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Seismic SW

Surface waves in an elastic half spaces: Rayleigh waves
- Potentials
- Free surface boundary conditions
- Solutions propagating along the surface, decaying with depth
- Lamb’s problem


Surface waves in media with depth-dependent properties: Love waves
- Constructive interference in a low-velocity layer 
- Dispersion curves
- Phase and Group velocity

Free Oscillations
       - Spherical Harmonics
       - Modes of the Earth
       - Rotational Splitting

Surface Waves
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Data Example 

Question:

We derived that Rayleigh waves are non-dispersive!

But in the observed seismograms we clearly see a 
highly dispersed surface wave train?

We also see dispersive wave motion on both horizontal 
components!

Do SH-type surface waves exist?
Why are the observed waves dispersive?



Seismic SW

Love Waves: Geometry

In an elastic half-space no SH type surface waves exist. Why? 
Because there is total reflection and no interaction between an evanescent P wave and a 
phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a 
layer over a half space (Love, 1911) ?

Repeated reflection in a layer over a half space.
Interference between incident, reflected and transmitted SH waves. 
When the layer velocity is smaller than the halfspace velocity, then there is a critical 
angle beyond which SH reverberations will be totally trapped.
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Love waves: trapping - 1

  

� 

uy1 = Aexp[i(ωt + ωηβ1z − kx)] + B exp[i(ωt − ωηβ1z − kx)]

uy2 = C exp[i(ωt − ωηβ2z − kx)]

  

� 

k = kx = ω
c

;    ωηβ = kz = ω
c

c2

β2
− 1 = krβ

  

� 

uy1 = Aexp[i(ωt + krβ1z − kx)] + B exp[i(ωt − krβ1z − kx)]

uy2 = C exp[i(ωt − krβ2z − kx)]
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The formal derivation is very similar to the derivation of the Rayleigh waves. The conditions 
to be fulfilled are:

1. Free surface condition
2. Continuity of stress on the boundary
3. Continuity of displacement on the boundary
4. No radiation in the halfspace

  

� 

 4.  lim∞ uy2(z) = 0    i.e.  c < β2  i.e.   rβ2 = −i 1 − c2

β2
2

  

� 

2.   σzy1(H) = µ1
∂uy1

∂z
H

= σzy2(H) = µ2
∂uy2

∂z
H

   3.  uy1(H) = uy2(H)

  

� 

1.   σzy1(0) = µ1
∂uy1

∂z
0

= ikrβ1 Aexp[i(ωt −kx)] −Bexp[i(ωt −kx)]{ } = 0

Love waves: trapping - 2
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We obtain a condition for which solutions exist. This 
time we obtain a frequency-dependent solution: 
a dispersion relation

... indicating that there are only solutions if ...

Love waves: trapping - 3

β
1
< c < β

2
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Love Waves: Solutions

Graphical solution of 
the previous equation. 
Intersection of dashed 
and solid lines yield 
discrete modes.

  

� 

tan(Hω 1 /β1
2 − 1/c2 ) = tan(ωζ)

that vanishes when ζ = n π
ω

New modes appear at 
cut-off frequencies

  

� 

ωn = nπ

H 1
β1

2
− 1
β2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2
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Love Waves: Solutions
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Love Waves: Solutions

Graphical solution of the 
previous equation. Intersection 
of dashed and solid lines yield 
solutions while frequency is 
varying: discrete modes.

Every mode is characterized by 
a dispersion curve  c=c(ω), 
showing the solution to the 
eigenvalue problem.

For every value of c one can 
calculate the eigenfunction, i.e. 
the displacement , uy, versus 
depth.
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Love Waves: modes

Some modes for Love waves
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Love Waves: modes

Some eigenvectors 
(displacement) for 
Love waves
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Liquid layer over a half space

The conditions to be fulfilled are:
1. Free surface condition
2. No S-wave potential and shear stress in the liquid layer
3. Continuity of stress at the liquid-layer interface
4. Continuity of vertical component of displacement at the liquid layer 

interface (horizontal is free due to no viscosity in perfect liquid)

  

tan(Hω 1/αw
2 −1/c2 ) = ρβ4 c2 /αw

2 −1
ρwc4 1− c2 /α2

−(2− c2 /β2)2 +4(1− c2 /α2)1/ 2(1− c2 /β2)1/ 2[ ]
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Liquid layer over a half space

Similar derivation for Rayleigh type motion leads to dispersive behavior



Seismic SW

Wavefields visualization
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Data example - 2
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Group-velocities

Interference of two waves at two positions (1)
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Velocity

Interference of two waves at two positions (2)
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Dispersion

The typical dispersive behavior of surface waves
solid – group velocities; dashed – phase velocities
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Dispersion...

