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CLUSTERING: AN OVERVIEW 9
Given input data x4, ..., XN, group data into K separate groups, such

that points in each group are as similar as possible and points in
different groups are as different as possible.

@ We need a notion of dissimilarity between input points. Different
measures can produce different clusters.

o Clustering can be defined as a (hard) combinatorial optimisation
problem. Clustering algorithms implement different approximate
search strategies.

@ Some methods require to fix a priori the number of clusters
(k-means, k-medoids).

@ Other methods produce a tree of possible clusters (hierarchical
clustering).

@ Soft clustering returns a probabilistic assignment of each point
to each cluster.
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DISSIMILARITY MEASURES

@ There are many different ways of constructing a dissimilarity
between input points, depending on the nature of the data (e.g.
categorical, ordinal, numerical). The choice is usually data and
application oriented.

@ Typically, each input point can be seen as a vector of attributes
.z L= Xi= Xite Xin

N4 ¢ Onnumerical data (x € R™) one usually uses a p-norm, like the
(squared) Euclidean norm, or the 1-norm. k‘fl?\N dARKISE (\
VA‘ZU"X * @ On categorical data, one can start from a dissimilarity between

L single attributes and then combine it by adding the dissimilarities

\ —
;,ZLT.E*{* of single attributes in a vector of attributes, possible weighted:

L, R Mb\‘i’(x,Y)_ZWk (X, ¥i)
QL' _:—\r_‘(;;\ k E/.(J

@ On ordinal data, one can take the distance of the (normalised)
rank.
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DISSIMILARITY MEASURES

@ A K-clusteringcanbe seenasamap C: {1,..., Ny —{1,..., K},
assigning each input point to a cluster.

@ There are two important quantities associated with a a
clustering. The within cluster distance is

WEe)=5> > > dx.x)

k=1 C(i)=k C(j)=k

while the between-cluster distance is

K

BIC)=15 > > > dxix)
k=1 C(i)=k C(j)¢k

e Itholds that W(C) + B(C) = T = } 3 ¥4 d(Xi, Xj) where T is
the total distance.
N—

o Clustering algorithms try to solve (approximatively) the NP-hard
combinatorial optimisation problem:

Al N
wg NoB(C) = argmexW(C) dh
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HIERARCHICAL CLUSTERING

o Hierarchial clustering
combines (or divide) the
dataset pairwise, producing a
tree of successive groupings,
called[dendrogram |

—_—

@ The dissimilarity measure can
be used to assign a length to
the edges of the dendrogram.

FIGURE 14.12. Den
averay

erage linkage to

@ Agglomerative HC combines pairwise clusters (initially single
data points), until they are all merged. The sequence of
combinations produces the dendrogram.

@ Divisive HC starts from a single cluster and splits it in two
iteratively.
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AGGLOMERATIVE HIERARCHICAL CLUSTERING

@ Agglomerative HC keeps a list with the current clusters, and at
each step combines the two clusters G, H that are closer to each
other. Different ways of measure the cluster dissimilarity give
rise to different dendrograms. DIVISIWVE QO ST g1 ooc..

e L. P 2t
@ Single Linkage: &pﬁcqu.q ~

dSL(G, H) = min d(x,-, xl-) eeeeeeeeeeeeee Comples Linksge Singl Lnksge

ieG,jeH

o Complete Linkage:

dei(G, H) = ierg?gH d(x;, x;)

@ Group Average:

FIGURE 14.13. from chical clustering of hu-

‘1 man tumor microarray data.
dea(G, H) = Z d(X;. X;
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K-MEANS

@ The number of clusters k is fixed. The algorithm assumes
numerical vectors and works with the euclidean distance.

@ Each cluster is represented by its centroid y;. The assignment of
input points X, to clusters is obtained by a 1-of-k scheme, with
boolean variables ry equal to one iff point X, is assigned to
cluster j.

@ The algorithm tries to minimise the following distortion measure,
related to the inter-cluster distance:

N .. *\f‘,/r"\— ,: \
J= 30 > ke —yilf e

==t L_— oY
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K-MEANS

@ Minimisation of J follows a greedy strategy, and alternates
between two steps:

o Minimise J w.r.t. *holding y; fixed. This is achieved by
assigning each point x, to the closest centr0|d (ties broken
arbitrarily).

