
Quadratic Forms



We consider the unconstrained optimization for the case of 

functions with many variables:

𝑚𝑎𝑥𝑥 𝑓 (𝑥) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆

where 𝑥 is a vector

To face this topic we need some preliminary notions:

- Quadratic forms

- Concavity and convexity of functions of many variables
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Definition of quadratic forms

A form is a polynomial function in which each component has 

the same sum of the exponents:

- a linear form is  f(x,y,z) = 4x – 9y + z

(each term  has exponents that add to one (the “first degree” )

- a quadratic form  is f(x y z)  = 4x2 + 2zy – xz +2z2

(each term has exponents that add to two (the “second degree” )

A polynomial equation in which each term is of the 2nd degree 

(sum of the integer exponents = 2) is a quadratic form

Definition 

A quadratic form in n variables is a function 

𝑄 𝑥1, … . 𝑥𝑛 = 𝑏11𝑥1
2 + 𝑏12𝑥1 𝑥2 +⋯+𝑏𝑖𝑗 𝑥𝑖 𝑥𝑗 +⋯+ 𝑏𝑛𝑛𝑥𝑛

2 =

= 
𝑖=1

𝑛

 
𝑗=1

𝑛

𝑏𝑖𝑗𝑥𝑖 𝑥𝑗

where 𝑏𝑖𝑗 for 𝑖 = 1,…𝑛 and 𝑗 = 1,…𝑛 n are constants. 
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Example

The function

𝑄 𝑥1, 𝑥2 = 𝑥1
2 + 2𝑥1𝑥2 − 3𝑥2𝑥1 + 5𝑥2

2

is a quadratic form in two variables.

We can write it using matrices

𝑄(𝑥1, 𝑥2) = 𝑥1 𝑥2
1 2
−3 5

𝑥1
𝑥2

Note: we can simplify this function

𝑄 𝑥1, 𝑥2 = 𝑥1
2 − 𝑥2𝑥1 + 5𝑥2

2

And write it as

𝑄(𝑥1, 𝑥2) = 𝑥1 𝑥2
1 −0.5
−0.5 5

𝑥1
𝑥2

Where the matrix is symmetric.



In general we can write any quadratic form as 

𝑄(𝑥) = 𝑥′𝐴𝑥

where 

- x is the column vector of xi's and 

- A is a symmetric n × n matrix for which the (i, j)th

element is 

𝑎𝑖𝑗 = (1/2)(𝑏𝑖𝑗 + 𝑏𝑗𝑖)

note that 𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖 for any i and j, so that 

𝑏𝑖𝑗𝑥𝑖 𝑥𝑗 + 𝑏𝑗𝑖𝑥𝑗 𝑥𝑖

can be written as

(𝑏𝑖𝑗+𝑏𝑗𝑖)𝑥𝑖 𝑥𝑗

or
1

2
(𝑏𝑖𝑗 + 𝑏𝑗𝑖)𝑥𝑖 𝑥𝑗 +

1

2
(𝑏𝑖𝑗 + 𝑏𝑗𝑖)𝑥𝑗 𝑥𝑖
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Example

6

𝑄 𝑥1, 𝑥2 = 𝑥1
2 + 𝑎𝑥1𝑥2 + 𝑏𝑥2𝑥1 − 𝑐𝑥1𝑥3+ 5𝑥2

2

𝑄 𝑥1, 𝑥2 = 𝑥1 𝑥2 𝑥3

1
𝑎 + 𝑏

2
−
𝑐

2
𝑎 + 𝑏

2
5 0

−
𝑐

2
0 0

𝑥1
𝑥2
𝑥3



Conditions for definiteness

With quadratic forms there are ways of establishing whether

their signs are positive or negative and this will help determine

whether the function of interest is concave or convex

Definition

Let Q(x) be a quadratic form, and let A be the symmetric

matrix that represents it (i.e. Q(x) = x'Ax).

Then the associated matrix A (and the quadratic form) is:

1. positive definite if x'Ax > 0 for all x ≠ 0

2. negative definite if x'Ax < 0 for all x ≠ 0

3. positive semidefinite if x'Ax ≥ 0 for all x

4. negative semidefinite if x'Ax ≤ 0 for all x

5. indefinite if it is neither positive nor negative semidefinite

(i.e. if x'Ax > 0 for some x and x'Ax < 0 for some x). 7



Examples

1) 𝑎𝑥1
2 + 𝑐𝑥2

2 = 𝑥1 𝑥2
𝑎 0
0 𝑐

𝑥1
𝑥2

is positive 

definite for 𝑎, 𝑐 > 0 because 𝑎𝑥1
2 + 𝑐𝑥2

2 > 0 for 𝑎, 𝑐 > 0
and 𝑥1 𝑥2 ≠ 0

2) 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2 = 𝑥1 𝑥2
1 1
1 1

𝑥1
𝑥2

is positive 

semidefinite because we can write it as (𝑥1 + 𝑥2)
2 that 

is non negative for all 𝑥1, 𝑥2
It is not positive definite because for 𝑥1= 1, 𝑥2 = −1 its 

value is 0.
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Positive or Negative definite matrices

