Problem set constrained optimization

1)

a) Write the KT conditions of the following problem:

$$\max_{\{x,y\}} a \cdot (x \cdot y)^b$$

$$s.t. \quad 100 - \mathbf{m} \cdot x - n \cdot y \ge 0$$

$$0 \le x \le 4$$

$$y \ge 0$$
where $0 < b < 0.5$ and $a < 0$

- b) Write the KT conditions of the modified Lagrangean
- c) Check if these conditions are both necessary and sufficient

2)

a) Solve the following problem:

$$\max_{\{x,y\}} (100 - x) \cdot y$$
s. t. $x \cdot y \ge 10$

$$x \le 2$$

$$y \ge 0$$

- b) Check if KT conditions are both necessary and sufficient
- 3) Solve the following problems:

a)
$$\max_{\{x,y\}} (x-1)^2 + (y-1)^2$$
 s.t. $0 \le x \le 2$ and $0 \le y \le 2$

b)
$$\min_{\{x,y\}} (x-1)^2 + (y-1)^2$$
 s.t. $0 \le x \le 2$ and $0 \le y \le 2$

4) For each possible value of the constant a, solve the problem

$$\max_{\{x,y\}} x + ay \text{ subject to } x^2 + y^2 \le 1 \text{ and } x + y \ge 0.$$

5) Consider the following problem.

$$max_{\{x\}} - x_1^2 - x_1x_2 - x_2^2$$
 subject to $x_1 - 2x_2 \le -1$ and $2x_1 + x_2 \le 2$

- a. Are the Kuhn-Tucker conditions necessary for a solution of this problem?
- b. Are the Kuhn-Tucker conditions sufficient for a solution of this problem?
- c. If possible, use the Kuhn-Tucker conditions to find the solution(s) of the problem.