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1 NON-EUCLIDEAN GEOMETRY

1 Non-euclidean geometry

1.1 Introduction

The attempts to "prove" the so-called Euclid’s fifth postulate from the other postulates, considered the most
obvious, did not achieve this, but they brought, in 19th century, to the birth of non-Euclidean geometries (Gauss,
Bolyai, Lobachevski, Klein).

Gauss, Bolyai, Lobachevski e Klein

The fifth postulate can be enunciated as follows: Given a straight line r and a point P outside of it, through
the point P passes one and only one line parallel to r (we can give to the term parallel the meaning of that
meets r only to infinite, in an improper point).

P

r

This postulate result independent of the others, in the sense that we can construct planar geometries (i.e. in
2 dimensions) in which all the other original Euclid’s postulates are still working, but the fifth postulate is
different:

1. Through P outside the line r does not pass any parallel line

2. Through P outside the line r pass two (or even infinite) parallel (or not secant) lines

In case 1, in addition, the sum of the interior angles of a triangle is> 180◦, while in case 2 it is< 180◦.

To build a "model" of these geometries we must define, in an appropriate way, points, lines, etc..

For the case 1 (elliptical plane geometry) we define a point as the pair of diametrically opposite points
(P, P ′), and a straight line is a great circle passing through P and P ′. We see that through two points (P, P ′)
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1.1 Introduction 1 NON-EUCLIDEAN GEOMETRY

and (Q,Q′) passes a straight line r and that through a point (T, T ′), external to r, does not pass any parallel
to r since all the straight lines passing through (T, T ′) intersect r at a point.

If we define on the sphere a triangle with sides formed by arcs of great circles, the sum of the angles α+ β + γ
is always > π, so that the area S, if the sphere has a radius R, can be expressed as S = R2(α+ β + γ − π). If
S → 0 (keeping R fixed) we see that (α+ β + γ)→ π. If the spherical triangle is much smaller than the radius
R, its difference from a plane triangle tends to disappear.

To build a model of elliptical plane geometry we have resorted to the use of a sphere (a two-dimensional surface
we will denote by S2) immersed (embedded) in a three-dimensional Euclidean space E3.

We also note that in order to represent the postulate V 1) we had to use a “curved” surface, i.e. the the sphere.
This "curvature" must also be constant throughout the "plan" because the other postulates describe the space
as homogeneous, and if the curvature varied this property would be lost.

With the analytic geometry, Descartes has shown that, by identifying the points with pairs of real numbers and
defining the distance between two points (x1, y1) e (x2, y2) as d =

√
(x2 − x1)2 + (y2 − y1)2 all the postulates

of Euclid reduce to theorems about real numbers. The definition of point and distance is therefore essential to
describe a geometry.

A

B

R

S

Similarly to what was done for postulate V 1), we can define a model for the postulate V 2), the so-called
hyperbolic plane geometry (H2).

At variance with the “elliptic” plane, the "hyperbolic" plan can not be completely embedded in a 3-D Euclidean
space (we will understand later why). But you can build some limited models, such as the circle of Klein (1870):
the points are those inside the circle of radius 1. The straight lines are the chords of the circle. The points of
the circle are improper points. A straight line is parallel to another if it has in common with the first one an
improper point. Yuo can see that trough P pass two straight lines parallel to a given straight line, and there
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1 NON-EUCLIDEAN GEOMETRY 1.2 Curves in the plane

are infinitely many lines through P not intersecting it. The distance between two points A and B (see figure)
is given by

d(AB) =
1

2
log

RA · SB
RB · SA

.

As you can see d(AB)→∞ if one of the two points tends to the circumference (to the points R or S).

A partial representation of H2 "embedded" in a Euclidean 3-D space E3is given by the so-called Beltrami’s
pseudosphere, which has the shape of a trumpet. This surface has a constant curvature, as the sphere, but
negative (later we will understand the meaning of the negative curvature). The fact that the circle of Klein and
the pseudosphere are partial representations, i.e. incomplete, of the hyperbolic plane is due to the fact that the
points of the edge of Klein’s circle, as the edge points of the pseudosphere, are singular points of the surface.

To better understand the meaning of the term "curvature", we must refresh and deepen some concepts of
differential geometry directly linked to the distance between points. This is an essential concept to describe the
geometry of a surface, even if is not possible to give an intuitive representation of it in an Euclidean 3-D space.
This then serves as generalization to switch from 2-D surfaces to spaces with 3 or more dimensions.

1.2 Curves in the plane

A plane curve can be parametrized in the following way: x(t) =
(
x1(t), x2(t)

)
where t is a parameter, not

necessarily time; the tangent vector (velocity) is dx
dt . The curvilinear abscissa is defined as s:

O ≡ x(t = 0) P ≡ x(t) ds = |dx| =
∣∣∣∣dxdt

∣∣∣∣dt → s =

∫ t

0

∣∣∣∣dxdt
∣∣∣∣dt = s(t)

x
1

x
2

If we switch parameter from t to s, we notice that dx
ds = ẋ(s) has magnitude 1: it’s the tangent versor t̂(s).
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1.3 Surface elements 1 NON-EUCLIDEAN GEOMETRY

Since |ẋ(s)| = |t̂(s)| = 1, we have t̂ · t̂ = 1 and, performing the derivative, 2t̂ · ˙̂t = 0, i.e. t̂⊥ ˙̂t. (notice that ˙̂t(s) is
not a versor!)

By defining κ(s) = | ˙̂t(s)| and n̂(s) =
˙̂t(s)

| ˙̂t(s)|
I get ˙̂t(s) = κ(s) · n̂. Let’s see how we can express ˙̂t(s)

∆t̂ = t̂(s+ ∆s)− t̂(s) |∆t̂| = 2|t̂|sin∆θ

2
∼ ∆θ ∆s ' ρ∆θ →

∣∣∣∣∆t̂∆s

∣∣∣∣ ' ∆θ

ρ∆θ
=

1

ρ

Then (notice: ∆t̂ points to the center C of the osculating circle)

dt̂
ds

= κn̂ =
1

ρ
n̂

{
κ : curvature
ρ : curvature radius

If we measure θ with reference to a fixed direction (for instance the x1 axis)

∆s = ρ∆θ =
∆θ

κ
→ κ =

∣∣∣∣dθds
∣∣∣∣

We defined κ as being > 0. But, in this way, we get a discontinuity in n̂ at an inflection point. In order to avoid
this problem, after the definition of a curvilinear abscissa s on the curve, the tangent versor t̂ is also defined and
we can take the versor n̂ obtained from a rotation of t̂ by 90◦ in a positive direction (consistent with O, x1, x2).
Since t̂⊥ ˙̂t, we still have ˙̂t = κn̂, but now we can olso have κ < 0. According to the sign of κ, the curve is located
to the left or to the right of t̂; at the inflection point n̂ doesn’t change, but κ changes his sign and now it is
given by

κ =
dθ(s)
ds

(and not by the absolute value).

k k

1.3 Surface elements

To be more specific, rather than about surfaces, we will talk about surface elements, as we are interested in
their local properties.

Also in this case we resort to a parametric representation: we consider a bijective function x : D ⊆ R2 → R3

(we work in a three-dimensional Euclidean space E3).
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1 NON-EUCLIDEAN GEOMETRY 1.3 Surface elements

P’

u
0

v
0

We define x(u, v) ≡
(
x1(u, v), x2(u, v), x3(u, v)

)
. If the surface is expressed in the way z = f(x, y) its paramete-

rization becomes x(u, v) =
(
u, v, f(u, v)

)
.

We speack about a regular (smooth) surface if, having defined the vectors

xu(u, v) =
∂x

∂u
=

(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
xv(u, v) =

∂x

∂v
=

(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
, everywhere (within the domain) xu × xv 6= 0 (cross product).

While keeping fixed v = v0 and by varying u in the neighborhood of a point P ′ (→ P on the surface element
M) I get a curve on M , whose tangent vector is xu. In a similar way, also xv is tangent to a curve on M .
These two vectors define the tangent plane to M at the point P .

We can now define a versor N̂ perpendicular (normal) to the surface

N̂ =
xu × xv
|xu × xv|

and N̂ , xu, xv form a trihedron.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: sphere (in geographic coordinates)

One can describe the surface of the sphere, using the variable u for the longitude (−π ≤ u ≤ π) and the
variable v for the latitude (−π2 ≤ v ≤ π

2 ), in the following way (most commonly using the colatitude, π2 − v):
x(u, v) =

(
R cosu cosv,R sinu cosv,R sinv

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since in a neighborhood of a point P on M (and of a corresponding point P ′ ∈ D) the correspondence is
bijective, we can think that u and v form, in a neighborhood of P , a system of curvilinear coordinates (like
parallels and meridians on a sphere).

If u = u(t), v = v(t) is a curve in D through P ′(u0, v0), then r(t) = x
(
u(t), v(t)

)
is a curve on M through

x(u0, v0). The “velocity” vector ṙ = dr
dt will be

dr
dt

= ṙ =
∂x

∂u

du
dt

+
∂x

∂v

dv
dt

→ ṙ = xu
du
dt

+ xv
dv
dt

P’

u
0

v
0

7



1.4 The first fundamental form 1 NON-EUCLIDEAN GEOMETRY

The vector ṙ is also tangent to M and is therefore contained in the tangent plane. Any vector belonging to
the tangent plane at P is a linear combination of xu e xv (in x(u0, v0)); conversely, any linear combination
v = axu(u0, v0) + bxv(u0, v0) ) is the "velocity" vector of a curve on M . The vectors xu e xv form a basis in
the tangent plane at the point P .

1.4 The first fundamental form

If r(t) = x
(
u(t), v(t)

)
, with a ≤ t ≤ b, is a curve on a surface, and if s = s(t) is the arc length (curvilinear

abscissa) along r, from r(a) to r(b), then the total length L of this curve is obtained by integrating ds
dt =

∣∣dr
dt

∣∣
on the interval [a, b]:

L ≡ s(b) =

∫ b

a

∣∣dr
dt
∣∣dt

but, since ṙ = xu · u̇+ xv · v̇ (with u̇ = du
dt e v̇ = dv

dt )(
ds
dt

)2

=

∣∣∣∣drdt
∣∣∣∣2 = ṙ · ṙ = (xuu̇+ xv v̇) · (xuu̇+ xv v̇) = u̇2(xu · xu) + 2u̇v̇(xu · xv) + v̇2(xv · xv)

Now let E ≡ xu · xu, F ≡ xu · xv, G ≡ xv · xv; (E = E(u, v, )...); we obtain:(
ds
dt

)2

= Eu̇2 + 2Fu̇v̇ +Gv̇2

L =

∫ b

a

[
E

(
du
dt

)2

+ 2F
du
dt

dv
dt

+G

(
dv
dt

)2] 1
2

dt

which is shortened writing (it’s understood that what matters is the curve, not the parameters used to describe
it)

L =

∫
r

ds =

∫
r

[
Edu2 + 2Fdudv +Gdv2

] 1
2

or, in differential form,

ds2 = Edu2 + 2Fdudv +Gdv2

This is the so called first fundamental form or metric form of a surface.

As we shall see, the metric form determines completely the intrinsic geometry of the surface, including its
curvature. Speaking of intrinsic geometry we refer to the geometric properties that can be assessed through
measures (e.g. distances, but not only) conducted by remaining within the surface, without "going out" from it
(that is, without looking at the two-dimensional surface from an Euclidean three-dimensional space). The
possibility to define intrinsic properties is essential because, if going from 2 to 3 dimensions, we want to
understand the geometry of space that characterizes our universe, we cannot observe it from "outside"!

