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in these lectures 
•  Introduction 

–  Non or quasi-equilibrium: “excess” carriers injection 
–  Processes for “generation” and “recombination” of carriers 
–  Continuity equations for carriers 

•  Continuity equations: three important special cases 
–  Steady-state injection from one side 

•  “diffusion length” Lp 
–  Minority carriers recombination at the surface 

•  diffusion length and “surface recombination velocity” Slr 
–  The Haynes-Shockley experiment 

•  Evidence for simultaneous diffusion, drift and 
recombination 

•  Are we describing the behaviour of minority carriers alone? 
What about majority carriers? 
–  Why are “minorities” important? Some examples… 
–  Built-in electric field (Gauss!) and “ambipolar” transport 

equations 
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In these lectures 

•  Reference textbooks 
–  D.A. Neamen, Semiconductor Physics and Devices, McGraw-

Hill, 3rd ed., 2003, p.189-230 (“6 Nonequilibrium excess carriers 
in semiconductors”) 

–  R.Pierret, Advanced Semiconductor Fundamental, Prentice 
Hall, 2nd ed., p.134-174 (“5 Recombination-Generation 
Processes”) 

–  J.Nelson, The Physics of Solar Cells, Imperial College Press, p.
79-117 (Ch.4, “Generation and Recombination”) 



Injection of “excess” carriers 
 

Non-equilibrium! 
 

(in some cases: quasi-equilibrium) 
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Carrier injection - introduction 
•  “carrier injection” = process of introducing “excess” 

carriers in a semiconductor, so that:   np > ni
2 

–  Optical excitation:  
•  shine a light on a semiconductor crystal; 
•  if the energy of the photons is hν > Eg, then 

–  Photons absorbed  
–  “excess” electron-hole pairs are created: Δn = Δp 

–  Other methods: 
•  Forward-bias a pn junction 
•  … 

–  In an extrinsic semiconductor, the relative effect of Δn = Δp is 
very different for “majority” and “minority” carriers, since       
n ≠ p 

–  Let us work out an example (n-type Si, n0 > p0 at equilibrium) 
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Carrier injection 
thermal  
equilibrium 

low  
injection 

high  
injection 

majority 
carriers 

minority 
carriers 

intrinsic 
concentration 

Example: n-type Si at 300K 

thermal equilibrium 
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Carrier injection 
thermal  
equilibrium 

low  
injection 

high  
injection 

majority 
carriers 

minority 
carriers 

intrinsic 
concentration 

Example: n-type Si at 300K 
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Carrier injection 
thermal  
equilibrium 

low  
injection 

high  
injection 

majority 
carriers 

minority 
carriers 

intrinsic 
concentration 

Example: n-type Si at 300K 
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Carrier injection - summary 
•  “carrier injection” = process of introducing “excess” 

carriers in a semiconductor 

•  Several methods (optical, etc.) 

•  Low-level injection: relative effect on concentration 
–  Negligible on majority carriers 
–  Important for minority carriers (also called “minority carriers 

injection”) 

•  High-level injection 
–  If very high, both concentrations become comparable 
–  Sometimes encountered in device operation 
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Quasi-equilibrium 
Example: “Injection” or “Generation”  
of an excess of electrons and holes 
by absorption of photons in a very 
short time, about 10-14 s  

Excess electrons and holes relax 
separately to thermal equilibrium in 
about 10-12 s and remain for a much 
longer time in this quasi-equilibrium 
state 
     

Recombination of electrons and holes 
via several possible mechanisms  
takes typically about 10-6 s; plenty of 
time to do something useful with 
“stable” electrons and holes! 
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Quasi-equilibrium and quasi-Fermi levels 

•  In quasi-equilibrium conditions: 
 
–  Two different “Quasi-Fermi Levels” FN and FP, describe the separate 

quasi-equilibrium concentrations of electrons and holes,  
–  each population corresponding to a separate Fermi-Dirac pdf (one for 

electrons, another for holes) 

FN FP 
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Quasi-Fermi levels: definition 
•  In quasi-equilibrium conditions: 

 
–  Two different “Quasi-Fermi Levels” FN and FP, describe the separate 

quasi-equilibrium concentrations of electrons and holes: 

•  Electrons: 

•  Holes: 

p ≡ nie
Ei −FP( ) kT = NVe

− FN −EV( ) kT ⇔

FP ≡ Ei − kT ln p ni( ) = EV + kT ln NV p( )

n ≡ nie
FN −Ei( ) kT = NCe

− EC −FN( ) kT ⇔

FN ≡ Ei + kT ln n ni( ) = EC − kT ln NC n( )
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Modified mass action law 
•  Fermi level EF at equilibrium: 

•  Quasi-Fermi levels at quasi-equilibrium: 

n0 = nie
EF −Ei( ) kT p0 = nie

Ei −EF( ) kT

n0 p0 = ni
2

n ≡ nie
FN −Ei( ) kT p ≡ nie

Ei −FP( ) kT

np = ni
2e FN −Fp( ) kT > ni

2

Difference in total chemical potentials or quasi-Fermi levels 
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Quasi-Fermi levels: an example 
Thermal equilibrium 
Fermi level EF 

Non-equilibrium 
Quasi-Fermi levels 
FN, FP 

n-type p-type 

equilibrium Non-equilibrium 
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Quasi-Fermi levels and currents 
•  At (quasi-)equilibrium, (quasi-)Fermi levels are constant 

–  Why? Because from the thermodynamic point of view the Fermi level is the 
“total” chemical potential, including the “internal” chemical potential and 
“external” potential energy contributions, like for instance the electrostatic 
potential energy. 

