
Optimization with inequality constraints 



Consider the problem

max
𝑥1 ,𝑥2

𝑢 𝑥1 , 𝑥2

𝑠. 𝑡. 𝑦 + 𝑥 ≤ 4 𝑦 + 2𝑥 ≤ 6
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Optimization with inequality constraints: the Kuhn-Tucker 

(KT) conditions

The KT conditions for the problem 

maxx f (x) subject to gj(x) ≤ cj for j = 1, ..., m

are

Li'(x) = 0 for i = 1 ,..., n

λj ≥ 0, gj(x) ≤ cj and      λj[gj(x) − cj] = 0     for j = 1, ...,m.

where 

𝐿(𝑥) = 𝑓 (𝑥) −  𝑗=1
𝑚 𝜆𝑗(𝑔𝑗(𝑥) − 𝑐𝑗) .



Example
max
{x1,x2}

−(x1 − 4)2 − (x2 − 4)2

s. t.
x1 + x2 ≤ 4
x1 + 3x2 ≤ 9

𝐿 𝑥 = − x1− 4
2 − x2− 4

2− 𝜆1(x1+ x2 − 4) − 𝜆2(x1+ 3x2− 9)

Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0
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When KT conditions are necessary

Let 𝑓 and 𝑔𝑗 for 𝑗 = 1,… ,𝑚 be continuously differentiable

functions of many variables and let 𝑐𝑗 for 𝑗 = 1,… ,𝑚 be

constants. Suppose that 𝑥∗ solves the problem

max 𝑓 𝑥 𝑠. 𝑡. 𝑔𝑗(𝑥) ≤ 𝑐𝑗 𝑓𝑜𝑟 𝑗 = 1,… ,𝑚.

Suppose that

- either each 𝑔𝑗 is concave

- or each 𝑔𝑗 is convex and there is some 𝑥 such that

𝑔𝑗(𝑥) < 𝑐𝑗for 𝑗 = 1,… ,𝑚

- or each 𝑔𝑗 is quasiconvex, 𝛻 𝑔𝑗(𝑥
∗) ≠ (0,… , 0) ∀𝑗, and 

there is some 𝑥 such that𝑔𝑗(𝑥) < 𝑐𝑗for 𝑗 = 1,… ,𝑚.

Then there exists a unique vector 𝜆 = (𝜆1, … , 𝜆𝑚) such that 

(𝑥∗, 𝜆) satisfies the Kuhn-Tucker conditions
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Example: KT are not necessary conditions for a max

max
𝑥,𝑦

𝑥 𝑠. 𝑡. y−(1−x)3≤ 0 and y ≥ 0

The constraint does not satisfy any of the conditions in the 

proposition. 

Indeed consider the first constraint

𝐽 = 3(1 − 𝑥)2

1
𝐻 =

−6(1 − 𝑥) 0
0 0

𝐻𝑏 =
0 3(1 − 𝑥)2 1

3(1 − 𝑥)2 −6(1 − 𝑥) 0
1 0 0

Then the constraint is not concave, convex or quasiconvex

Quasiconcavity: Slides 36-37 lezione precedente 6



The solution is 𝑥 = 1 𝑦 = 0
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The Lagrangean is 𝐿(𝑥) = 𝑥 − 𝜆1 (𝑦 − (1 − 𝑥)3) + 𝜆2𝑦.

The Kuhn-Tucker conditions are

1 − 3𝜆1 (1 − 𝑥)2= 0

−𝜆1 + 𝜆2 = 0

𝑦 − (1 − 𝑥)3≤ 0, 𝜆1 ≥ 0, and 𝜆1 𝑦 − (1 − 𝑥)
3 = 0

−𝑦 ≤ 0, 𝜆2 ≥ 0, and 𝜆2 −𝑦 = 0.