Notice: Due to the bijective correspondence between the domain D ∈ R2 and the surface elementM , the curves
u = const e v = const form a grid on the surface, and one can think at E, F , e G as functions defined on the
surface (and then intrinsic). We may think that the inhabitants of the two-dimensional surface make various
measurements of distances between points of the surface to discover the form of the three functions E, F e G,
expressed as a function of the curvilinear coordinate grid, perhaps by making assumptions about their possible
shape and looking for the best solution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: the plane

x(u, v) = (u, v, 0) is the plane z = 0 in E3 with x = u and y = v as cartesian coordinates.

xu = (1, 0, 0), xv = (0, 1, 0), E = xu · xu = 1, F = xv · xu = 0, G = xv · xv = 1;

ds2 = du2 + dv2 = dx2 + dy2 (Pythagoras theorem)

L =

∫ b

a

[(
du
dt

)2

+

(
dv
dt

)2] 1
2

dt
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1 NON-EUCLIDEAN GEOMETRY 1.4 The first fundamental form

and, if the curve can be represented in the form y = f(x), defining x = t and y = f(x) we get

L =

∫ b

a

[
1 + f ′(x)2

] 1
2 dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple: the sphere in geographical coordinates:

x(u, v) = (R cosu cosv,R sinu cosv,R sinv)

xu = (−R sinu cosv,R cosu cosv, 0)

xv = (−R cosu sinv,−R sinu sinv,R cosv)

E = xu · xu = R2 cos2v sin2u+R2 cos2v cos2u = R2 cos2v

G = xv · xv = R2 sin2v cos2u+R2 sin2v sin2u+R2 cos2v = R2

F = xu · xv = R2 cosv cosu sinv sinu−R2 cosu cosv sinu sinv = 0

ds2 = R
2

cos2vdu2 +R2dv2

If we remember that, for a ≤ t ≤ b, L =
∫

ds =
∫ b
a

√
(ds

dt )
2dt, we can write

L =

∫ b

a

√
R2 cos2 v(

du

dt
)2 +R2(

dv

dt
)2dt = R

∫ b

a

√
cos2 v(

du

dt
)2 + (

dv

dt
)2dt

and, given the paths u = u(t) and v = v(t), we can compute their lengths.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If v = axu + bxv, w = cxu + dxv, with a, b, c, d ∈ R, are two vectors tangent to the surface M , then v · w =
(axu + bxv) · (cxu + dxv) = acE + adF + bcF + bdG which can be written in the matrix form

(a, b)
(
E F
F G

)(
c
d

)
where

(
E F
F G

)
is the matrix of the first fundamental form

So, if we know the first fundamental form, we are able to compute scalar (dot) products on M , then not only
lenghts, but also angles.

We remind that being xu × xv normal to the plane tangent to the surface, the versor N̂ = xu×xv
|xu×xv| is normal to

the surface.

Lagrange identity (important): |xu × xv|2 = (xu · xu)(xv · xv)− (xu · xv)2 = EG− F 2 = det
(
E F
F G

)
Proof: remember that

|xu × xv| = |xu||xv| sinθ
xu · xv = |xu||xv| cosθ

so ( if we remember that sin2 θ = 1−cos2 θ) |xu×xv|2 = |xu|2|xv|2 sin2θ = (xu ·xu)(xv ·xv)−(xu ·xv)2 Q.E.D.

By the requirement that the surface is smooth it follows that EG− F 2 6= 0

At this point we make a change in the symbology used; as we shall see this will lead to a considerable
simplification of formulas.

Let’s call g11 ≡ E g12 = g21 ≡ F g22 ≡ G x1 ≡ xu x2 ≡ xv
and let’s write u1 ≡ u u2 ≡ v (where the superscripts 1 and 2 are upper indices and not exponents).

9



1.4 The first fundamental form 1 NON-EUCLIDEAN GEOMETRY

Then we will have gij = xi · xj (i, j = 1, 2) and the matrix of the metric form will be:(
g11 g12

g21 g22

)
=

(
E F
F G

)

Remember that gij = gij(u, v) = gij(u
1, u2).

By defining g ≡ det(gij) = EG− F 2, from Lagrange identuty |x1 × x2|2 = g.

In the new notation, the first fundamental form can then be written:

ds2 = g11(du1)2 + 2g12du1du2 + g22(du2)2 =
∑
i,j

gijduiduj

We used 2g12 = g12 + g21 since g12 = g21; moreover, we will soon understand the reason for we write ui instead
of ui.

A vector, tangent in P to M , v = ax1 + bx2 can be written as v = v1x1 + v2x2 =
∑
i v
ixi (notice that i is a

“dummy” variable, and any other letter can be used instead of it.)

If v =
∑
i v
ixi and w =

∑
j w

jxj are two vectors tangent to M at the same point P , then

v · w =
∑
i,j

(vixi) · (wjxj) =
∑
i,j

viwjxi · xj =
∑
i,j

gijv
iwj

The vectors v and w are orthogonal if and only if
∑
i,j gijv

iwj = 0.

We define as gij the elements of the inverse matrix of (gij), such that(
g11 g12

g21 g22

)(
g11 g12

g21 g22

)
=

(
1 0
0 1

)
which, in a more compact way, can be written ∑

j

gijg
jk = δki

where δki (Kronecker δ ) is defined in the following way

δki =

{
1 i = k
0 i 6= k

Remembering that the elements of the inverse of a matrix are given by the algebraic complements divided by
the determinant of the original matrix, we get:

g11 =
g22

g
g12 = g21 = −g21

g
g22 =

g11

g

We will now see that the first fundamental form not only allows you to measure distances and angles, but also
areas.

Let be x : D → E3 a surface in E3 and let be Ω ∈ D a region of the domain where x is bijective. To find the
area of x(Ω), we subdivide Ω into rectangular elements by means of lines parallel to the axes u1 e u2.
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1 NON-EUCLIDEAN GEOMETRY 1.4 The first fundamental form

To a small area belonging to Ω, having as sides ∆u1 and ∆u2 corresponds approximately a piece of surface
parallelogram-shaped, with sides parallel to the vectors x1 e x2. These sides have lengths given by ∆l1 ' |x1|∆u1

and ∆l2 ' |x2|∆u2 (Remember that x1 = ∂x
∂u1 , and then ∆x1 = ∂x

∂u1 ∆u1)

The measure of the small area is given by:

∆A = |x1|∆u1 · |x2|∆u2sinθ = |x1 × x2|∆u1∆u2 =
√
g∆u1∆u2

where θ is the angle between x1 and x2, and g = det(gij) as seen above.

Adding all these area elements covering Ω and going to the limit ∆ui → 0 we obtain the area of x(Ω):

A =

∫∫
Ω

√
g du1du2

We observe that, working in two dimensions, the measure of a set is precisely its area; if we work in three
dimensions, the measure will be a volume, and an n-dimensional volume in n dimensions. In all cases, even
if we don’t prove it here, the measure is obtained by integrating √g, where g is the determinant of the n-
dimensional metric. This applies in the so-called Riemannian spaces (manifolds), in which the ds2 > 0. In the
pseudo-Riemannian spaces, where ds2 can be positive, negative or equal to zero (such as Minkowski space-time
of Special Relativity), some elements of the metric tensor can be negative; since in this case it can be that (and
so is in the space-time) g < 0, we will use in general the absolute value of g, and we will write

√
|g|.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple: sphere in geographical coordinates:

ds2 = R2 cos2v du2 +R2 dv2 −π ≤ u ≤ π
−π/2 ≤ v ≤ π/2

gij =

(
R2cos2v 0

0 R2

)
g = R4 cos2v → √

g = R2 cosv

A =

∫ π/2

−π/2

(∫ π

−π
R2 cosv du

)
dv = 2πR2

∫ π/2

−π/2
cosv dv = 4πR2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: area of the torus:

x(u, v) =
[

(R+ r cosu) cosv, (R+ r cosu) sinv, r sinu
] √

g = r (R+ r cosu)

0 ≤ v ≤ 2π 0 ≤ u ≤ 2π 0 < r < R

S =

∫ 2π

0

[∫ 2π

0

r (R+ r cosu)du
]
dv = 2πr

[∫ 2π

0

R du+

∫ 2π

0

r cosu du
]

=

= 2πr

[
2πR+ r

∫ 2π

0

cosu du
]

= 4π2Rr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 TENSORS

2 Tensors

2.1 Introduction

Why did we write things like gij and dui and duj? Because we are dealing with tensor quantities, quantities
whose properties are related to the way they transform when changing the reference system.

If I switch from the coordinate (generally curvilinear) system ui (i = 1, 2, ...) → u′j(j = 1, 2, ...) we will get (by
means of ... we begin to see how things can be generalized to more than two dimensions)

du′j =
∑
i

∂u′j

∂ui
dui (i, j = 1, 2, ...)

du′j = A′jk

Every quantity V j which transforms according to the rule

V ′j =
∑
i

∂u′j

∂ui
V i

is a contravariant tensor (or, to be more precise, its components transforms as a contravariant tensor); so, also
dui, or ui, are contravariant tensors. A vector is tensor or rank one. A scalar quantity, the value of which does
not change at a given point if we change the coordinate system, is a tensor of rank zero.

We consider now the gradient of a scalar fieldΦ(ui) = Φ(u′j). We have:

∂Φ

∂u′j
=
∑
i

∂Φ

∂ui
· ∂u

i

∂u′j
=
∑
i

∂ui

∂u′j
· ∂Φ

∂ui

We see that the gradient of Φ changes differently from dui! We say that ∂Φ
∂ui is a covariant vector, and often

we simply write ∂iΦ instead of ∂Φ
∂ui , with a lower index. When the same index appears both as an upper and a

lower index, the sum on that index is implied (Einstein convenction), and we simply write:

V ′j =
∂u′j

∂ui
V i and

∂Φ

∂u′j
=

∂ui

∂u′j
∂Φ

∂ui

The quantity ds2 = gijduiduj (implying the summation on i and j) is the length, squared, of a segment, and is
therefore independent on the reference frame used (it is a scalar). In two different referece frames we will then
have

ds2 = g′kldu
′kdu′l = gijduiduj = gij

∂ui

∂u′k
∂uj

∂u′l
du′kdu′l

since dui =
∂ui

∂u′k
du′k and duj =

∂uj

∂u′l
du′l

we have g′kl =
∂ui

∂u′k
∂uj

∂u′l
gij

i.e., the metric tensor is a covariant tensor of rank two.

On the contrary, the gij tensor is contravariant tensor (of rank two).

We have seen that gijgjk = δki (implying also here the summation on the repeated index j). δki is a mixed tensor
of rank two, because

δki ·
∂u′l

∂uk
· ∂u

i

∂u′m
=
∂u′l

∂uk
· ∂u

k

∂u′m
=

∂u′l

∂u′m
= δlm

(aside from the scalars and zero, δki is the only tensor that retains the same components in all coordinate
systems).

12



2 TENSORS 2.1 Introduction

We have also seen that the inner product v · w can be expressed as v · w = gijv
iwj .

If we multiply two tensors we also get a tensor:Aij · Ck = Dk
ij .

If we contract a tensor we still have a tensor, but with its rank reduced by two: T jkmj = Bkm. In fact, e.g.,

A′ki =
∂u′k

∂uj
· ∂u

l

∂u′i
·Ajl =⇒ A′kk =

∂u′k

∂uj
· ∂u

l

∂u′k
·Ajl =

∂ul

∂uj
·Ajl = δlj ·A

j
l = Ajj = A (a scalar).

If Di and Dj are the covariant and contravariant components of the same vector (tensor) and we consider a
generic vector Cj such that

Di = gijC
j / ·Di → DiD

i = gijC
jDi,

by performing this inner product we obtain, on the left, a scalar that depends on the vectorD, while the right
side depends on both C and D; since these two quantities are equal, necessarily C ≡ D, i.e. Di = gijD

j . We
can get this result also in another way. We have seen that a vector v can be written as v = vixi, by using its
contravariant components; we now define its covariat componentsvk in the following way:

vk ≡ v · xk = vixi · xk = vigik = gikv
i = gkiv

i

In a similar way we have Dj = gijDi. We see that the metric tensor can be used to transform
contravariant components into covariant componenets (and vice versa).

If gij lowers an upper index, we can use it also to lower an upper index of gjk, obtaining

gijg
jk = g ki ≡ δki

on the basis of what has been said above: the metric tensor in the mixed form (i.e. with an upper index and a
lower one) is equal to the Kronecker delta.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: vectors in the plane in polar coordinates

u1 ≡ r ds2 = dr2 + r2dθ2 gij =
(

1 0
0 r2

)
g = r2 → √

g = r

u2 ≡ θ gij =
( 1 0

0 1
r2

)
At a point in the plane we have two vectors, whose components are Ai = (5, 9) e Bi = (3, 7). Their inner
product is AiBi = A1B

1 +A2B
2 = 5 · 3 + 9 · 7 = 78

Ai = gijAj → A1 = g11A1 + g12A2 = 1 · 5 + 0 · 9 = 5

→ A2 = g21A1 + g22A2 = 0 · 5 + 1/r2 · 9 = 9/r2

Bi = gijB
j → B1 = g11B

1 + g12B
2 = 1 · 3 + 0 · 7 = 3

→ B2 = g21B
1 + g22B

2 = 0 · 3 + r2 · 7 = 7r2

then AiBi = A1B1 +A2B2 = 5 · 3 + 9/r2 · 7r2 = 78 = AiB
i

13



2.1 Introduction 2 TENSORS

We see that AiBi = gijA
iBj = gijAjBi = AiB

i is invariant.

Notice: The surface element is given by dS =
√
gdu1du2 → r drdθ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is not easy to represent the covariant and contravariant components of a vector in general, but one can give a
graphic description in some particular case, for example in the case of rectilinear coordinates. Consider, in the
plane, a rectilinear non-orthogonal coordinate system Oxy. Let x̄i be the basis vectors. If we write the vector Ā
as A = Aix̄i, I realize that Ai are the ususal components of a vector, such that the component vectors, having
magnitude Ai and direction and versus given by x̄i, add according to the parallelogram rule to give the vector
Ā. The contravariant components correspond to the parallel projections on the axes.

