Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment

Seismic (and volcanic) Risk

FABIO ROMANELLI

Department of Mathematics & Geosciences romanel@units.it

Know the input - Bound the output...

Mitigate the difference...

Response spectra

Response spectra

Response spectra

Know the input - Bound the output...

Earthquake fatalities versus repair costs in 2005 US\$

Know the input - Bound the output...

Earthquake fatalities versus repair costs in 2005 US\$

Know the input - Bound the output...

100,000 Kashmir'05 Sichuan'08 M=7.9 adjusted for Bam'03 Bhuj'01 Armenia'98 increase population 1906 San 10,000 Francisco Indonesia'06 actual deaths Qinghai'10 M=6.9 LAScenario' 08 1000 Deaths Chile'10 M=8.8 Greece'99 100 Aquila'09 M=6.3 Northridge'94 Kobe04 Italy'97 10 100 1000 Cost in billions of 2005 dollars -

Haiti'10 M=7.0

Earthquake fatalities versus repair costs in 2005 US\$

Know the input - Bound the output...

100,000 Kashmir'05 Sichuan'08 M=7.9 apan' | | ^{rr} opulation Bam'03 Bhuj'01 Armenia'98 M=9.0 San 10,000 Francisco Indonesia'06 actual deaths Qinghai'10 M=6.9 LAScenario' 08 1000 Deaths Chile'10 M=8.8 Greece'99 100 Aquila'09 M=6.3^{Northridge'94} Kobe04 Italy'97 10 100 1000 Cost in billions of 2005 dollars -

Haiti'I0 M=7.0

Earthquake fatalities versus repair costs in 2005 US\$

Know the input - Bound the output...

100,000 Kashmir'05 Sichuan'08 M=7.9 apan' | ^r ppulation Bam'03 Bhuj'01 Armenia'98 M=9.0 San 10,000 Francisco Indonesia'06 actual deaths Qinghai'10 M=6.9 LAScenario' 08 1000 Deaths Chile'10 M=8.8 Greece'99 100 Aquila'09 M=6.3 Northridge'94 Kobe04 Italy'97 10 100 1000 Cost in billions of 2005 dollars -

Haiti'10 M=7.0

Earthquake fatalities versus repair costs in 2005 US\$

Bilham, 2009. The seismic future of cities, Bull Earthquake Eng. Roughly updated with help of Bilham, 2010 (Personal communication)

Mitigate the difference...

Losses from great natural disasters...

Losses from great natural disasters (far exceeding 100 deaths or US\$ 100 m in losses), 1950–2005

Smolka, 2006.

Natural disasters and the challenge of extreme events: risk management from an insurance perspective, Phil. Trans. R. Soc.

Some basic definitions:

Seismic Hazard: describes the potential for dangerous, earthquake related phenomena, such as ground shaking, fault rupture or soil liquefaction.

Seismic Risk: probability of occurrence of these consequences.

Reiter, 1990

Some basic definitions

Seismic Hazard: any physical phenomenon (e.g. shaking) associated with an earthquake that may cause an adverse effect on human activity.

Seismic Risk: a probability that social or economic consequences will exceed a specified value.

Anderson, 2006

Some basic definitions

Seismic Hazard: a physical effect associated with an earthquake, such as ground shaking, that MAY produce adverse effects.

Seismic Risk: the probability that consequences of an earthquake, such as structural damage, will equal or exceed specified values in a specified period of time.

$$\left(\mathsf{R}=\left\langle\mathsf{H}_{\mathsf{i}},\mathsf{P}_{\mathsf{i}},\mathsf{C}_{\mathsf{i}}\right\rangle\right)$$

set of i-events with possible adverse consequences

associated probabilities of their occurrence

associated intolerable consequences