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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No
labels are given to the
learning algorithm (input
only), leaving it on its own to
find structure in its input.
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UNSUPERVISED LEARNING - OVERVIEW

Unsupervised learning: No |
labels are given to the

learning algorithm (input 03
only), leaving it on its own to :
find structure in its input.

o Clustering: discover groups of similar examples within the
data.

e Density estimation: determine the distribution of data
within the input space.

o Dimensionality reduction: project the data from a
high-dimensional space to a lower dimension space. Often
down to two or three dimensions for the purpose of
visualization.
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DENSITY ESTIMATION
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Given input data x4, ..., Xn, Sampled by an unknown distribution
p(X), estimate p. J

o One way to solve this problem is to fix a parametric family of
distributions p(X|9) and then estimate parameters 6 according to
\ML MAP, or with a fully Bayesian treatment. The drawback is
at a bad choice of the family of distributions can result in a

X
(\";\,.\'h poor fit a.
\"y @ \Non-para ic methods try to construct an estimate from data
only, avoiding the pitfalls involved in choosing the correct family

of models.
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@ (1D) Partition input space in bins (intervals) B, ..., Bx,s each of

W . size Aj, and count how many input points n; fall inside each bin
4 & j. Define the density p(x) as p; if x € B;, where
A

224 Jia

cwt N
Y
. _b-;'- @ The resulting density is disc nd the quality of the fit
V- X depends on the bin size.
dn . . . . .
¢ « " @ Curse of dimensionality: the humber of bins grows exponentially
Lt with the dimension d of x.
v An illustration of the hist
YRS N B st of the nistogam approach 5 P
,.'vv of 50 data points is generated from the
V\.“ o ~ distribution shown by the green curve.
’.d“ ’ Histogram density estimates, based on 00 05 1
}\_ (2.241), with a comm in width/A are 5 .
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DATA-BASED ESTIMATOR

@ Histogram estimation at a point x uses information only from few
data points close to x, those lying in the same bin. But bins are
rigid and result in discontinuous densities.

@ We can do better “placing a (hard/ soft) box” in each point x.

@ Consider now a little box B containing point x, with volume y
and let P be the probability that a sampled pointis in B, i.e.
P= fB x)dx. The probability P can be estimated as P = K/N,
for suff|C|entIy large K and N (law of large numbers for
Binomial), where K is the number of points falling into B.
Furthermore, if B is sufficiently small, we can approximate P as
p(x)V.ltthenfollows that pla VK

A
forxeB. &= GLUR

~n @ We can now either fix K and estimate V from data
(K-nearest-neighbour) or fix V and estimate K from data
(kernel-based or Parzen estimators)
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PARZEN ESTIMATOR

@ Consider the function (Parzen window)

|1, IIUIIWS%
k(u) = { 0, otherwise

@ Then a data point x,, is inside the cube of edge length h centred
in x if and only if
K (x - xn) _1,

h
so that the number of data points in the cube is

K — Zn“k(x"hx”): K )

@ Then the estimate for the density p (in d dimensions) becomes:

-

VO \C(X) - #ank(x_hx”).
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PARZEN ESTIMATOR i .

@ The Parzen window is still discontinuous. An alternative
approach is to use a smooth function, i.e. a@w

-u,\k/(X_) >0 anW

@ a common choice is the Gaussian kernel, giving the estimate:
1 1 X = X J

- P(X)=+ exp( ) wh
N2 B "o\ ®) b, 17

lllustration of the kernel density model 5
(2.250) applied to the same data set used h = 0.005
to demonstrate the histogram approach in
Figure 2.24. We see that h acts as a
smoothing parameter and that if it is set 0 0.5 1
too small (top panel), the result is a very 5 -
noisy density model, whereas if it is set h=0.0
too large (bottom panel), then the bimodal
nature of the underlying distribution from 0
which the data is generated (shown by the " 05 1
green curve) is washed out. The bestden- 5
sity model is obtained for some intermedi-
ate value of h (middle panel).
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K-NEAREST NEIGHBOUR ESTIMATOR

@ It may be more convenient to have h depending on the local
density of observations, to avoid over or under-smoothing.

@ K-nearest neighbour solves this problem by setting the radius of
the sphere/ box for Parzen estimation such that it exactly
contains K points, i.e. equal to the distance of the K-th closest
point to x. Then p(x) is estimated as K/V(x)N, where V(x) is
the volume of the sphere/box.

@ K-NN can be used also for classification, by assigning to class
Cy class-conditional probability in x equal to \Kk/K', where K is
the number of points of class K.

lllustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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