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Surface Waves

Surface waves in media with depth-dependent properties: Love waves
- Constructive interference in a low-velocity layer
- Dispersion curves
- Phase and Group velocity
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Question:

We derived that Rayleigh waves are non-dispersive!

But in the observed seismograms we clearly see a
highly dispersed surface wave train?

We also see dispersive wave motion on both horizontal
components!

Do SH-type surface waves exist?
Why are the observed waves dispersive?
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In an elastic half-space no SH type surface waves exist. Why?
Because there is total reflection and no interaction between an evanescent P wave and a

phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a
layer over a half space (Love, 1911) ?

Love Waves: Geometry N
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Repeated reflection in a layer over a half space.
Interference between incident, reflected and transmitted SH waves.

When the layer velocity is smaller than the halfspace velocity, then there is a critical
angle beyond which SH reverberations will be fotally trapped.
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Love waves: trapping - 1 @

u,; = Aexpli(wt + ongz —kx)]+B exp[i(wt — omgz — kx)]

Uyz — C exp[l((!)T — 0)1][322 — kX)]

Aexpli(ot +kryz—kx)]+Bexp[i(ot - Kkryz - kx)]

Uy =

u,, = Cexpli(ot —krs,z —kx)]
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Love waves: trapping - 2 ,ﬁ\/

The formal derivation is very similar to the derivation of the Rayleigh waves. The conditions

to be fulfilled are:

Free surface condition

Hwp

ou,;

1. zyl(o) M BZ
0
ou
2. 0,,(H)=u, 8;1

4. |lim_ uy2(2)=0 .e. l.e. Iy, =—i\1—c—2
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Continuity of stress on the boundary
Conftinuity of displacement on the boundary
No radiation in the halfspace

= GzyZ(H) = U,

au,,
0z

i {Aexpliot ko] Bexpliot ko) -

3. u(H) = u,(H)




Love waves: trapping - 3 ,@é\/

We obtain a condition for which solutions exist. This
time we obtain a frequency-dependent solution:

a dispersion relation

uvz\/l/c2 -1/B,
ul\/l/ B -1/c’

... indicating that there are only solutions if ...

tan(Ho/1/ B2 -1/¢*) =

B, <c<B,
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Love Waves: Solutions

Graphical solution of
the previous equation.
Intersection of dashed
and solid lines yield
discrete modes.

tan(Hon1/ B2 -1/ %) = tan(wl)

that vanishes when ( = n’
0

New modes appear at
cut-off frequencies

N7
n /2

1 1
B B
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Love Waves: Solutions

4.6
/g Love wave dispersion
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Love Waves: Solutions

Graphical solution of the
previous equation. Intersection
of dashed and solid lines yield
solutions while frequency is
varying: discrete modes.

u2(1—c2/[3§ V%

nlc2p2-1) %

Every mode is characterized by

a dispersion curve
showing the solutionto The

eigenvalue problem.

For every value of ¢ one can
calculate the eigenfunction, i.e.
the displacement , u,, versus

depth.
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Love Waves: modes

Some modes for Love waves

WAVE DIRECTION
PARTICLE MOTION / -

FOURTH MODE / FIRST MODE

I

SECOND MODE
—\
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Love Waves: modes

Some eigenvectors

(displacement) for
Love waves

Seismic SW
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Liquid layer over a half space

The conditions to be fulfilled are:

1. Free surface condition

No S-wave potential and shear stress in the liquid layer

Continuity of stress at the liquid-layer interface

Continuity of vertical component of displacement at the liquid layer
interface (horizontal is free due to no viscosity in perfect liquid)

Hwn

4 2 2
tan(HmJ‘W) _ pp ‘/(TN
pr4J1— CZ/OCZ

[_(2_ & IB2Y +4(1- &/ od) ¥(1- CZ/BZ)"Z]
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Liquid layer over a half space

Seismic SW

Similar derivation for Rayleigh type motion leads to dispersive behavior
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Wavefields visualization
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Data example - 2

Ground Di{:-pla.-:.rfmrfnt pr--jdl_n:.rfd in Kadiak |sland Alaska
by September 30, 1929 M,, = 75 Earthquake In Oaxaca, Mexico
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Group-velocities

Seismic SW
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Interference of two waves at two positions (1)
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Velocity
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Interference of two waves at two positions (2)
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Dispersion

The typical dispersive behavior of surface waves
solid - group velocities; dashed - phase velocities

—=  Time
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Dispersion... %3

The group velocity itself is usually a function of the wave's frequency. This results in
group velocity dispersion (6VD),that is often quantified as the group delay dispersion
parameter : If D is < O, the medium is said to have positive dispersion. If D is >0, the
medium has negative dispersion.