A
2 2
x

A

componenti
covarianti

A

A
1 1
x

x

y

componenti
controvarianti

y

x

A
1

1
x

A
2

2
x

Conversely, if I write, as done above, the covariant components as Ai = Ā · x̄i, I realize that they are the
projections of di Ā along the x̄i direction; they correspond to the normal projections on the axes.

It follows that, if the reference frame is rectilinear and orthogonal parallel and perpendicular projections are
the same thing, and covariant and contravariant components are equal. It’s no more necessary to distinguish
between upper and lower indices.

Notice that a vector (or more generally a tensor), per se, is neither covariant nor contravariant, but its compo-
nents are covariant or contravariant.

But every quantity with indices is not necessarily a tensor. For instance, as we shall see, the affine connections
Γijk do not represent a tensor, since they do not transform like a tensor.

We can draw an important conclusion: each equation is invariant under a general coordinate tran-
sformation if it is expressed as the equality between two tensors with the same upper and lower
indexes :

Aαβγ = Bαβγ → A
′α
βγ = B

′α
βγ if Aαβγ and Bαβγ are tensors.

Since also the zero is a tensor of whatever rank (just think that it transforms always into a zero), a relation like
Aαβγ = 0 will be satisfied in any reference frame.

On the contrary, an equality between quantities that are not tensors with the same upper and lower indices
(e.g. Tµν = 5; V i = Bi) can be true in some reference frame, but not in all of them.
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2 TENSORS 2.2 Curvature of a surface

2.2 Curvature of a surface

Let’s see how one can extend the notion of curvature to a surface. Let us then consider a point P on a surface,
and let n̂ be the unit vector normal to the surface in P . If v is a vector tangent to the surface at the point P ,v
and n̂ define a plane that cuts the surface along a curve which will have, in P , a certain radius of curvature.
The curvature in P is given by k = ± 1

R , where the sign is taken positive or negative depending on whether the
center of curvature C is, with respect to P, on the same side of n̂ or on the opposite side (you can also take
the opposite choice but, as we will see, things do not change). Let’s see, as examples of surfaces, the plane, the
sphere and the right cylinder.

R= k=0¥

k= R-1/
k =1/R     k =0

1 2

R

In the case of the cylinder, it can be seen that there are two directions perpendicular to each other and
corresponding to the vectors v1 and v2 which, in turn, correspond to the maximum and the minimum value (k1

and k2) of k, the so-called principal curvatures. This applies in general, for all smooth surfaces.

The Gauss curvature K is defined as the product k1 · k2. From this we see that K does not depend on the
convention adopted for signs of k.

For the plane K = 0, for the sphere K = 1/R2, for the cylinder K = 0, as for the plane! Although this may
appear strange at first sight, actually it reflects the fact that by cutting a right cylinder along a segment parallel
to its axis, it can lie on a plane without deforming and without changing lengths and angles of figures drawn on
it . The geometry of a cylinder cannot be locally distinguished from that of a plane when we measure angles,
lengths, areas, i.e. all those properties that can be measured by moving only along its surface. However, an
overall view allows to distinguish a plane from a cylinder: an insect that moves along a circular cross-section
(perpendicular to the axis of the cylinder) without turning neither to the right nor to the left, will eventually
retrace his steps, but this does not happen on the plane. Also a right circular cone has K = 0.

An example of a surface with K < 0is given by a hyperbolic paraboloid (a surface shaped like a saddle)
z = x2 − y2: the two centers of curvature are located on opposite sides with respect to P and then we have
K < 0.
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2.2 Curvature of a surface 2 TENSORS

In general a surface will have K > 0 if, with respect to the tangent plane in P , it is "all on one side" (at least
locally), while it will have K < 0 if the surface is on both sides with respect to the tangent plane in P .

For a torus we have the outer zone with K > 0, the inner one with K < 0, separated by a circumference above
and below with zero curvature.

Let us try to understand why, in the neighborhood of a point P , two principal curvatures, in two directions
perpendicular to each other, are defined. In the neighborhood of a point P , with respect to the tangent plane
π and to its normal, we can write (expanding in Taylor series)

z = f(x, y) P ≡ origin

z =
∂f

∂x

∣∣∣∣
P

x+
∂f

∂y

∣∣∣∣
P

y +
1

2

∂2f

∂x2

∣∣∣∣
P

x2 +
1

2

∂2f

∂y2

∣∣∣∣
P

y2 +
∂2f

∂x∂y

∣∣∣∣
P

x · y +O(3)

=
1

2

[
∂2f

∂x2

∣∣∣∣
P

x2 +
∂2f

∂y2

∣∣∣∣
P

y2 + 2
∂2f

∂x∂y

∣∣∣∣
P

x · y
]

+O(3)

which (neglecting terms of 3rd order or higher) can be rewritten as

z =
1

2

[
ax2 + 2bxy + cy2

]
.

This, for a given, fixed value of z, represents a conic.
1In general, we will have:

(ac− b2) > 0 ⇒ ellipse

(ac− b2) = 0 ⇒ parabola

(ac− b2) < 0 ⇒ hyperbola

For an ellipse, the contour levels z = cost describe a set of ellipses all centered in the origin. The maxi-
mum/minimum radii of curvature of the surface in P are in the direction of the maximum/minimum axes, and
are then perpendicular to each other.

In the hyperbolic case the surface is saddle-shaped, and also in this case thera are two orthogonal directions
corresponding to maximum and minimum curvatures (with opposite sign).

In the parabolic case the curvature is zero in one direction.

1If we write this relation, changing symbols, as z ≡ Lx
2

2
+ M xy + N y2

2
, the quadratic form Ldx2 + 2M dxdy + N dy2 is the

so-called second fundamental form of a surface.
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2 TENSORS 2.2 Curvature of a surface

If we make a rotation of axes in the tangent plane and let x and y axes coincide with the principal axes of
conics, then we can write the surface z = f(x, y) in the simpler form

z = a′x2 + b′y2 +O(3)

where a′ and b′ are functions of the extreme curvature radii. Let’s see how.

If we move in the y = 0 plane, ed we approximate the section of the surface by an arc of circle in a neighborhood
of P , we get

{
z = ρ1 − ρ1cosθ = ρ1(1− cosθ) ' ρ1[1− (1− θ2/2 + ...)]
x = ρ1sinθ ' ρ1θ

and then

z ∼ ρ1
θ2

2
∼ ρ1

2

( x
ρ1

)2 ∼ x2

2ρ1

We do the same in the zy plane. Therefore, in a neighborhood of P , chosen appropriately the reference system,
we can write

z = f(x, y) =
x2

2ρ1
+

y2

2ρ2
=
k1x

2

2
+
k2y

2

2

One could define the curvature of a surface in other ways, for example K ′ = k1 + k2. In this case, plane and
cylinder would be different locally. But the main advantage of the Gauss curvature lies in the fact that, as we
shall see, it may be determined by resorting only to measurements carried out on the surface, without the need
to "see" the surface in 3 dimensions (as would happen instead for K ′ = k1 + k2).

The Gauss curvature is an intrinsic property of the surface, and can be determined by knowing the metric tensor
gij (i, j = 1, 2). This is the result of the so-called Theorema Egregium, so named by the same Gauss.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exemple: The mysterious planet (from Weinberg, 1972)

To have an intuitive idea of how this is possible, consider this example: suppose we have measured on the
surface of a celestial body on which we were transported blindfolded (so without seeing it from space!) the
distances between four locations P1, P2, P3, P4 as shown in the figure. Given the values of the six segments,
can I tell if the planet’s surface is flat or not?

17



2.3 Geodesics 2 TENSORS

d12 = 780km d13 = 1498km d14 = 1112km d23 = 735km d24 = 960km d34 = 813km

By Carnot theorem: d2
13 = d2

12 + d2
23 − 2d12d23cosα3 , so that

cosα3 =
d2

12 + d2
23 − d2

13

2d12d23

In a similar way

cosα4 =
d2

12 + d2
24 − d2

14

2d12d24

Coordinates of the points: P1 = (0, 0) ; P2 = (d12, 0) ;

P3 = (d12 + d23cos(π − α3), d23sin(π − α3) = (d12 − d23cosα3, d23sinα3) ; P4 = (d12 − d24cosα4, d24sinα4).

d2
34 = [d12 − d23cosα3 − d12 + d24cosα4]2 + [d23sinα3 − d24sinα4]2 = d2

23 + d2
24 − 2d23d24cos(α3 − α4)

So, if the surface was flat, we would get d34 = 1147.6, but this is different from the measured value (813! So I
can say thet I’m not on a flat planet (if I assume that the surface is a sphere, I could even derive the radius of
the planet).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Geodesics

Let r(s) =
(
ui(s)

)
, con a ≤ s ≤ b, be a curve on a surface (s being the curvilinear abscissa s) between two points

P1 and P2 (P1 = r(a); P2 = r(b)). We say that this curve is a geodesic between P1 and P2 if its length is
stationary for small variations of the curve which cancel the extremes. The curve that connects, on the surface,
P1 e P2 along the shortest path is a geodesic, but the opposite is not always true.

For example, on a sphere both C1 and C2 (both arcs of a great circle) are geodesics between P1 e P2, but the
shortest path corresponds to C1.
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2 TENSORS 2.3 Geodesics

From the relation ds2 = gjkdujduk, if we express the coordinates ui in parametric form by means of the
parameter t (not necessarily the time) we get:

ds2 =

(
gjk

duj

dt
duk

dt

)
dt2

By defining L(ui, u̇i, t) = (gjku̇
j u̇k)1/2 (with gjk = gjk(ui) and u̇i ≡ dui

dt ) the length of a curve between P1 and
P2 is:

S =

∫ P2

P1

Ldt =

∫ P2

P1

ds

To find the condition for S to be stationary we use Euler-Lagrange equations (see variational calculus):

∂L

∂ui
− d

dt

(
∂L

∂u̇i

)
= 0

L =
√
gjku̇j u̇k ≡

√
F

∂L

∂ui
− d

dt

(
∂L

∂u̇i

)
=

1

2
√
F

∂gjk
∂ui

u̇j u̇k − d
dt

[
1

2
√
F

(
giku̇

k + gjiu̇
j

)]
= 0

but giku̇k + gjiu̇
j = 2gjiu̇

jfor the symmetry of gijand for the fact that k e j are dummy (summed) indices and
can be exchanged; then we have:

1

2
√
F

∂gjk
∂ui

u̇j u̇k −
{
− 1

2F 3/2

dF
dt
gjiu̇

j +
1√
F

(
∂gji
∂ul

u̇lu̇j + gjiü
j

)}
= 0

If we assume thatt is proportional (or even equal) to the curvilinear abscissa s, then F is stationary and dF
dt = 0.

This happens because:

ds = Ldt → ds2 = L2(dt)2 = Fdt2 → F =
(ds
dt
)2 → dF

dt
= 2
(ds
dt
)d2s

dt2
= 0

if s = αt+ β, with α and β real numbers (we will simply asuume s = t). Going on we have

gjiü
j +

∂gji
∂ul

u̇lu̇j − 1

2

∂gjk
∂ui

u̇j u̇k = 0

and if we set, for the symmetry of the summed indices l and j, we get

∂gji
∂ul

u̇lu̇j =
1

2

[
∂gji
∂ul

+
∂gli
∂uj

]
u̇lu̇j

If we replace, in this relation, the index l with the index k we obtain

gjiü
j +

1

2

[
∂gji
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

]
u̇j u̇k = 0 and multiplying by gil

δlj ü
j +

1

2
gil
[
∂gji
∂uk

+
∂gki
∂uj

− ∂gjk
∂ui

]
u̇j u̇k = 0 which can be written
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(recalling the properties of δlj)

d2ul

ds2
+ Γljk

duj

ds
duk

ds
= 0

This expresses the condition of stationarity, i.e. it is the differential equation that defines a geodesic. The
symbol with three indices Γljk is the so-called affine connection or Christoffel symbol of 2nd type, defined as:

Γijk =
1

2
gil
(
∂glj
∂uk

+
∂glk
∂uj

− ∂gjk
∂ul

)
This quantity depends on gij and on its first derivatives. Moreover, notice that Γljk = Γlkj . Often, in order to
simplify even more the notation, we use to write:

∂gij
∂uk

≡ ∂kgij ≡ gij ,k

You can verify that Γijk is not a tensor, as

Γ’lmn 6=
∂u′l

∂ui
∂uj

∂u′m
∂uk

∂u′n
Γijk

In the geodesic equation the term on the left hand side is a tensor of rank 1 (a contravariant vector), although
Γljk is not a tensor. So, if it is null in a reference system, it will also be null in a generic reference system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: the plane in cartesian coordinates

ds2 = du2 + dv2; since gij is constant, the Γ are all zero, and geodesics are solutions of

d2u

ds2
= 0 and

d2v

ds2
= 0 → u = as+ b

v = cs+ d

(with a, b, c, d real numbers): those are the parametric equations of a straight line.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In a similar, but more complicate, way one can show that arcs of great circle are geodesic lines on the sphere
(we shall prove it later on).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: geodesics in the plane in polar coordinates

ds2 = dr2 + r2dθ2

gij =

(
1 0
0 r2

)
g = r2 gij =

(
1 0
0 1/r2

)
u1 = r
u2 = θ

d2ui

ds2
+ Γijk

duj

ds
duk

ds
= 0

Γijk =
1

2
gir
(
∂gjr
∂uk

+
∂gkr
∂uj

− ∂gjk
∂ur

)
remember the symmetry on j and k

Γ1
jk =

1

2
g11

(
∂gj1
∂uk

+
∂gk1

∂uj
− ∂gjk
∂u1

)
since g12 = 0

Γ1
22 =

1

2
g11

(
− ∂g22

∂u1

)
= −1

2
g11 ∂g22

∂r
= −1

2
· 1 · 2r = −r

Γ2
jk =

1

2
g22

(
∂gj2
∂uk

+
∂gk2

∂uj
− ∂gjk
∂u2

)
Γ2

12 =
1

2
g22

(
∂g22

∂u1

)
=

1

2
· 1

r2
· 2r =

1

r
= Γ2

21

Γ1
11 = Γ1

12 = Γ2
11 = Γ2

22 = 0
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2 TENSORS 2.3 Geodesics

d2r

ds2
+ (−r) ·

(
dθ
ds

)2

= 0 (I)

d2θ

ds2
+

2

r

(
dr
ds

)(
dθ
ds

)
= 0 (II)

(if dθ/ds = 0 we get the staight line passing through the origin); if we put dθ/ds ≡ θ′ and divide (II) by θ′ we
get:

1

θ′
dθ′

ds
+

2

r

dr
ds

= 0 → lnθ′ + lnr2 = ln(θ′r2) = const

and then

r2 dθ
ds

= h = cost

Instead of integrating (I), we use another method. From ds2 = dr2 + r2dθ2, dividing by ds2, we get

1 =

(
dr
ds

)2

+ r2

(
dθ
ds

)2

=

(
dr
ds

)2

+
h2

r2

You can verify that this relation is an integral of (I). From this we get

dr
ds

= ±
√

1− h2

r2
= ±
√
r2 − h2

r
together with

dθ
ds

=
h

r2

Dividing the second equation by the first one, to eliminate s, we obtain

dθ
dr

= ± h

r
√
r2 − h2

= ± d
dr

[
arccos

(h
r

)]
that is

θ = ±arccos
(h
r

)
+ θ0 → h

r
= cos(θ − θ0) → rcos(θ − θ0) = h

which is precisely the equation of a line in polar coordinates (h is the minimum distance of the line from the
origin, obtained for θ = θ0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have defined the geodesics on a surface (which correspond to the lines in the Cartesian plane). We know
that, on the plane, the circumference C of a circle of radius a is C = 2πa.

In a similar way, on any surface, to define a circle of radius a and centerO, let’s draw from this point all the
geodesics and let’s mark on each of them the point at a distance from O equal to a curvilinear abscissa a; the
geometric locus of all these points is the requested circumference. We can now move along this circle (always
staying on the surface) and, with the same ruler with which we measured s = a, we can measure the length C.

Let’s see this for a sphere of radius R.
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We will obviously have (we know this because we "see” the sphere in E3)

C = 2πx = 2πR sin
( a
R

)
' 2πR

[ a
R
− 1

6

a3

R3
+ ...

]
= 2πa− π

3

a3

R2
+O(a5)

But we also know that, for the sphere,1/R2 = K and, if a→ 0, neglecting higher order terms, we can write:

K =
3

π
lim
a→0

(
2πa− C

a3

)
This result, which is true in general, shows us how to actually derive the Gauss curvature K, with measurements
carried out on the surface.

For the plane 2πa = C and K = 0; for the sphere 2πa > C and K > 0; around a saddle point 2πa < C and
K < 0.

The Gauss curvature is therefore an intrinsic, local property of a surface. As the result does not depend on
the particular coordinate system used on the surface, K is an invariant quantity (such as ds2, for example),
although it may change from point to point on the surface (invariant doesn’t mean constant).

How does one determine K from gij? Since the metric tensor contains the information about distances, and
measuring these we get K, there must be a link between these two quantities. We will see that K should depend
on the second derivatives (at least) of gij at a selected point. This comes from the fact that K is invariant, i.e.
does not depend on the coordinate system used, and is a local quantity, that is it depends on the behavior of
gij in an infinitesimal region around the selected point.

But in an infinitesimal neighborhood of an point we can always choose a coordinate system in which gij is like(
1 0
0 1

)
, and in which the derivatives gij ,k are zero. We name it locally Euclidean system .

Let’s see how this is, in principle, possible. Remember that the transformation from gij to g′kl is:

g′kl =
∂ui

∂u′k
· ∂u

j

∂u′l
gij

and let’s expand g′kl arounf the point x0:

g′kl(x) = g′kl(x0) + g′kl,m (x0)(xm − xm0 ) +
1

2
g′kl,mn (x0)(xm − xm0 )(xn − xn0 ) + . . .

where

g′kl(x0) =

[
∂ui

∂u′k
· ∂u

j

∂u′l
· gij

]
x0

g′kl,m (x0) =

[
∂ui

∂u′k
∂uj

∂u′l
gij ,m

]
x0

+

[
∂2ui

∂u′m∂u′k
∂uj

∂u′l
gij

]
x0

+

[
∂ui

∂u′k
∂2uj

∂u′m∂u′l
gij

]
x0
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=

[
∂ui

∂u′k
∂uj

∂u′l
gij ,m

]
x0

+

[
2

∂2ui

∂u′m∂u′k
∂uj

∂u′l
gij

]
x0

due to the symmetry between i and j and k and l

g′kl,mn (x0) =

[
∂ui

∂u′k
∂uj

∂u′l
gij ,mn

]
x0

+

[
2

∂3ui

∂u′m∂u′n∂u′k
∂uj

∂u′l
gij

]
x0

+ first, second and third drivatives

If, with an appropriate coordinate transformation, we want to put g′kl into a desired form in a neighborhood of
x0, we have to specify the following quantities in the transformation:

2−D 3−D 4−D N −D(
∂ui

∂u′k

)
x0

2× 2 = 4 9 16 N2(
∂2ui

∂u′m∂u′k

)
x0

2× 3 = 6 18 40 N2(N+1)
2(

∂3ui

∂u′m∂u′n∂u′k

)
x0

2× 4 = 8 30 80 N2(N+1)(N+2)
6

On the other side, the number of independent derivatives of the metric tensor (i.e. the number of conditions to
be satisfied) is the following:

2−D 3−D 4−D N −D
g′kl(x0) 3 6 10 N(N+1)

2

g′kl,m (x0) 6 18 40 N2(N+1)
2

g′kl,mn (x0) 9 36 100
[N(N+1)

2

]2
Let’s draw the appropriate conclusions from this for two, three and four dimensions:

• 2-D: If we want to set the values of g′kl(x0) we have 3 equations for 4 coefficients: we are left with a
degree of freedom that correctly corresponds to a rotation of the axes around x0 in the plane. If we
want g′kl,m (x0) ≡ 0, we have 6 equations and 6 parameters, then we can manage it. If we wanted also
gkl,mn (x0) = 0, we notice that there are 9 equations but only 8 parameters, and in general the system
is too conditioned to admit a solution: we cannot then cancel locally also the second derivatives of the
metric.

• 3-D: We have 6 equations for 9 parameters to fix g′kl(x0): we are left with 3 degrees of freedom correspon-
ding to the rotation of the coordinate system in space (for instance: the three Euler angles). We can put
g′kl,m (x0) = 0 (18 equations for 18 unknowns), but not g′kl,mn (x0) = 0 (36 equations and 30 unknowns).

• 4-D (Minkowski space): 10 equations for 16 parameters to fix g′kl(x0) : we are left with 6 degrees of
freedom corresponding to 3 rotations in space and 3 Lorentz transformations of velocity. We can have
g′kl,m (x0) = 0 with 40 equations and 40 unknowns, but we cannot have g′kl,mn (x0) = 0 (100 equations
and 80 unknowns).

Since we can always put gij in the form δij , and have gij ,k = 0 at a point, the curvature must necessarily depend
on the second derivatives of gij . And the simplest form of dependence would be linear: let’s see if we can find
some suitable expression. Before doing so, however, we must address another issue.

2.4 Covariant derivative

We have seen that the derivative (the gradient) of a scalar field φ, ∂φ/∂ui, is a covariant vector. We could then
think to perform the derivative of vectoer field Ai(u

k), obtaining in this way a rank two tensor. But this is
not correct! The differential dAi of a vector Ai, basic ingredient of the difference quotient, doesn’t in general
behave like a tensor. In fact, from the transformation rule

Ai =
∂u′k

∂ui
A′k

it comes that
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dAi =
∂u′k

∂ui
dA′k +A′kd

∂u′k

∂ui
=
∂u′k

∂ui
dA′k +

∂2u′k

∂ui∂ul
A′kdu

l

We see that dAi is a vector only if ∂2u′k

∂ui∂ul
= 0, that is if the u′i are linear functions of ui (as it is when we go

from a rectilinear coordinate system to another).

But why isn’t dAi a vector? The reason is that the difference dAi = Ai(u
i + dui)− Ai(ui) is the difference of

two vectors that are located in two different points (although infinitely close). The two vectors Ai(ui + dui)
and Ai(ui) transform then in a different way as the coefficients of the transformations depend on the position.
If we want that the difference between two vectors is a tensor, it is necessary that the two vectors are compared
at the same point (in this case both, and therefore also their difference, transform in the same way). In order
to have a derivative that behaves as a tensor it is necessary to define a new type of derivative, the so-called
covariant derivative.

A (u )i

i

du
i

A (u )i

i

d

d

A =

=A (u + u )
i

i

i i
-A (u )i

i

A A =A (u + u )i i i+d d
i i

A (u )i

i

du
i

A (u )  +i

i
dAi

DAi

A Ai i+d

Caso generaleCaso Euclideo

P

P’

P

P’

In a Euclidean space, the derivative of the vector Ai(ui) is performed by moving Ai(ui) parallel to itself and
leaving unchanged magnitude and direction, and by making its application point to coincide with that of
Ai(u

i + dui). Then, at the point P ′, you run the difference and calculate the limit of the difference quotient

lim
dui→0

Ai(u
i + dui)−Ai(ui)

dui

How can we do something similar in a non-Euclidean space? In this case we define parallel transport from ui to
ui + dui the displacement that produces a change in the vector Ai by the amount δAi, such that moving to a
locally Euclidean system (which, as we have seen, is always possible - locally), it vanishes: δAi = 0. So in P ′,
we have both Ai + dAi ≡ Ai(ui + dui) and Ai + δAi, corresponding to the parallel transport of Ai(ui) from P
to P ′. The difference

DAi = (Ai + dAi)− (Ai + δAi) = dAi − δAi

is a vector since it is the difference between two vectors that are at the same point. We can then use DAi to
define a new kind of derivative.

Now δAi must be found. If we impose that DAi (absolute differential) is linear as the usual differentials, δAi
must linearly depend on both the transported vector Ai and the displacement dui, we can write

δAi = ∆m
ilAmdul

where the quantities ∆m
il are functions of coordinates and depend on the reference frame. In the locally Euclidean

frame the ∆m
il vanish, but generally they will do not, and this tells us theat the ∆m

il do not represent a tensor
(remember that a tensor vanishing in a reference frame will vanish in all reference frames). This makes us think
of another object with three indices which is not a tensor, i.e. the affine connection. As we will check in a while,
it is in fact ∆m

il ≡ Γmil , so thatδAi = ΓmilAmdul. It follows that

DAi = dAi − δAi =
∂Ai
∂ul

dul − ΓmilAmdul

and the covariant derivative DAi/∂ul, also written as Ai;l, is

DAi
∂ul

= Ai;l =
∂Ai
∂ul
− ΓmilAm
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2 TENSORS 2.4 Covariant derivative

The covariant derivative of a tensor can be derived by considering this as the product of two vectors and
requesting that it meets Leibniz rule for the derivation of a product. Then, if Tik ≡ AiBk

Tik;l = BkAi;l +AiBk;l

= Bk

(
∂Ai
∂ul
− ΓmilAm

)
+Ai

(
∂Bk
∂ul
− ΓmklBm

)
=

= Bk
∂Ai
∂ul

+Ai
∂Bk
∂ul
− ΓmilAmBk − ΓmklAiBm =

=
∂Tik
∂ul

− Γmil Tmk − ΓmklTim

This relation holds in general. Let us look at the expression

Ai;l =
(
gikA

k
)

;l
= gik;lA

k + gikA
k
;l

Since Ai;l is a tensor, we can use the metric tensor to write it as Ai;l = gikA
k
;l; if we compare this expression

with that one written above we realize that gik;l = 0. Let’s now use the relation for the covariant derivative of
a tensor to write explicitly this result:

gik;l = 0 → ∂gik
∂ul

− Γmil gmk − Γmklgim = 0 (1)

We do now, in this relation, a clockwise rotation of the indices i, k, l (i→ k, k → l, l→ i) and we get

∂gkl
∂ui

− Γmkigml − Γmli gkm = 0 (2)

And again another rotation of indices:
∂gli
∂uk

− Γmlkgmi − Γmikglm = 0 (3)

If we now perform (1) + (3)− (2)we get, by using the symmetry in the lower indices of both Γmil and gik,

∂gik
∂ul

+
∂gli
∂uk

− ∂gkl
∂ui

− Γmil gmk − Γmklgim − Γmlkgmi − Γmikglm + Γmkigml + Γmli gkm = 0

which can be simplified:

∂gik
∂ul

+
∂gli
∂uk

− ∂gkl
∂ui

− 2Γmklgim = 0

Multiplying this relation by 1
2g
ij we obtain

1

2
gij
(
∂gik
∂ul

+
∂gli
∂uk

− ∂gkl
∂ui

)
= Γmklgimg

ij = Γmklδ
j
m = Γjkl

We find again the relationship that defines the affine connection, and thus we have verified the assumption
∆m
il ≡ Γmil .