@ Minimise J w.r.t. y;) The derivative in this case is
2 Z nj(X ) &0
leading to the solution: / .
CJ{\@O o ann/x,, (l P".““'TS |l«/&
b Z Inj,
i.e. eachy; is reassigned to the current cluster center.

@ The algorithm iterates until convergence. Initially, centroids can
be initialised randomly or to random data points (preferrable).
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K-MEANS

-2
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K-MEDOIDS

@ Works similarly to k-means, with two major differences:

@ The distance between two points x and x’ is given by a generic
function D(x,x’).

@ Centroids are restricted to be selected among data points.

@ restricting centroids to datapoints makes the algorithm more
robust to outliers.
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MIXTURES OF GAUSSIANS X
Yol
T 03

@ This is a soft clustering technique: each point will have a certain
probability of being assigned to any of the classes.

@ ltis a generative approach, assuming data is generated by a
mixture of Gaussians of the form

K
p(X) = > N (Xlux, )
k=t
T
@ We can then learn from the input data the parameters of the
mixtures, and compute the probability of assigning each point x
to a class k.

@ This learning problem is best solved by introducing latent
variables z for the class of each point x, and the using the
SN . . . . . .
Expectation-Maximisation algorithm maximise the likelihood.
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MIXTURES OF GAUSSIANS

@ Let us introduce latent variables z = (z,. .., Zk), such that z is
one iff a point belongs to the k-th Gaussian in the mixture.

o Latent variables are not observed, but we can assume the full
input would consist of pairs (X, zZn). ¢ —

@ Then p(x) is the marginal dis%ﬁf)hfion
p(x) —\E} P P
z \ z

where &/
p(2) = wpﬁ*
p(x|z) = HN(XIuk,Zk@
k

@ An important quantity is the responsibility y(zx) (i.e. the
probability of assigning x to class k):

and

ﬂkN(xLuk,zk)A’_ P\Xr%\
ZhmN (X, i)~ P (x)

¥(2k) = p(zx = 1|x) =

21/47
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LATENT VARIABLES

@ Expectation-Maximisation (ER) is a general algorithm to
maximise likelihood for models with observed variables
X = xy,...,Xy and latent (non-observed) variables
Z=2,...,2N.

@ We assume family of models parameterised by 6. The
log-likelihood we have to optimise is
S oz

logp(X|g) =log » p
z

@ With some work, one can prove that the following decomposition
holds (where g(Z) is a generic distribution on Z):

log p(X|) = L(q.0) + KL(qlIp)
p(X.Zl0)
)= 2.9@)108 =

KL(qllp) = Z q(z Z|X)9)
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LIKELIHOOD DECOMPOSITION
@ Let’s prove: log p(X|9) = L(q.6) + KL(gllp), with

Z|0) p(ZIX, 0)

£(q.0) = Z q(2)log 2 X KL(qllp) = Z q(Z
z

q(2)

1) 3\
Lo P (115) = 2: ()[fwaf(wﬁ
2,"1(13 L_WQ] %?ilxq +10M [om

g(o\g\ Qﬁ%‘? X2 18)
Tyl /TW
° qe)

- q ()

—
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LIKELIHOOD DECOMPOSITION
@ Let’s prove: log p(X|0) = £(q,6) + KL(qllp), with

KL(qlip) = Z q(Z le)e)

£(q.0) = Z@Z) log pX
z

@ (Use log p(X|8) = ¥z q(Z) log p(X|#), add and subtract to the log
factor log p(Z|X, ), then use
log p(X|6) + log p(ZIX, 8) = log p(X, Z|6), finally add and remove
2z9(2)logq(Z).)
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LIKELIHOOD DECOMPOSITION AND EM

o| L(g.d)is a functional ofq jt is a distribution on the latent
“Variables Z) and a function of the parameters

@ As|KL(qllp) = O! with equality iff\q = ,EJ(Z|X,'9)L it follows that
— ==
| £(g.6) < log p(X|6)

i.e. £(qg,0) is a lower bound on the log likelihood of interest.
——

o Expectation-Maximisation is an optimisation algorithm which
optimises the lower bound £(q, 6) alternating two phases: one in
which £ is optimised w.r.t. g (E step) and one in which it is
optimised w.r.t. 8 (M step).