•  Off-equilibrium, the net movement of carriers is related to the 
changing total chemical potential or (quasi-)Fermi level by:  

•  From the definitions of FN, FP by substitution one obtains: 

 
NB: A quasi-Fermi level that varies with position in a band diagram immediately 

indicates that current is flowing in the semiconductor! (see exercise 1 for an 
application) 

Jp,x = qµp pEx − qµp
kBT
q

∂p
∂x

Jn,x ≡ µnn
∂FN
∂x

Jp,x ≡ µp p
∂FP
∂x

Jn,x = qµnnEx + qµn
kBT
q

∂n
∂x

drift   diffusion Dn drift   diffusion Dp 



Generation and Recombination 

Charge carriers: electrons and holes 
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Electrons and holes 
•  Generation rate G :  

–  G = number of free carriers generated (separating electrons 
from holes) per second and per unit volume 

–  G is usually a function of the available energy (temperature, 
etc.) 

•  Recombination rate R: 
–  R = number of free carriers “disappearing” due to 

recombination per second and per unit volume 
–  R is usually proportional to the product of concentrations of 

“carriers” and “recombination centers” and to a “capture 
coefficient” defined as c = vthσ , where vth is the thermal 
velocity and σ  is the recombination process “cross-section” 

•  Net recombination rate: U = R - G 



Generation processes 
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Generation processes 

(for quantitative details: 
see bibliography) 
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Radiative (light) generation 
Band structure for direct and indirect semiconductors 

Ge: direct  
(+ indirect) 

Si: indirect 
(+ direct) 
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Photon absorption: ingredients 

direct 
transitions 

indirect 
transitions 
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Photon absorption coefficient α  

I 0( )
x

x + dxx

dI
dx

= −α I x( ) ⇒ I x( ) = I 0( )e−α x

indirect 

indirect 

direct 

direct 



Recombination processes 
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Recombination processes 

 often dominant in Silicon devices 

Auger recombination 
Recombination via “traps” 
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Recombination via traps  
•  Recombination: often dominated by 

indirect processes through 
“recombination centers”  or 
“traps” (direct recombination is 
negligible for Si) 

•  Example: in an n-type semicond., 
under low-injection conditions: 
–  for the minority-carriers (holes !) 

excess-recombination, the 
bottleneck is “hole capture”, that 
determines the hole “lifetime” τp 

–  Once captured, the hole recombines 
quickly, since there are many 
electrons available 

€ 

U ≈ vthσ pNt pn − pn0( )

τ p ≡
1

vthσ pNt
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Recombination via traps: terminology 
•  “Capture”, “emission”: 

–  From the point of view of the trap! 

•  In particular (figure, next slide): 
–  (a) electron capture = (3) 
–  (b) electron emission = (2) 
–  (c) hole capture = (4) 
–  (d) hole emission = (1) 

•  Detailed treatment: beyond our 
scope! 

–  Shockley-Read-Hall model 
–  See back-up slides and reference 

texts 



14/15-12-2015 L.Lanceri - Complementi di Fisica - Lectures 25-26 27 

Recombination via traps: “lifetime” approximation  

€ 

U ≈ vthσ pNt pn − pn0( )

τ p ≡
1

vthσ pNt

≈ 0.3µs (Si)

€ 

U ≈ vthσ nNt np − np0( )
τ n ≡

1
vthσ nNt

≈1.0µs  (Si)

p-type semiconductor: 
electron lifetime dominated  
by “electron capture” (3) 
in “empty” RG centers  

n-type semiconductor: 
hole lifetime dominated  
by “hole capture” (4) 
in “full” RG centers  

p-type 

mostly 
empty 

n-type 

mostly 
full 



Continuity equations 

Overall conservation of charge! 
 

Detailed accounting of local carrier density 
as a function of time: 

Generation, recombination, drift, diffusion  



14/15-12-2015 L.Lanceri - Complementi di Fisica - Lectures 25-26 29 

Summary of 

From: The Feynman Lectures on Physics, vol.II 

(A) 

(B) 
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(A) Conservation of charge:  
continuity equations 

•  Any net flow of charge must come from some supply! 

