
Lecture 1 – Unconstrained Optimization



Introduction to Optimisation

Many economic functions of interest (eg utility functions, production

functions, profit functions, cost functions) are non linear

The idea behind optimisation is to choose the point where a function

reaches a maximum or minimum value

Decision-makers are assumed to be "rational“ i.e.

1. each decision-maker is assumed to have a preference ordering over

the outcomes to which her actions lead

2. Each decision makers chooses the action, among those feasible, that

leads to the most preferred outcome (according to this ordering).

We usually make assumptions that guarantee that a decision-maker's

preference ordering is represented by a payoff function (sometimes

called utility function), so the decision-maker's problem is:

maxa u(a) subject to a ∈ S 2



maxa u(a) subject to a ∈ S

where: u is the decision-maker's payoff function over her actions 

S is the set of her feasible actions. 

classical consumer: a is a consumption bundle, u is the consumer's

utility function, and S is the set of bundles of goods the consumer can

afford.

Firm: a is an input-output vector, u(a) is the profit the action a

generates, and S is the set of all feasible input-output vectors

In economic theory we sometimes need to solve a minimization

problem of the form 

mina u(a) subject to a ∈ S

- we assume, for example, that firms choose input bundles to

minimize the cost of producing any given output;

- an analysis of the problem of minimizing the cost of achieving a

certain payoff greatly facilitates the study of a payoff-maximizing

consumer. 3



Optimization: definitions

The optimization problems we study take the form

maxx f (x) subject to x ∈ S

where:

- f is a function,

- x is an n-vector (which we can also write as (x1, ..., xn)),

- S is a set of n-vectors.

We call:

- f the objective function,

- x the choice variable, and

- S the constraint set or opportunity set.

4



Definition

The value x* of the variable x solves the problem 

maxx f (x) subject to x ∈ S

if f (x) ≤ f (x*) for all x ∈ S.

In this case we say that:

- x* is a maximizer of the function f subject to the constraint x ∈ S

- f(x*) is the maximum (or maximum value) of the function f

subject to the constraint x ∈ S.

A minimizer is defined analogously
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x* and x** are maximizers of f subject to the constraint x ∈ S

x'' is a minimizer

What is x’ ?

It is not a maximizer, because f (x*) > f (x'),

It is not a minimizer, because f (x’’)< f (x')

But it is a maximum among the points close to it. We call such a

point a local maximizer



Definition

The variable x* is a local maximizer of the function f subject to the

constraint x ∈ S if there is a number ε > 0 such that f (x) ≤ f (x*) for

all x ∈ S for which the distance between x and x* is at most ε.

Note: suppose that x and x' are vectors, then the distance between two

points x and x' is the square root of  𝑖=1
𝑛 (𝑥𝑖 − 𝑥𝑖′)2

A local minimizer is defined analogously.

Sometimes we refer to a maximizer as a global maximizer to

emphasize that it is not only a local maximizer.

Every global maximizer is, in particular, a local maximizer (ε can

take any value), and every minimizer is a local minimizer.
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f (x) ≤ f (x') for all x between x1 and x2, where |x1 − x'|= |x2 − x'|

then point x' is a local maximizer of f (set ε = |x1 − x‘|).

But note that the point x'' is also a local maximizer of f , even though it

is a global minimizer.

The function is constant between x3 and x4. The point x4 is closer to x''

than is the point x3, so we can take the ε in the definition of a local

maximizer to be x4 − x''. For every point x within the distance ε of x'',

we have f (x) = f (x''), so that in particular f (x) ≤ f (x'').

8



Transforming the objective function

Let g be a strictly increasing function of a single variable.

i.e. if z' > z then g(z') > g(z)

Then the set of solutions to the problem

maxx f (x) subject to x ∈ S (1)

is identical to the set of solutions to the problem

maxx g( f (x)) subject to x ∈ S. (2)

Proof:

If x* is a solution to the first problem then by definition f (x) ≤ f (x*)

for all x ∈ S.

But if f (x) ≤ f (x*) then g( f (x)) ≤ g( f (x*)), so that g( f (x) ≤ g( f (x*))

for all x ∈ S.

Hence x* is a solution of the second problem.
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Minimization problems

We concentrate on maximization problems. What about minimization 

problems? 

Any minimization problem can be turned into a maximization

problem by taking the negative of the objective function.

That is, the problem

minx f (x) subject to x ∈ S

is equivalent (i.e. has the same set of solutions) to

maxx − f (x) subject to x ∈ S.

Thus we can solve any minimization problem by taking the negative

of the objective function and apply the results for maximization

problems.
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Existence of an optimum

Let f be a function of n variables defined on the set S. The

problems we consider take the form

maxx f (x) subject to x ∈ S where x = (x1, ..., xn).