Let’s now consider the scalar productAiBi; being a scalar quantity it does not change by parallel transport:
δ
(
AiB

i
)

= 0 and then
BiδAi +AiδB

i = 0 → AiδB
i = −BiδAi

AiδB
i = −BiΓmilAmdul

Since the indices i and m are dummy indices, we exchange them with each other

AiδB
i = −BmΓimlAidu

l

and, being Ai a generic vector, this means that

δBi = −ΓimlB
mdul

From this result we can expresses the covariant derivative for a contravariant vector:

DBi

∂ul
= Bi;l =

∂Bi

∂ul
+ ΓimlB

m

The general rule for the covariant derivative of a tensor of arbitrary rank is to make the partial derivative and
then add a term of the type +Γ for each contravariant index and a term of type −Γ for each covariant index.
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2.5 Parallel transport and curvature tensor

Let ui = ui(s) be the parametric equation of a curve, with s curvilinear abscissa measured by starting at a
given point on the curve. We know that dui is a vector (from the definition of contravariant vector), ds is a
scalar, and dui/ds ≡ vi is then a vector. In particular, vi is a unit vector, the versor2 tangent to the curve.

If we were in an Euclidean space, to define a geodesic as a segment of a straight line, we would say that the
tangent versor does not change with s:

dvi

ds
= 0

If we want now to generalize this relation to any space, 2 or more dimensional, we must not use the normal
derivative, but the covariant one, since it is a tensor quantity:

Dvi

ds
= 0

Expanding
Dvi

ds
=

Dvi

dul
dul

ds
=

dul

ds

(
∂vi

∂ul
+ Γimlv

m

)
= 0

that is

∂vi

∂ul
dul

ds
+ Γimlv

m dul

ds
= 0

dvi

ds
+ Γimlv

mvl = 0

from this, by remembering that dui/ds ≡ vi, we have

d2ui

ds2
+ Γiml

dum

ds
dul

ds
= 0

We find again the geodesic equation (and this is another proof of the fact that, when we leave the Euclidean
space, we must switch from usual derivatives to covariant derivatives).

We see that, along a geodesics Dvi = 0, i.e. dvi = δvi : the unit vector vi, parallel transported from a point
ui on the geodesic to a point ui + dui on the same geodesic coincides with the vector vi + dvi, tangent to the
geodesic at the point ui + dui.

Now consider a vector Ai that is parallel transported along the same geodesic. The angle it forms with vi,
tangent versor, will be given by the scalar product Aivi. But a scalar does not change for parallel transport
and so, along the geodesic, the angle between Ai and vi remains constant: a vector parallel transported along a
geodesic always form the same angle with the tangent to the curve.

Now imagine we parallel transport a vector v0 along a triangle formed by pieces of geodesic. If we are in a
Euclidean space (e.g. on a plane) the vector vf we get after closing the path coincides with v0.

2To check that viis a versor, let’s see what is his magnitude by means of the sclar product vivi:

viv
i = gijv

ivj = gij
dui

ds

duj

ds
≡ 1 ⇐= ds2 = gij du

iduj
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The same thing does not happen along a spherical triangle: the vector is rotated by an angle which has the same
direction of rotation of the direction in which we moved along the spherical triangle. The opposite happens if
K < 0. We can look at it in another way: imagine we have to go from point A to point B, either directly or
through a point C, always along geodesic arcs. In Euclidean space the result of the parallel transport along the
two paths is the same, but the same thing does not happen on curved surfaces (what said here for a triangle
formed by arcs of geodesic applies to a generic path, which can be thought as consisting of a large number of
arches of geodesic). The result is that, unless we are in a Euclidean space, there is no natural and not ambiguous
way to move a vector from one point to another ; we can move it in parallel, but the result depends on the path,
and there is no a natural choice for this. So we can compare two vectors only if they are applied at the same
point. For example, two particles that pass alongside one another have a well-defined relative velocity (and
less than c, with c the speed of light), but two particles in different points of a generic space do not have a
well-defined, relative velocity.

Let’s now quantify what we said above in a qualitative way. Moving along a closed path formed by arcs of
geodesic, a vector Ak parallel transported will undergo, returning to the starting point, a variation

∆Ak =

∮
δAk =

∮
ΓikmAidu

m

To solve the integral we apply Stokes Theorem3∮
Amdum =

1

2

∫
Surface

(
∂Am
∂ul

− ∂Al
∂um

)
df lm

where df lm is a tensor which corresponds to the projection of the element of surface area on the coordinate
planes. In our case Amdum → ΓikmAidu

m so that

∆Ak =
1

2

∫
Surface

[
∂
(
ΓikmAi

)
∂ul

−
∂
(
ΓiklAi

)
∂um

]
df lm

If we assume that the surface element bounded by the closed curve is infinitesimal (any finite surface element
can be divided into infinitesimal elements), the integrand is constant and, by neglecting infinitesimals of higher
order, we can write

∆Ak =
1

2

[
∂Γikm
∂ul

Ai −
∂Γikl
∂um

Ai + Γikm
∂Ai
∂ul
− Γikl

∂Ai
∂um

]
∆f lm

Since Ai is parallel transported on the curve

∂Ai
∂ul

=
δAi
∂ul

= ΓnilAn

Then

∆Ak =
1

2
∆f lm

[
∂Γikm
∂ul

Ai −
∂Γikl
∂um

Ai + ΓikmΓnilAn − ΓiklΓ
n
imAn

]
=

=
1

2
Ai∆f

lm

[
∂Γikm
∂ul

− ∂Γikl
∂um

+ ΓnkmΓinl − ΓnklΓ
i
nm

]
where the second step, in which Ai is made explicit, was obtained by interchanging the dummy indices i and
n in the terms containing the products of affine connections. The quantity in braces is a tensor, as Ai, ∆f lm

and ∆Ak (difference of two vectors applied at the same point) are tensors. It is named Riemann-Christoffel
tensor or curvature tensor:

Riklm =
∂Γikm
∂ul

− ∂Γikl
∂um

+ ΓnkmΓinl − ΓnklΓ
i
nm

(Warning : you can find it defined with the signs interchanged!) If, in a volume of space, Riklm = 0, then
∆Ak = 0: The parallel transport along a closed curve keeps the vector unchanged, and that volume of space is
said to be flat. This happens in a Euclidean space, as well as in any (volume of) space in which gij is constant,
because the affine connections are null and so also the curvature tensor; and since a tensor equal to zero in a
coordinate system is zero in any coordinate system, then Riklm = 0 in any refernce frame. On the contrary,
if Riklm 6= 0 the parallel transport depends on the path, and the space (or the volume of space) is said, by
contrast, curved (this is the reason for the Riemann-Christoffel tensor is also named curvature tensor).

3se, e.g., Landau Lifsic, The Classical Theory of Fields, eq. (6.19)
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2.6 Properties of the curvature tensor

It can be proved4 that Riklm is the only tensor that can be constructed from the metric tensor and its first and
second derivatives, and which is linear in the second derivatives (and also quadratic in the first derivatives).
The metric tensor allows to write it in the totally covariant form Rjklm = gjiR

i
klm.

Let’s consider the tensor Riklm as written few lines above, and let’s move to the locally Euclidean system; in
this reference frame, at the point ui, it is ∂gij

∂uk
= 0. Then the affine connections are zero, and the covariant

derivatives are reduced to simple partial derivatives. In this system

Riklm;j =
∂

∂uj
(
Riklm

)
=
∂2Γikm
∂uj∂ul

− ∂2Γikl
∂uj∂um

(at ui the affine connection vanish, but not, in general, their derivatives). Cyclically permuting the indices l, m
and j , we get:

Rikmj;l =
∂2Γikj
∂ul∂um

− ∂2Γikm
∂ul∂uj

and also

Rikjl;m =
∂2Γikl
∂um∂uj

−
∂2Γikj
∂um∂ul

Adding the three relations, we easily get:

Riklm;j +Rikmj;l +Rikjl;m = 0.

These are the so-called Bianchi Identities. The tensorial nature of these reltions tell us that, although we
have obtained them in the locally Euclidean system , they hold in all reference systems.

Lowering the contravariant iindex we get

Riklm;j +Rikmj;l +Rikjl;m = 0.

The Riemann tensor has its own properties, let’s see them in the fully covariant formRjklm = gjiR
i
klm:

• Symmetry properties
Rjklm = Rlmjk

• Antisymmetry properties
Rjklm = −Rkjlm = −Rjkml = Rkjml

• Cyclic properties
Rjklm +Rjmkl +Rjlmk = 0.

From the Riemann tensor, by contraction, we can get a rank 2 tensor, the Ricci tensor, defined as:

Rkm ≡ Rikim

(indices i and l of Riklm are contracted). Considering the antisymmetry properties, if in Riklm we instead
contractc i and m we get again Ricci tensor, but with its sign changed:

Rikli = −Rikil = −Rkl

Ricci tensor is symmetric:

Rmk = Rimik = girRrmik = girRikrm = Rrkrm = Rkm

It is the only symmetric tensor of rank 2 that can be obtained from Riklm. From the Ricci tensor one can obtain
the Ricci scalar or curvature scalar :

R = gkmRkm

It is the only scalar that can be obtained from Riklm.

All these properties of the Riemann tensor reduce the number of its independent components and, in N

dimensions, this number is N = N2(N2−1)
12 . In particular:

4See, e.g., Weinberg, 1972
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• For N = 1, N = 0 and R1111 ≡ 0 always: a curve has always (intrinsic) curvature zero, we do not have
information on how the curve is "embedded" in a space with 2 or more dimensions.

• For N = 2, N = 1. There is only one independent componenet, for instance R1212.

• For N = 3, N = 6, as many as the components of the (symmetrical) Ricci tensor. So for N = 3 it is
sufficient to know Rkm to describe the space cuvatura.

• For N = 4, N = 20, while Rkm has only 10 components. One must use the complete Riklm tensor (apart
from situations of particular symmetry, and we’ll see that it is so in the case of the homogeneous and
isotropic universe).

From Bianchi identities, in the covariant form, by exploiting the properties of antisymmetry of the Riemann
tensor, we have

Riklm;j −Rkimj;l −Riklj;m = 0 � · gilgkm

gkmRlklm;j − gilRmimj;l − gkmRlklj;m = 0

that is
gkmRkm;j − gilRij;l − gkmRkj;m = 0

and them
R;j −Rlj;l −Rmj;m = R;j − 2Rlj;l = 0

anf finally

Rlj;l =
1

2
R;j =

1

2

∂R

∂uj

where the last step is due to the fact that R is a scalar, then does not depend on the reference system used,
and its covariant derivative coincides with the simple partial derivative. The quantity Rlj;l is the (covariant)
divergence of the Ricci tensor. Now consider the mixed tensor

Rlj −
1

2
δljR

Its divergence is (for the rule of the derivation of a product and being δlj;l = 0 5

Rlj;l −
1

2
δlj
∂R

∂ul
= Rlj;l −

1

2

∂R

∂uj
= 0

as seen just above. So the (covariant) divergence of this tensor is equal to zero. If we switch to its covariant
components we get

gilR
l
j −

1

2
gilδ

l
jR = Rij −

1

2
gijR ≡ Gij

where Gij is the so-called Einstein tensor. This tensor has very relevant properties: it is symmetric, has
vanishing divergence and, since it comes from Riemann tensor, it contains terms linear in the second derivatives
of the metric and quadratic in its first derivatives.

2.7 The Theorema Egregium

In 2 dimensions the Theorema Egregium of Gauss states that the Gauss cirvature K can be derived from the
metric tensor; in particular K = R1212/g.