–  The flux of a current from a closed surface is equal to the 
decrease of the charge inside the surface 

–  ρ is the net charge density (negative and positive, algebraic sum) 

•  Let us consider electrons and holes, separately, in a 
semiconductor, in a simple one-dimensional case 

  

€ 

! 
J • ˆ n dS

S
∫ =

! 
∇ •
! 
J dV

V
∫ = −

d
dt

ρ dV
V
∫ = −

dQ
dt

! 
∇ •
! 
J = ∂Jx

∂x
+
∂Jy

∂y
+
∂Jz

∂z
= −

∂ρ
∂t
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Continuity for electrons 

€ 

1
−q

∂ρ
∂t

How fast does the  
number of electrons 
change in  A dx ?  

Adx
Volume element  

V 
External voltage  

€ 

∂n
∂t
Adx =

Jn x( )A
−q

−
Jn x + dx( )A

−q

$ 

% 
& 

' 

( 
) + Gn − Rn( )Adx

Jn x + dx( ) = Jn x( ) +
∂Jn
∂x

dx + ...

Net carriers per second 
through the “walls”  

+ generation  
- recombination  

Substituting:  
and dividing by A dx 
⇒ see next page…  
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Continuity for electrons and holes 

  

€ 

∂n
∂t

=
1
q
∂Jn

∂x
+ Gn − Rn( ) ∂n

∂t
=
1
q

! 
∇ •
! 
J n + Gn − Rn( )

∂p
∂t

= −
1
q
∂Jp

∂x
+ Gp − Rp( ) ∂p

∂t
= −

1
q

! 
∇ •
! 
J p + Gp − Rp( )

One-dimensional                           Three-dimensional 
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Continuity for electrons and holes 

Jn,x = np q µnEx + Dn

∂np
∂x

Jp,x = pn q µpEx − Dp
∂pn
∂x

One-dimensional, under low-injection conditions, for minority carriers: 

Minority carriers: 
 
Electrons in p-type                  holes in n-type          

∂np
∂t

= npµn
∂Ex

∂x
+ µnEx

∂np
∂x

+ Dn

∂2np
∂x2

+Gn −
np − np0
τ n

∂pn
∂t

= − pnµp
∂Ex

∂x
− µpEx

∂pn
∂x

+ Dp
∂2 pn
∂x2

+Gp −
pn − pn0
τ p

Recombination  
rate R 

minority 
carrier 
excess 

minority 
carrier 
lifetime 

Electrons:  
np in p-type 

holes: pn  
in n-type 

Simply substitute J=J(drift)+J(diffusion)… 

(electric field) 



Continuity:  
generation, recombination,  

drift, diffusion 

Summary and real-life applications 
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Generation, Recombination, Continuity - 1 

ppp

nnn

GRU
GRU
−=

−=

General “minority diffusion” approx. 

Net recombination rate (2) 

lifetime approx. (1) 

minority excess Δnp (Δnp); approximations: 
1-dimensional,  Electric field~0,  
Uniform doping n0≠n0(x), p0 ≠ p0(x), 
Low-injection, photogeneration GL only 

For instance 
Photogener. GL 
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Generation, Recombination, Continuity - 2 

minority 
carrier 
lifetimes 

Einstein relationships 

minority 
carriers 
diffusion 
lengths 

“band 
bending” 

“Quasi-Fermi” 
 

(el.) 
(h.) 
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Device simulations 
•  In real life, device designers use programs performing 

numerical integrations in discrete space and time steps, to 
obtain (*): 
Process simulator 

Device simulator 

AD NN ,doping 
profiles 

pn JJ

pn

!!
,

field el.
,

(*) carrier  
concentrations, 
fields, currents 
in: 
(1) equilibrium, 
(2) steady state, 
(3) transients 

+ boundary conditions, 
external fields  
and “excitations” 

( )

( )
t
pGRJ

q

t
nGRJ

q

nqDVqnJ

nqDVqnJ

NNpnñ

VE

p

n

nnp

nnn

DA

∂

∂
+−=•∇

∂

∂
+−=•∇

∇−∇−=

∇+∇−=

+−+−=

=−∇=•∇

!!

!!

!!!

!!!

!!

1

1

2

µ

µ

ε
ρ
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“Equilibrium” vs “steady state” 

“Equilibrium”:  
detailed balance, 
for each process 

“steady state”:  
overall balance 



Continuity equations: 
applications 

Three examples 
 

(1) Steady state injection from one side 
(2) Recombination at the surface 
(3) Haynes-Shockley experiment 
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System of differential equations 
(A)  Continuity (transport) equations for minority carriers,  
1-d case (Sze notations): 

(B) Gauss’ law, relating the divergence of the electric field  
with the local charge density, 1-d case: 

∂np
∂t

= npµn
∂Ex

∂x
+ µnEx

∂np
∂x

+ Dn

∂2np
∂x2

+Gn −
np − np0
τ n

∂pn
∂t

= − pnµp
∂Ex

∂x
− µpEx

∂pn
∂x

+ Dp
∂2 pn
∂x2

+Gp −
pn − pn0
τ p

€ 

∂Ex

∂x
=
ρ
ε

ρ = q p − n + ND
+ − NA

−( ) ≈ q p − n + ND − NA( )
N = ND − NA

To be solved with given boundary conditions! 