Group velocity Phase I{@A]ocfty Phase velocity

- &
S ™ N,
Co =

C1 Airy Phase -

wave that arises if the phase and the

a K change in group velocity are stationary and
Group velocity gives the highest amplitude in terms of
group velocity and are prominent on the
seismogram.

~V
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_ 44r Love wave dispersion
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Dispersion

Fundamental Mode Rayleigh dispersion curve for
a layer over a half space.
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Dispersion

Vv
<— Direction of Propagation
hY
Vv
<
hY

Stronger gradients cause greater dispersion
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Wave Packets

<>
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Seismograms of a Love
wave train filtered with
different central periods.
Each narrowband trace has
the appearance of a wave
packet arriving at
different times.
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Observed Group Velocities (T<80s)
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Measuring group velocity

One station method

1. Directly measure the arrival time of the
peaks and troughs on one seismogram

2. Narrow filtered the seismogram, measure
the arrival of the peak of the wave packet
(more accurate)

U(w) == Need know the origin time and the
! location of the earthquake source
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Determination of group velocities at one station
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Measuring group velocity

Two stations method

If two stations are located on the same
great circle path, group velocity can be

obtained by measuring the difference in
arrival times of filtered wave packets.

Distance between two stations

A{//

At

\ Different of arrival times at the two
stations

U(w) =

Seismic SW
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Vg measures

Figure 2.8-5: Rayleigh wave group velocity study of the Walvis ridge.
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Measuring phase velocity

Directly measured at two stations
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Measuring phase velocity G5

Measured by taking Fourier transform and obtaining
phase spectrum

A surface wave can be represented:

u(x,z)=l°f,4(w,x)cos(mt- D x4+, (x))do
7T 0 c(w)
d(w)=wt- » X+¢y(w)+ 2t N

c(w)

Seismic SW




One-station method

Need know the initial phase ¢,

N can be determined by by allowing c(w) for the
longest period converge to the global average

Seismic SW



C measures

On a seismogram recorded at a distance x from
the earthquake at time ¢ after the earthquake,
the phase has three terms:

D(w) = [wt — k(w)x] + ¢;(w) + 2nx
= ot — wx/c(w)] + ¢;(w) + 2nx

ot — k(w)x 1s the phase due to the propagation
of the wave in time and space.

¢;(@) includes the initial phase at the earthquake
and any phase shift introduced by the seismometer.

2nr reflects the periodicity of the complex exponential,

because adding an integral multiple of 27 to the argument
yields the same value.

Seismic SW

Figure 2.8-6: Example of Rayleigh wave phase velocities for ocean lithosphere.
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C measures

Figure 2.8-6: Example of Rayleigh wave phase velocities for ocean lithosphere.

Two station method:

D (w) = wt) — wx,/c(®) + ¢;(®) + 2nx

D, (w) = oty — wx,/c(w) + ¢,(w) + 2mr

Take the difference ®,, = ®, — ®,, and solve for c:

c(@) = o(x; — x))/[o(t; = 1) + 2(m — n)z — G, (w)].

The 2(m — n)x term is found empirically by ensuring that
the phase velocity at long periods is reasonable.

Single station method: T Phase dispersion
Predict the phase at the earthquake from its focal mechanism. e . P
If ¢;(@) is known, c is: £ R .

g 30l i /—".
c(w) = wx/|ot + ¢;(®) + 2nr — O(w)] 5 Gt

£ 38} ",:-'*“’"

.
3 7 | 1 1 L 1 1 1 | J
10 20 30 40 50 60 70 80 90 100
Period (s)
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Figure 2.8-7: Rayleigh wave phase velocity dispersion as a function of oceanic
plate age.
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Considering an elastic body of volume V and surface S, the application of body
forces, as well as the application of tractions, will generate a displacement field
that is constrained to satisfy the equations of motion:

Elastodynamic equations ‘.‘&

G .
pu-:f.I lJ:fi+Gi-.