ﬂ It is guaranteed to converge to a local optimum of’log p(X|9),
A 1
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EXPECTATION STEP

@ Inthe E step, £L(q,6) is optimised w.r.t. g(Z), holding the current

value 6y of 6 fixed. "qﬂ o ﬂ
o To find the sqution consid_e/rt_h,e,d?v%msnmn

2109 p(Xlboia) = £(9. oa) +HKL(qlIp); and note thatllog p(Xl6o)
does not depend on g, henféTh_engue of £(g,94) can never

exceed log p(X|0o/g)-
@ Furthermore, it attains this value when KL(qllp) = 0, i.e. for

o -]

@ When observations X, are i.i.d., with corresponding latent
variables z,,, then p(Z|X, 9) ’r'éctorises w.r.t. observations:
>

N

X710 HP(X1L7Z’VL|0) N\lf/
p(X,Z10) .o ,? Hp(zn\xn,e) (9.75)

n=1

p(Z[X,6) =

p(X,Z|0 N
;[(X, ‘ ) ZHP(XmZn‘e)

Z n=1
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MAXIMISATION STEP

In the M step, the distribution g(Z) is held fixed, and the lower
bound £(g, ) is optimised w.r.t. 4, obtaining a novel point 6,ey.

For t{]ﬂgﬂ@ﬂ%@\ Q. Gnew)ldoes not necessarily coincide
with Tog p(X|0new )| T-€. the*ﬁ_l__—d‘l\’/'érgence is generally non-zero.
In particular, as'we are optimising, this implies that both (a) the
value of £(q,9) and (b) the value of log p(X|6) are increased in
the M step.

By plugging
optimising

= p(ZIX, Boig)linto L(q, 8), we see that we are

(2)

v L0,0) = > p(zIX,0° Inp(X. Z/) szpc 6°") Inp(z|X, 6°)
VA

(ol
which can be rewrltten as zf& rJM ol et

£(q.0) J!Eﬂ(ﬁo,dﬂogp (X, ZI9 )i+ H(ZIX Boid)
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EM VISUALLY

KL(4llp)

L(g,6°) Inp(X]07%) TN

L(g,0") Inp(X|67*")

E step

Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.
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EM: MISCELLANEA

o (In the EM algorithm, both the E and the M steps increase the
lower bound, and a complete cycle increases the full
log-likelihood. Hence, the algorithm will eventuallyl converg% toa
(local) maximum of the full log-likelihood. a~

@ A similar approach can be used to maximise the log-posterior

distribution\log p(61X) = log p(6, X) — log p(X):

Here the E step is the same (log p(#)) does not depend an g,
while the M step is required to maximise|£(q. 6) + log p(6).
-
@ There are several Generalised EM (GEM) algorithms that try to

overcome a hard E or M step. E.g. the M step can be replaced
by some steps increasing £(q, 8) without reaching an optimum.
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EM FOR THE MIXTURE OF GAUSSIANS

@ Remember that for a mixture of K gaussians, we have

1_[ W '(Tz'“ «
p(XiZ) = ]_[ ]_[ N (Xnlpe, T

hence the log-likelihood of the joint distribution is

and

Inp(X,Z|p, B, 7) = ZZZ”’“ {Inm + In N (x| g, Zie) } -
A B

, n=1 k=1

30/47

(9.36)
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EM FOR THE MIXTURE OF GAUSSIANS

@ In the E step, we need to compute p(Z|X, uX, ), which is given
by

N K
P(ZIX, p, %, ) o H H [N (% | s Zi) 7 (9.38)
where the expectations of the z,x are

5 o A e B

Znk

D [miN Geal s, £5)])

Znj

_ 7 WkN(Xn‘Ilzk Ek) W(an) (9.39)

Zﬂ'] Xn'“jv

E[an] =
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EM FOR THE MIXTURE OF GAUSSIANS

@ In the M step, we first compute the expectation w.r.t.
p(ZIX, uX, xr), of the complete data log-likelihood

/
B Ez[lnp(X, Z|p, X, )] Znk) {In 7r:€ + hl./\/'(xn\u(‘,7 E'k)} | (9.40)
@ Then we maximise this expression w.r.t. the parameters,
obtaining
Qe N
/ ]\ new 1
HN\= > y(znk)xﬂ (9.24)
& '\//_’VNJ ~ Nk n:lM
/ 1 & T
A\ T = e () (0 — ) (e — )T (929)
— S\L“ \Vad k n=1

-L Ny,
pew )= — 9.26
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EM FOR THE MIXTURE OF GAUSSIANS

@ The algorithm is initialised by choosing uk, «, mx. Typically, one
runs a k-means clustering, and initialised the parameters as the
result of the clustering:

o uk, k. sample mean and variances in cluster k;
o k. fraction of data points in cluster k.