Globally neutral, locally can be unbalanced! 
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(ex.1) Steady-state injection from one side 
n-type semiconductor 
minority carriers: holes 
concentration ( ) ?=xpn

( ) 0

0

0

0
0

0

nn

n

p

x

n

pp
p

G
E
t
p

−

=

=

=
∂

∂
steady state 

no applied field 

no generation 
in the bulk 

at thermal equilibrium 
excess injected 
at x = 0 
(boundary condition) 

Continuity equation in this case: 
( ) ( )02

0
2 1

nn
pp

nn pp
Dx

pp
−=

∂

−∂

τ

Solution: ( ) ( )( ) ppp
Lx

nnnn DLepppxp p τ=−+= −
00 0

“Diffusion length” 
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(ex.1) Diffusion length - typical values 

€ 

Lp = Dpτ p“Diffusion length” 

€ 

Ln = Dnτ n

µn  [cm2/Vs] Dn [cm2/s] µp  [cm2/Vs] Dp [cm2/s] 

Si 1350 35 480 12.4 
GaAs 8500 220 400 10.4 
Ge 3900 101 1900 49.2 

example 

€ 

Lp = Dpτ p = 12.4( ) 5 ×10−7( ) = 25 µm
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(ex.2) Recombination at the surface 

( ) 0

0

0

0
0

0

nn

n

L

x

n

pp
p
G
E
t
p

−

≠

=

=
∂

∂
steady state 

no applied field 

Uniform generation 
in the bulk !!! 

at thermal equilibrium 
boundary condition 

€ 

Slr = vthσ pNst

Here the boundary condition is fixed by the rate at which 
carriers disappear with “surface recombination velocity”  
depending on the “surface trap density” Nst 

Equation to be solved 
 (x > 0, bulk):  

( ) 02

2

0 nnn
p

L

pp

nn pxpp
D
G

D
p

x
p

−=Δ=+
Δ

−
∂

Δ∂

τ

cm s-1  cm s-1 cm2 cm-2 
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(ex.2) Solution with boundary conditions 

€ 

Δpn x( ) = Aex Lp + Be−x Lp +GLτ pGeneral solution:  

“particular” 

Boundary conditions:  

“complementary” 
(homegeneous)  

ppp DL τ=

€ 

Δpn x( ) x→+∞
% → % % GLτ p ⇒ A = 0

Δpn x( ) x→0% → % % Δpn 0( ) ⇒ Δpn 0( ) = B +GLτ p

B = Δpn 0( ) −GLτ p

after some algebra, substituting A and B, our solution: 

€ 

pn x( ) = pn0 +GLτ p 1+
Δpn (0) −GLτ p

GLτ p

e−x Lp
% 

& 
' 

( 

) 
* Δpn (0) = ???

lrS
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(ex.2) Surface boundary condition 
surface  bulk  

x
ll +−

A

€ 

−Jx x = l( ) A = GL − vthσ pNt( )Δpn 0( )[ ] Al − vthσ pNst( )Δpn 0( ) A
diffusion  
current   

Gener. – recomb. 
        (bulk) 

Recombination 
(surface) 

Consider a thin volume enclosing the surface:  ( )lA 2×

In the limit   ( ) ( ) ( )00:0 nstpthx pNvJl Δ−=−→ σ

0→l
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(ex.2) Solution with surface recomb. velocity 

€ 

−Jx 0( ) = − vthσ pNst( ) Δpn 0( ) ⇒

€ 

Dp
dΔpn
dx

# 

$ 
% 

& 

' 
( 
x= 0

= Slr Δpn 0( )

cm2 s-1  cm-4               cm s-1  cm-3  

€ 

dΔpn
dx

# 

$ 
% 

& 

' 
( 
x= 0

= −
B
Lp

Δpn 0( ) =GLτ p + B

from the general solution and boundary conditions:  

€ 

⇒ Dp −
B
Lp

$ 

% 
& & 

' 

( 
) ) = Slr GLτ p + B( )

⇒ B =
−SlrGLτ p
Dp Lp + Slr

Solution expressed in terms of  the surface recombination velocity:  

€ 

pn x( ) = pn0 +GLτ p 1−
Slrτ p

Lp + Slrτ p
e−x Lp

$ 

% 
& & 

' 

( 
) ) 
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(ex.2) Minority carriers at the surface 

€ 

Slr = vthσ pNst

€ 

∂2Δpn
∂x 2

−
Δpn
Dpτ p

+
GL

Dp

= 0

cm s-1  cm s-1 cm2 cm-2 cm2 s-1 

cm-3 s-1 

cm2 s-1 s 

cm-3 

cm 

€ 

Lp = Dpτ p

€ 

GLτ p
Slrτ p

Lp + Slrτ p

cm 

cm 
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(ex.2) Limiting cases 

Neglecting surface recombination:  