I I axJ JJ

The equation for elastic displacement can be written also using the vector

differential operator, (L(w). = pil; - (Cijklukj) =pl,-0,,
as: &

L(uy=0 homogeneous
L(uwy=f inhomogeneous

1D Halfspace
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Isotropic medium ‘.&é\/

And for an isotropic medium, in absence of body forces, the equations of motion
become:

(L(u))i =puU. — 82 (kakuké‘)ij +u(au, +8jui)) =0

J

i.e. a linear system of three differential equations with three unknowns: the
components of the displacement vector, whose coefficients depend upon the
elastic parameters of the material. It is not possible to find the analytic
solution for this system of equations, therefore it is necessary to add further
approximations, chosen according to the adopted resolving method. Two ways
can be followed:

a) an exact definition of the medium is given, and a direct numerical
infegration technique is used to solve the set of differential equations;

b) exact analytical techniques are applied to an approximated model of the
medium that may have the elastic parameters varying along one or more
directions of heterogeneity.

1D Halfspace




) Let us consider a halfspace in a system of Cartesian coordinates with the vertical
z axis positive downward and the free surface, where vertical stresses (oxz, 0yz, 0zz)
are null, is defined by the plane z=0.

1D heterogeneity 53

) Let us assume that p, A and u are piecewise continuous functions of z, that
displacement and stress components are continuous along z, and that body wave
velocities, a and p, assume their largest value, aq and pH, when z=H, remaining
constant for greater depths.

If the parameters depend only upon the vertical coordinate, the equations become:

pu = (k+u)V(V~u)+uV2u+g—x(iV -u)+3—“[(V~2)u+V(2-u)]
Z Z

we can consider solutions of having the form of plane harmonic waves propagating
along the positive x axis:

u(x.t) = F(z)e "™

1D Halfspace




Apparent horizontal (phase) velocity

i.'_.,;.lﬂlf
X ’ & \ Surtace

Wave

vecror

Wave front

Kk, = ksin() = oSN _ ©

o C
Remember: when c is less then the
k, =kcos(i) = \k* - ki = “’\/[ij ‘[i]‘ = w\/[;]l ~1=kirw  body wave velocity k; is imaginary and
represent inhomogeneous waves, i.e.
waves exponentially decaying or
increasing with depth;
¥ (1 examples are Rayleigh waves in a
k, =kcos(i)=/k* -k = (D\/(BT —(C]Z =% [ET—l =k.r's  homogenous halfspace, or Love waves
in low velocity layer over a
homogeneous halfspace

sin(i) _o

k, =ksin(i)= o

In current terminology, k, is k

1D Halfspace



a\ﬁ; P-SV problem

We have to solve two independent eigenvalue problems for the three components of
the vector F=(Fx,Fy,F;). The first one describes the motion in the plane (x,z), i.e., P-SV
waves and it has the form:

d| OF oF
- * _ikuF |—ikA —2+|w°p—k*(A+2u)|F. =0
oW~ ikyF, |- ikA = [ 0°p—k*(A+2u)|F,
J| OF | . OF
—|(A+2u)—=—ikAF. |-iku —+|op—-Kk°u|F. =0
o (A +2n) = fikn=- (0°p—kU|F,
and must be solved with the free surface boundary conditionat z=0
o - (k+2u)%FZ—ikXFX _0
C,, = uaFZ—ikqu =0
. 0z 1

1D Halfspace



S SH problem S

The second eigenvalue problem describes the case when the particle motion is
limited to the y-axis, and determines phase velocity and amplitude of SH waves.

It has the (Sturm-Liouville) form:

aZ\ Bz)

(0°p—ku)F, =0

and must be solved with the free surface boundary conditionat z= 0

w5,
0z

7z=0

1D Halfspace




Let us now assume that the vertical heterogeneity in the halfspace is modelled
with a series of N-1 homogeneous flat layers, parallel to the free surface,

overlying a homogeneous halfspace.
Let pm. dn, Pm, and dm, respectively be the density, P-wave and S-wave

velocities, and the thickness of the m-th layer.
Furthermore, let us define:

) \/(0;]2_1 if c>a _<\1[BCIHT—1 if c>B,,
k—i\/l—[ofm]t if cco \—i\ll—(l;nj if c<P,

Layered halfspace ‘&

1D Halfspace




Love (SH) problem

The SH solutions (displacement and stress) for the m-th layer are:

Ux:Uz:O
(' o ikmnz | " tikggZ) i(ot—kx)
uy—(vme i py e )e
ou . | |
. . —ik " k -
e T S
Z

where vy’ and v "are constants.