@ Each loop the EM algorithm thus compute the responsibilities
and the new mean, variance and mixture probabilities.

@ Computation is iterated until convergence is met, i.e. the change
in parameters, or in the log-likelihood

Yy Inp(X|p, X, m) Zln{Zwk/\f{Xnmk,Ek)} (9.28)
n=1

becomes smaller than a prescribed error.
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MIXTURE OF GAUSSIANS AND K-MEANS

@ k-means and mixtures of Gaussians are related: the latter is a
soft version of k-means: each data point is assigned to each
cluster with a given probability.

@ Suppose we run EM on a gaussian mixture, by fixing the
covariance to be equal to €/, where € is held fixed. The
responsibilities are now estimated as

T, exp {—||x, — 2/2¢
o) — D (b — 26} 042

o X miexp {=llxn — p;2/2¢}
ot the limit e — 0, this converges to 1 for the component

minimising ||X, — uxll (as in k-means). Means also converge to
e same expression for k-means. Furthermore, the data
log-likelihood in this limit is
S~ LXK
Ez[Inp(X,Z|p, X, 7)) ﬁ(f§ Z Zrnkan — py||* + const. (9.43)

n=1 k=1

i.e. EM and k-means minimise the same score function.
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PRINCIPAL COMPONENT ANALYSIS

@ PCA is a widely used method for dimensionality reduction,
feature extraction, lossy compression, and visualisation.

@ The starting point is a dataset X of d-dimensional input data
Xq,...,XN.

@ ltis a linear projection technique. The idea is to project a
d-dimensional dataset into an m-dimensional one, m < d, such
that either (a) the total sum of square error is minimised or (b)
the variance of the projected data is maximised.

@ Both methods lead to the same result.

@ The so obtained linear subspace is known as principal
subspace, and its axes as principal components.

@ There exist a probabilistic formulation of PCA, which assumes a
linear Gaussian generative model for the data and learns its
parameters by maximum likelihood, possibly exploiting an EM
algorithm.
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PCA: MAXIMUM VARIANCE FORMULATION

@ Consider a dataset X, and assume uy, ..., Uy, is an orthonormal
basis of the m-dimensional space we are looking for. Arrange
them column-wise in a matrix U.

@ The projection of a point x,, in the subspace spanned by U is
given by UTx;.

@ The mean of the projected data is thus UTX, where X = 4, 3., X.

@ The variance of the projected data instead is

where

is the data-covariance matrix

~
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PCA: MAXIMUM VARIANCE FORMULATION
MUy Smy
@ Consider the case m = 1, for simplicity. We maximise the
variance, subject to the constraint that uy is normalised

(otherwise the optimal solution is to take it to infinity). For this we
introduce a Langrange multiplier 11, and maximise the

regrengian: [(pﬁ\{_u? Su, @m D L q- /”5“4'"°

@ Deriving w.r.t. uy and s setting to zero we get
oY TR YR

5/”;' /\lMA_:(O l®U1:/l1U1

hence 1, is an eigenvalue of S and uy an eigenvector.

’)L
’QM
@ Multiplying both sides for ul and using ulu; = 1, we get

which shows that the variance is maximised by taking the
eigenvector of the largest eigenvalue of S.
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PCA: MAXIMUM VARIANCE FORMULATION

@ In the general case of m > 1, one can inductively show that the
optimal choice is to the the eigenvectors uy,...,u, associated to
the largest m eigenvalues A14,..., Am.