Before we start to think about how to find the solution to a

problem, we need to think about whether the problem has a

solution
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Some problems that do not have any solution.

1. f (x) = x, S = [0, ∞)

In this case, f increases without bound, and never attains a maximum.

2. f (x) = 1 − 1/x, S = [1, ∞).

In this case, f converges to the value 1, but never attains this value.

3. f (x) = x, S = (0, 1).

In this case, the points 0 and 1 are excluded from S.

As x approaches 1, the value of the function approaches 1, but this

value is never attained for values of x in S, because S excludes x = 1.
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4. f (x) = x if x < 1/2 and f (x) = x − 1 if x ≥ 1/2; S = [0, 1].

In this case, as x approaches 1/2 the value of the function approaches

1/2, but this value is never attained, because at x = 1/2 the

function jumps down to −1/2.

in the first two cases are that the set S is unbounded;

in the third case is that the interval S is open (does not contain its

endpoints);

in the last case is that the function f is discontinuous.
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Reminder: Definition of Bounded set
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For functions of many variables, we need to define the concept of a

bounded set.

The set S is bounded if there exists a number k such that the distance of

every point in S from the origin is at most k.

Example

The set [−1, 100] is bounded, because the distance of any point in

the set from 0 is at most 100. The set [0, ∞) is not bounded, because

for any number k, the number 2k is in the set, and the distance of 2k

to 0 is 2k which exceeds k.

Example

The set {(x, y): x2 + y2 ≤ 4} is bounded, because the distance of any point

in the set from (0, 0) is at most 2.

Example

The set {(x, y): xy ≤ 1} is not bounded, because for any number k the

point (2k, 0) is in the set, and the distance of this point from (0, 0) is 2k,

which exceeds k.

We say that a set that is closed and bounded is compact.



Proposition (Extreme value theorem) :

A continuous function on a compact set attains both a

maximum and a minimum on the set

Note that the requirement of boundedness is on the set, not 

the function. 

Note also that the result gives only a sufficient condition for a 

function to have a maximum. 

If a function is continuous and is defined on a compact set 

then it definitely has a maximum and a minimum. 

The result does not rule out the possibility that a function has 

a maximum and/or minimum if it is not continuous or is not 

defined on a compact set. 
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Consider the problem:

𝑚𝑎𝑥𝑥 𝑓(𝑥) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆

where x is a vector

Proposition (First Order Conditions, FOC)

Let f be a differentiable function of n variables defined on the set 

S. If the point x in the interior of S is a local or global maximizer

or minimizer of f then 

𝑓𝑖
′(𝑥) = 0 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛.

Then the condition that all partial derivatives are equal to zero is

a necessary condition for an interior optimum (and therefore

for an optimum in an unconstrained optimization where each

element of x could be any of the real numbers.
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UNCONSTRAINED OPTIMIZATION WITH MANY 

VARIABLES
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Let f be a function of n variables with continuous partial

derivatives of first and second order, defined on the set S.

Suppose that x* is a stationary point of f in the interior of S (so

that f i'(x*) = 0 for all i).

If H(x*) is negative definite then x* is a local maximizer.

If x* is a local maximizer then H(x*) is negative semidefinite.

If H(x*) is positive definite then x* is a local minimizer.

If x* is a local minimizer then H(x*) is positive semidefinite.

where H(x) denotes the Hessian of f at x.

When these conditions are satisfied, FOCs are necessary and

sufficient conditions

Conditions under which a stationary point is a local optimum

(Second Order Conditions, SOC)
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Suppose that the function f has continuous partial derivatives

in a convex set S and x* is a stationary point of f in the interior

of S (so that f i'(x*) = 0 for all i).

1. if f is concave then x* is a global maximizer of f in S if and

only if it is a stationary point of f

2. if f is convex then x* is a global minimizer of f in S if and

only if it is a stationary point of f .

Conditions under which a stationary point is a 

global optimum
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H(z) is negative semidefinite for all z ∈ S

⇒

x is a global maximizer of f in S if and only if x is a stationary

point of f (f i'(x) = 0 )

H(z) is positive semidefinite for all z ∈ S

⇒

x is a global minimizer of f in S if and only if x is a stationary

point of f ,

where H(x) denotes the Hessian of f at x.