These conditions have no solution. From the last condition,

either𝜆2 = 0 or 𝑦 = 0. If 𝜆2 = 0 then 𝜆1 = 0 from the second

condition, so that no value of 𝑥 is compatible with the first

condition. If 𝑦 = 0 then from the third condition either 𝜆1 = 0 or

𝑥 = 1, both of which are incompatible with the first condition.8



the sufficiency of the Kuhn-Tucker conditions (1)

Let 𝑓 and 𝑔𝑗 for 𝑗 = 1,… ,𝑚 be continuously differentiable

functions of many variables and let 𝑐𝑗 for 𝑗 = 1,… ,𝑚 be

constants. Consider the problem

max
𝑥
𝑓 𝑥 𝑠. 𝑡. 𝑔𝑗 ≤ 𝑐𝑗 for 𝑗 = 1,… ,𝑚.

Suppose that

- 𝑓 is concave and 

- 𝑔𝑗 is quasiconvex for 𝑗 = 1,… ,𝑚.

If there exists 𝜆 = (𝜆1, … , 𝜆𝑚) such that (𝑥∗, 𝜆) satisfies 

the Kuhn-Tucker conditions then 𝑥∗ solves the problem
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the sufficiency of the Kuhn-Tucker conditions (2)

Let 𝑓 and 𝑔𝑗 for 𝑗 = 1,… ,𝑚 be continuously differentiable

functions of many variables and let 𝑐𝑗 for 𝑗 = 1,… ,𝑚 be

constants. Consider the problem

max
𝑥
𝑓 𝑥 𝑠. 𝑡. 𝑔𝑗 ≤ 𝑐𝑗 for 𝑗 = 1,… ,𝑚.

Suppose that

- 𝑓 is twice differentiable and quasiconcave and

- 𝑔𝑗 is quasiconvex for 𝑗 = 1,… ,𝑚.

If there exists 𝜆 = (𝜆1, … , 𝜆𝑚) and a value of 𝑥∗ such that

(𝑥∗, 𝜆) satisfies the Kuhn-Tucker conditions and 𝑓′𝑖 (𝑥
∗) ≠ 0

for 𝑖 = 1,… , 𝑛 then 𝑥∗ solves the problem.
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Necessity and sufficiency of KT conditions 

A) The KT conditions are both necessary and sufficient

– if the objective function is concave

and

– either each constraint is linear

– or each constraint function is convex and some vector of

the variables satisfies all constraints strictly.



Necessity and sufficiency of KT conditions 

B) Suppose that

- the objective function is twice differentiable and

quasiconcave and

- every constraint is linear.

Then

- If x* solves the problem then there exists a unique vector λ

such that (x*, λ) satisfies the Kuhn-Tucker conditions, and

- if (x*, λ) satisfies the Kuhn-Tucker conditions and f 'i(x*) ≠ 0

for i = 1, ..., n then x* solves the problem.



Example

max
{𝑥1,𝑥2}

[−(𝑥1 − 4)2 − (𝑥2 − 4)2]

𝑠. 𝑡.
𝑥1 + 𝑥2 ≤ 4
𝑥1 + 3𝑥2 ≤ 9

The objective function is concave and the constraints are both

linear, so the solutions of the problem are the solutions of the

Kuhn-Tucker conditions.
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Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0

To solve this system of condition we have to consider all

possibilities about the values of lambdas

We have to consider the following 4 cases:

1) λ1 = λ2 = 0

2) λ1 >0 λ2 = 0

3) λ1 =0 λ2 > 0

4) λ1 >0 λ2 > 0 14



Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0

Case 1: λ1 = λ2 = 0

KT conditions are

−2(x1 − 4) = 0

−2(x2 − 4) = 0

x1 + x2 ≤ 4,

x1 + 3x2 ≤ 9

Then x1 = 4 and x2 =4

It not a solution because the last two inequalities are not 

satisfied
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Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0