@ The cost of finding all eigenvalues/ eigenvectors of Sis O(d®)
(plus the cost of computing S, which is O(Na?). If we are only
interested in m eigenvectors, we can use specialised algorithms
that cost O(md?).
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PCA: MINIMUM-ERROR FORMULATION

@ Here we take a complementary approach to variance
maximisation. We fix an orthonormal basis u;, and express the
data points in this new basis, as

Xn = Z(x;u/’)uj

)

@ The goal is to best approximate these points using only m

dimensions, i.e. with points of the form
\/—

)N(n = @ Zpjl;
where z, = X/ u; andm

|

40/47
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PCA: MINIMUM-ERROR FORMULATION

< L e
L2 7

@ By taking the mean sum of square error,

1 ¢ 2
J=5 zn]nxn—xnn
and inserting the expression for X, we get D L o

Sh\*%]\(*’;\ﬂxs (J—,Zd] u,T@u/ } "y

ke
\ j=m+1

5,«;6-. ',\;\A«A'

e

@ From this expression, using lagrange multipliers like for the max
variance case, we see immediately that the minimum is obtained

,\‘,\ by taking the m principal components as the eigenvectors of the

m largest eigenvalues, so that J is the sum of the d — m smallest
eigenvalues.

41747
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PCA APPLICATIONS

@ Dimensionality reduction: run PCA for the m largest eigenvalues
explaining % of the data variance.

@ Data compression: reduce coordinates of points by PCA and
reconstruct them by using gk, = 37, zyu; + Zfz,muj.
Example: handwritten digits —

Original M=1 M =10 M =50 M =250

151313133

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M. As M increases
the reconstrugtion becomes more accurate and would become perfect when M = D =
28 x 28 = 784.,

PR
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PCA APPLICATIONS

@ A third common application is data renormalisation, a technique
usually known asﬁwrrﬁéﬁ@or sphering.
AN ~N~—

@ The idea is to do a PCA with m = d, in order to make the data
have zero mean and unit covariance.

@ Consider the full eigenvalue equationl SU = UL}, where L is the
diagonal matrix with eigenvalues. After solving it, we

renormalise data as £~
_/——_’—‘

] Vo= LU %) |

@ These new points have unit covariance:

L & ll N
Nzy"y: = NZL*/?UT(X,L—i)(xn—i)TUL*/?
n=1 n=1 L

_ L*l/L*1/2 — L Y212 ﬂEI} (12.25)
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PCA APPLICATIONS

100
90
80
70
60
50

40

@ An example of withering
above.

o Finally, PCA can be used for
data visualisation, by
projecting data on a 2D
space.
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PCA IN HIGH DIMENSIONS

@ By defining the matrix@with rows (X, — X)’, we have that
S = N~ X7 X, hence the eigenvector equation is
N_1XTXU,' = Aju;.
AR

@ By multiplying both sides byr;, and calling r)?u—,-r_ e have
that the equation[N“XXTv,- = A;v;holds for the same
eigenvalues. =

@ We can solve it for v; and obtain u; back by setting

. o
AU g VA
- 1

o NaNo b
@ The matrix XX’ is QgxsN, while X' X is d x d, hence if'N << d,
this second formulation is more convenient (notice: X7 X will
have at mosE N — 1 non null eigenvalues).
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PROBABILISTIC PCA

A

@ Probabilistic PCA rephrases PCA in a probabilistic framework by

defining a generative model for the data. Assume z is a vector in
R™, with distribution N(z|0, /). The generative model for X is

with € = (0, 021).

Hence Probabilstic PCA learns a map (i.e. W, u, o) from the
low dimensional space to the high dimensional one, by
maximum IikeIihood

Solutionis u = X, W = U(L-0?)"?R, o® =1/(d-m) 37, 4;;
where U is the matrix with columns given by the m Iargest
eigenvectors of S, L is the diagonal matrix with the m largest
eigenvalues, and R is an arbitrary rotation matrix.

The projection of a point x is given by E[z|x] = MW (x — X), with
M = WTW + o2/ (z is pushed closer to 0 than with PCA).

For o2 — 0, we obtain back the classic PCA solution. ¢~

46147
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OTHER DIMENSIONALITY REDUCTION METHODS

@ There are many dimensionality reduction techniques, that try to
circumvent the limitations of PCA, mainly the linearity of the
manifold we project into.

@ We list a few here: kernel PCA, using a dual formulation in terms
of kernels, principal curves and surfaces, working with non-linear
manifolds, autoassociative neural networks, for which the
projection is expressed as a NN, Indipendent component
analysis, which uses a probabilistic formulation with a
non-gaussian, but factorised distribution over the reduced
variables z.