Given that conditions for definiteness are easier to check we 

apply the following procedure:

1. Check concavity of f to see if the conditions represent a

maximum.

a. We compute the Hessian

b. We check if it is negative definite

If these conditions hold, H is negative definite, f is strictly

concave and the stationary point is a maximum

2. If these conditions are violated by equality, i.e. are equal to

zero, check the conditions for semi definiteness

3. If these conditions hold, H is negative semidefinite, f is

concave and the stationary point is a maximum

4. If these conditions are violated, we need further investigation
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Example 1: Unconstrained Maximization with two variables

For example Utility = U(x, y) or Output = F(K, L)

Now try to find the values of x and y which maximize a

function 𝑓(𝑥, 𝑦)

Three steps:

1. Set both 1st order conditions equal to zero fx = 0 and fy = 0

(the slope of the function with respect to both variables must

be simultaneously zero)

2. Solve the equations simultaneously for x and y

However this is a necessary but not sufficient condition

(saddle points, minimum points,….)
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3. Second order conditions (for maximization)

𝐻 =
fxx fxy

fxy fyy

fxx < 0,  fyy < 0  and fxxfyy – f2xy > 0

Note: Second order conditions (for minimization)  are

fxx ≥ 0,  fyy ≥ 0 and fxxfyy – f2xy > 0
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f(x,y) = 4x – 2x2 + 2xy – y2

1. (i). fx = 4 – 4x + 2y = 0

(ii). fy = 2x – 2y = 0

2. Solve: from (ii) we have x = y

insert into (i) to get 4 – 4x + 2x = 0 or 

4 = 2x or x = 2

so y = x = 2

3. 𝐻 =
fxx fxy

fxy fyy
=

−4 2
2 −2

The first order leading principal minor is fxx = -4 < 0

The second order leading principal minor is 

fxxfyy– f2xy = (-4)(-2) – (2)2 = 4>0

Then the matrix H is negative definite

f is (strictly) concave, so we have a maximum point where x = 2

and y = 2



Example 2

Maximize f(x) = – x1
2 – 2 x2

2

The first order conditions are:

Is this a maximum? – it will be if function is concave

1. H is,
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From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – written as D1 = (-2)

2. The last n-2 rows and columns – written as D2 = H

Compute the determinants of these leading principal

matrices.

1. |𝐷1 | = −2

2. |𝐻 | = 8

Then the matrix H is negative definite

f is (strictly) concave

the values that satisfy FOC ( 𝑥 = 0 and 𝑦 = 0 ) give a

maximum.
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Example 3

Total revenue R = 12q1 + 18q2

Total Cost = 2q1
2 + q1q2 +2q2

2

Find the values of q1 and q2 that maximise profit

Profit = revenue – cost = 12q1 + 18q2 - (2q1
2 + q1q2 +2q2

2 )

The first order conditions are:

Solving for q1 and q2 gives q1 = 2 and q2 =4

Is this a maximum? –it will be if function is concave

1 1 2

1 2

2

012 4

018 4

q q q

q q

q
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The Hessian is

From H find the leading principal matrices by eliminating:

1.The last n-1 rows and columns – written as D1 = (-4)

2.The last n-2 rows and columns – written as D2 = H

Compute the determinants of these leading principal

matrices.

1. 𝐷1 = −4

2. |𝐻| = (−4) ∗ (−4) − 1 = 15

So H is negative definite, then f is (strictly) concave and the

values for q1 and q2 maximise profits
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Example with three variables

Maximize 𝑓(𝑥) = −𝑥1
2 − 2𝑥2

2 − 𝑥3
2

The first order conditions are:

The Hessian is:
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From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – 𝐷1 = (−2)

2. The last n-2 rows and columns – 𝐷2 =
−2 0
0 −4

3. The last 0 rows and columns – 𝐷3 = 𝐻

1. Compute the determinants of these leading principal

matrices.

1. |𝐷1 | = −2,

2. |𝐷2 | = 8

3. 𝐻 = −16

H is negative definite, then f is (strictly) concave
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Summing up – two variable maximization

1. Differentiate f(x) and solve the first order conditions are:

2. Check concavity of f to see if the conditions represent a

maximum.

a. We compute the Hessian

b. We check if it is negative definite

c. i.e. check if, for all 𝑥1 and 𝑥2,

and
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3. If these conditions hold, H is negative definite, f is

strictly concave and the stationary point is a maximum

4. If these conditions are violated by equality, i.e. are

equal to zero, check the conditions for semi definiteness

5. If these conditions hold, H is negative semidefinite, f is

concave and the stationary point is a maximum

6. If these conditions are violated, we need further

investigation
31
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Summing up – 3 variable maximization

1. Differentiate f(x) and solve the the first order conditions are:

2. Check concavity of f to see if the conditions represent a

maximum.

a. We compute the Hessian

b. We check if it is negative definite
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b. We check if it is negative definite
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3. If these conditions hold, H is negative definite, f is strictly

concave and the stationary point is a maximum

4. If these conditions are violated by equality, i.e. are equal to

zero, check the conditions for semi definiteness

5. If these conditions hold, H is negative semidefinite, f is

concave and the stationary point is a maximum

6. If these conditions are violated, we need further

investigation
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Economic applications

From chapter 11.6 of the textbook

• Multiproduct firm

• Price discrimination

• Input decisions of afirm
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