Definition:

The leading principal matrices of a nxn square matrix are

the matrices found by deleting

1. The last n-1 rows and columns – to give D1

2. The last n-2 rows and columns – to give D2

3. …

4. and the original matrix Dn

Definition:

The leading principal minors of a matrix are the

determinants of these leading principal matrices.
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Example:

𝐴 =
1 2
−1 3

the leading principal matrices are then

D2 = A and (D1 = 1)

and the determinants (leading principal minors) are D2 = 5

and D1 =1

Example 2. Find D1 D2 and D3 of the following matrix

𝐴 =
1 0 −1
0 2 0
2 −1 0

 𝐷1 = 1,𝐷2 =
1 0
0 2

, 𝐷3 = 𝐴

D3 = 4, D2 = 2 and D1 =1 10



If a square matrix is negative definite then the leading

principal minors have the following signs

a positive definite matrix requires leading principal minors

are all positive, i.e.

To check if a square matrix is negative semi-definite we have

to compute all principal minors (not only the leading

principal minors)

...0;0;0 321  DDD

11

...0;0;0 321  DDD



Positive or Negative semidefinite matrices

To obtain conditions for an n-variable quadratic form to be

positive or negative semidefinite, we need to examine the

determinants of some of its submatrices.

Definition:

The principal matrices of a nxn square matrix are the

matrices found by deleting

1. n-1 rows and columns – in all possible combinations

2. n-2 rows and columns – – in all possible combinations

3. …

4. and the original matrix

Definition:

The principal minors of a matrix are the determinants of the

principal matrices.
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Let

𝐴 =
𝑎 𝑏
𝑏 𝑐

The first-order principal minors of A are a and c, and 

the second-order principal minor is the determinant of 

A, namely ac − b2.
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Let

𝐴 =
3 1 2
1 −1 3
2 3 2

This matrix has 3 first-order principal minors, obtained by 

deleting 

• the last two rows and last two columns 

• the first and third rows and the first and third columns 

• the first two rows and first two columns 

which gives us simply the elements on the main diagonal of 

the matrix: 3, −1, and 2. 
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The matrix 𝐴 =
3 1 2
1 −1 3
2 3 2

also has 3 second-order principal minors, obtained by 

deleting

• the last row and last colunm

• the second row and second column 

• the first row and first column 

which gives us −4, 2, and −11. 

The matrix has one third-order principal minor, namely its 

determinant, −19. 
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Let A be an n × n symmetric matrix. Then:

A is positive semidefinite if and only if all the principal minors

of A are nonnegative.

A is negative semidefinite if and only if all the kth order

principal minors of A are ≤ 0 if k is odd and ≥ 0 if k is even.

Example
−2 4
4 −8

The two first-order principal minors and -2 and -8, and the

second-order principal minor is 0. Thus the matrix is negative

semidefinite.
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Procedures for checking the definiteness of a 

matrix

17

1. Find the leading principal minors and check if the

conditions for positive or negative definiteness are

satisfied. If they are, you are done.

2. the conditions are not satisfied, check if they are

strictly violated. If they are, then the matrix is

indefinite.

3. If the conditions are not strictly violated, find all its

principal minors and check if the conditions for

positive or negative semidefiniteness are satisfied.

Note: if matrix is positive definite, it is certainly positive

semidefinite, and if it is negative definite, it is certainly

negative semidefinite



An intuition on quadratic forms

Example with quadratic form in 3 variables

q = d11x
2 +d12xy+d13xz+d21yx+d22y

2 +d23yz+d31zx+d32zy+d33z
2 

Can be written in matrix form x’Ax where x = (x, y, z) and A is a 

symmetric 3 by 3 matrix

There are 3 leading principal minors from the discriminants of A
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Once again can convert into an expression where the 3 variables appear only as 

squared terms

2
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And can show that q <0  (>0) iff the terms outside the 

brackets are all negative (positive)

and  these terms are respectively:    

𝐷1 ;
𝐷2
𝐷1

;
𝐷3
𝐷2

If 

𝐷1 < 0, 𝐷2 > 0, 𝐷3 < 0

the matrix is said to be negative definite

if

𝐷1 > 0, 𝐷2 > 0, 𝐷3 > 0

the matrix is said to be positive definite
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A second test to check definiteness

Characteristic root test

Given an 𝑛 𝑥 𝑛matrix 𝐷, we find a scalar 𝑟 and an 𝑛 𝑥 1vector 

𝑥 ≠ 0 such that:

𝐷 𝑥 = 𝑟 𝑥

𝒓 is the characteristic root of matrix 𝐷 (or eigenvalue)

𝒙 is the characteristic vector of matrix 𝐷 (or eigenvector)

This equation is rewritten as:

(𝐷 − 𝑟𝐼) 𝑥 = 0

The condition that satisfies this is when the matrix 

(𝐷 − 𝑟𝐼) is singular; i.e., its determinant is zero

The idea is to solve for 𝑟 and then 𝑥 21



Example
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So the characteristic roots are 𝑟1 = 3 and 𝑟2 = −2

For 𝑟1 = 3
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Note that the rows of the matrix are linearly dependent – as

expected for a singular matrix – giving an infinite number of

solutions x1 = 2x2



To force out a unique solution, we need to normalise by 

imposing a restriction:

𝑥1
2
+ 𝑥2

2
= 1

and in general for n unknowns  𝑖=1
𝑛 𝑥𝑖

2
= 1

This is arbitrary but whichever rule is chosen, all subsequent 

values will be related

Then

and  

Thus, the 1st characteristic vector (eigenvector) is 

and for 𝑟 = −2,  the 2nd characteristic vector (eigenvector) is
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Properties:

1) normalisation implies that the product of characteristic 

vectors, i.e. x1’x1 = 1 

2) Each pair of characteristic vectors are orthogonal, 

i.e. x1’ x2 = 0

Characteristic root test for the sign definiteness of a 

matrix D

1. D is positive definite if and only if every characteristic root is 

positive, i.e. > 0

2. D is negative definite if and only if every characteristic root 

is negative , i.e. < 0

3. D is positive semidefinite if and only if every characteristic 

root is nonnegative, i.e. ≥ 0

4. D is negative semidefinite if and only if every characteristic 

root is nonpositive, i.e. ≤ 0 24



Let be

We also need the vector of first partial derivatives of f,

and the matrix of second order partial derivatives, H

J is called Jacobian of the function f

H is called the Hessian of the function f
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Finding if a function with more variables is concave: an 

intuition



The concavity condition is now:

𝑓 𝑥0 + 𝑥
′ − 𝑥0

′𝛻𝑓 ≥ 𝑓 𝑥′

The Taylor approximation of 𝑓 𝑥′ is now

𝑓 𝑥′ ≈ 𝑓 𝑥0 + 𝑥
′ − 𝑥0

′𝛻𝑓 +
1

2
𝑥′ − 𝑥0

′𝐻 𝑥′ − 𝑥0 +⋯

Replacing in the first equation we get

𝑓 𝑥0 + 𝑥
′ − 𝑥0

′𝛻𝑓

≥ 𝑓 𝑥0 + 𝑥
′ − 𝑥0

′𝛻𝑓 +
1

2
𝑥′ − 𝑥0

′𝐻 𝑥′ − 𝑥0 +⋯

Simplifying we get

0 ≥ 𝑥′ − 𝑥0
′𝐻 𝑥′ − 𝑥0

Then matrix H has to be a negative semi-definite matrix



Let f be a function of many variables with continuous partial 

derivatives of first and second order on the convex open set S

and denote the Hessian of f at the point x by H(x). Then f is: 

• concave if and only if H(x) is negative semidefinite for ∀𝑥 ∈ 𝑆

• convex if and only if H(x) is positive semidefinite for ∀𝑥 ∈ 𝑆

if H(x) is: 

• negative definite for ∀𝑥 ∈ 𝑆 then f is strictly concave 

• positive definite for ∀𝑥 ∈ 𝑆 then f is strictly convex. 

27

Conditions for concavity / convexity



Putting it all together

So given a function f(x)

To find out whether the function is concave we need to know if

0 ≥ 𝑥′ − 𝑥0
′𝐻 𝑥′ − 𝑥0

i.e. whether H is negative semi-definite

1. Find the Hessian matrix of second order derivatives, H

2. From H find the leading principal matrices by eliminating:

1. The last n-1 rows and columns – written as D1

2. The last n-2 rows and columns – written as D2

3. …

4. The original matrix Dn



3. Compute the determinants of these leading principal

matrices

4. if the determinants have the following pattern (with

not all zero): 𝐷1 < 0, 𝐷2 > 0, 𝐷3 < 0 ……, then f is

(strictly) concave; if the determinants are all strictly

positive then f is (strictly) convex

5. if some condition is violated by equality you need to

check the sign of all principal minors (condition or

semidefiniteness)

6. if these conditions do not hold you’ve proved that the

function is not concave or convex



Example: Find whether the function f(x) = – x1x2
2 is concave

We need the Hessian matrix of second order derivatives, H

- The Jacobian is
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From H find the leading principal matrices by eliminating:

1.The last n-1 rows and columns – written as D1 = (0)

2.The last n-2 rows and columns – written as D2 = H

Compute the determinants of these leading principal

matrices.

1.Det. D1 = 0

2.Det. H = – 4x2
2 which is negative

f is concave if the leading principal minors are

f is convex if the leading principal minors are

Leading principal minors do not have one of this patterns so f

is not concave, not convex

;0;0 21  DD

31
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