
Amines

Chapter 24
Organic Chemistry, 8th Edition
John McMurry

Introduction

Amines are stronger bases and better nucleophiles than other neutral organic compounds.

 The chemistry of amines is dominated by the nonbonded electron pair on the nitrogen atom.

Nomenclature

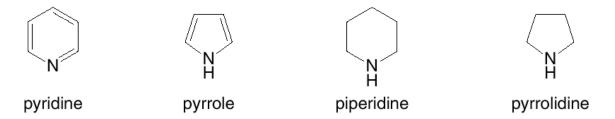
1ry Amines are named using either systematic or common names. NH_2 $_{NH_2}$

CH₃NH₂
methanamine cyclohexanamine
(methylamine) (cyclohexylamine)

3-hexanamine

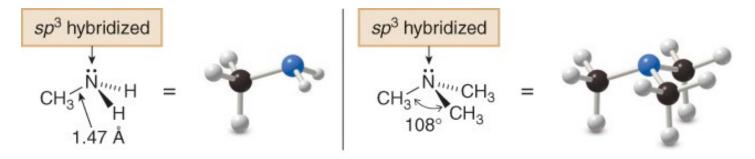
Secondary and tertiary amines having identical alkyl groups are named using the prefix di- or tri- with the name of the primary amine. $\text{CH}_3\text{CH}_2-\ddot{\text{N}}-\text{CH}_2\text{CH}_3 \qquad \text{CH}_3\text{CH}_3-\ddot{\text{CH}}_3\text{CH}_3 \qquad \text{CH}_3$

triethylamine diisopropylamine

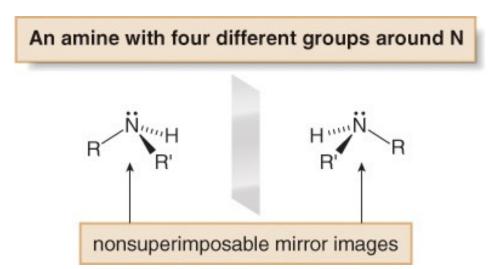

Secondary and 3° amines having more than one kind of alkyl group are named as N-substituted primary amines:

N-methyl-2-propanamine

Nomenclature

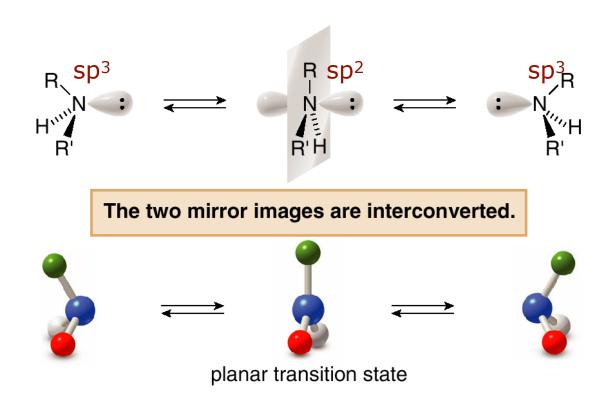

Aromatic amines are named as derivatives of aniline.

There are many different nitrogen heterocycles, each with a different name. The N atom is considered to be at position "1".

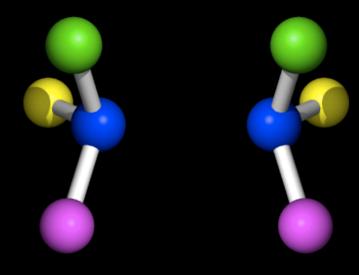


Structure and Bonding

An amine N atom is sp^3 hybridized and trigonal pyramidal, with bond angles of approximately 109.5°.



Since an amine nitrogen has four different groups around it, it is technically a stereogenic center.

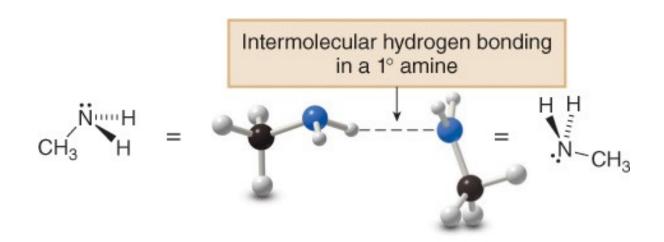


Structure and Bonding

However, the chirality of the amine nitrogen can be ignored because the two enantiomers interconvert by passing through a trigonal planar (achiral) transition state.

