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TASK 1

Download data from moodle2 (use the datasets for regression).

Implement GP regression:

implement a kernel object, with methods to evaluate the
kernel, get and set hyperparameters, get the number of
hyperparameters.
implement methods initialising a Gaussian/ Matern kernel/
ARD Gaussian Kernel.
implement GP regression parametric w.r.t. a kernel object.
Suggestion: initialise a GP regression object with data,
compute all data dependent quantities needed to do
prediction once and for all, and provide the object with
methods to do prediction in a set of points.
implement a method to set hyperparameters optimising the
marginal likelihood. Use built-in matlab optimisation
functions.
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HOW TO IMPLEMENT GP REGRESSION
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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input: X (inputs), y (targets), k (covariance function), �2
n (noise level),

x� (test input)
2: L := cholesky(K + �2

nI)
� := L�\(L\y)

4: f̄� := k�
� �

�
predictive mean eq. (2.25)

v := L\k�
6: V[f�] := k(x�,x�) � v�v

�
predictive variance eq. (2.26)

log p(y|X) := � 1
2y

�� �
�

i log Lii � n
2 log 2� eq. (2.30)

8: return: f̄� (mean), V[f�] (variance), log p(y|X) (log marginal likelihood)

Algorithm 2.1: Predictions and log marginal likelihood for Gaussian process regres-
sion. The implementation addresses the matrix inversion required by eq. (2.25) and
(2.26) using Cholesky factorization, see section A.4. For multiple test cases lines
4-6 are repeated. The log determinant required in eq. (2.30) is computed from the
Cholesky factor (for large n it may not be possible to represent the determinant itself).
The computational complexity is n3/6 for the Cholesky decomposition in line 2, and
n2/2 for solving triangular systems in line 3 and (for each test case) in line 5.

of the likelihood times the prior

p(y|X) =

�
p(y|f , X)p(f |X) df . (2.28)

The term marginal likelihood refers to the marginalization over the function
values f . Under the Gaussian process model the prior is Gaussian, f |X �
N (0, K), or

log p(f |X) = � 1
2 f

�K�1f � 1
2 log |K| � n

2 log 2�, (2.29)

and the likelihood is a factorized Gaussian y|f � N (f , �2
nI) so we can make use

of equations A.7 and A.8 to perform the integration yielding the log marginal
likelihood

log p(y|X) = � 1
2y

�(K + �2
nI)�1y � 1

2 log |K + �2
nI| � n

2 log 2�. (2.30)

This result can also be obtained directly by observing that y � N (0, K +�2
nI).

A practical implementation of Gaussian process regression (GPR) is shown
in Algorithm 2.1. The algorithm uses Cholesky decomposition, instead of di-
rectly inverting the matrix, since it is faster and numerically more stable, see
section A.4. The algorithm returns the predictive mean and variance for noise
free test data—to compute the predictive distribution for noisy test data y�,
simply add the noise variance �2

n to the predictive variance of f�.

2.3 Varying the Hyperparameters

Typically the covariance functions that we use will have some free parameters.
For example, the squared-exponential covariance function in one dimension has
the following form

ky(xp, xq) = �2
f exp

�
� 1

2�2
(xp � xq)

2
�

+ �2
n�pq. (2.31)
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CHOLESKY FACTORISATION

Given a positive definite n ⇥ n matrix A, a lower triangular matrix
L is the Cholesky decomposition of A iff

A = LLT .

The computation of the Cholesky decomposition is very stable
numerically, and takes O(n3) time.

The Cholesky decomposition of A can be used to solve the
linear system Ax = b in two steps:

1 solve by forward substitution the system Ly = b
2 solve by backward substitution the system LT x = y .

The determinant of A is

|A| =
Y

i

L2
ii ; log |A| = 2

X

i

log Lii