Here we give a justification of Theorema egregium. We have seen that, locally, in a neighborhood of the point
P, a surface element can be written in the form

z = f(x, y) =
x2

2ρ1
+

y2

2ρ2

5δlj;l =
∂δlj
∂ul

+ Γllkδ
k
j − Γmjl δ

l
m = Γllj − Γljl = 0
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which, put in the form x(u, v), can be written as (x ≡ u, y ≡ v):

x(u, v) =

(
u, v,

u2

2ρ1
+

v2

2ρ2

)
; xu =

(
1, 0,

u

ρ1

)
xv =

(
0, 1,

v

ρ2

)

E = xu · xu = 1 +
u2

ρ2
1

F = xu · xv =
uv

ρ1ρ2

G = xv · xv = 1 +
v2

ρ2
2

ds2 =

(
1 +

u2

ρ2
1

)
du2 + 2

uv

ρ1ρ2
du dv +

(
1 +

v2

ρ2
2

)
dv2

gij =

(
1 + u2

ρ21

uv
ρ1ρ2

uv
ρ1ρ2

1 + v2

ρ22

)
→ g = det(gij) = 1 +

u2

ρ2
1

+
v2

ρ2
2

Notice that, in P, gij =
( 1 0

0 1

)
and gij ,k = 0 and second derivatives do not vanish

gij =
1

g

(
1 + v2

ρ22
− uv
ρ1ρ2

− uv
ρ1ρ2

1 + u2

ρ21

)
K
∣∣
P

=
R1212|P
g|P

R1212 = g1kR
k
212 = g11R

1
212 + g12R

2
212 but in P g12 = 0 e g11 = 1, that is R1212|P ≡ R1

212|P

R1
212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γr22Γ1

r1 − Γr21Γ1
r2

but the Γ contain the gij,k which in P vanish and we are left with

R1
212

∣∣
P

=
∂Γ1

22

∂u

∣∣∣∣
P

− ∂Γ1
21

∂v

∣∣∣∣
P

Γ1
22 =

1

2
g1σ

(
∂gσ2

∂x2
+
∂gσ2

∂x2
− ∂g22

∂xσ

)
=

=
1

2

[
g11

(
∂g12

∂v
+
∂g12

∂v
− ∂g22

∂u

)
+ g12

(
∂g22

∂v
+
∂g22

∂v
− ∂g22

∂v

)]
=

=
1

2g

[(
1 +

v2

ρ2
2

)(
2 · u

ρ1ρ2

)
+

(
− uv

ρ1ρ2

)(
2v

ρ2
2

)]
=

u

gρ1ρ2

Γ1
21 =

1

2
g1σ

(
∂gσ2

∂x1
+
∂gσ1

∂x2
− ∂g21

∂xσ

)
=

=
1

2

[
g11

(
∂g12

∂u
+
∂g11

∂v
− ∂g21

∂u

)
+ g12

(
∂g22

∂u
+
∂g21

∂v
− ∂g21

∂v

)]
= 0

∂Γ1
22

∂u
=

∂

∂u

[
u

gρ1ρ2

]
=

1

ρ1ρ2
·
g − u · 2u

ρ21

g2
=

1

ρ1ρ2

[
1

g
− 2u2

g2ρ2
1

]
At the end

K|P =
R1212|P
g|P

=
R1

212|P
g|P

=

∂Γ1
22

∂u

∣∣
P

g|P
=

1

ρ1ρ2
Q.E.D.
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To divide byg seems apparently not essential. But remember that K is a scalar, that is a tensor of rank zero,
while R1212 is a component of a tensor, which is not invariant under coordinate transformations, and the same
holds for g, which is not a scalar. However, their ratio behaves like a scalar. To divide byg is also useful for
normalization [if, e.g., we transform x→ αu y → βv we get x(u, v) = (αu, βv, α

2u2

2ρ1
+ β2v2

2ρ2
) and if we redo the

calculations we find that the factor 1/g in the formula for K is now essential: g|P = α2β2].

We observe that the relation which expresses the Theorema Egregium, K = R1212/g, is a relationship between
tensors of rank zero, ie scalars. If, as we showed, it is true in a particular frame of reference, it applies in any
frame of reference, and the particular result obtained can be extended in general.

This method of proving that a relationship between tensors holds in a particular frame of reference and therefore,
having to do with tensor objects, it is valid in any frame of reference, is a method routinely used in tensor
calculus.
The curvature tensor is related to the Gauss curvature even in spaces with any number of dimensions. Given
a point P in one of these spaces, and two vectors aµ and bµ applied at the point P , we can draw a family of
geodesic curves xµ(s, α, β) through P , with α and β real numbers. All these geodesics, which have as their
initial tangent vector dxµ/ds = αaµ + βbµ, form a two-dimensional surface for P, with Gauss curvature given
by6

K(a, b) =
Rλµνκa

λbµaνbκ

(gλνgµκ − gλκgµν) aλbµaνbκ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: estimation of Gauss curvature

Given, for a surface element, the following metric

ds2 = du2 + e
2u
k dv2

estimate K (intrinsic Gauss curvature).

We know that K = R1212/g

gij =

(
1 0
0 e2u/k

)
→ g = e2u/k → gij =

(
1 0
0 e−2u/k

)
Considering the particular values of gij and gij we get R1212 = g1kR

k
212 = R1

212

R1
212 =

∂Γ1
22

∂u1
− ∂Γ1

21

∂u2
+ Γr22Γ1

r1 − Γr21Γ1
r2 =

∂Γ1
22

∂u
− ∂Γ1

21

∂v
+ Γ1

22Γ1
11 + Γ2

22Γ1
21 − Γ1

21Γ1
12 − Γ2

21Γ1
22

Then

Γ1
22 =

1

2
g11

(
∂g21

∂u2
+
∂g21

∂u2
− ∂g22

∂u1

)
= −1

k
e2u/k

Γ1
21 = 0 Γ1

11 = 0 Γ2
21 =

1

k

∂Γ1
22

∂u
= − 2

k2
e2u/k

R1
212 = − 2

k2
e2u/k −

(1

k
· −1

k
e2u/k

)
= − 1

k2
e2u/k ≡ R1212

K =
R1212

g
= − 1

k2
e2u/k

/
e2u/k = − 1

k2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6See Weinberg 1972, Section 6.9
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: curvature of the pseudosphere

The pseudosphere can be represented by a surface of revolution: the result of revolving a tractrix about its
asymptote7

x(u, v) =

(
a sinu cosv, a sinu sinv, a

[
cosu+ ln

(
tg
u

2

)])
with 0 < u < π/2

Find the metric of the surface and K

xu =

(
a cosu cosv, a cosu sin v, a

[
− sinu+

1

tgu/2
· 1

cos2u/2
· 1

2

])
=

(
a cosu cosv, a cosu sinv, a

cos2u
sinu

)

xv =

(
− a sinu sinv, a sinu cosv, 0

)

E = xu · xu = a2 cos2u
sin2u

=
a2

tg2u

G = xv · xv = a2sin2u

F = xu · xv = 0

ds2 =
a2

tg2u
du2 + a2sin2u dv2

We now perform a coordinate transformation

(u, v)→ (x, y)

{
x = a ln(sinu)
y = av

dx = a
tgudu dy = a dv ex/a = sinu

and we realize that ds2 = dx2 + e2x/ady2 is a metric equivalent to the original one.

Moreover, from the previous exercise, we know that K = −1/a2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7Tractrix (from the Latin verb trahere "pull, drag"; plural: tractrices) is the curve along which an object moves, under the
influence of friction, when pulled on a horizontal plane by a line segment attached to a tractor (pulling) point that moves at a
right angle to the initial line between the object and the puller at an infinitesimal speed. It is therefore a curve of pursuit. It was
first introduced by Claude Perrault in 1670, and later studied by Sir Isaac Newton (1676) and Christiaan Huygens (1692). The
revolution of a tractrix about its asymptote produces the surface called pseudosphere. The name derives from the fact that the
curvature is constant, as for the sphere, but has the opposite sign.
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3 General Relativity

3.1 Minkoswki space

In Special Relativity, passing from one frame of reference to another, the infinitesimal distance between two
events:

ds2 = c2dt2 − (dx2 + dy2 + dz2)

is preserved (= is invariant). If we define x0 = ct; x1 = x; x2 = y; x3 = z we can write

ds2 = ηαβdxαdxβ with ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


We have then the metric of Minkoswki space, which is "pseudo-Euclidean", but it is flat: in fact the ηαβ are
constant, therefore Γijk and Rhijk are zero. In the following we will use, by convention, the Greek indices α, β,
γ, . . . if these vary from 0 to 3, while we will use italic indices i, j, k, . . . if they vary from 1 to 3. Warning:
in literature also the opposite convention is used. Even ηαβ is often defined with opposite signs, i.e. with the
signature (−1, 1, 1, 1) instead of (1, −1, −1, −1).

Moreover, we say that the intervalds2 is:

• time like if ds2 > 0 (corresponding to a physical trajectory with v < c)

• space like if ds2 < 0

• light like, null if ds2 = 0 (corresponding to the motion of particles, like photons, which move with speed
v = c)

If we represent the space-time (eliminating one of the spatial coordinates) about an event taken as the origin,
we can divide it into three zones defined by the cone in Figure:

• future: is the volume of space-time formed by events such that the event at O can interact with them by
means of particles that follow a physical trajectory.

• past: is the volume of space-time formed by past events which can influence today the event at O.

• elsewhere: is the volume of space-time formed by events which cannot affect or be affected by the event
at O, since information cannot propagate with v > c. An observer in motion with respect to O can see
both O and A happen at the same time.

F
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Each observer has with him a ruler and a clock: the time marked by this clock is the proper time τ . An observer,
who sees two events (physically connected) occur at different times but at the same place (dx = dy = dz = 0)
obtains ds2 = c2dτ2: ds and dτ are proportional.

The distance ds between the same two events, both for an observer who sees them occurring at the same point,
and for another observer who sees them occurring at a distance dl, is the same:

ds2 = c2dτ2 = c2dt2 − |dl2| → dτ2 = dt2
(

1− 1

c2
dl
dt
· dl
dt

)
= dt2

(
1− v2

c2
)

where v is the particle speed for the observer who sees it moving, and also the relative velocity between thw
two observers. Defining β ≡ v/c and γ ≡ 1/

√
1− β2 we get dt = γdτ. Since γ ≥ 1, then dt ≥ dτ : the interval

between two "ticks" of a clock is shorter for the “proper” clock; moving clocks appear slower (think about the
twin paradox).

The velocity four-vector (four-velocity) is defined as uα ≡ dxα
ds ; it is a vector since dxα is a vector and ds is a

scalar.

In a generic reference frame, not at rest with a particle which has a velocity v ≡ dx
dt , we have

u0 =
dx0

ds
=

d(ct)

cdτ
=

dt
dτ

= γ

ui =
dxi

cdτ
=

1

c

dxi

dt
dt
dτ

= γ
vi

c
= γβi

and we can write uα = γ(1, β). If the particle is at rest we have uα = (1, 0, 0, 0).

The quantity uαuα is invariant: uαuα = ηαβu
αuβ = u0u0 − (u1u1 + u2u2 + u3u3) = γ2 − (γ2v2/c2) = 1; uα is

the unit vector (versor) tangent to the trajectory of the particle (in the 4-D space-time).

The four-momentum is defined as Pα = m0u
αwhere m0 is the rest mass of the particle. If we remember that

P = mv = γm0v; E = mc2 = m0c
2γ we get:

P 0 = γm0 = E/c2 P i = γm0
vi

c
= m

vi

c

PαPα = γ2m2
0 − γ2m2

0

v2

c2
= γ2m2

0

(
1− v2

c2

)
= m2

0

PαPα = m2
0 =

E2

c4
− 1

c2
P · P → m2

0c
2 =

E2

c2
− |P |2

If dP
α

ds = 0 then Pα = const ⇒ E = const and P = const: this is the energy and momentum conservation.

The four-acceleration is d2xα

ds2 = duα
ds . The geodesic equation has always the same form:

d2xα

ds2
+ Γαβγ

dxβ

ds
dxγ

ds
= 0

If the metric tensor is simply ηαβ , then the Γαβγ vanish, so that d2xα/ds2 = 0, i.e. xα = aα · s+ bα, or{ ct = a0 · s+ b0

x = a · s+ b

and the trajectory is a straight line covered with uniform rectilinear motion. If we write the metric tensor in
another way, for instance in planar polar coordinates, ds2 = c2dt2− (dr2 + r2dθ2), the Γαβγ are not all zero, but
the resulting geodetic curve is always a straight line, covered with uniform rectilinear motion, but written in
polar coordinates.

