2.33 Viene riportato di seguito il pK_a di tre differenti legami C-H.

- a. Per ciascun composto scrivi la base coniugata includendo tutte le possibili forme di risonanza.
- b. Spiega l'andamento osservato del p K_a .
- 2.34 a. Qual è l'acido coniugato di A?
 - b. Qual è la base coniugata di A?

- 2.35 Molti farmaci sono acidi o basi di Brønsted-Lowry.
 - a. Qual è il protone più acido nell'analgesico ibuprofene? Scrivi la base coniugata.
 - b. Qual è la coppia di elettroni più basica nella cocaina? Scrivi l'acido coniugato.

- 2.36 Il pK_a di CH₃NO₂ è 10. Spiega il motivo per cui il legame C—H di questo composto è più acido rispetto alla maggior per dei legami C—H.
- 2.37 L'atomo di idrogeno indicato nell'1,4-pentadiene è più acido di quello indicato nel pentano. Indica una spiegazione

222,444EE

ON PARTIE

- 2.38 La base NaH reagisce prontamente con CH₃CH₂OH ma non altrettanto con CH₃CH₃. Spiega il motivo.
- 2.39 Il dimetil etere (CH₃OCH₃) e l'etanolo (CH₃CH₂OH) sono isomeri, ma CH₃OCH₃ ha pK_a 40 e CH₃CH₂OH ha pK_a 16. Percenti valori di pK_a sono così differenti?
- 2.40 a. Qual è l'ibridazione dell'atomo di azoto in ciascun composto?
 - b. Quale di questi composti è il più basico?

$$CH_3C\equiv N:$$
 $CH_2=\ddot{N}CH_3$ $CH_3-\ddot{N}-CH_3$

Acidi e basi di Lewis

- 2.41 Quali composti sono basi di Lewis?
 - a. NH₃ b. CH₃CH₂CH₃ c. H⁻
 - d. H—C≡C—H
- 2.42 Quali composti sono acidi di Lewis?
 - a. BBr₃ b. CH₃CH₂OH
 - c. (CH₃)₃C⁺ d. Br
- 2.43 Per ogni reazione, individua l'acido e la base di Lewis. Usa la notazione della freccia curva per mostrare il movimento della coppia di elettroni.

2.44 Classifica ogni composto come base di Lewis, base di Brønsted-Lowry, entrambe o nessuna delle due.

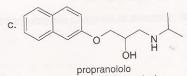
a.
$$H$$
 b. CH_3-CI c. d.

2.22 Senza far riferimento a una tabella di valori di pKa, decidi quale dei composti in ogni coppia è l'acido più forte:

a. NH₃ e H₂O

- b. HBr e HCl
- c. H₂S e HBr
- 2.23 Quale idrogeno è il più acido in ciascuna delle seguenti molecole?

a. CH₃CH₂CH₂CH₂OH


- b. HOCH₂CH₂CH₂NH₂
- c. (CH₃)₂NCH₂CH₂CH₂NH₂
- 2.24 Quale composto in ciascuna delle seguenti coppie è l'acido più forte?
 - a. CICH₂COOH e FCH₂COOH
 - b. Cl₂CHCH₂OH e Cl₂CHCH₂CH₂OH
 - c. CH₃COOH e O₂NCH₂COOH
- 2.25 II legame C—H nell'acetone, $(CH_3)_2C=0$, ha un p K_a di 19.2. Disegna due strutture di risonanza per la sua base coniugata. Quindi spiega perché l'acetone è molto più acido del propano, $CH_3CH_2CH_3$ (p $K_a = 50$).
- 2.26 L'acetonitrile (CH₃CN) ha un pK_a di 25, che lo rende più acido di molti altri composti aventi solo legami C—H. Disegna le strutture di Lewis per l'acetonitrile e la sua base coniugata. Usa le strutture di risonanza per spiegare l'acidità dell'acetonitrile.
- 2.27 Per ogni coppia di composti: [1] Quale tra gli atomi H indicati è più acido? [2] Disegna la base coniugata di ogni acido.[3] Quale base coniugata è più forte?

a.
$$CH_3CH_2-C\equiv C-H$$
 e $CH_3CH_2CH_2CH_2-H_3$

- 2.28 Disponi i composti dei seguenti gruppi in ordine di acidità crescente.
 - a. CH₃CH₂CH₃, CH₃CH₂OH, CH₃CH₂NH₂
 - b. BrCH₂COOH, CH₃CH₂COOH, CH₃CH₂CH₂OH
 - c. CH₃CH₂NH₂, (CH₃)₃N, CH₃CH₂OH
- 2.29 Quale protone è il più acido in ognuno dei seguenti farmaci?

b. COOH

(agente anti-infiammatorio)

(agente anti-ipertensivo)

THC tetraidrocannabinolo (componente attivo della marijuana)

- 2.30 Disegna i prodotti delle reazioni di trasferimento di protone.
 - a. CH₃CH₂OH + NaH ←
 - b. CH₃COOH + NaOCH₂CH₃ \longleftrightarrow
 - c. CH₃CH₂CH₂CH₂Li + H₂O \longleftrightarrow

d.
$$CH_3$$
 \longrightarrow SO_3H + $N(CH_2CH_3)_3$ \longleftrightarrow

- 2.31 Ordina i seguenti composti secondo la forza acida crescente.
 - a. NH₃, H₂O, HF
 - b. HBr, HCl, HF
 - c. H₂O, H₃O+, HO-
 - d. NH₃, H₂O, H₂S
 - e. CH₃OH, CH₃NH₂, CH₃CH₃
 - f. HCI, H2O, H2S
 - g. CH₃CH₂CH₃, CICH₂CH₂OH, CH₃CH₂OH
 - h. $HC \equiv CCH_2CH_3$, $CH_3CH_2CH_2CH_3$, $CH_3CH = CHCH_3$
- 2.32 Disponi i seguenti ioni in ordine di basicità crescente.
 - a. $CH_3\bar{C}H_2$, $CH_3\bar{O}$, $CH_3\bar{N}H$
- c. CH₃COO-, CH₃CH₂O-, CICH₂COO-
- b. CH₃-, HO-, Br-

- CH=ŪH