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GP CLASSIFICATION
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FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

@ The idea behind GP classification is to extend logistic (or probit)
regression, by assuming the foIIowmg model for the class
conditionals: W‘f /

[ (Cq I;\ )) where f ~ GP(u, k)

@ fis often call latent function. Note that = is a random function, as
Ae~e—
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Figure 3.2: Panel (a) shows a sample latent function f(z) drawn from a Gaussian
process as a function of z. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, A(2) = (1 +exp(—z))~" to obtain the class
probability 7(z) = A(f(z)).



GP CLASSIFICATION

o fis often call latent or nuisance function. It is not observed
directly. We only observe at a point x the realisation of a
Bernoulli random variable with probability 7(x).

@ Inference at a test point x* is done, as usual in alBayesian
setting, in two steps:

@ Compute the posterior * of f at the prediction point x*.
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with ip(f| X, y) ‘ W (f1X)/p( y/X) by Bayes theorem.

© Compute the predictive distribution at x
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(3.9)

(3.10)



GP cLAS40/43 10N

LAPLACE APPROXIMATION

@ As in Bayesian logistic regression, the computation of the
posterior p(f|X,y) cannot be carried out analytically.

@ However, we can do a Laplace approximation of the posterior
around the MAP f. The unnormalised log posterior is:
T(f) £ logp(y|f) + log p(f|X)
3.12
= @)7%fTK71f7%log|K\fglog2ﬂ. (312
Differentiating eq. (3.12) w.r.t. f we obtain

- VU() = [Viegp(ylf) - K'F,) 3.13)

o (
.UV =§Vlogp(y\f)l— K =\— V- Klﬂ (3.14)

where W is diagonal, as observations are i.i.d.
—

@ It can be optimised with a Newton-Rapson scheme: /

1oV = f — (VVO)7IVYU = f4 (K 4+ W) L(Viegp(ylf) — K~1f)
= (K" + W) (Wf + Viogp(ylf)). ~ (3.18)
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LAPLACE APPROXIMATION PUT XN k) e cmveeinn
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@ The Laplace approximation around the MAF@S a Gaussian g
with mean

2 Eglful Xy, x.] —lm— k(x.) " Viogp(ylf). (3.21)
\ R
and variance JL

_a V[AIX y,xe] = E(xex) k] Kk + k] KTHE 4+ W) LKk,
_— = k(x.,x)-k] (K+W 1)k, &~ (3.24)

R’_’_’_’___/:

@ The prediction n* can be computed by the integral

T = Eo[m| Xy, x.] = [o(f)a(ful Xy, x.) dfs, (3.25)

ik
which can be approximated with the same logit-probit-logit trick&
used for Bayesian logistic regression.
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EXPECTATION PROPAGATION o< KL [1’;9\ X

ploy 2
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@ A (better) alternative to Laplace approximation is to use a
variational method, typically for the probit activation function.

@ A first option is to approximate the posterior distribution by a
Gaussian g, minimising the (reversed) KL divergence

~ KL), (the minimisation of the KL divergence
o KL(PMX,y)., g(1X.Y)) is intractable)+—

@ Alternatively, one can use theX_Expectation Propagationl
algorithm, which constructs iteratively (over obs i, until
convergence) a Gaussian approximation of the posterior by

@ taking the current Gaussian approximation and factoring
out the term for the j-th likelihood p(y;lf;), obtaining a
distribution for all observations but the i-th one.

© multiplying the cavity by the exact likelihood of the i-th
observation, and finding a Gaussian approximation by
moment matching of such a (non-Gaussian) distribution.

@ EP is more accurate than Laplace approximation, and provides
also an approximation of the Marginal likelihood.
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PITFALLS OF GP PREDICTION

o Addition of a new observation always reduces uncertainty
at all points — vulnerable to outliers

e Optimisation of hyperparameters often tricky: works well if
o is known, otherwise it can be seriously multimodal

o MAIN PROBLEM: GP prediction relies on a matrix
inversion which scales cubically with the number of
points!

e Sparsification methods have been proposed but in high
dimension GP regression is likely to be tricky nevertheless