Notice: While in 3-D Euclidean space the geodesic between two points is a straight line, so it is the shortest
distance between two points, in special relativity the quantity

∫ B
A

ds is maximized with respect to variations in
path with the ends fixed. It is ∆τ = ∆s/c, and you can think at the twin paradox, where the elapsed time is
maximized for the twin who remained on the Earth.
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3 GENERAL RELATIVITY 3.2 The energy-momentum tensor

3.2 The energy-momentum tensor

To deal with General Relativity and Cosmology we need an "object" that has the properties of a continuous
medium, such as density and velocity, and links them to conservation of energy and momentum.

Let’s consider first the case of incoherent matter, whose particles (for the moment) do not interact ("dust").
The matter field will be described at any point by the four-velocity uα = γ(1, v/c) and by its proper density
ρ0(x), i.e. that measured by an observer who follows the fluid. With these quantities one can form a symmetric
tensor of rank 2 in the simplest way as:

Tαβ = ρ0c
2uαuβ

Let’s see how this tensor is mede in detail:

T 00 = ρ0c
2γ2 = γ2ρ0c

2 = ρc2 by writing ρ = γ2ρ0

To interpret this result remember that the mass is m = γm0(m0= rest mass) and that a volume element in
motion appears contracted by a factor 1/γ, and its density grows by another factor γ. So if the proper density
is ρ0, an observer with respect to which the fluid has velocity v measures a density γ2ρ0.

T 00 represents the mass-energy density (in this case the only contribution to the energy comes from matter
motion).

The components of Tαβ can be written:

Tαβ = ρc2 ·


1 vx/c vy/c vz/c

vx/c v2
x/c

2 vxvy/c
2 vxvz/c

2

vy/c vyvx/c
2 v2

y/c
2 vyvz/c

2

vz/c vzvx/c
2 vzvy/c

2 v2
z/c

2

 (∗∗)

We now derive the motion equations from the expression ∂βTαβ = 0, the four-divergence of Tαβ(remember we
are in Minkowski space-time, and covariant derivatives are simply partial derivatives).

• For α = 0 we have ∂βT 0β = 0 ⇔ ∂T 0β

∂xβ
= 0 which can be expanded:

1

c

∂(ρc2)

∂t
+
∂(ρcvx)

∂x
+
∂(ρcvy)

∂y
+
∂(ρcvz)

∂z
= 0

and then simplified to

∂ρ

∂t
+∇ · (ρv) = 0

which is the continuity equation for a fluid, expressing mass-energy conservation.

• For α = 1, 2, 3 we have

1

c

∂(ρcvx)

∂t
+
∂(ρvxvx)

∂x
+
∂(ρvxvy)

∂y
+
∂(ρvxvz)

∂z
= 0 (α = 1)

1

c

∂(ρcvy)

∂t
+
∂(ρvyvx)

∂x
+
∂(ρvyvy)

∂y
+
∂(ρvyvz)

∂z
= 0 (α = 2)

1

c

∂(ρcvz)

∂t
+
∂(ρvzvx)

∂x
+
∂(ρvzvy)

∂y
+
∂(ρvzvz)

∂z
= 0 (α = 3)

If we multiply the first by î (unit vector of the x-axis), the second by ĵ and the third by k̂ and then add them
toghether they can be summarized in the expression

∂

∂t
(ρv) +

∂

∂x
(ρvxv) +

∂

∂y
(ρvyv) +

∂

∂z
(ρvzv) = 0
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which, by expanding and by using continuity equation, becomes

ρ
∂v

∂t
+ v

[
∂ρ

∂t
+∇ · (ρv)

]
+ ρvx

∂v

∂x
+ ρvy

∂v

∂y
+ ρvz

∂v

∂z
= 0

that is ρ

[
∂v

∂t
+
(
v · ∇

)
v

]
= 0 (I)⇔ ρ

dv
dt

= 0 (II)

This equation, typical of fluid dynamics, is the motion equation for a fluid without pressure, viscosity and
external forces. Therefore it expresses the conservation of momentum. In particular, in the form (I) one
imagines to observe the fluid at a fixed point and to see how its motion evolves (the so-called Eulerian point of
view), while in the form (II) one imagines to follow in their motion the particles of fluid (the so-called Lagrangian
point of view).

Thus we see that the tensor Tαβ expresses the energy and dynamic properties of the fluid (dust) in this case.
Tαβ is the stress-energy tensor.

In a locally inertial frame at rest (LIRF) with respect to the fluid, in which uα = (1, 0, 0, 0), Tαβ has the
particularly simple form

TαβLIRF =


ρ0c

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


We now come to consider the case in which the particles interact in the simplest way, that is through collisionss
due to their thermal motion: in this case the fluid has a pressure. We assume that there is no transport of
energy by conduction or radiation and there is no viscosity. The fluid so defined is said to be perfect.

If we are now in the LIRF, Tαβ will be no more that one written just above, with only T 00 6= 0. The particles
now have random motions around the zero of their positions and velocities. We must then refer back to the
previous form (**) of Tαβ , in which however the terms that appear will be mediated on time and on the
distribution of particle velocity.

But this gives us immediately an important information: all the off-diagonal terms contain elements as vx, vy
or vz or their products; when we average 〈vx〉 = 0 and also 〈vxvy〉 = 〈vx〉〈vy〉 = 0 (assuming that vx and vy are
not correlated). Then Tαβ is diagonal in the LIRF.

T 00
LIRF (expressing the mass-energy density) will be no longer ρ0c

2, but rather ρc2, with ρ > ρ0 to take account
of the fact that the particles have velocities different from zero even in LIRF and their mass-energy density is
greater than in the case of pure dust. For the other diagonal terms we have 〈ρv2

x〉, 〈ρv2
y〉, 〈ρv2

z〉.
To interpret these terms we make a small digression on the kinetic theory of gases.

Let v and P be the velocity and the momentum of a particle, and fz the average force exerted by this particle
perpendicularly to the surface A (see figure)

v = (vx, vy, vz) P = (Px, Py, Pz)

fz =
∆P

∆t
=

2Pz
2L/vz

=
1

L
Pzvz
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for one particle.

For N particles the force is (p is the pressure)

Fz =
N

L
Pzvz =

N

L3
PzvzL

2 ≡ p ·A

so that, by making actually the average on the velocity distribution, we get (A = L2)

p =
N

L3
〈Pzvz〉 = n〈Pzvz〉

P · v = Pxvx + Pyvy + Pzvz = 3Pzvz (for symmetry, on the average)

and then p =
n

3
〈P · v〉

which holds also for a degenerate and a relativistic gas. We can rewrite this relation in the form p = n
3 〈P · v〉 =

〈nPxvx〉 = 〈n ·mv2
x〉 = 〈ρ · v2

x〉. So, for a perfect fluid:

TαβLIRF =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


where ρ takes into account also the mass-energy due to thermal motions.

It’s easy to check that, in the LIRF, all this can be summarized in the relation

TαβLIRF = (p+ ρc2)uαuβ − pηαβ

For instance, for T 00, by considering that u0 = 1 and η00 = 1 , we get T 00 = p+ ρc2 − p = ρc2

But this expression is a tensor, and then will hold in any frame of reference, with uα 6= (1, 0, 0, 0) and the
appropriate metric tensor instead of ηαβ . Written with covariant indices the energy-momentum tensor will be:

Tαβ = (p+ ρc2)uαuβ − pgαβ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: the relativistic hydrodynamics equations

Let’s see what corresponds in this case to the relation

∂βT
αβ =

[
(p+ ρc2)uαuβ − pηαβ

]
,β = 0

∂

∂xβ
[
(p+ ρc2)uαuβ

]
− ∂p

∂xβ
ηαβ = 0

For α = 0, if we remember that uα = γ (1, v/c), we get

1

c

∂

∂t

[
(p+ ρc2)γ2

]
+

∂

∂x

[
(p+ ρc2)γ2 vx

c

]
+

∂

∂y

[
(p+ ρc2)γ2 vy

c

]
+

∂

∂z

[
(p+ ρc2)γ2 vz

c

]
− 1

c

∂p

∂t
= 0

From this we get
∂

∂t

[
(p+ ρc2)γ2

]
+∇ ·

[
(p+ ρc2)γ2v

]
=
∂p

∂t

If the overall motion of particles is not relativistic, we have γ ≈ 1 and this relation reduces to the simpler form

∂ρ

∂t
+∇ ·

[
(ρ+

p

c2
)v
]

= 0

Expandig the partial derivative we can also write the initial relation in the alternative form

∂

∂t

[
(p+ ρc2)γ2

]
+ (p+ ρc2)γ25 · v + v · 5

[
(p+ ρc2)γ2

]
=
∂p

∂t
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d
dt
[
(p+ ρc2)γ2

]
+ (p+ ρc2)γ25 · v =

∂p

∂t

This relation is not particularly illuminating. We shall soon see, however, a relation more useful and under-
standable, obtained by transforming the ∂βTαβ in a scalar relation.

For α = 1, 2, 3, in a way similar to that followed in the “dust” case, we get(
p

c2
+ ρ

)
γ2 dv

dt
= −

[
∇p+ v

∂(p/c2)

∂t

]
which is a generalization of the fluid-dynamics relation ρdv

dt = −∇p (the so-called Euler equation). As one can
see, (ρ+ p/c2) plays the role of "inertial mass density".

We can add the conservation of the number of particles, or continuity equation, which can be introduced starting
from the quantity

Jα ≡ nuα

which is a current, where n is the number density of particles in a frame at rest with the fluid. Imposing that
the divergence of Jα is equal to zero we write the conservation of the number of particles:

Jα,α =
∂ (nuα)

∂xα
=

1

c

∂

∂t
(nγ) +

∂

∂x

(
nγ
vx
c

)
+

∂

∂y

(
nγ
vy
c

)
+

∂

∂z

(
nγ
vz
c

)
= 0

∂

∂t
(nγ) +∇ · (nγv) = 0

∂

∂t
(nγ) + nγ∇ · v +

(
v · ∇

)
nγ = 0 ↔ d

dt
(nγ) + (nγ)∇ · v = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: conservation of the entropy per particle

Let’s now derive, as anticipated above, a scalar relation from ∂βT
αβ ; to do that we multiply it by uα.

We start fron the fact that, as we have seen, uαuα = 1. So

∂

∂xβ
(uαuα) = uα

∂uα
∂xβ

+ uα
∂uα

∂xβ

= ηαγuγ
∂uα
∂xβ

+ uα
∂uα

∂xβ

= uγ
∂uγ

∂xβ
+ uα

∂uα

∂xβ
= 2uα

∂uα

∂xβ
= 0

from this uα ∂u
α

∂xβ
= 0 (we used the fact that α and γ are dummy indices). If we take the equation expressing

the divergence of Tαβ and multiply it by uα we obtain

uα
∂

∂xβ
[
(p+ ρc2)uαuβ

]
− ∂p

∂xβ
ηαβ uα = 0

and, by performing the derivative of the first term, we get

uα

{
uα

∂

∂xβ
[
(p+ ρc2)uβ

]
+ (p+ ρc2)uβ

∂uα

∂xβ

}
− ∂p

∂xβ
uβ = 0

If we remember that uαuα = 1 and uα ∂u
α

∂xβ
= 0 we can write

∂

∂xβ
[
(p+ ρc2)uβ

]
− uβ ∂p

∂xβ
= 0

(p+ ρc2)
∂uβ

∂xβ
+ uβ

∂

∂xβ
(p+ ρc2)− uβ ∂p

∂xβ
= 0
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From conservation of the number of particles we have

∂
(
nuβ

)
∂xβ

= 0 ⇒ n
∂uβ

∂xβ
+ uβ

∂n

∂xβ
= 0 ⇒ ∂uβ

∂xβ
= −u

β

n

∂n

∂xβ

Substituting this result in the previous relation and collecting uβ we have

uβ
{
∂(p+ ρc2)

∂xβ
− p+ ρc2

n

∂n

∂xβ
− ∂p

∂xβ

}
= 0

We notice now that

∂

∂xβ
(p+ ρc2

n

)
=

1

n2

[∂(p+ ρc2)

∂xβ
n− (p+ ρc2)

∂n

∂xβ

]
=

1

n

[∂(p+ ρc2)

∂xβ
− p+ ρc2

n

∂n

∂xβ

]
Substitute into the previous relation

uβ
{
n
∂

∂xβ
(p+ ρc2

n

)
− ∂p

∂xβ

}
= 0 ⇒ uβ

{
n

[
∂

∂xβ
( p
n

)
+

∂

∂xβ
(ρc2
n

)]
− ∂p

∂xβ

}
= 0

uβ
{
n p

∂

∂xβ
( 1

n

)
+
n

n

∂p

∂xβ
+ n

∂

∂xβ
(ρc2
n

)
− ∂p

∂xβ

}
= 0

nuβ
{
p
∂

∂xβ
( 1

n

)
+

∂

∂xβ
(ρc2
n

)}
= 0

Recall now the first law of thermodynamics: dU = dQ + dL; if we introduce the entropy S we can write:
TdS = dU + pdV , where the internal energy is U = ρc2. If we rewrite it referring to a particle we have
Tdσ = d

(
ρc2

n

)
+ pd

(
1
n

)
, with σ entropy per particle. Expanding the differentials

T
∂σ

∂xβ
dxβ =

∂

∂xβ
(ρc2
n

)
dxβ + p

∂

∂xβ
( 1

n

)
dxβ � · 1

ds

If we remember that dxβ

ds ≡ u
β and compare this reltation with the previous one we get

uβ
∂σ

∂xβ
= 0

which, when expanded, becomes

γ
1

c

∂σ

∂t
+ γ

vx
c

∂σ

∂x
+ γ

vy
c

∂σ

∂y
+ γ

vz
c

∂σ

∂z
= 0

∂σ

∂t
+
(
v̄ · ∇̄

)
σ = 0 ⇐⇒ dσ

dt
= 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result is that, in the system in which the fluid is at rest, the entropy per particle (or, if preferred, the entropy
for a certain numberN of particles contained in a cubic volume V of edgeL, which can vary but maintain always
inside the same number of particles) is constant. This is related to the fact that, in the ideal fluid, there is no
exchange of energy by conduction (or radiation), nor is there dissipation. From the first law of thermodynamics,
in the frame that follows the fluid, dQ = dU + pdV and U = ρc2 · V . Then

dQ = ρc2dV + V d(ρc2) + pdV = (p+ ρc2)dV + V d(ρc2) = TdS

Since dQ = 0 → dS = 0.