Inversion of Configuration in Amines

Structure and Bonding

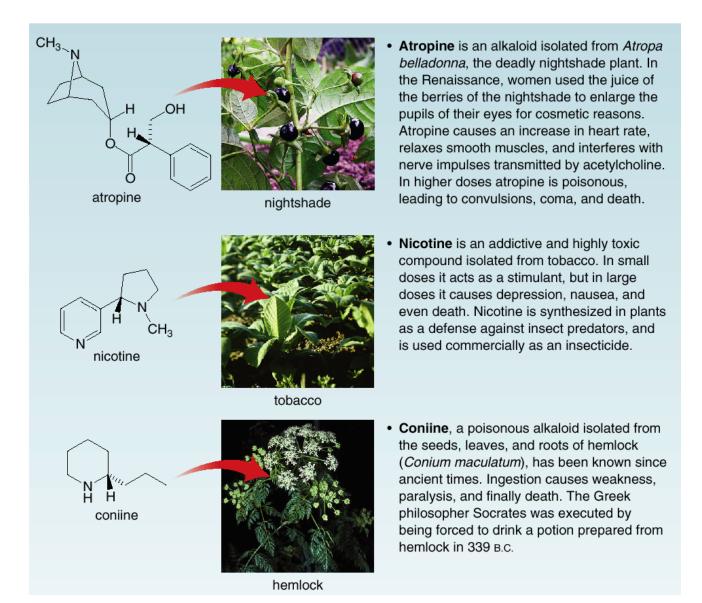

In contrast, the chirality of a quaternary ammonium salt with four different groups cannot be ignored. Because there is no nonbonded electron pair on the nitrogen atom, interconversion cannot occur, and the N atom is just like a carbon atom with four different groups around it.

Two enantiomers of a quaternary ammonium salt

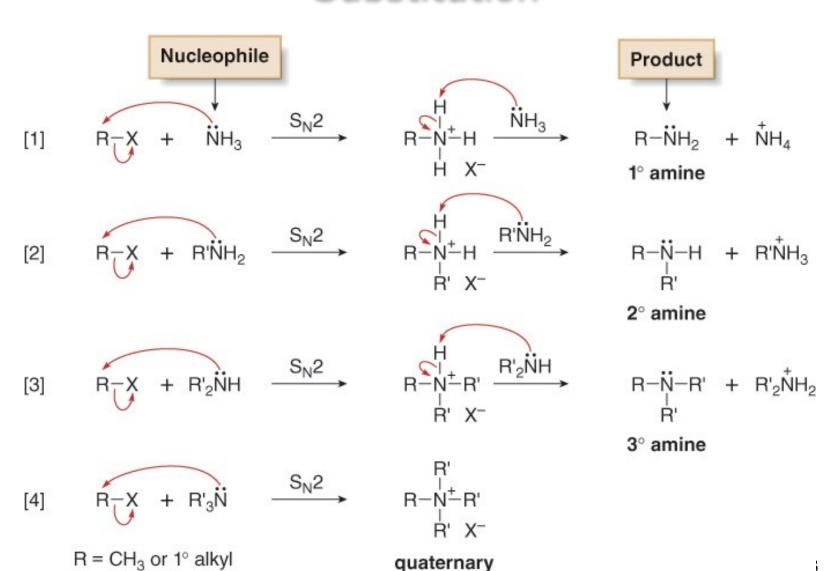
 The N atom of a quaternary ammonium salt is a stereogenic center when N is surrounded by four different groups.

Physical Properties

- Amines exhibit dipole-dipole interactions because of the polar C
 N and N—H bonds.
- Primary and 2° amines are capable of intermolecular hydrogen bonding because they contain N—H bonds.


