocity of a particle undergoing Browniane/
motion), which is continuous but nowhere differentiable.
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POLYNOMIAL KERNEL

o Simple dot-products kernels are the polynomial kernel, for@
integer:

@ This corresponds to a kernel obtained by a set of polynomial
basis functions:

D

k(x,x') = (x-x')? = (Za}ﬂ,’l)p = (dizl 14@%)"'(% xdpa:’dp)

d=1

D D
=D (e wa) @l ) 2 |o(x) {

di=1  d,=1 —

S
x\
N
—
=
o
<
N

@ The basis functions ¢, are given by all monomials of degree p,
i.e. Y m=p: o — -

p! my . mp
— " 2P 4.24
myl---mp! ™! D ( )
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COMPOSITION OF KERNELS

Kernels can be composed according to certain rules, giving rise to
new kernels.

Techniques for Constructing New Kernels.

Given valid kernels k; (x, x) and ko (x, x’), the following new kernels will also

be valid:
k(x,x') = cki(x,x) (6.13)
k(x,x') = fx)kxx)f(x) Sn (6.14)
k(x,x) = qki(x,%X)) < (6.15)
\_/ \/ k(x,x') = exp(ki(x,x)) o (6.16)
L k(x,x") = ki(x,x)+ ka(x,x) &~ (6.17)
Yl St 7 \) k(x,x) = ki(x,x)k(x,x") G- (6.18)
A b)) = k666 (6.19)
k(x,x) = xTAx <~ (6.20)
k(x,x') = ka(xa,%5) + ko(x0,%3) |7 (6.21)
k(x,x) = ko(Xq,X})kp(xp,X}) (6.22)
where ¢ > 0 is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-

ative coefficients, ¢(x) is a function from x to RM, ks(-, -) is a valid kernel in
RM, A is a symmetric positive semidefinite matrix, x, and x;, are variables (not
necessarily disjoint) with x = (X, Xp), and k, and k;, are valid kernel functions
over their respective spaces.
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MARGINAL LIKELIHOOD

o In order to do model selection (e.g. between different
kernels) we can use the marginal likelihood.

@ This can be used also to set hyperparameters of the kernel
functions, like the amplitude or the lengthscale of the
Gaussian kernel.

o For GP, we can compute the marginal likelihood
analytically:

which gives J

N
L= —%yT(K + 02Ny - % log|(K + o®1)| - 5 log2r
/——’mﬂ
e This follows also by observing thaty ~ N (0, K + o21). >
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MARGINAL LIKELIHOOD

Nk

The log marginal likelihood

L= —%yT(K + o2y - % log (K + o®1)] - g log 27
_——
P

has three terms
1 1) .
o -1yT(K + c21)~"y'is the data fit.

o —3log|(K + o2l is a fomp exity penalty.\i

o —Ylog2ris a constant.

30/43
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

40
- 8
--- 21
20 -
55
ol-"

log probability
log marginal likelihood

-~ minus complexity penalty
801 - - data fi
— marginal likelihood
-100 S
‘10 ! 10
characteristi gthscale Characteristic lengthscale

(a) (b)

Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (¢,0¢,0,) = (1,1,0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter £ (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for different sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

P
characteristic lengthscale

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to a; = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale ¢ = 0.4 and another for long length-scale and noise
02 = 1. The contour lines spaced 2 units apart in log probability density.
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MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data coming
from a sample of
a 1dim GP with
Gaussian kernel
and
hyperparameters
A=1,a=1,
o=0.1.

3,
2|
1
>
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i=3
31
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input, x
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input, x input, x
(b), =03 (c), (=3

Figure 2.5: (a) Data is generated from a GP with hyperparameters (£,07,0n) =
(1,1,0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3,1.08,0.00005) and (3.0, 1.16,0.89) respectively.

33/43
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HYPERPARAMETER OPTIMISATION

@ In order to set the hyperparameters, we can maximise the
log marginal likelihood:

L= —%VT(K +o?l)ly - % log|(K + o)l - g log 2z

o lts derivative w.r.t. an hyperparameter 6 is

B 1 oK 1
—1 X,0) =y 'K 'K 'y — Ztr (K~
2, ogp(y|X.0) =3y 20,5 Y3 r (

19K
9,
) (5.9)

oK
_ L T -1
= 2tr ((aa K —

89]-) where a = K™ 1y.

e The derivative is relatively cheap to compute, once we
invert the matrix K. Hence we can use gradient methods to
optimise L.

@ Purely Bayesian methods (giving a prior on
hyperparameters) are complicated by the in general
complex functional form (no conjugate prior).
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NON-CONSTANT PRIOR MEAN

@ The typical choice for the prior mean is the zero function. Data is
processed by subtracting the sample mean from the
observations.

@ As an alternative, one can either use a deterministic function for
the priori mean (and subtract if from data, adding it back to
predictions), or use a generalised linear model for the prior
mean:

where f(x) ~ GP(0,k(x,x')), (2.39)

o If we put a Gaussian prior over coefficients 8, we can treat them
in a Bayesian way, and get a GP:

g(x) ~ GP h(x)Tb,[k(

x,x') + h(x) " Bh(x)), (2.40)
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NON-CONSTANT PRIOR MEAN

@ In this way, we obtain the following predictive distribution at a w
point x*: J ;\ )

(2.41)

where the H matrix collects the h(x) vectors for all training (and| H, 3l test

)
cases, 3 = (B~ + HEK;'HT)""(HK; 'y + B~'b), and R = H, — HK;lf(*.
@ The new predictive distribution has mean H/j (from the linear
model) plus a term coming from the GP model of residuals.
@ Taking a flat prior (limit o‘@ matrix of zeros):
SR

——~———

g(X,) =f(X.)+R"3,

2.42
cov(g.) = cov(f) + RT(HKQ_lHT)_I_R7 (2.42)

where the limiting 8 = (H K, TH)'H K, ly. Notice that predictions under
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GP CLASSIFICATION
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FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

/(g = @ “§
@ The idea behind GP classification is to extend logistic (or probit)
regression, by assuming the following model for the class

conditionals: __/fﬂ—,_L,——

@ fis often callTatent function. Note that = is a random function, as

IS.
4 1
g2 ¥
= z
Sy z S—
2 8
3 S
K} £
S
-4
ot
input, x input, x
(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(z) drawn from a Gaussian
process as a function of z. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, A(2) = (1 +exp(—z))~" to obtain the class
probability 7(z) = A(f(z)).
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GP CLASSIFICATION

@ fis often call latent or nuisance function. It is not observed
directly. We only observe at a poin{ x'the realisation of a
A= Bernoulli random variable with proba iIity@_

@ Inference at a test poinl@is done, as usual in al Bayesian e
setting, in two steps:

@ Compute the posterior * of f at the prediction point x*.

T CL
Wfxy )= [ p(qu,x*,f){p_(g@tﬁ (3.9)
. oGk

with p(f|IX,y) = (f|3()‘/ (y/X) by Bayes theorem.
© Compute the predictive distribution at x*

l
@A [ otz p(f*X,y,x*)df%/j (3.10)




