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FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

The idea behind GP classification is to extend logistic (or probit)
regression, by assuming the following model for the class
conditionals:

⇡(x) = p(C1|x) = �(f (x)) where f ⇠ GP(µ, k)

f is often call latent function. Note that ⇡ is a random function, as
f is.
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Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability �(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in �, in
particular for test cases �(x�). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f�|X,y,x�) =

�
p(f�|X,x�, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f� to produce a
probabilistic prediction

�̄� � p(y� =+1|X,y,x�) =

�
�(f�)p(f�|X,y,x�) df�. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

Let X ,y the observations, with yi 2 {0,1}.
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GP CLASSIFICATION

f is often call latent or nuisance function. It is not observed
directly. We only observe at a point x the realisation of a
Bernoulli random variable with probability ⇡(x).

Inference at a test point x⇤ is done, as usual in a Bayesian
setting, in two steps:

1 Compute the posterior f ⇤ of f at the prediction point x⇤.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

40 Classification

−4

−2

0

2

4

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

0

1

input, x

cl
as

s 
pr

ob
ab

ilit
y,

 π
(x

)

(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability �(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in �, in
particular for test cases �(x�). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f�|X,y,x�) =

�
p(f�|X,x�, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f� to produce a
probabilistic prediction

�̄� � p(y� =+1|X,y,x�) =

�
�(f�)p(f�|X,y,x�) df�. (3.10)
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with p(f|X ,y) = p(y|f)p(f|X )/p(y/X ) by Bayes theorem.
2 Compute the predictive distribution at x⇤
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LAPLACE APPROXIMATION

As in Bayesian logistic regression, the computation of the
posterior p(f|X ,y) cannot be carried out analytically.
However, we can do a Laplace approximation of the posterior
around the MAP f̂ . The unnormalised log posterior is:
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Figure 3.3: The log likelihood and its derivatives for a single case as a function of
zi = yifi, for (a) the logistic, and (b) the cumulative Gaussian likelihood. The two
likelihood functions are fairly similar, the main qualitative di�erence being that for
large negative arguments the log logistic behaves linearly whereas the log cumulative
Gaussian has a quadratic penalty. Both likelihoods are log concave.

3.4.1 Posterior

By Bayes’ rule the posterior over the latent variables is given by p(f |X,y) =
p(y|f)p(f |X)/p(y|X), but as p(y|X) is independent of f , we need only consider
the un-normalized posterior when maximizing w.r.t. f . Taking the logarithmun-normalized posterior

and introducing expression eq. (2.29) for the GP prior gives

�(f) � log p(y|f) + log p(f |X)

= log p(y|f) � 1

2
f�K�1f � 1

2
log |K| � n

2
log 2�.

(3.12)

Di�erentiating eq. (3.12) w.r.t. f we obtain

��(f) = � log p(y|f) � K�1f , (3.13)

���(f) = �� log p(y|f) � K�1 = �W � K�1, (3.14)

where W � ��� log p(y|f) is diagonal, since the likelihood factorizes over
cases (the distribution for yi depends only on fi, not on fj �=i). Note, that if the
likelihood p(y|f) is log concave, the diagonal elements of W are non-negative,
and the Hessian in eq. (3.14) is negative definite, so that �(f) is concave and
has a unique maximum (see section A.9 for further details).

There are many possible functional forms of the likelihood, which gives the
target class probability as a function of the latent variable f . Two commonly
used likelihood functions are the logistic, and the cumulative Gaussian, seelog likelihoods

and their derivatives Figure 3.3. The expressions for the log likelihood for these likelihood functions
and their first and second derivatives w.r.t. the latent variable are given in the

where W is diagonal, as observations are i.i.d.
It can be optimised with a Newton-Rapson scheme:
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following table:

log p(yi|fi)
�

�fi
log p(yi|fi)

�2

�f2
i

log p(yi|fi)

� log
�
1 + exp(�yifi)

�
ti � �i ��i(1 � �i) (3.15)

log �(yifi)
yiN (fi)

�(yifi)
� N (fi)2

�(yifi)2
� yifiN (fi)

�(yifi)
(3.16)

where we have defined �i = p(yi = 1|fi) and t = (y + 1)/2. At the maximum
of �(f) we have

�� = 0 =� f̂ = K
�
� log p(y|f̂)

�
, (3.17)

as a self-consistent equation for f̂ (but since � log p(y|f̂) is a non-linear function
of f̂ , eq. (3.17) cannot be solved directly). To find the maximum of � we use
Newton’s method, with the iteration Newton’s method

fnew = f � (���)�1�� = f + (K�1 + W )�1(� log p(y|f) � K�1f)

= (K�1 + W )�1
�
W f + � log p(y|f)

�
. (3.18)

