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Surface Waves and Free Oscillations

Surface waves in an elastic half spaces: Rayleigh waves
- Potentials
- Free surface boundary conditions
- Solutions propagating along the surface, decaying with depth
- Lamb’s problem
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The Wave Equation: Potentials %3

On Waves Propagated along the Plane Surface of an Elastic
Solid. By Lord Ravreien, D.C.L., F.R.S.

[Read November 12th, 1886.]

It is proposed to investigate the behaviour of waves upon the plane
free surface of an infinite homogeneous isotropic elastic solid, their
character being such that the disturbance is confined to a superficial
region, of thickness comparable with the wave-length. The case is
thus analogous to that of deep-water waves, only that the potential
energy here depends upon elastic resilience instead of upon gravity.*

Denoting the displacements by a, 3, y, and the dilatation by 0, we
have the usual equations

o°Ved
BV

U=Vo+Vx¥ afcb
V= (ax,ay,az) 2
T i

U displacement

(D scalar potential 0., P-wave speed

\JP. vector potential b S-wave speed
|
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Rayleigh Waves

<P

SV waves incident on a free surface: conversion and reflection

An evanescent P-wave

- |

propagates along the free
surface decaying
exponentially with depth. SV

The post-critically reflected
SV wave is totally reflected
and phase-shifted. These two
wave types can only exist
together, they both satisfy
the free surface boundary
condition:

-> Surface waves

Surface waves
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Apparent horizontal velocity

X ’ " \ Surface

Wave
! vector
Wave front
k. = ksin() = oSN _ ©
04 C
¥ [, 0
k, =kcos(i)= k2 -k =o | 1| =[1] =@ €| _1=k,p,
“) \&c) € N%y

In current terminology, k, is k!

Surface waves



—

s "
. g
2

s

Surface waves: Geometry

We are looking for plane waves traveling along one horizontal coordinate
axis, so we can - for example - set

9,(.)=0

And consider only wave motion in the X,z plane. Then

u, =0, ®-9,¥,
u,=0d,®+d ¥,

As we only require ¥, we set
¥ =v from now on. Our
trial solution is thus

® = Aexp[ik(cttr,z—Xx)]
Y =Bexp|ik(cttz—X)]

Wavefront
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Condition of existence

<>

With that ansatz one has that, in order to desired solution
exists, the coefficients

9) 2
C . C
Jl ‘“ﬁ‘%z B

have to express a decay along z, i.e.

c<PB<ao

to obtain

, (
O = Aexp i(oo’r—kx)—szl—C = Aexp —kz\/l—C

02

[ 1
2
Y =Bexp i((ym‘—kx)—kzdl—C =Bexp —szl—

Be \

Surface waves
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Surface waves: Boundary Conditions

Analogous to the problem of finding the reflection-transmission
coefficients we now have to satisfy the boundary conditions at

the free surface (stress free)

o_=0_=0

XZ zZ

In isotropic media we have

o, =Mdu, +d.u )+2u0.u,
GXZ — ZHSXZ — M(axuz +aZuX)

where

and

u, =9,®—-09,¥
u,=0,&+9, ¥

D = Aexpli(wt+kr,z—kx)]

Y = Bexpl[i(wt+ krgz — kx)]
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Rayleigh waves: solutions

This leads to the following relationship for c,

the phase velocity:

1 1
( 2 ¥ [ 2 b %
2- = | =41-=[|1-2
. B U ot )U B

For simplicity we take a fixed relationship between P and shear-

wave velocity (Poissons medium): o = \/5[3
... to obtain
C6 C4 56 CZ 3 2

8
B> B

.. and the only root which fulfills the condition (¢ < [3 is

| c=0.91948 '

7+ -—=0
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Displacement

Putting this value back into our solutions we
finally obtain the displacement in the x-z
plane for a plane harmonic surface wave
propagating along direction x

u_=C(e "% ~0.5773e™"%)sin k(ct - x)
u, = C(-0.8475¢™"%"7% +1.4679¢ ") cos k(ct - x)

This development was first made by Lord Rayleigh in 1885.