€ 

Slrτ p << Lp ⇒ pn x( ) = pn0 +GLτ p

pn 0( ) = pn0 +GLτ p

Large (“immediate”) surface recombination:  

€ 

Slrτ p >> Lp ⇒ pn x( ) = pn0 +GLτ p 1− e
−x Lp( )

pn 0( ) = pn0

as expected!  

as expected!  
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(ex.3) The Haynes-Shockley experiment 
localized 
light pulse applied  

el. field 
Experimental set-up 

excess carrier distributions 
at successive times t1 and t2, 
no applied field 

excess carrier distributions 
at successive times t1 and t2, 
with a constant applied field 

diffusion,  
recombination 

drift, 
diffusion,  
recombination 
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(ex.3) The Haynes-Shockley experiment 

Transport equation for excess minority carriers (n-type semiconductor): 

After a light pulse:  

€ 

GL = 0
∂Ex

∂x
= 0

no bulk generation  

constant applied field  

€ 

∂Δpn
∂t

= µpEx
∂Δpn
∂x

+ Dp
∂2Δpn
∂x 2

−
Δpn
τ p

Δpn = pn − pn0

Solution, no applied field:  

Solution, with applied field:  

€ 

Δpn x,t( ) =
N
4πDpt

exp − x 2

4Dpt
−
t
τ p

& 

' 
( ( 

) 

* 
+ + 

€ 

Δpn x,t( ) =
N
4πDpt

exp −
x −µpExt( )

2

4Dpt
−
t
τ p

& 

' 

( 
( 

) 

* 

+ 
+ 

diffusion,  
recombination 

drift, 
diffusion,  
recombination 



The role of Gauss’ law 
 

Dielectric relaxation 
Ambipolar transport 
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The role of Gauss’ law 
Divergence of the electric field, 1-d case: 

€ 

∂Ex

∂x
=
ρ
ε

ρ = q p − n + ND
+ − NA

−( ) ≈ q p − n + ND − NA( )
N = ND − NA

~ complete ionization 

Example: current 
in a semiconductor 

Uniform resistivity: 
uniform el.field,  
no local charge 

Non-uniform resistivity: 
non-uniform field,  
local charge ≠ 0 ! 

00 =⇒=
∂

∂
x

x E
x
E

divergence-less fields 
can be non-zero ! 
(due to “external” charges) 

€ 

Ex1 ρ1 = Jx = Ex2 ρ2 ⇒ Ex1 > Ex2

€ 

Ex = const.
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Dielectric relaxation time constant 

n-type 

Example: in a short time inject an excess of holes 
Δp in a small region of a semiconductor crystal, that  
will experience a local unbalance of electric charge.  
How fast will be electrical neutrality restored? 

Poisson (Gauss) 

Ohm 

Continuity 
 

!
∇ •
!
E = ρ

ε!
J = σ

!
E

!
∇ •
!
J = − ∂ρ

∂t

 

!
∇ •
!
J = σ

!
∇ •
!
E = σρ

ε
= −

∂ρ
∂t

⇒
dρ
dt

+
σ
ε

(
)*

+
,-
ρ = 0

ρ t( ) = ρ 0( ) e− t τd τ d =
ε
σ

Dielectric relaxation time constant 
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Dielectric relaxation: Debye length 

€ 

LD ≈ Dp
ε
σ

% 

& 
' 

( 

) 
* = Dpτ d τ d ≡ ε σ

“Debye length” LD (~ 10-5 cm): 
“dielectric relaxation time” τd 
(~ 10-12 s) 

Expect no significant departures from electrical neutrality, over distances 
greater than about 4 LD to 5 LD in uniformly doped extrinsic material, 
at thermal equilibrium (also true off-equilibrium!);  
this process is much faster than the typical excess carrier lifetime (10-7 s) 

Numerical example for n-type Si, doped with donor concentration ND = 1016 cm-3 

€ 

τ d =
ε
σ
≈

εrε0
qeµnND

=
11.7( ) 8.85 ×10−14( )

1.6 ×10−19( ) 1200( ) 1016( )
F ⋅ cm
Ω⋅ cm( )−1

= 5.4 ×10−13 s = 0.54 ps



“ambipolar” transport  
 

Two examples: 
(1) Bipolar diffusion 
(2) Shockley experiment 
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“Ambipolar transport” - equations 
Combining the transport equations for electrons and holes  
with Gauss’ law, under some simplifying assumptions, 
(see back-up slides and reference texts): 
 
 
 
⇒ equations of coupled continuity for excess concentrations 

( )
pn
np

pn
pDnD

D
pn

pn

pn

nppn

µµ

µµ
µ

µµ

µµ

+

−
="

+

+
="

t
n

Rg
x
n

E
x
n

D x ∂

"∂
=−+

∂

"∂
"+

∂

"∂
" µ2

2

With “ambipolar diffusion coefficient” and “ambipolar mobility”: 

 “ambipolar transport equation” 
Non-linear! 

