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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No
labels are given to the
learning algorithm (input
only), leaving it on its own to
find structure in its input.

9.2. Mixtures of Gaussians 433
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities �(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by �(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N � K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|�, µ,�) =
N�

n=1

ln

�
K�

k=1

�kN (xn|µk,�k)

�
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by �k = �2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .
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Clustering: discover groups of similar examples within the
data.
Density estimation: determine the distribution of data
within the input space.
Dimensionality reduction: project the data from a
high-dimensional space to a lower dimension space. Often
down to two or three dimensions for the purpose of
visualization.
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DENSITY ESTIMATION

Given input data x

1

, . . . ,x
N

, sampled by an unknown distribution
p(X ), estimate p.

One way to solve this problem is to fix a parametric family of
distributions p(X |✓) and then estimate parameters ✓ according to
ML, MAP, or with a fully Bayesian treatment. The drawback is
that a bad choice of the family of distributions can result in a
poor fit of data.

Non-parametric methods try to construct an estimate from data
only, avoiding the pitfalls involved in choosing the correct family
of models.
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HISTOGRAM DENSITY

(1D) Partition input space in bins (intervals) B1, . . . ,Bk ,s each of
size �i , and count how many input points nj fall inside each bin
j . Define the density p(x) as pi if x 2 Bi , where

pi =
ni

N�i

The resulting density is discontinuous, and the quality of the fit
depends on the bin size.
Curse of dimensionality: the number of bins grows exponentially
with the dimension d of x. 2.5. Nonparametric Methods 121

Figure 2.24 An illustration of the histogram approach
to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width � are
shown for various values of �.
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In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
�. We see that when � is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if � is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of � (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of �.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be MD. This exponential scaling
with D is an example of the curse of dimensionality. In a space of high dimensional-Section 1.4
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local neighbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,
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DATA-BASED ESTIMATOR

Histogram estimation at a point x uses information only from few
data points close to x , those lying in the same bin. But bins are
rigid and result in discontinuous densities.
We can do better “placing a (hard/ soft) box” in each point x .
Consider now a little box B containing point x, with volume V ,
and let P be the probability that a sampled point is in B, i.e.
P =

R
B p(x)dx. The probability P can be estimated as P = K /N,

for sufficiently large K and N (law of large numbers for
Binomial), where K is the number of points falling into B.
Furthermore, if B is sufficiently small, we can approximate P as
p(x)V . It then follows that

p(x) =
K

NV
for x 2 B.
We can now either fix K and estimate V from data
(K -nearest-neighbour) or fix V and estimate K from data
(kernel-based or Parzen estimators)
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PARZEN ESTIMATOR

Consider the function (Parzen window)

k(u) =
(

1, kuk1  1
2

0, otherwise

Then a data point xn is inside the cube of edge length h centred
in x if and only if

k
✓
x � xn

h

◆
= 1,

so that the number of data points in the cube is

K =
X

n
k

✓
x � xn

h

◆
.

Then the estimate for the density p (in d dimensions) becomes:

p(x) =
1

Nhd

X

n
k

✓
x � xn

h

◆
.
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PARZEN ESTIMATOR

The Parzen window is still discontinuous. An alternative
approach is to use a smooth function, i.e. a kernel satisfying
k(x) � 0 and

R
k(x)dx = 1.

a common choice is the Gaussian kernel, giving the estimate:

p(x) =
1
N

X

n

1
(2⇡h2)1/2

exp
 kx � xnk2

h2

!

124 2. PROBABILITY DISTRIBUTIONS

Figure 2.25 Illustration of the kernel density model
(2.250) applied to the same data set used
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set
too small (top panel), the result is a very
noisy density model, whereas if it is set
too large (bottom panel), then the bimodal
nature of the underlying distribution from
which the data is generated (shown by the
green curve) is washed out. The best den-
sity model is obtained for some intermedi-
ate value of h (middle panel).
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set used earlier to demonstrate the histogram technique. We see that, as expected,
the parameter h plays the role of a smoothing parameter, and there is a trade-off
between sensitivity to noise at small h and over-smoothing at large h. Again, the
optimization of h is a problem in model complexity, analogous to the choice of bin
width in histogram density estimation, or the degree of the polynomial used in curve
fitting.

We can choose any other kernel function k(u) in (2.249) subject to the condi-
tions

k(u) � 0, (2.251)�
k(u) du = 1 (2.252)

which ensure that the resulting probability distribution is nonnegative everywhere
and integrates to one. The class of density model given by (2.249) is called a kernel
density estimator, or Parzen estimator. It has a great merit that there is no compu-
tation involved in the ‘training’ phase because this simply requires storage of the
training set. However, this is also one of its great weaknesses because the computa-
tional cost of evaluating the density grows linearly with the size of the data set.

2.5.2 Nearest-neighbour methods
One of the difficulties with the kernel approach to density estimation is that the

parameter h governing the kernel width is fixed for all kernels. In regions of high
data density, a large value of h may lead to over-smoothing and a washing out of
structure that might otherwise be extracted from the data. However, reducing h may
lead to noisy estimates elsewhere in data space where the density is smaller. Thus
the optimal choice for h may be dependent on location within the data space. This
issue is addressed by nearest-neighbour methods for density estimation.

We therefore return to our general result (2.246) for local density estimation,
and instead of fixing V and determining the value of K from the data, we consider
a fixed value of K and use the data to find an appropriate value for V . To do this,
we consider a small sphere centred on the point x at which we wish to estimate the
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K -NEAREST NEIGHBOUR ESTIMATOR

It may be more convenient to have h depending on the local
density of observations, to avoid over or under-smoothing.
K -nearest neighbour solves this problem by setting the radius of
the sphere/ box for Parzen estimation such that it exactly
contains K points, i.e. equal to the distance of the K -th closest
point to x. Then p(x) is estimated as K /V (x)N, where V (x) is
the volume of the sphere/box.
K -NN can be used also for classification, by assigning to class
Ck class-conditional probability in x equal to Kk/K , where Kk is
the number of points of class K .2.5. Nonparametric Methods 125

Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

�
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)