Physical Properties

Property	Observation			
Boiling point and melting point	 Primary (1°) and 2° amines have higher bp's than similar compounds (like ethers) incapable of hydrogen bonding, but lower bp's than alcohols that have stronger intermolecular hydrogen bonds. 			
	CH3CH2OCH2CH3 CH3CH2CH2NH2 CH3CH2CH2OH			
	MW = 74 bp 38 °C			
	Increasing intermolecular forces Increasing boiling point			
	 Tertiary (3°) amines have lower boiling points than 1° and 2° amines of comparable molecular weight, becauthey have no N – H bonds and are incapable of hydrogen bonding. 3° amine CH₃CH₂N(CH₃)₂ CH₃CH₂-N-CH₂CH₃ 2° amine higher bp MW = 73 MW = 73 MW = 73 MW = 56 °C 			
	no N-H bond N-H bond			
Solubility	 Amines are soluble in organic solvents regardless of size. All amines having ≤ 5 C's are H₂O soluble because they can hydrogen bond with H₂O (Section 3.4C). Amines having > 5 C's are H₂O insoluble because the nonpolar alkyl portion is too large to dissolve in the polar H₂O solvent. 			


Interesting and Useful Amines

- Many low molecular weight amines have foul odors.
- Trimethylamine [(CH₃)₃N], formed when enzymes break down certain fish proteins, has the characteristic odor of rotting fish.
- Putrescine (NH₂CH₂CH₂CH₂CH₂CH₂NH₂) and cadaverine (NH₂CH₂CH₂CH₂CH₂CH₂NH₂) are both poisonous diamines with putrid odors. They too are present in rotting fish, and are partly responsible for the odors of semen, urine, and bad breath.
- Naturally occurring amines derived from plant sources are called alkaloids.

Interesting and Useful Amines

Preparation of Amines—Direct Nucleophilic Substitution

ammonium salt

Preparation of Amines—Direct Nucleophilic Substitution

Although the process seems straightforward, polyalkylation of the nitrogen nucleophile limits its usefulness.

Consequently, the reaction is most useful in preparing 1^{ry} amines by using a large excess of NH₃, and for preparing quaternary ammonium salts by alkylating any nitrogen nucleophile with one or more equivalents of alkyl halide.

Useful
$$S_N^2$$
 substitutions

$$CH_3CH_2CH_2-Br + \ddot{N}H_3 \longrightarrow CH_3CH_2CH_2-\ddot{N}H_2 + NH_4^+Br^-$$

$$excess \longrightarrow CH_3-\ddot{N}+CH_3-\ddot{N}+Br^-$$

$$CH_3-\ddot{N}+CH_3-\ddot{N}+CH_3-\ddot{N}+Br^-$$

$$CH_3-\ddot{N}+CH_3-\ddot{N}+Br^-$$

$$CH_3-\ddot{N}+CH_3-\ddot{N}+CH_3-\ddot{N}+Br^-$$

$$CH_3-\ddot{N}+CH_3-\ddot{$$

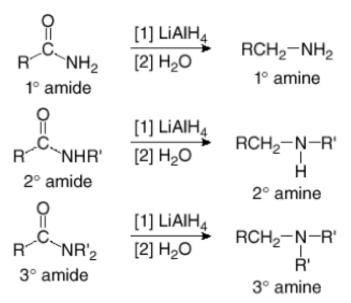
Preparation of Amines—Gabriel Synthesis of 1^{ry} Amines

The Gabriel synthesis is comprised of two steps and uses a nucleophile derived from phthalimide to synthesize 1^{ry} amines via nucleophilic substitution.

Preparation of Amines—Reduction of N-Containing Functional Groups

Nitro groups are reduced to 1° amines using a variety of reducing agents.

Nitriles are reduced to 1° amines with LiAlH₄.


$$R-C\equiv N \qquad \frac{[1] \text{ LiAlH}_4}{[2] \text{ H}_2\text{O}} \qquad R-C\text{H}_2\text{NH}_2$$
1° amine

Azides are reduced to 1° amines with LiAlH₄

$$R-N=N=N^{-} \xrightarrow{[1] LiAlH_4} R-NH_2$$

Preparation of Amines—Reduction of N-Containing Functional Groups

Primary (1°), 2°, and 3° amides are reduced to 1°, 2°, and 3° amines, respectively, by using LiAlH₄.