!p ≡ p − p0 !n ≡ n − n0 appint EE <<pn !≈!
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+ 
- 

Example 1: “Ambipolar diffusion” 
Excess electrons and holes produced by light close to the surface, 
in large concentrations compared to the equilibrium (dark) ones. 
  
Electrons have larger mobility and move faster: electrons and holes  
partly separate (net charge positive close to the surface, negative inside) 

The resulting electric field is 
directed so as to compensate for 
the different mobilities (electrons 
slowed down, holes accelerated) 
 
The coupled motion is called 
ambipolar diffusion. Since 
electrons and holes move with the 
same velocity in the same 
direction, there is no net charge 
current associated with this 
motion ! 
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Example 2: Heynes-Shockley experiment 

Delayed current pulse seen  
by probes at different distances: 
What is really moving ??? 

VA 
 
+ 

VB < VA 
 
      - 
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Example 2 - qualitative interpretation 

drags along a majority-carrier 
concentration bump  

the minority-carrier 
concentration bump  

majority-carriers, 
locally slowed down  
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Lecture 32 - exercises 
•  Exercise 1: An intrinsic Si sample is doped with donors from one side 

such that ND=N0exp(-ax). (a) Find an expression for the built-in electric 
field E(x) at equilibrium over the range for which ND>>ni. (b) Evaluate E(x) 
when a = 1µm-1.   

•  Exercise 2: An n-type Si slice of thickness L is inhomogeneusly doped 
with phosphorous donor whose concentration profile is given by ND(x) = 
N0 +(NL – N0)(x/L). What is the formula for the electric potential difference 
between the front and the back surfaces when the sample is at thermal 
and electric equilibria regardless of how the mobility and diffusivity vary 
with position? What is the formula for the equilibrium electric field at a 
plane x from the front surface for a constant diffusivity and mobility? 
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Lecture 33 - exercises 
•  Exercise 1: Calculate the electron and hole concentration under steady-

state illumination in an n-type silicon with GL=1016cm-3s-1, ND=1015cm-3, and 
τn=τp=10 µs. 

•  Exercise 2: An n-type silicon sample has 2x1016 arsenic atoms/cm3, 2x1015 
bulk recombination centers/cm3, and 1010 surface recombination centers/
cm2. (a) Find the bulk minority carrier lifetime, the diffusion length, and the 
surface recombination velocity under low-injection conditions. The values 
of σp and σs are 5x10-15 and 2x10-16 cm2, respectively. (b) If the sample is 
illuminated with uniformly absorbed light that creates 1017 electron-hole 
pairs/(cm2s), what is the hole concentration at the surface? 

•  Exercise 3: The total current in a semiconductor is constant and is 
composed of electron drift current and hole diffusion current. The electron 
concentration is constant and equal to 1016 cm-3. The hole concentration is 
given by p(x)=1015 exp(-x/L) cm-3 (x>0), where L = 12µm. The hole diffusion 
coefficient is Dp=12cm2/s and the electron mobility is µn=1000cm2/(Vs). The 
total current density is J = 4.8 A/cm2. Calculate (a) the hole diffusion current 
density as a function of x, (b) the electron current density versus x, and (c) 
the electric field versus x. 
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Lecture 34 - exercises 
•  Exercise 1: Excess electrons have been generated in a 

semiconductor so that at t = 0 the excess concentration is 
Δn(0) = 1015cm-3. Assuming an excess-carrier lifetime τn = 10-6 
s, calculate the excess electron concentration and the 
recombination rate for t = 4µs. 

•  Exercise 2: Excess electrons and holes are generated at 
the end of a silicon bar (at x = 0); the silicon bar is doped 
with phosphorus atoms to a concentration ND = 1017 cm-3 . 
The minority lifetime is 10-6 s, the electron diffusion 
coefficient is Dn = 25 cm2/s, and the hole diffusion current is 
Dp = 10 cm2/s. Determine the steady-state electron and hole 
concentrations as a function of x (for x >0) and their 
diffusion currents at x = 10µm. 



Back-up slides 

(topics not included in the standard program!) 



Recombination via traps 

Shockley-Read-Hall model 
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 “Low-injection minority lifetime” approximation  

€ 

U ≈ vthσ pNt pn − pn0( )

τ p ≡
1

vthσ pNt

≈ 0.3µs (Si)

€ 

U ≈ vthσ nNt np − np0( )
τ n ≡

1
vthσ nNt

≈1.0µs  (Si)

p-type semiconductor: 
electron lifetime dominated  
by “electron capture” (3) 
in “empty” RG centers  

n-type semiconductor: 
hole lifetime dominated  
by “hole capture” (4) 
in “full” RG centers  

p-type 

mostly 
empty 

n-type 

mostly 
full 
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“Shockley-Read-Hall” lifetimes - 1 

•  What happens if these approximations are not valid? 