To gain more intuition about this update, let us consider what happens to
datapoints that are well-explained under f so that � log p(yi|fi)/�fi and Wii

are close to zero for these points. As an approximation, break f into two
subvectors, f1 that corresponds to points that are not well-explained, and f2 to
those that are. Then it is easy to show (see exercise 3.10.4) that

fnew
1 = K11(I11 + W11K11)

�1
�
W11f1 + � log p(y1|f1)

�
,

fnew
2 = K21K

�1
11 fnew

1 ,
(3.19)

where K21 denotes the n2 � n1 block of K containing the covariance between
the two groups of points, etc. This means that fnew

1 is computed by ignoring intuition on influence of
well-explained pointsentirely the well-explained points, and fnew

2 is predicted from fnew
1 using the

usual GP prediction methods (i.e. treating these points like test points). Of
course, if the predictions of fnew

2 fail to match the targets correctly they would
cease to be well-explained and so be updated on the next iteration.

Having found the maximum posterior f̂ , we can now specify the Laplace
approximation to the posterior as a Gaussian with mean f̂ and covariance matrix
given by the negative inverse Hessian of � from eq. (3.14)

q(f |X,y) = N
�
f̂ , (K�1 + W )�1

�
. (3.20)

One problem with the Laplace approximation is that it is essentially un-
controlled, in that the Hessian (evaluated at f̂) may give a poor approximation
to the true shape of the posterior. The peak could be much broader or nar-
rower than the Hessian indicates, or it could be a skew peak, while the Laplace
approximation assumes it has elliptical contours.
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LAPLACE APPROXIMATION

The Laplace approximation around the MAP f̂ is a Gaussian q
with mean

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
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3.4.2 Predictions

The posterior mean for f� under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f�|X,y,x�] = k(x�)
�K�1f̂ = k(x�)

�� log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f�|X,y,x�] =

�
E[f�|f , X,x�]p(f |X,y)df (3.22)

=

�
k(x�)

�K�1f p(f |X,y)df = k(x�)
�K�1E[f |X,y],

where we have used the fact that for a GP E[f�|f , X,x�] = k(x�)�K�1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value
f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coe�cient for their kernel function (as �i log p(yi|fi) > 0sign of kernel

coe�cients in this case), while negative examples will give rise to a negative coe�cient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have �i log p(yi|fi) � 0 (i.e. that are
well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f�|X,y], the variance of f�|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f�|X,y,x�] = Ep(f�|X,x�,f)[(f� � E[f�|X,x�, f ])
2]

+ Eq(f |X,y)[(E[f�|X,x�, f ] � E[f�|X,y,x�])
2].

(3.23)

The first term is due to the variance of f� if we condition on a particular value
of f , and is given by k(x�,x�) � k(x�)�K�1k(x�), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f�|X,x�, f ] = k(x�)�K�1f depends
on f and thus there is an additional term of k(x�)�K�1 cov(f |X,y)K�1k(x�).
Under the Gaussian approximation cov(f |X,y) = (K�1 + W )�1, and thuslatent variance

Vq[f�|X,y,x�] = k(x�,x�)�k�
� K�1k� + k�

� K�1(K�1 + W )�1K�1k�

= k(x�,x�)�k�
� (K + W�1)�1k�, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f�, we make predictions by computingaveraged predictive
probability

�̄� � Eq[��|X,y,x�] =

�
�(f�)q(f�|X,y,x�) df�, (3.25)

and variance
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The prediction ⇡⇤ can be computed by the integral
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which can be approximated with the same logit-probit-logit trick
used for Bayesian logistic regression.
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EXPECTATION PROPAGATION

A (better) alternative to Laplace approximation is to use a
variational method, typically for the probit activation function.
A first option is to approximate the posterior distribution by a
Gaussian q, minimising the (reversed) KL divergence
KL(q(f|X ,y),p(f|X ,y)) (the minimisation of the KL divergence
KL(p(f|X ,y),q(f|X ,y)) is intractable).
Alternatively, one can use the Expectation Propagation
algorithm, which constructs iteratively (over obs i , until
convergence) a Gaussian approximation of the posterior by

1 taking the current Gaussian approximation and factoring
out the term for the i-th likelihood p(yi |fi), obtaining a
distribution for all observations but the i-th one.

2 multiplying the cavity by the exact likelihood of the i-th
observation, and finding a Gaussian approximation by
moment matching of such a (non-Gaussian) distribution.

EP is more accurate than Laplace approximation, and provides
also an approximation of the Marginal likelihood.
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PITFALLS OF GP PREDICTION

Addition of a new observation always reduces uncertainty
at all points! vulnerable to outliers
Optimisation of hyperparameters often tricky: works well if
�2 is known, otherwise it can be seriously multimodal
MAIN PROBLEM: GP prediction relies on a matrix
inversion which scales cubically with the number of
points!
Sparsification methods have been proposed but in high
dimension GP regression is likely to be tricky nevertheless