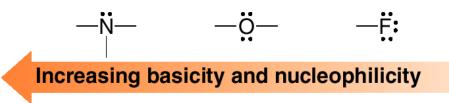
Preparation of Amines—Reduction of N-Containing Functional Groups

Preparation of Amines—Reductive Amination

Reductive amination is a two-step method that converts aldehydes and ketones into 1^{ry} , 2^{ry} , and 3^{ry} amines.

$$(H) 'R C=O + NH_3 \longrightarrow \begin{bmatrix} R \\ C=NH \end{bmatrix} \xrightarrow{[H]} NH_2$$

$$R R'$$


Preparation of Amines—Reductive Amination

With a 1^{ry} or 2^{ry} amine as starting material, reductive amination is used to prepare 2^{ry} and 3^{ry} amines respectively.

Preparation of Amines—Reductive Amination

Reactions of Amines—General Features

- The chemistry of amines is dominated by the lone pair of electrons on nitrogen.
- Only three elements in the second row of the periodic table have nonbonded electron pairs in neutral organic compounds: nitrogen, oxygen and fluorine. Because basicity and nucleophilicity decrease across a row, nitrogen is the most basic and the most nucleophilic.

Amines are stronger bases and nucleophiles than other neutral organic compounds.

Amines as Bases

Amines react with a variety of organic and inorganic acids.

A Brønsted–Lowry acid–base reaction
$$R-NH_2 + H-A \longrightarrow R-NH_3 + A$$
 base acid conjugate acid pK_b 3-4 $pK_a \approx 10-11$

Examples
$$CH_3CH_2 - NH_2 + H - CI$$

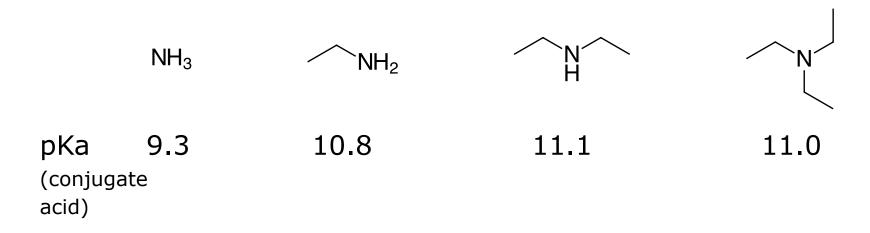
$$pK_a = -7$$

$$CH_3CH_2 - NH_3 + CI$$

$$pK_a = 10.8$$

$$CH_3CH_2)_3N + CI$$

$$CH_3CH_2 - NH_3 + CI$$


$$CH_3CH_2 - NH_3$$

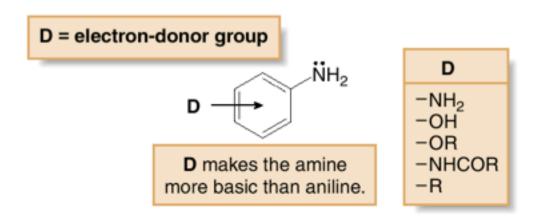
$$CH_3CH_3 - NH_3$$

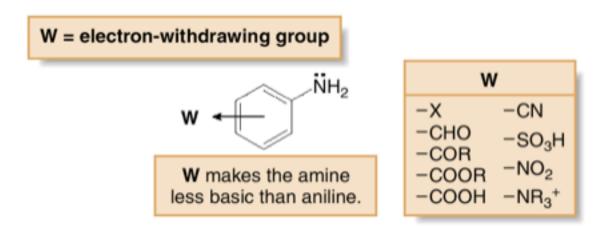
$$CH$$

Structural Effects on Amine Basicity 1. Inductive Effects

 1° , 2° , and 3° alkylamines are more basic than NH₃ because of the electron-donating inductive effect of the R groups.

Amines as Bases


Arylamines are less basic than alkylamines because the electron pair on N is delocalized.