–   n, p may be comparable (no longer true that n >> p or p >> n) 

–   carrier lifetime no longer dominated by availability of: 

p-type: “empty” traps for “electron capture” (Nt
0 = Nt(1-F) ≈ Nt) 

n-type: “full” or “ionized” traps for “hole capture” (Nt
- = NtF ≈ Nt) 
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“Shockley-Read-Hall” lifetimes - 2 
 
All four “indirect” processes must 

be taken into account 
 
 (see also SZE 2.4.2, “indirect 

recombination”, or Neamen 6.5.1) 
 
 
 
 
1=d “hole emission” (from a trap)         
2=b “electron emission” (from a trap) 
3=a “electron capture” (in a trap) 
4=c “hole capture” (in a trap) 

Net recombination rates for electrons 
and holes separately: 

€ 

Rd = epNt 1− F( )
Rb = enNtF
Ra = cnNt 1− F( )
Rc = cpNtF

€ 

Un = Ra − Rb

Up = Rc − Rd
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“Shockley-Read-Hall” lifetimes - 3 
From equilibrium conditions  
GL =0; detailed balance: Ra - Rb = Rc - Rd  = 0)  

–  emission coefficients (en, ep) in terms of: 
–  capture coeff. (cn = vthσn, cp = vthσp) 

( )

( ) kTEE
ipp

kTEE
inn

it

ti

enppce

ennnce
−

−

==

==

11

11
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“Shockley-Read-Hall” lifetimes - 4 
non-equilibrium steady-state  
(GL = constant ≠ 0, and: Un = Ra - Rb = Up = Rc - Rd ≠ 0 ): see SZE eq. (63) 

 
 
 
 
 
 
This is a general result, usually implemented in device simulations 

–  A special case: the previous “Low-injection minority lifetime” result 
–  For very high doping concentrations, direct transitions become likely: this 

can be modeled by making  τn and τp concentration-dependent 

€ 

U =Un =Up =
np − ni

2

1
cnNt

n + n1( ) +
1

cpNt

p + p1( )
=

np − ni
2

τ n n + n1( ) + τ p p + p1( )



“ambipolar” transport  
 

Two examples: 
(1) Bipolar diffusion 
(2) Shockley experiment 
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“Ambipolar transport” - equations 
Special case: homogeneous semiconductor   ⇒ 
Thermal equilibrium concentrations n0, p0 constant (time and space) 

 

Dp
∂2 "p
∂x2

− µp Ex
∂ "p
∂x

+ p
∂Ex

∂x
$
%&

'
()
+ gp −

p
τ p

=
∂ "n
∂x

Dn
∂2 "n
∂x2

+ µn Ex
∂ "n
∂x

+ n
∂Ex

∂x
$
%&

'
()
+ gn −

n
τ n

=
∂ "n
∂x

!
∇ •
!
E =

∂Ex

∂x
=
q
ε

"p − "n( ) "p ≡ p − p0 "n ≡ n − n0

Assume: 
- Small internal electric field,  
with respect to the applied field 
- Almost complete balance  
of electron and hole concentrations 
- Generation, recombination 
 

appint EE <<

pn !≈!

Rpnggg
ptnt

pn ≡=≡=
ττ
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“Ambipolar transport” - equations 
We get then : 

Dp
∂2 "n
∂x2

− µp Ex
∂ "n
∂x

+ p
∂Ex

∂x
$
%&

'
()
+ g − R =

∂ "n
∂t

× µp p

Dn
∂2 "n
∂x2

+ µn Ex
∂ "n
∂x

+ n
∂Ex

∂x
$
%&

'
()
+ g − R =

∂ "n
∂t

× µnn

Multiply (see above), add and divide by   

( )
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D
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µµ
µ

µµ

µµ

+

−
="

+

+
="

t
n

Rg
x
n

E
x
n

D x ∂

"∂
=−+

∂

"∂
"+

∂

"∂
" µ2

2

With “ambipolar diffusion coefficient” and “ambipolar mobility”: 

pn pn µµ +

 “ambipolar transport equation” 
Non-linear! 
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“Ambipolar transport” 

In an extrinsic semiconductor under low injection, the ambipolar 
mobility coefficients reduce to the minority-carrier parameter values, 
that are constant 

p-type 
minority: electrons 

n-type 
minority: holes t

pp
g

x
p

E
x
p

D

t
nn

g
x
n

E
x
n

D

p
xpp

n
xnn

∂

"∂
=

"
−"+

∂

"∂
−

∂

"∂

∂

"∂
=

"
−"+

∂

"∂
+

∂

"∂

0
2

2

0
2

2

τ
µ

τ
µ

The behaviour of excess majority carriers follows that of minority!!!  
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+ 
- 

Example 1: “Ambipolar diffusion” 
Excess electrons and holes produced by light close to the surface, 
in large concentrations compared to the equilibrium (dark) ones. 
  