Case 2: λ1 >0 λ2 = 0

KT conditions are

−2(x1 − 4) − λ1 = 0

−2(x2 − 4) − λ1 = 0

x1 + x2 − 4= 0

x1 + 3x2 ≤ 9,

From the first 2 equations x1 = x2

Using the third equation we get x1 = x2 =2 and λ1=4

It is a solution because the last inequality is satisfied
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Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0

Case 3: λ1 =0 λ2 > 0

KT conditions are

−2(x1 − 4) − λ2 = 0

−2(x2 − 4) − 3λ2 = 0

x1 + x2 ≤ 4

x1 + 3x2 − 9= 0

From the first 2 equations x2=3 x1-8

Using the last equation we get x1 = 3.3

It is not a solution because it does not satisfy the inequality
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Kuhn Tucker conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 ≤ 4, λ1 ≥ 0, and λ1(x1 + x2 − 4)= 0

x1 + 3x2 ≤ 9, λ2 ≥ 0, and λ2(x1 + 3x2 − 9)= 0

Case 4: λ1 >0 λ2 > 0

KT conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 − 4= 0

x1 + 3x2 = 0
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KT conditions are

−2(x1 − 4) − λ1 − λ2 = 0

−2(x2 − 4) − λ1 − 3λ2 = 0

x1 + x2 − 4= 0

x1 + 3x2 = 0

Using the last two equation we get x1=1.5 and x2 =2.5

Replacing in the first two equation we get the values of 

lambdas

λ1 =6 λ2 = - 1

This is not a solution because it violates the condition λ2 ≥ 0. 
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Solution is x1 = x2 =2 and λ1=4



Optimization with inequality constraints: non negativity 

constraints

The general form of such a problem is:

maxx f (x) subject to 

gj(x) ≤ cj for j = 1, ..., m and 

xi ≥ 0 for i = 1, ..., n.

Lagrangean is

𝐿 𝑥 = 𝑓 𝑥 −  𝑗=1
𝑚 𝜆𝑗 𝑔𝑗 𝑥 − 𝑐𝑗 −

 𝑗=1
𝑛 𝜆𝑚 + 𝑗(−𝑥𝑗)

It is a special case of the general maximization problem with

inequality constraints: the nonnegativity constraint on each

variable is simply an additional inequality constraint.



Specifically, if we define the function gm+i for i = 1, ..., n by

gm+i(x) = −xi and let cm+i = 0 for i = 1, ..., n, then we may write

the problem as

maxx f (x) subject to 

gj(x) ≤ cj for j = 1, ..., m+n

and solve it using the Kuhn-Tucker conditions 



Optimization with inequality constraints: non negativity 

constraints

Approaching the problem in this way involves working with n +

m Lagrange multipliers, which can be difficult if n is large.

Then we can use an alternative approach, the modified

Lagrangean

Consider the following problem:

maxx f (x) subject to 

gj(x) ≤ cj for j = 1, ..., m and 

xi ≥ 0 for i = 1, ..., n.

The modified Lagrangean is:

𝑀(𝑥) = 𝑓 (𝑥) −  𝑗=1
𝑚 𝜆𝑗(𝑔𝑗(𝑥) − 𝑐𝑗)



The modified Lagrangean is:

𝑀(𝑥) = 𝑓 (𝑥) −  𝑗=1
𝑚 𝜆𝑗(𝑔𝑗(𝑥) − 𝑐𝑗)

Kuhn-Tucker conditions for the modified Lagrangean: 

𝑀𝑖′(𝑥) ≤ 0, 𝑥𝑖 ≥ 0 and 𝑥𝑖 · 𝑀𝑖′(𝑥) = 0 for 𝑖 = 1,… , 𝑛

𝑔𝑗(𝑥) ≤ 𝑐𝑗, 𝜆𝑗 ≥ 0 and 𝜆𝑗 · [𝑔𝑗 𝑥 − 𝑐𝑗] = 0 for 𝑗 = 1, . . , 𝑚



in any problem for which the original Kuhn-Tucker conditions 

may be used, we may alternatively use the conditions for 

the modified Lagrangean. 