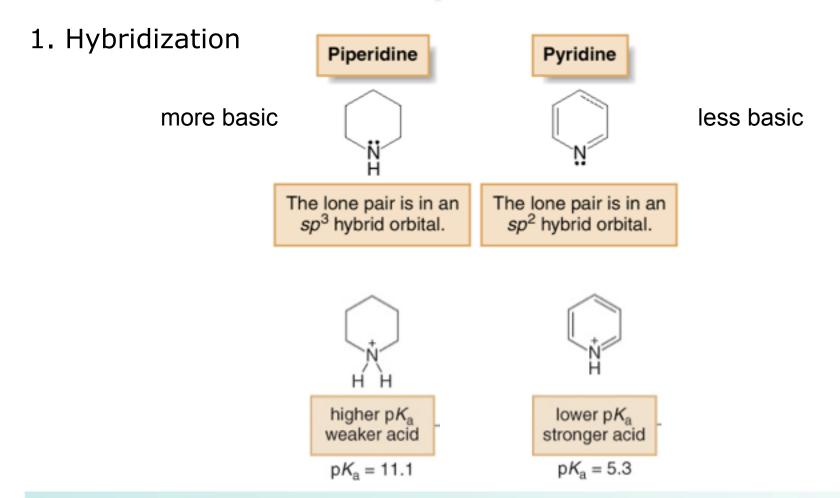

 $CH_3CH_2NH_3^+$: pK_a 10.8

The electron pair is delocalized on the benzene ring.

$$C_6H_5NH_3^+$$
: pK_a 4.6

Substituted Anilines

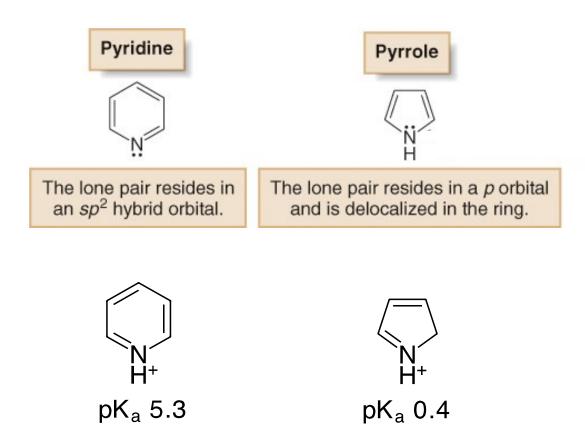
Amides, Imines, Nitriles


Amides are much less basic than amines because the election pair or N is delocalised

Imines and nitriles are less basic than amines because the election pair on N is in an sp² and sp orbital, respectively.

$$>$$
 N $>$ $-C \equiv N$ $>$ sp^3 sp^2 sp $basicity$

sp³ orbitals are farther from the nucleus and therefore more available; sp orbitals are nearer to the nucleus and therefore less available.


Heterocyclic Amines

 The higher the percent s-character of the orbital containing the lone pair, the more tightly the lone pair is held, and the weaker the base.

Heterocyclic Amines

2. Aromaticity

 Pyrrole is much less basic than pyridine because its lone pair of electrons is part of the aromatic π system.

Amines as Bases

Table 25.2 **Factors That Determine Amine Basicity** Factor Example [1] Inductive effects: Electron-donating groups bonded to N • RNH₂, R₂NH, and R₃N are more basic than NH₃. increase basicity. [2] Resonance effects: Delocalizing the lone pair on N Arylamines (C₆H₅NH₂) are less basic than alkylamines (RNH₂). decreases basicity. Amides (RCONH₂) are much less basic than amines (RNH₂). [3] Aromaticity: Having the lone pair on N as part of the · Pyrrole is less basic than pyridine. aromatic π system decreases basicity. less basic more basic [4] Hybridization effects: Increasing the percent s-character in · Pyridine is less basic than piperidine. the orbital with the lone pair decreases basicity. less basic more basic

Amines as Bases

<i>Table 25.3</i>	Table of pK_a Values of Some Representative Organic Nitrogen Compounds		
	Compound	pK_a of the conjugate acid	Comment
Ammonia	NH_3	9.3	
Alkylamines	NH	11.1	Alkylamines have
	(CH ₃ CH ₂) ₂ NH	11.1	pK _a values of ~10-11.
	(CH ₃ CH ₂) ₃ N	11.0	
	CH ₃ CH ₂ NH ₂	10.8	
Arylamines	ρ-CH ₃ OC ₆ H ₄ NH ₂	5.3	
	ρ -CH ₃ C ₆ H ₄ NH ₂	5.1	The pK _a decreases as the electron density of the
	$C_6H_5NH_2$	4.6	benzene ring decreases.
	ρ -NO ₂ C ₆ H ₄ NH ₂	1.0	
Heterocyclic	N	5.3	
aromatic amines	NH	0.4	The pK _a depends on whether the lone pair on N is localized or delocalized.
Amides	RCONH ₂	-1	