Electrons have larger mobility and move faster: electrons and holes  
partly separate (net charge positive close to the surface, negative inside) 

The resulting electric field is 
directed so as to compensate for 
the different mobilities (electrons 
slowed down, holes accelerated) 
 
The coupled motion is called 
ambipolar diffusion. Since 
electrons and holes move with the 
same velocity in the same 
direction, there is no net charge 
current associated with this 
motion ! 
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Example 1: “Ambipolar diffusion” 
Charge currents  
for electrons and holes: 

€ 

jx,n = qDn
∂n
∂x

+ q nµnEx

jx,p = −qDp
∂p
∂x

+ q pµpEx

The net current density vanishes! Associated electric field:  

€ 

jx = jx,n + jx,p = 0 ⇒ Ex =
Dn ∂n ∂x −Dp ∂p ∂x

nµn + pµp

The particle currents are therefore equal for electrons and holes:  

€ 

je = jh =
Dnnµn + Dp pµp

nµn + pµp

∂n
∂x

= Damb
∂n
∂x

Damb =
Dnnµn + Dp pµp

nµn + pµp

is the “ambipolar diffusion coefficient”  



A “steady-state” example: 
locally illuminated  
semiconductor bar 
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Ingredients and qualitative expectations 
n-type; non-equilibrium; open-circuit; 
Local steady illumination 

Diffusion of excess carriers (p’, n’ ) 

The local charge unbalance is small! 

Diffusion currents, but also  
drift currents due to the electric field Ex  

Electric field Ex (charge unbalance!)  

nnnnpppp Δ=−≡$Δ=−≡$ 00

0=+=

!
+=

!
−=

he

exeehxhh

JJJ
dx
nd

qDnEqJ
dx
pd

qDpEqJ µµ

( ) 0≠"−"= np
q

dx
dEx

ε

1<<
!

!−!
≈

!

!−!

n
np

p
np
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Ingredients and qualitative expectations 
n-type; non-equilibrium; open-circuit; 
Local steady illumination 

Diffusion of excess carriers (p’, n’ ) 

The local charge unbalance is small! 

Diffusion currents, but also  
drift currents due to the electric field Ex  

Electric field Ex (charge unbalance!)  

nnnnpppp Δ=−≡$Δ=−≡$ 00

0=+=

!
+=

!
−=

he

exee

hxhh

JJJ
dx
nd

qDnEqJ

dx
pd

qDpEqJ

µ

µ

( ) 0≠"−"= np
q

dx
dEx

ε

1<<
!

!−!
≈

!

!−!

n
np

p
np

holes (h): minority 
electrons (e): majority 

Diffusion (e,h): opposite currents, 
comparable sizes 

drift (e,h): n >> p 
 

xhxe pEqnEq µµ >>

dx
pd

qDJ

dx
pd

qDpEq

hh

hxh

!
−≈⇒

!
<<⇒ µ

in this case 
minority carriers flow 
mainly by diffusion 
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Under conditions of: 
-  comparable mobilities 
-  small injection  
in uniform extrinsic material  

the minority-carrier current  
will be comparable to  

the majority-carrier current  
only if  

minority carriers  
flow mainly by diffusion 
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Qualitative results 

The continuity equations above  
can be solved analytically to obtain  
p’(x) and Jh(x) ⇒ Je(x) = - Jh(x)  

hehe JJJJ −=⇒=+ 0

2;0

20;2

2

δ

δ
τ

>=

<<−=
$

−
$

x

x
D
g

D
p

dx
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h

L

hh

⇒

⇒>

"="=⇒=

                
                

,0

he

xhe

DD
npEDDIf 

If Majority diffusion  
larger 

Majority drift current: 
same direction as Jh(x)  

( ) xexee EnqEnnqJ 00(drift) µµ ≈"+=
Electric field Ex   
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Under conditions of: 
-  comparable mobilities 
-  small injection  
in uniform extrinsic material  

the minority-carrier current  
will be comparable to  

the majority-carrier current  
only if  

minority carriers  
flow mainly by diffusion 

The large supply of majority carriers effectively “shields” the minority ones 
from producing any significant space charge.  
 
The small fields that are generated by slight departures from neutrality 
serve to adjust the majority-carrier current to the general conditions of the 
problem, without producing significant effects on minority carriers. 
 
An approximate calculation of Jh, Je, Ex, p’, n’ in the “quasi-neutral” n’ ≈ p’ 
approximation (without enforcing Gauss’ law with p’ - n’ = 0) will be  
quite satisfactory; of course, the small p’ - n’ will not be very accurately 
determined from Ex found in this way 
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Approximate quantitative solution 
Assuming “quasi-neutral” behaviour: 
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(well justified in most cases) 

Approximate charge unbalance (dEx/dx) 
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Nearly exact solution 
A more accurate solution,  
not using the p’ ≈ n’ approx.  
to evaluate Je (diffusion) 

In this example: 
 δ ≈ Lh >> LD 
light beam width δ 
hole diffusion length Lh 
Debye length LD 
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Nearly exact solution 
A more accurate solution,  
not using the p’ ≈ n’ approx.  
to evaluate Je (diffusion) 

In this example: 
 δ ≈ Lh >> LD 
light beam width δ 
hole diffusion length Lh 
Debye length LD 
 