It demonstrates that YES there are solutions to the wave

equation propagating along a free surface!

Some remarkable facts can be drawn from this particular form:

Surface waves



Particle Motion (1)

How does the particle motion look like?

theoretical

experimental

Surface waves
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Transient solution to an impulsive vertical point
force at the surface of a half space is called

Lamb’s Problem and Rayleigh waves

theoretical
Lamb's problem (after Horace Lamb, 1904).
a o 9 ) ol

-the two components are out of phase by /2 j[\
— for small values of z a particle describes an
ellipse and the motion is retrograde
- at some depth z the motion is linear in z S = -‘—----:—x"—j k
- below that depth the motion is again elliptical
but prograde b experimental
- the phase velocity is independent of k: there is j/\,«
no dispersion for a homogeneous half space

. . . . . . F Source 4.9 cm.——:7 Receiver
- Right Figure: radial and vertical motion for a T TR T TTTTTT

source at the surface
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G B ey
. U P g/ "~‘ TN .\. ’

Syl o), 7-COMPONENT ——
1Y S ) NS-COMPONENT ——
- EW-COMPONENT ——

AMPLITUDE

0 10 20 30 P = =
TIME [MIN]

Surface waves



Dispersion relation

O1In physics, the dispersion relation is the relation between the energy of a
system and its corresponding momentum. For example, for massive particles
in free space, the dispersion relation can easily be calculated from the

definition of kinetic energy:

() For electromagnetic waves, the energy is proportional to the frequency of
the wave and the momentum to the wavenumber. In this case, Maxwell's

equations tell us that the dispersion relation for vacuum is linear: w=ck.

() The name "dispersion relation” originally comes from optics. It is possible
to make the effective speed of light dependent on wavelength by making
light pass through a material which has a non-constant index of refraction,
or by using light in a non-uniform medium such as a waveguide. In this
case, the waveform will spread over time, such that a narrow pulse will
become an extended pulse, i.e. be dispersed.
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Dispersion...

© In optics, dispersion is a phenomenon that causes the separation of a wave into spectral
components with different wavelengths, due to a dependence of the wave's speed on its
wavelength. It is most often described in light waves, but it may happen to any kind of
wave that interacts with a medium or can be confined to a waveguide, such as sound

waves. There are generally two sources of dispersion: material dispersion, which comes

from a frequency-dependent response of a material to waves; and waveguide dispersion,
which occurs when the speed of a wave in a waveguide depends on its frequency.

® In optics, the phase velocity of a wave v in a given uniform medium is given by: v=c/n,
where c is the speed of light in a vacuum and n is the refractive index of the medium. In
general, the refractive index is some function of the frequency v of the light, thus n
= n(f), or alternately, with respect to the wave's wavelength n = n(}). For visible light,
most transparent materials (e.g. glasses) have a refractive index n decreases with

increasing wavelength A (dn/d)<0, i.e. dv/dA>0). In this case, the medium is said to have
normal dispersion and if the index increases with increasing wavelength the medium has
anomalous dispersion.
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Effect of dispersion...

Demonstration: sum two harmonic waves with slightly

different angular frequencies and wavenumbers:

u(x, t) =cos(wt — kyx) + cos(wt — k,x)

W =0+ 0w W) =0 — 0w O Y )

ky=k+6k  ky=k-o6k k> 5k

Add the two cosines:

u(x, t) =cos(wt + dwt — kx — dkx)
+ cos(wt — dwt — kx + dkx)
= 2 cos(wt — kx) cos(dwt — dkx)

The envelope (beat) has a group velocity:

U=dwldk

The individual peaks move with a phase velocity:

c=wlk

Surface waves

(a) cos (@t = k.x) W, =®+ ow, k, =k + Sk

cos (@,t — kx) W, = @ ~ Om, k, =k~ ok

Envelope Carner

X o



Fourier domain

Fourier transform: F(w) = J f(t)e ™ dt

oo

| .
Inverse Fourier transform:  f(¢) = o j F(w)e'” dw
r

F(w) = A(w)e' "
with a magnitude, A(w) = | F(®) |, and phase, ¢(w).