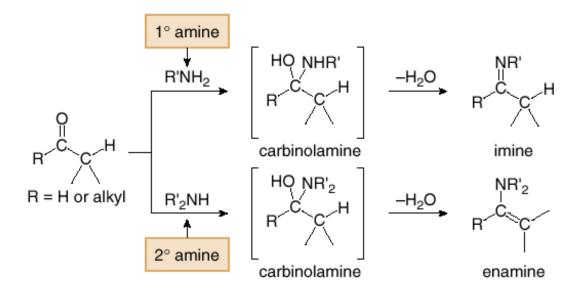
Amines as Nucleophiles

alkylation (any amine):

$$NH_3$$
 $\xrightarrow{R-X}$ $R-NH_2$ $\xrightarrow{R-X}$ \xrightarrow{R} $\xrightarrow{R-X}$ \xrightarrow{R} $\xrightarrow{R-X}$ \xrightarrow{R} \xrightarrow{R}

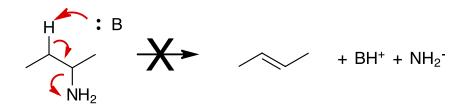
acylation:

$$X = CI, OCOR, NH_3, 1^{ry}, 2^{ry}$$
 $X = CI, OCOR, NH_3, 1^{ry}, 2^{ry}$
 OR', OH

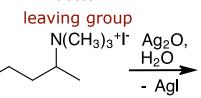

condensation with aldehydes and ketones:

Amines as Nucleophiles. Acylation

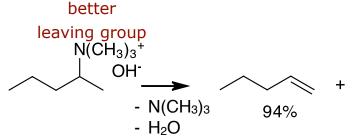
Acid chlorides and anhydrides react with NH₃, 1° amines, and 2° amines to form 1° , 2° , and 3° amides, respectively. These reactions involve attack of the nitrogen nucleophile on the carbonyl group followed by elimination of a leaving group (Cl⁻ or RCOO⁻). The overall result of this reaction is substitution of the leaving group by the nitrogen nucleophile.


Amines as Nucleophiles. Reaction with Aldehydes and Ketones

Aldehydes and ketones react with 1° amines to form **imines** and with 2° amines to form **enamines.** Both reactions involve nucleophilic addition of the amine to the carbonyl group to form a carbinolamine, which then loses water to form the final product.



Amine as Leaving Group


NH₂- is not a good leaving group

Hoffman

better

E2 mechanism:

$$N(CH_3)_3^+$$
less hindered
 H
 OH^-

very bulky L.G.

6%

Reaction of Amines with Nitrous Acid

$$R-NH_2 \xrightarrow{NaNO_2} R-\stackrel{+}{N}\equiv N; \quad CI^-$$
 alkyl diazonium salt
$$R-NH_2 \xrightarrow{NaNO_2} R-\stackrel{+}{N}\equiv N; \quad CI^-$$
 aryl diazonium salt

Reaction of Amines with Nitrous Acid

1. generation of the electrophile

$$HCI + O-N=O \implies CI^- + HO-N=O \implies O^+ - N=O \longrightarrow O^+ - H_2O$$
 $:N=O$

2. nitrosation

$$R-\ddot{N}H_2$$
 + $N=0$ \longrightarrow $R-\overset{H}{N-N}N$ \longrightarrow $R-\overset{H}{N-N}N$ \longrightarrow $N-nitrosamine$

3. acid-catalysed elimination

diazonium ion

nitrosonium

ion

Substitution Reactions of Aryl Diazonium Salts

- Aryl diazonium salts react with a variety of reagents to form products in which a nucleophile Z replaces N₂, a very good leaving group.
- •The mechanism of these reactions varies with the identity of Z.

General substitution reaction
$$N_2^+$$
 $Cl^ Z$ $+$ N_2 $+$ $Cl^ Z$ $+$ Z $+$

Substitution Reactions of Aryl Diazonium Salts

Reactions often take place in the presence of Cu(I) salts (Sandmayer reaction)

CuCN
$$\begin{array}{c} H \\ H_3PO_2 \\ N_2^+ \end{array}$$

$$\begin{array}{c} H_2O, CuO \\ HBF_4(F^-) \\ CuCl \end{array}$$

$$\begin{array}{c} Cl (Br) \end{array}$$