The group velocity itself is usually a function of the wave's frequency. This results in 
group velocity dispersion (GVD),that is often quantified as the group delay dispersion 
parameter : If D is < 0, the medium is said to have positive dispersion. If D is > 0, the 
medium has negative dispersion. 

2 

12.510 Lecture Notes  April 13, 2005 

Quick review from last time: 

Ground roll – Love waves 

H C1, !1 

, where n is the model # 

The dotted line represents the group velocity and the solid line represents the phase 

velocity. 

t = distance time 

in the Layer: oscillatory wave ! x-direction 

in the half space: evanescent wave ! x-direction 
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Airy Phase –
 wave that arises if the phase and the 
change in group velocity are stationary  and 
gives the highest amplitude in terms of 
group velocity and are prominent on the 
seismogram. 

  

� 

D =
dvg

dω
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Dispersion

Fundamental Mode Rayleigh dispersion curve for 
a layer over a half space.
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Dispersion

Stronger gradients cause greater dispersion
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Wave Packets

Seismograms of a Love 
wave train filtered with 
different central periods. 
Each narrowband trace has 
the appearance of a wave 
packet arriving at 
different times.
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Observed Group Velocities (T<80s)
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One station method

1. Directly measure the arrival time of the 
peaks and troughs on one seismogram

2. Narrow filtered the seismogram, measure 
the arrival of the peak of the wave packet  
(more accurate)

Need know the origin time and the
location of  the earthquake source

Measuring group velocity
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Determination of group velocities at one station



Seismic SW

Two stations method

If two stations are located on the same 
great circle path, group velocity can be 
obtained by measuring the difference in 
arrival times of filtered wave packets. 

Distance between two stations

Different of arrival times at the two
stations

Measuring group velocity
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vg measures
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Directly measured at two stations

Measuring phase velocity
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Measured by taking Fourier transform and obtaining 
phase spectrum

A surface wave can be represented:

Measuring phase velocity
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One-station method

Need know the initial phase ɸ0

N can be determined by by allowing c(ω) for the 
longest period converge to the global average 
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c measures
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c measures
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1D Halfspace

Considering an elastic body of volume V and surface S, the application of body 
forces, as well as the application of tractions, will generate a displacement field  
that is constrained to satisfy the equations of motion:

Elastodynamic equations

The equation for elastic displacement can be written also using the vector 
differential operator,
as:     

� 

L(u)( )i = ρ˙ ̇ u i − cijkluk ,l( ),j
= ρ˙ ̇ u i − σ ij,j

    

L(u) = 0    homogeneous
L(u) = f    inhomogeneous

ρ!!u
i
= f

i
+
∂σ

ij

∂x
j

= f
i
+ σ

ij,j
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Isotropic medium

And for an isotropic medium, in absence of body forces, the equations of motion 
become:

    
L(u)( )i = ρ˙ ̇ u i −

∂
∂j

λ∂kukδij +µ(∂iu j +∂ jui )( ) = 0

i.e. a linear system of three differential equations with three unknowns: the 
components of the displacement vector, whose coefficients depend upon the 
elastic parameters of the material. It is not possible to find the analytic 
solution for this system of equations, therefore it is necessary to add further 
approximations, chosen according to the adopted resolving method. Two ways 
can be followed: 
a) an exact definition of the medium is given, and a direct numerical 
integration technique is used to solve the set of differential equations; 
b) exact analytical techniques are applied to an approximated model of the 
medium that may have the elastic parameters varying along one or more 
directions of heterogeneity. 
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1D heterogeneity
 Let us consider a halfspace in a system of Cartesian coordinates with the vertical 

z axis positive downward and the free surface, where vertical stresses (σxz, σyz, σzz) 
are null, is defined by the plane z=0.

 Let us assume that ρ, λ and µ are piecewise continuous functions of z, that 
displacement and stress components are continuous along z, and that body wave 
velocities, α and β, assume their largest value, αH and βH, when z=H, remaining 
constant for greater depths. 

