Geometria 1 per Matematica e IADA

Appunti

A.A. 2020-2021

Docente: Prof. Daniele Zuddas

1 Gruppi

Definizione 1. Un gruppo (G, \cdot) è un insieme non vuoto G munito di un'operazione binaria $G \times G \to G$, indicata in notazione moltiplicativa con $(g, h) \mapsto g \cdot h$, che soddisfa le seguenti condizioni:

- a) l'operazione \cdot è associativa, cioè $(g \cdot h) \cdot l = g \cdot (h \cdot l), \forall g, h, l \in G$;
- b) · ammette un elemento neutro, denotato con 1_G (o semplicemente con 1), che soddisfa

$$g \cdot 1_G = 1_G \cdot g = g, \quad \forall g \in G;$$

c) ogni $g \in G$ ha un inverso, denotato con $g^{-1} \in G,$ che quindi soddisfa

$$g \cdot g^{-1} = g^{-1} \cdot g = 1_G.$$

Si userà la notazione (G,\cdot) per indicare il gruppo G con l'operazione \cdot .

A volte si scrive qh anziché $q \cdot h$.

Se · è anche commutativa, cioè $g \cdot h = h \cdot g$, $\forall g, h \in G$, si dice che G è un gruppo abeliano (o commutativo).

Spesso per i gruppi abeliani si preferisce la notazione additiva (G, +), cioè l'operazione binaria del gruppo viene indicata con $(g, h) \mapsto g + h$, l'elemento neutro con 0_G (o semplicemente con 0), e l'inverso di g con -g, che in questa notazione prende il nome di opposto di g.

Esempi. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ sono gruppi abeliani rispetto all'usuale addizione. Non sono gruppi rispetto alla moltiplicazione perché 0 non ha inverso (inoltre in \mathbb{Z} gli unici elementi invertibili sono ± 1).

- $(\mathbb{Q} \{0\}, \cdot), (\mathbb{Q}_+, \cdot), (\mathbb{R} \{0\}, \cdot), (\mathbb{R}_+, \cdot), (\mathbb{C} \{0\}, \cdot)$ sono gruppi abeliani rispetto alla moltiplicazione.
 - $\{1,-1\}\subset\mathbb{Z}$ è un gruppo abeliano moltiplicativo con due elementi.

 $\mathrm{GL}_n(\mathbb{K})$ è un gruppo rispetto al prodotto righe per colonne, non abeliano se $n \geq 2$.

X insieme, $\Sigma(X) := \{\phi : X \to X \mid \phi \text{ biiettiva}\}$ è un gruppo rispetto alla composizione, con elemento neutro id_X .

 $X_n := \{1, 2, \dots, n\}, \ \Sigma_n := \Sigma(X_n)$ gruppo simmetrico su n elementi, non abeliano se $n \ge 3$.

Proposizione 2. Sia G un gruppo. L'elemento neutro di G è unico. Ogni $g \in G$ ammette un unico inverso.

Dimostrazione. Prima parte: $1, 1' \in G$ elementi neutri $\Rightarrow 1' = 1 \cdot 1' = 1$. Seconda parte: $h, k \in G$ inversi di $g \Rightarrow h = h \cdot 1 = h \cdot (g \cdot k) = (h \cdot g) \cdot k = 1 \cdot k = k$. \square

Proposizione 3 (Legge di cancellazione). In un gruppo qualunque valgono le seguenti:

- a) $ab = ac \Rightarrow b = c$;
- b) $ba = ca \Rightarrow b = c$.

Dimostrazione. Esercizio.

Osservazione. $ab = ca \not\Rightarrow b = c$, salvo che il gruppo sia abeliano. **Esercizio:** trovare un esempio (suggerimento: si può fare con le matrici 2×2).

Definizione 4. $g_1, \ldots, g_k \in G$ sono detti generatori di G se ogni $g \in G$ si può scrivere nella forma

$$g = g_{i_1}^{\pm 1} \cdots g_{i_t}^{\pm 1},$$

per opportune scelte degli esponenti ± 1 , con $g_{i_j} \in \{g_1, \dots, g_k\} \ \forall j = 1, \dots, t.$