For most problems in which the variables are constrained to 

be nonnegative, the Kuhn-Tucker conditions for the 

modified Lagrangean are easier than the conditions for the 

original Lagrangean

Example.

Consider the problem

maxx,y xy subject to x + y ≤ 6, x ≥ 0, and y ≥ 0



Function xy is twice-differentiable and quasiconcave and the

constraint functions are linear, so the Kuhn-Tucker

conditions are necessary and if ((x*, y*), λ*) satisfies these

conditions and no partial derivative of the objective function

at (x*, y*) is zero then (x*, y*) solves the problem.

Solutions of the Kuhn-Tucker conditions at which all

derivatives of the objective function are zero may or may not

be solutions of the problem

We try to solve it

1) using the lagrangean

2) Using the modified lagrangean



1) Using Lagrangean

𝐿 𝑥, 𝑦 = 𝑥𝑦 − 𝜆1(𝑥 + 𝑦 − 6) − 𝜆2(−𝑥) − 𝜆3(−𝑦)

Kuhn Tucker conditions are:

𝑦 − 𝜆1 + 𝜆2 = 0

𝑥 − 𝜆1 + 𝜆3 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

𝜆2 ≥ 0, −𝑥 ≤ 0, 𝜆2 −𝑥 = 0

𝜆3 ≥ 0, −𝑦 ≤ 0, 𝜆3 −𝑦 = 0
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We have to consider the following 8 cases:

1) λ1 =0 λ2 = 0 λ3 = 0

2) λ1 >0 λ2 = 0 λ3 = 0

3) λ1 =0 λ2 > 0 λ3 = 0

4) λ1 >0 λ2 > 0 λ3 = 0

5) λ1 =0 λ2 = 0 λ3 > 0

6) λ1 >0 λ2 = 0 λ3 > 0

7) λ1 =0 λ2 > 0 λ3 > 0

8) λ1 >0 λ2 > 0 λ3 > 0

28



Case 1: λ1 =0 λ2 = 0 λ3 = 0

Kuhn Tucker conditions are:

𝑦 = 0

𝑥 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

𝜆2 ≥ 0, −𝑥 ≤ 0, 𝜆2 −𝑥 = 0

𝜆3 ≥ 0, −𝑦 ≤ 0, 𝜆3 −𝑦 = 0

All conditions are satisfied, but the first derivatives of the 

objective function, evaluated at x=y=0 are equal to zero. Then 

this could be a solution.
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Consider now λ1 =0

Kuhn Tucker conditions are:

𝑦 + 𝜆2 = 0

𝑥 + 𝜆3 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

𝜆2 ≥ 0, −𝑥 ≤ 0, 𝜆2 −𝑥 = 0

𝜆3 ≥ 0, −𝑦 ≤ 0, 𝜆3 −𝑦 = 0

Then 𝜆2 = −𝑦 and 𝑥 = −𝜆3.  If 𝜆2 (𝜆3) is strictly positive,  then 

y (x) is strictly negative and does not satisfy the last two 

conditions.

This allows us to eliminate all combinations where λ1 =0 and

at least one among 𝜆2 and 𝜆3 is strictly positive, then

combinations 3, 5, 7

Then we have to check only the combinations 2, 4, 6, 8
30



Case 2) λ1 >0 λ2 = 0 λ3 = 0

Kuhn Tucker conditions are:

𝑦 − 𝜆1 = 0

𝑥 − 𝜆1 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 = 6,

−𝑥 ≤ 0,

−𝑦 ≤ 0,

From the first 3 conditions we have that x = y = 3 and 𝜆1=3

These values satisfy the last conditions and  the derivatives of 

objective function evaluated in this point are different from 

zero.
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Case 4) λ1 >0 λ2 > 0 λ3 = 0