Given the sign conventions adopted, the term in v’ represents a plane wave
whose direction of propagation makes an angle cot™'rgm with the +z direction
when rpm is real, and a wave propagating in the +x direction with amplitude
diminishing exponentially in the +z direction when rem is imaginary. Similarly
the term in v'' represents a plane wave making the same angle with the
direction -z when rpm is real and a wave propagating in the +x direction with
amplitude increasing in the +z direction when rpnm is imaginary.

1D Halfspace




Love (SH) problem

G

i
=
i
=1
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s
4 m
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£

1D Halfspace

C

m-1

m

m

(b

-

-1

m

m

(d)

the term in v' represents a plane wave
whose direction of propagation makes an
angle cot™rpm with the +z direction when
rem is real (a),

and a wave propagating in the +x
direction with amplitude diminishing
exponentially in the +z direction when
rem iS imaginary (b).

Similarly the term in v'' represents a
plane wave making the same angle with
the direction -z when rpn is real (¢)
and a wave propagating in the +x
direction with amplitude increasing in
the +z direction

when rpm is imaginary d).




Love (SH) problem

Consider the m-th layer and the (m-1)

interface, set temporarily as the origin of Uy \ _— .
the coordinate system. It is convenient to ? - 'k(v mt V m)
use [(duy/dt)/cl=ikuy instead of /-1
displacement, to deal with adimensional (Gzy] _ ikumrg (V' = V')
quantities. m-1 "
m-1, z=0
m, z=dm
U] ik(V',,+ V', )cosQ,, —k(V'",, - V', )SINQ
C A m m m m m m Qm:kr'bmdm

(Gzy)m =KL,y (V' + V' )SINQ, +iku,re (V' - V', )CosQ,,

1D Halfspace



Love layer matrix

1D Halfspace

cosQ,,
a, =
I Ll SINQ,,
uy]
c m—1
Zy)m—l_




remembering that the boundary conditions of a) surface waves and b) the
free surface implies that vy"=0 and 02(z=0)=0, we have that:

Love dispersion equation

Az Uyl Ay =0

The left-hand side is the dispersion function for Love modes (SH waves),
where A,; and Ay are elements of the matrix A.

The couples (w,c) for which the dispersion function is equal to zero are its
roots and represent the eigenvalues of the problem.

Eigenvalues, according to the number of zeroes of the corresponding
eigenfunctions, uy(z,w,c) and o0,,(z,w.c),
can be subdivided in the dispersion curve of the fundamental mode (which has

no nodal planes), of the first higher mode (having one nodal plane), of the
second higher mode and so on.

Once the phase velocity c is determined, we can compute analytically the group
velocity using the implicit functions theory, and the eigenfunctions.

1D Halfspace



53 Rayleigh (P-SV) problem 5

The P-SV solutions (displacement and stress) for the m-th layer can be found
combining dilatational and rotational potentials:

ou, du ik ik i(ot—kx)
A =—>+—2=(A e+ A e"n’)e
"oz Tax - ne AT

1|du, ou

O = X zZ |— 8‘ e—ikr'Bmz n 8" e+ikr'Bmz ei(m’r—kx)
" 2Ldz  ox._ ('“ m )

where An', Ay, 8’ and 8" are constants.

Given the sign conventions adopted, the term in An' represents a plane wave
whose direction of propagation makes an angle cot™ram with the +z direction
when rqm is real, and a wave propagating in the +x direction with amplitude
diminishing exponentially in the +z direction when ram is imaginary. Similarly the
term in An" represents a plane wave making the same angle with the direction -z
when ran is real and a wave propagating in the +x direction with amplitude
increasing in the +z direction when ram is imaginary.

The same considerations can be applied to the terms in 8 and 0", substituting
Fam With rpm.
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Rayleigh (P-SV) problem

The P-SV solutions (displacement and stress) components can be written as:
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Starting with the free surface condition (0:2(z=0)=0:x(z=0)=0), iterating the
continuity boundary conditions at every interface, and applying the condition of
no radiation in the final halfspace, one can build up the dispersion function
whose roots are the eigenvalues associated with the Rayleigh modes.
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