If the parameters depend only upon the vertical coordinate, the equations become:

    

� 

ρ˙ ̇ u = λ + µ( )∇ ∇ ⋅u( ) + µ∇2u+ ∂λ
∂z

ˆ z ∇ ⋅u( ) + ∂µ
∂z

∇ ⋅ ˆ z ( )u+ ∇ ˆ z ⋅u( )[ ]
we can consider solutions of  having the form of plane harmonic waves propagating 
along the positive x axis:

    u x,t( ) = F(z)ei ωt−kx( )
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Apparent horizontal (phase) velocity

  

� 

kx = k sin(i) = ω sin(i)
α

= ω
c

kz = kcos(i) = k2 − kx
2 = ω 1

α

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

− 1
c

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= ω
c

c
α

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

− 1 = kxrα
Remember: when c is less then the 
body wave velocity kz  is imaginary and 
represent inhomogeneous waves, i.e. 
waves exponentially decaying or 
increasing with depth; 
examples are Rayleigh waves in a 
homogenous halfspace, or Love waves 
in low velocity layer over a 
homogeneous halfspace

  

� 

kx = ksin(i) = ω sin(i)
β

= ω
c

kz = kcos(i) = k2 −kx
2 = ω 1

β
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− 1
c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

= ω
c

c
β
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

−1 = kxrβ

In current terminology, kx is k
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P-SV problem
We have to solve two independent eigenvalue problems for the three components of 
the vector F=(Fx,Fy,Fz). The first one describes the motion in the plane (x,z), i.e., P-SV 
waves and it has the form:

  

∂
∂z

µ ∂Fx
∂z

− ikµFz
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ − ikλ

∂Fz
∂z

+ ω2ρ− k2 λ +2µ( )[ ]Fx = 0

∂
∂z

λ + 2µ( ) ∂Fz
∂z

− ikλFx
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ − ikµ ∂Fx

∂z
+ ω2ρ− k2µ[ ]Fz = 0

and must be solved with the free surface boundary condition at z = 0

  

� 

σ zz = λ + 2µ( ) ∂Fz
∂z

− ikλFx
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
z=0

= 0

σxz = µ ∂Fz
∂z

− ikµFz
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
z=0

= 0
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SH problem
The second eigenvalue problem describes the case when the particle motion is 
limited to the y-axis, and determines phase velocity and amplitude of SH waves. 
It has the (Sturm-Liouville) form:

  

∂
∂z

µ
∂Fy
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ω2ρ− k2µ( )Fy = 0

and must be solved with the free surface boundary condition at z = 0

  

� 

µ
∂Fy
∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
z=0

= 0
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Layered halfspace

Let us now assume that the vertical heterogeneity in the halfspace is modelled 
with a series of N-1 homogeneous flat layers, parallel to the free surface, 
overlying a homogeneous halfspace. 
Let ρm, αm, βm, and dm, respectively be the density, P-wave and S-wave 
velocities, and the thickness of the m-th layer. 
Furthermore, let us define:

  

� 

rβm =

c
βm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

−1        if c > βm

−i 1− c
βm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

   if c > βm

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

  

� 

rαm =

c
αm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

−1        if c > αm

−i 1− c
αm

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

   if c > αm

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ < <
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Love (SH) problem

The SH solutions (displacement and stress) for the m-th layer are:

ux=uz=0

  uy = vm
' e−ikrβmz + vm

" e+ikrβmz( )ei ωt−kx( )

  
σzy = µ

∂uy

∂z
= ikµrβm −vm

' e−ikrβmz + vm
" e+ikrβmz( )ei wt−kx( )

where vm’ and vm‘’are constants. 
Given the sign conventions adopted, the term in v' represents a plane wave 
whose direction of propagation makes an angle cot–1rβm with the +z direction 
when rβm is real, and a wave propagating in the +x direction with amplitude 
diminishing exponentially in the +z direction when rβm is imaginary. Similarly 
the term in v'' represents a plane wave making the same angle with the 
direction -z when rβm is real and a wave propagating in the +x direction with 
amplitude increasing in the +z direction when rβm is imaginary.
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Love (SH) problem 

  10 

 

Fig. 2. For the adopted reference system the term in v' of equation (14) represents a plane wave 

whose direction of propagation makes an angle cot–1r!m with the +z direction when r!m is real (a), 

and a wave propagating in the +x direction with amplitude diminishing exponentially in the +z 

direction when r!m is imaginary (b). Similarly the term in v'' represents a plane wave making the 

same angle with the direction -z when r!m is real (c) and a wave propagating in the +x direction 

with amplitude increasing in the +z direction when r!m is imaginary (d). 

 

the term in v' represents a plane wave 
whose direction of propagation makes an 
angle cot–1rβm with the +z direction when 
rβm is real (a), 
and a wave propagating in the +x 
direction with amplitude diminishing 
exponentially in the +z direction when 
rβm is imaginary (b). 