So the Fourier transform represents a time series by two real functions of angular frequency: the amplitude
spectrum, A(w), and the phase spectrum, ¢(w).

o0

1
The displacements are:  u(x, f) = % J A(w) expilot — k(w)x + ¢;(w)]dw
T

The phase has two parts (propagation and initial phase): ®(w) = wt — k(®)x + ¢;(®)

The phase velocity c¢(w) = w/k(w) describes wave surfaces of constant phase (individual peaks).

Surface waves



To find the group velocity of energy propagation in the angular frequency band between oy, — Aw and
w, + Aw, first approximate the wavenumber k(@) by the first term of a Taylor series about w:

Clifaklal e

dw @y (w - wO)
W, + Aw
Dt 1 , dk
This gives:  u(x,t) = — A(w)exp| il ot — k(wy)x — — |, (© — wy)x + ¢;(w) ||[dw
27 do '™
Wy — Aw
W, + Aw
| , dk
u(x, t) = — A(w)exp|il (@ — wy)(t — —— |, X) + (0ot — k(@g)x) + ¢;(®) ||dw
27 dw '™
Wy — Aw

Compare to the simple situation of two cosine waves:

u(x, t) =2 cos(wt — kx) cos(dwt — dkx)

Similar to the cosine waves, the group velocity 1s defined as  U(w) = —-

Surface waves



Group velocity

© Another consequence of dispersion manifests itself as a temporal effect. The phase
velocity is the velocity at which the phase of any one frequency component of the

wave will propagate. This is not the same as the group velocity of the wave, which is

the rate that changes in amplitude (known as the envelope of the wave) will
propagate. The group velocity vq is related to the phase velocity v by, for a
homogeneous medium (here X is the wavelength in vacuum, not in the medium):

V, = do _ d(vk) _ v+kﬂ: v—?»ﬂ
dk  dk dk dA

and thus in the normal dispersion case
Vg IS always < v !

Surface waves



“GN

®1In classical mechanics, the Hamiltons principle the perturbation scheme
applied fo an averaged Lagrangian for an harmonic wave field gives a

characteristic equation: A(w,ki)=0

Dispersion relation N

Transverse wave in a string
o
(—-=—)=0= o=ztkc
ox° F ot® ° W

Acoustic wave

o’ p o
—-—-—)0=0= w=zxkc
(ax2 B ot° *
Longitudinal wave in a rod k
2 2
(L P9 - 0= o=x+ke

ox® E ot°
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G 3 Dispersion examples

O Discrete systems: lattices

Surface waves



Monatomic 1D lattice

Let us examine the simplest periodic system within the context of harmonic approximation
(F = dU/du = Cu) - a one-dimensional crystal lattice, which is a sequence of masses m

connected with springs of force constant C and separation a.

‘f. e
&’

The collective motion of these springs will Mass M
correspond to solutions of a wave equation. Uy—1 Hy Uy+1

Note: by construction we can see that 3 types —.J"MWWMMWH—

of wave motion are possible,

n—1 7 n+1 ﬂ'
2 transverse, 1 longitudinal (or compressional)

How does the system appear with a longitudinal wave?:

The force exerted on the n-th atom in the
lattice is given by

Fn = Fn+1,n - Fn-1,n = C[(un+1 - un) - (un — un-1)]' lgn1 an é_gnﬂ é_gnn
Applying Newton’s second law to the motion : s | = ;
of the n-th atom we obtain 42, -1 1

M tzn =F,=-C(2u,-u,.,-u,,)

Note that we neglected hereby the interaction of the n-th atom with all but its nearest neighbors.
A similar equation should be written for each atom in the lattice, resulting in N coupled differential
equations, which should be solved simultaneously (N - total number of atoms in the lattice). In
addition the boundary conditions applied to end atoms in the lattice should be taken into account.