Kuhn Tucker conditions are:

𝑦 − 𝜆1 + 𝜆2 = 0

𝑥 − 𝜆1 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

−𝑥 = 0, 𝜆2 −𝑥 = 0

−𝑦 ≤ 0

From condition in the 4th line  we have 𝑥 = 0, 

replacing in the second line we get 𝜆1 = 0, a contradiction with 

the initial assumption of 𝜆1 > 0
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Case 6) λ1 >0 λ2 = 0 λ3 > 0

The first two conditions are

𝑦 − 𝜆1 = 0

𝑥 − 𝜆1 + 𝜆3 = 0

𝜆3 > 0 implies 𝑦 = 0.

Replacing it in the first line we find that 𝜆1 = 0, a contradiction 

with the initial assumption of 𝜆1 > 0
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Case 8) λ1 >0 λ2 > 0 λ3 > 0

Kuhn Tucker conditions are:

𝑦 − 𝜆1 + 𝜆2 = 0

𝑥 − 𝜆1 + 𝜆3 = 0

𝑥 + 𝑦 = 6

𝑥 = 0 𝑦 = 0

From the last three conditions one contradiction arises

Two possible solutions

1) x = 0 and y = 0

2) x = 3 and y = 3

The second one produces the higher value of the objective 

function, then it is the solution of the problem
34



2) Using the modified lagrangean

𝑀 𝑥, 𝑦 = 𝑥𝑦 − 𝜆1(𝑥 + 𝑦 − 6)

Kuhn-Tucker conditions for the modified Lagrangean: 

𝑥 ≥ 0, 𝑦 − 𝜆1 ≤ 0 𝑥 𝑦 − 𝜆1 = 0

𝑦 ≥ 0 𝑥 − 𝜆1 ≤ 0 𝑦(𝑥 − 𝜆1) = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0
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Kuhn-Tucker conditions for the modified Lagrangean: 

𝑥 ≥ 0, 𝑦 − 𝜆1 ≤ 0 𝑥 𝑦 − 𝜆1 = 0

𝑦 ≥ 0 𝑥 − 𝜆1 ≤ 0 𝑦(𝑥 − 𝜆1) = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

Consider a case where x=0 and y=0, then:

−𝜆1 ≤ 0

−𝜆1 ≤ 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

These conditions are satisfied only for 𝜆1 = 0

Then x=0 y=0 is a candidate to the solution (the derivatives of 

the objective function are equal to zero in this point)
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Consider a case where 𝑥 > 0 and 𝑦 = 0, then:

𝑥 > 0, 𝜆1 ≤ 0 𝑥𝜆1 = 0

𝑥 − 𝜆1 ≤ 0

𝜆1 ≥ 0, 𝑥 ≤ 6, 𝜆1 𝑥 − 6 = 0

From the first condition we get 𝜆1 = 0

Replacing 𝜆1 = 0 in the second condition we get 𝑥 ≤ 0

A contradiction with the initial assumption 𝑥 > 0. 
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Consider a case where 𝑥 = 0 and 𝑦 > 0, then:

Replacing these values in the second condition we get 𝜆1 = 0

Replacing 𝜆1 = 0 in the first condition we get 𝑦 ≤ 0

A contradiction with the initial assumption 𝑦 > 0.

Consider the case 𝑥 > 0 and 𝑦 > 0

𝑦 − 𝜆1 = 0

𝑥 − 𝜆1 = 0

𝜆1 ≥ 0, 𝑥 + 𝑦 ≤ 6, 𝜆1 𝑥 + 𝑦 − 6 = 0

Then 𝑦 = 𝑥 = 𝜆1 > 0.

The last condition implies 𝑥 + 𝑦 = 6 and then 𝑥 = 𝑦 = 3

As in the procedure using the Lagrangean
38



• http://www.economics.utoronto.ca/osborne/MathTutorial/OSMF.HTM
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