Similarly the term in v'' represents a 
plane wave making the same angle with 
the direction -z when rβm is real (c)
and a wave propagating in the +x 
direction with amplitude increasing in 
the +z direction 
when rβm is imaginary d).
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Love (SH) problem

Consider the m-th layer and the (m-1) 
interface, set temporarily as the origin of 
the coordinate system. It is convenient to 
u s e [ ( d u y / d t ) / c ] = i k u y i n s t e a d o f 
displacement, to deal with adimensional 
quantities.   

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

= ik v'm + v' 'm( )

σzy( )m−1
= ikµmrβm

v' 'm− v'm( )

m-1, z=0

m, z=dm

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

= ik v'm + v' 'm( )cosQm −k v' 'm - v'm( )sinQm

σzy( )m
= −kµmrβm

v' 'm + v'm( )sinQm + ikµmrβm
v' 'm - v'm( )cosQm

Qm=krβmdm
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Love layer matrix

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

=
˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

cosQm + i σzy( )m−1
µmrβm( )−1

sinQm

σzy( )m
=

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

i µmrβm
sinQm + σzy( )m−1

cosQm   

� 

am =
cosQm

i sinQm

µmrβm

i µmrβm
sinQm cosQm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

σzy( )m

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= am

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

σzy( )m−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
N−1

σzy( )N−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= A
˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

σzy( )0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

    

� 

A = aN−1aN−2…a2a1
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Love dispersion equation

remembering that the boundary conditions of a) surface waves and b) the 
free surface implies that vN"=0 and σzy(z=0)=0, we have that:

  A21 +µNrβN
A11 = 0

The left-hand side is the dispersion function for Love modes (SH waves), 
where A21 and A11 are elements of the matrix A. 
The couples (ω,c) for which the dispersion function is equal to zero are its 
roots and represent the eigenvalues of the problem.
 
Eigenvalues, according to the number of zeroes of the corresponding 
eigenfunctions, uy(z,ω,c) and σzy(z,ω,c), 
can be subdivided in the dispersion curve of the fundamental mode (which has 
no nodal planes), of the first higher mode (having one nodal plane), of the 
second higher mode and so on. 

Once the phase velocity c is determined, we can compute analytically the group 
velocity using the implicit functions theory, and the eigenfunctions.
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Rayleigh (P-SV) problem
The P-SV solutions (displacement and stress) for the m-th layer can be found 
combining dilatational and rotational potentials:

  

� 

Δm = ∂ux

∂z
+ ∂uz

∂x
= Δm

' e−ikrαmz + Δm
" e+ikrαmz( )ei ωt−kx( )

δm = 1
2

∂ux

∂z
− ∂uz

∂x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = δm

' e−ikrβmz + δm
" e+ikrβmz( )ei ωt−kx( )

where Δm’, Δm’’, δm’ and δm‘’ are constants. 
Given the sign conventions adopted, the term in Δm’ represents a plane wave 
whose direction of propagation makes an angle cot–1rαm with the +z direction 
when rαm is real, and a wave propagating in the +x direction with amplitude 
diminishing exponentially in the +z direction when rαm is imaginary. Similarly the 
term in Δm’’ represents a plane wave making the same angle with the direction -z 
when rαm is real and a wave propagating in the +x direction with amplitude 
increasing in the +z direction when rαm is imaginary.
The same considerations can be applied to the terms in δm’ and δm‘’, substituting 
rαm with rβm.
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Rayleigh (P-SV) problem
The P-SV solutions (displacement and stress) components can be written as:

Starting with the free surface condition (σzz(z=0)=σzx(z=0)=0), iterating the 
continuity boundary conditions at every interface, and applying the condition of 
no radiation in the final halfspace, one can build up the dispersion function 
whose roots are the eigenvalues associated with the Rayleigh modes.

  

� 

ux = − αm
2

ω2
∂Δm

∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ −2βm

2

ω2
∂δm

∂z
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

uz = − αm
2

ω2
∂Δm

∂z
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +2βm

2

ω2
∂δm

∂x
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

σzz = ρm αm
2Δm + 2βm

2 αm
2

ω2
∂2Δm

∂x2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +2βm

2

ω2
∂2δm

∂z2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

σzx = 2βm
2ρm − αm

2

ω2
∂2Δm

∂x∂z
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

βm
2

ω2
∂2δm

∂x2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂2δm

∂z2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 