Surface waves




S Dispersion in lattices G5

Monatomic 1D lattice - continued

Now let us attempt a solution of the form: u = Ae'"

where X, is the equilibrium position of the n-th atom so that x,= na. This equation represents

a traveling wave, in which all atoms oscillate with the same frequency @w and the same
amplitude A and have a wavevector k. Now substituting the guess solution into the equation
and canceling the common quantities (the amplitude and the time-dependent factor) we obtain

M(—Q)z) ikna _ _C[Ze/kna . /k(n+1)a . eik(n—1)a].
This equation can be further simplified by canceling the common factor e’*"@ | which leads to
. ka
Mao® = C(2-e" —e™)=2C(1-coska) = 4Csin’ -~

We find thus the dispersion relation ! [“’maxﬁ" 4c/m
for the frequency: ~ i~ A4+ 11;1}%;\ ~ ~

/4C
Q) =
M
which is the relationship between the , \ / \ { |
frequency of vibrations and the V V |
67/ a -4n/a -2m/a 0 21/ a 4/ a 6T/ a

wavevector k. The dispersion relation = | - 1<
has a number of important properties. )

sin—

zone boundry

1st Brillonin zone

Surface waves
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Monatomic 1D lattice — continued Vet

Phase and group velocity. The phase velocity is defined by
dw
J 0 Jéfa
The physical distinction between the two velocities is that v, is the velocity of propagation
of the plane wave, whereas the v is the velocity of the propagation of the wave packet.
The latter is the velocity for the propagation of energy in the medium. For the particular

2
dispersion relation ¢ = /% . Ca ka

sin— cCos—.
2
Apparently, the group velocity is zero at the edge of the zone where k = + n/a. Here the

V, = % and the group velocity by vV, = > K

the group velocity is given by v, =

2
wave is standing and therefore the transmission velocity for the energy is zero.

Long wavelength limit. The long wavelength limit implies that A >> a. In this limit ka << 1.

We can then expand the sine in ‘@ ' and obtain for the positive frequencies: @ = \/%ka.

We see that the frequency of vibration is proportional to the wavevector. This is
equivalent to the statement that velocity is independent of frequency. In this case:

0, C This is the velocity of sound for the one dimensional lattice|which is
V., =—=,|—a. : : : : : :
Pk M consistent with the expression we obtained earlier for elastic waves.

Surface waves




Monatomic 1D lattice — continued

Finite chain — Born — von Karman periodic boundary condition.
Unlike a continuum, there is only a finite number of distinguishable vibrational modes. But
how many?

Let us impose on the chain ends the Born — von Karman periodic boundary conditions
specified as following: we simply join the two remote ends by one more spring in a ring or
device in the figure below forcing atom N to interact with ion 1 via a oo
spring with a spring constant C. If the atoms occupy sites a, 2a, ..., Na
The boundary conditionis uy , 1= Uy Or Uy= Up.

With the displacement solution of the form

¢ 2SS ey n=
u,, = Aexpli(kna-wt)], the periodic boundary |
Cor.1d|t|.on requwes.that‘e’xp(i/kNa) =1, +% ® 0 o o o + n=2
which in turn requires ‘k’ to have the form: o @ - @@
27 h N N

k=—— (n-aninteger), and -—<n<—_, or 9 - 0. =

2r 4r  Or T ~ 2 0 8 @ —
k = +N—a +N—a +N—a ___,ig (N values of k). g0 00 ONg O g n=N/2

Surface waves
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We can treat the motion of this lattice in a similar fashion as for the monatomic lattice.
However, in this case, because we have two different kinds of atoms, we should write two
equations of motion:

Diatomic 1D lattice ‘.‘&

d’u

M1 dt2 — —C(2Un —U, un—1)
d°u

M2 Tgﬂ — _C(2Un+1 —u,,—u, )

In analogy with the monatomic lattice we are looking for the solution in the form of
traveling mode for the two atoms:
u A g .
— | e’ in matrix form.
un+1 | Aze/k(n+’|)a

Substituting this solution into the equations of the previous slide we obtain:
2C-M.w?> -2Ccoska {A1 } 0
—2Ccoska 2C-M,0" |

This is a system of linear homogeneous equations for the unknowns A, and A,. A nontrivial
solution exists only if the determinant of the matrix is zero. This leads to the secular equation

(2C -M,0*)(2C - M,a* ) - 4Ccos® ka = 0.

Surface waves




This is a quadratic equation, which can be readily solved:

2 . 9 | ;
i —C 1 N 1 L O 1 . 1 _4S|n ka _________Eljlpncal
/\/I1 M2 M1 M2 M1M2 - — T -
Depending on sign in this formula there are two = | Acoustic —

different solutions corresponding to two different
dispersion curves, as is shown in the figure:

The lower curve is called the acoustic branch,

while the upper curve is called the optical branch. _n/2a 0 T/
k
The acoustic branch begins at k = 0 and o =0, C
and as k 0: @,(0)= -ka
- 0 J2<M1+M2>

With increasing k the frequency
increases in a linear fashion. This

IS why this branch is called acoustic:
It corresponds to elastic waves, or

sound. Eventually, this curve saturates 1 1
@, = ZC( j

at the edge of the Brillouin zone. 4
On the other hand, the optical branch M,

Has a nonzero frequency at zero k, and it does not change much with k.

Surface waves



Another feature of the dispersion curves is the existence of a forbidden gap between
w, = (2C/IM,)V? and w, = (2C/M,)"? at the zone boundaries (k = + m7/2a).
The forbidden region corresponds to frequencies in which lattice waves cannot propagate
through the linear chain without attenuation. It is interesting to note that a similar situation
also exists in the energy band scheme of a solid to be discussed later.

The distinction between the acoustic and optical branches of lattice vibrations can be seen

most clearly by comparing them at k = 0 (infinite wavelength). As follows from the equations

of motion, for the acoustic branch @ =0 and A, = A,. So, in this limit the two atoms in the cell

have the same amplitude and phase. Therefore, the molecule oscillates as a rigid body, as
shown in the left figure for the acoustic mode.

e

.o-"-'-- -----\"\-.\_\_
" e
OO

Acoustic =

optical made

acustical made

On the other hand, for the optical vibrations, by substituting o, we obtain for k = 0:

M,A; +M,A, =0 (M,/M, =-A,/A,).
This implies that the optical oscillation takes place in such a way that the center of mass of
a molecule remains fixed. The two atoms move in out of phase as shown. The frequency of
these vibrations lies in the infrared region (102 to 10'* Hz) which is the reason for referring
to this branch as optical. If the two atoms carry opposite charges, we may excite a standing
wave motion with the electric field of a light wave.

Surface waves



Acoustic and optical modes

Monoatomic chain

@ © 0 0 @ © @ @ 0 @ @ @  ustic longitudinal mode

o © @ @ ¢ ® Monoatomic chain
O ® )
acoustic transverse mode

Diatomic chain Diatomic chain
acoustic transverse mode optical transverse mode
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Dispersion examples

O Stiff systems: rods

' Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in their
propagation since they allow to store energy (not
like body waves)!

Surface waves



G Stiffness... <X

© How "stiff" or "flexible" is a material? It depends on whether we pull on
i, twist it, bend if, or simply compress it. In the simplest case the material
is characterized by two independent "stiffness constants” and that
different combinations of these constants determine the response to a
pull, twist, bend, or pressure.

compression
y
Euler-Bernoulli equation | ]V | 1
- tension
4 2 — A

9 _PA Ww=0= o=z=xk €l
ox*  EIL ot \pA

v >

Surface waves




a\‘%/ Stiffness... 4\‘&/

© Stiffness in a vibrating string introduces a restoring force proportional to the bending
angle of the string and the usual stiffness term added to the wave equation for the
ideal string. Stiff-string models are commonly used in piano synthesis and they have to
be included in tuning of piano strings due fo inharmonic effects.

4 2 2 =( )
(L 4ET PAT 0o o=tk |14k T
ox*  pax? EIat? Vol A
—( )
’ E , | I
= o=xk [= 1+ k -
\p \A)

- -
TUNING FROM ACTUAL PAND
RALSBACK DATA (AVERAGE

2
e %) L -
- MIDDLE C A 440
T80 | |
. .
30 & S 60 70 80 50100 200 200 400 500 700 1000 2000 3000 4000
FUNDAMENTAL FREQUENCY (CYCLES PER SECOND
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In an elastic half-space no SH type surface waves exist. Why?

Because there is total reflection and no interaction between an evanescent P wave and a
phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a
layer delimited by two free boundaries, i.e. a homogeneous plate?

A

SH Waves in plates: Geometry ‘ﬁ

h a

¥

s
>
s <
P Q
The condition of inferference of multiply reflected waves at the rigid boundaries is:
BDE CDEF A T

— = =2(2 cosO =n =n
N N n BDE =2(2h)cos 6, o =" 2zm " 2hk

kcos6 (2h) =k (2h) = er'B(Zh) = Nm

Repeated reflection in the layer allow interference between incident and reflected SH
waves: SH reverberations can be fotally trapped.

Surface waves



“GN

SH waves: trapping

= Aexpli(ot + ongz—kx)]+B exp[i(wt — ongz—kx)]

Y
h4 SH A\ /"//&F 2
/Do.l \-f:’/// // _ . (D . _ . (D C .
PR Kk = o=k, =@ 1=k
h b /Bi/ / X B z 2 B
g /////’/ R/’/ c C B
P Q 0

= Aexpli(ot +kr,z—kx)]+B exp[i(ot — kryz —kx)]

The formal derivation is very similar to the derivation of the Rayleigh waves. The conditions
to be fulfilled are: free surface conditions

0 (0)=n aai = ikru{ Aexpli(ot —kx)]- B exp[i(wt —kx)]} =
y4
0
6, (2h)=p aau = ikr‘Bu{A expli(ot +kry;Zh—kx)]-B exp[i(ot —kry2h - kx)]} =0
Z
2h

Surface waves



SH waves: eigenvalues...

that leads to: @(F‘BZh = ma with n=0,1,2,... NB: REMEMBER THE “"STRING PROBLEM":kL=nrr

A

Py e
2 /N
/ \A_~" e
_’_ - . -~ - - -
W5
-

- ~" \/
S ————

= " n

.'- . -~

(s}

(™

0 2 4 & 8 10 12 % 18 18 20

wavenumber ka g

0 2 4 L ¥ R I L O L D L - |

y T
247
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- —
-
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A

n=()
(bY Svmmetric

LT

L
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EM waveguide animations

Created by Hsiu C. Han, 1996

http://www.falstad.com/embox/qguide.html
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http://www.ee.iastate.edu/~hsiu/descriptions/paral.html
http://www.ee.iastate.edu/~hsiu/descriptions/paral.html

Torsional modes dispersion

Torsional modes
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Lamb waves

and all wave vectors must lie in the x-z plane. This requirement implies that response of the

plate will be independent of the in-plane coordinate normal to the propagation direction.

Lamb waves are waves of plane strain that occur in a free plate, and the traction force must
vanish on the upper and lower surface of the plate. In a free plate, a line source along y axis

I.—blbbrblb—-l

LELE.—'
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Elastic waves in rods
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