If we write p = wρc2 (with w constant, although, in general, may be w = w(T ) ),

(1 + w)ρc2dV = −V d(ρc2)

and if w = const, we have dρ/ρ = −(1 + w) dV/V , that is ρV 1+w = constant.

We will meet three interesting cases in cosmology:
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3.3 Mach principle 3 GENERAL RELATIVITY

1. For a non-relativistic gas p � ρ0c
2 (ρ ≈ ρ0) so that w ' 0 and ρ0V ' const. If L is the edge of a cubic

volume V = L3, we obtain ρ ∝ 1/L3

2. For a gas of photons (and in general for a relativistic gas) ρrad ∝ aT 4 and p = 1
3ρc

2; w = 1
3 :

T 4V 4/3 = const TV 1/3 = const V ∝ L3 → T ∝ 1

L

ρradV
4/3 = const V ∝ L3 → V 4/3 ' L4 → ρrad '

1

L4

3. If p = −ρc2 (w = −1) → ρV 0 = const that is ρ does not depend on V and L and remains
constant if V changes.

We can express the first principle in another useful way by writing V ∝ L3(
ρ+

p

c2

)
dV + V dρ = 0 →

(
ρ+

p

c2

)
· 3L2dL+ L3dρ = 0

which gives

3

(
ρ+

p

c2

)
dL
L

+ dρ = 0

and, taking into account a possible dependence of L on time,

3

(
ρ+

p

c2

)
L̇

L
+ ρ̇ = 0

We wrote ∂αT βα = 0 in Minkowski space; but, if the Γαβγ do not all vanish, and this is the general case, instead
of the simple partial derivative we must use the covariant derivative:

Tαβ;β = 0

that expresses the conservation laws in a generic frame of reference.

3.3 Mach principle

According to Newton’s dynamics the inertial properties of a body depend on its motion with respect to abso-
lute space. Ernst Mach8suggested instead that the inertia is related to the motion with respect to the total
distribution of matter in the universe. The motion is only relative to other bodies: operationally we can only
measure the motion of matter in relation to other matter, not with respect to the absolute space of Newton. If
there was only one body in the universe, its motion would not be defined: without other matter we can not say
if this body is at rest or is accelerating. And since the reaction of matter to the acceleration is the only way
to determine the inertia, this body does not possesses inertia. The idea that masses and positions of celestial
bodies define the inertia and inertial systems is called Mach principle. Several objections can be moved to
this idea: for instance, no observer can be in an empty universe and verify the ideas of Mach, and inertia may
exist even in an empty universe.

Anyway, the ideas of Mach influenced, by his own admission, Einstein himself. According to Newtonian physics,
in an volume without interactions, the bodies should remain at rest or move with uniform motion. But since
the universe is permeated by gravitational fields that can not be shielded, all bodies move along curved paths
due to these fields. But then the question arises: if we say that a path is curved, we assume that we know how
to define a straight line. But how can we do this if no body, not even photons, as we shall see, follows a straight
line? So we try to do without the concept of straight line, and assume that there are no physical entities such
as "gravitational forces" curving the trajectories of the heavenly bodies, but that the geometry of the space is
modified by the gravitation in such a way that the trajectories observed correspond to free, inertial motion of
bodies. But how to express this link between inertial motion and gravitation?

Special Relativity can be described by a geometry of Minkowski ds2 = ηαβdxαdxβand from the properties of
invariance of ds2 between inertial systems derive the results of this theory (time dilation, length contraction,
...). How do we move to a metric ds2 = gαβdxαdxβ in the presence of a gravitational field? What links are
there between gαβ and the gravitational field, and between gαβ and the gravitation according to Newton? Set
in this way, General Relativity turns out to be a geometrical theory of gravitation.

8Ernst Mach (1838-1916) was professor of physics and then philosophy at the University of Vienna. His ideas have had a
precursor in the English bishop and philosopher George Berkeley, in 1710, when Newton was still alive.

40
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3.4 Locally inertial frames

If our aim is to give a geometric description of space-time, we can use what we have already learned about
surface elements and generalize it in 4 dimensions. In particular, we have seen that, in a neighborhood of a
generic point, one can transform gαβ in such a way that it has a given form and that its first derivatives are
zero. So, in the neighborhood of an event, we can always put gαβ ≡ ηαβ +O(|x|2): at the first order geometry
is the same as that of Special Relativity. In the (infinitesimal) neighborhood of each event the laws of physics
are the ones that hold in a inertial frame of reference. In a neighborhood of each event we can define a locally
inertial reference frame.

In the presence of gravitational fields, as mentioned above, local deviations from Special Relativity occur only
at the level of the second derivatives of gαβ which, remember, are related to the curvature tensor Rαβγδ. In this
sense gravity curves space-time. But what are these locally inertial reference frames?

3.5 The Principle of Equivalence

The evidence that all bodies fall (in the absence of air resistance) in the same way under the effect of gravity, led
to conclude, with great precision, that inertial massmin and gravitational massmgrav are mutually proportional
(and are, in practice, the same, by including the constant of proportionality within the gravitational constant
G ). Einstein assumed that, by definition, min ≡ mgrav. This leads to the famous thought experiment of
Einstein elevator: an observer, equipped with scientific instruments and locked up into an elevator without
the possibility to see what is happening around him, will not be able to distinguish, by his experiments in
mechanics, between the two situations:

• he is at rest in a gravitational field with gravitational acceleration g

• he is in empty space, and the elevator is accelerated upward with constant acceleration g

Similarly, since all bodies fall in the same way in a gravitational field, the observer will not be able to distinguish
between the situations of:

• uniform rectilinear motion in the vacuum

• free fall in a gravitational field

m=min
m=mgrav

This allows us to say what are the locally inertial frames: those in free fall. Then, in a free falling frame, the
laws of Special Relativity hold locally (and to the first order in gαβ).

The Principle of Equivalence requires that all the laws of physics (not just those of mechanics) are the same
both in a locally inertial frame and in Special Relativity.

Since the effects of gravitation disappear in a system in free fall, the phenomena occurring there are totally
independent from the presence of nearby masses. However, according to the point of view of Mach, a large,
nearby mass should introduce an anisotropy of the inertial mass. Effects due to the Sun or our Galaxy have
been searched, but not found within ∆m/m ∼ 10−20, for which the Principle of Equivalence seems favored
over the assumptions of Mach (so they are not completely consistent with General Relativity, apart from the
inspiration provided to Einstein9).

9Einstein conceived his theory of General Relativity trying to incorporate the idea of Mach according to which the inertia is
due to gravitational interactions with all matter in the universe. But, as admitted by himself, he was only partially successful,
since he obtained a solution of his field equations in which a single particle, immersed in a completely empty universe, had inertial
properties.
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3.6 The Principle of General Covariance

This principle tells us how to write the equations of physics in the presence of a gravitational field, when we
know how they are made in the absence of gravity.

In order for an equation, expressing a physical law, applies in a gravitational field it is necessary that:

1. It is "covariant", i.e. does not change shape changing reference frame, and this happens when it is
expressed as a relationship between tensors.

2. The equation applies in the absence of gravity, i.e. when gαβ ≡ ηαβ and Γαβγ ≡ 0.

There can be many covariant equations which are reduced, in the absence of gravity, to the same equation of
Special Relativity. However, as the Principle of General Covariance and the Priciple of Equivalence, operate on
small scales, we expect that only gαβ and its low order derivatives come into play. This also obeys a principle
of simplicity.

In this wayTαβ,β → Tαβ;β (covariant derivative) or, for instance, for the free fall equation,

d2xα

ds2
= 0→ d2xα

ds2
+ Γαβγ

dxβ

ds
dxγ

ds
= 0

We have seen that at each point (event) we can define a locally inertial system, and in it the second derivatives
of gαβ are in general 6= 0: it is therefore at the level of the second derivatives of the metric tensor that the
gravitational field comes into play.

Similarly, in Newtonian physics, in a system in free fall, what can be measured is the difference in gravitational
acceleration between two bodies ∆g/∆x. This is the kind of phenomenon we call tide. But g = −∇Φgrav and
then ∂g/∂x ∝ ∂2Φgrav/∂x

2. What can be measured are therefore the second derivatives of Φgrav, as in General
Relativity are the second derivatives of gαβ . Then we see that there is an analogy between gαβ and Φgrav: the
gαβ take the place of the Newtonian gravitational potential.

3.7 The Einstein equations

In Newton’s theory of gravitation the potential Φ satisfies Poisson equation: ∇2Φ = 4πGρ0 and g = −∇Φ.
Special Relativity teaches us that all forms of energy are equivalent to mass, and then a relativistic theory
of gravity will have as sources of the gravitational field all forms of energy, and not just ρ0. In particular,
the energy density of the gravitational field itself is proportional to (∇Φ)2 in the Newtonian case 10(think, by
analogy, that the energy density of the electromagnetic field is proportional to E2).

If, therefore, we carry on the left, in Poisson equation, the term ∝ (∇Φ)2 which would result from the gravi-
tational energy density, we obtain a non-linear differential equation (which will linear in the second derivative
and quadratic in the first one) for the gravitational field.

Formally we will have an equation such as:

F (g) ∼ κT

where g is the metric tensor (corresponding to Φ), F is a differential operator (likely something linear in the
second derivatives and quadratic in the first derivatives) which reduces to ∇2 in the weak field limit, when
Newton’s law holds, κ is a proportionality constant that contains G, T is a quantity that describes all forms of
non-gravitational energy, and that, in the non-relativistic case, should essentially be reduced to ρ0.

A natural candidate for T is the component T 00 of the stress-energy tensor. But keeping as a source of the field
only one component of a tensor would not produce an invariant theory: we should adopt a particular reference
frame to calculate T 00. Hence arose the idea of Einstein to use as source the entire Tαβ : pressure,stresses (if
Tαβ is not diagonal), etc. .. all acts as a source. But if T is a tensor, then the left-hand side of the equation
must be a also tensor function of the metric tensor.

10We can see that the energy density of the gravitational field is proportional to (∇Φ)2, that is to g2, in the following way. The
gravitational potential energy of a mass Mof radius R is given by E = −GM2/R. If you think that this energy is distributed in
the field (g ∝ M/r2) created by M , between R and ∞, we see that, by calling δG the density of gravitational energy, for it to be
−

∫∞
R δG(r) · 4πr2dr ≈ −M2/R, δG(r) ∼ (M/r2)2 ∼ g2 is required.
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But Tαβ is symmetrical, and has vanishing covariant divergence: Tαβ;β = 0. Then the left-hand side must share
these properties. Moreover, we expect it to be linear in the second derivatives of gαβ and quadratic in the first
derivatives.

But we have already met a tensor with these properties, and we have seen that it is unique: the Einstein tensor

Gαβ = Rαβ −
1

2
gαβR

Einstein therefore proposed, as a possible equation of the gravitational field,

Rαβ −
1

2
Rgαβ = κTαβ

If we think to include the derivatives of order zero in the differential operator, being gαβ symmetric and with
vanishing covariant divergence, we can add a term proportional to gαβ :

Rαβ −
1

2
Rgαβ − Λgαβ = κTαβ

Λ and κ are constant; Λ is the so-called cosmological constant.

3.8 The Newtonian limit (weak field)

Once written Einstein’s equations, we must check that, within the limits of validity of classical physics, they
reduce to Newton’s law; we must also find what is the constant κ that appears in the equations.

Let us suppose that the field is stationary (i.e. its time derivative is zero), the velocities of the particles are small
(v � c) and that, at large distances from the masses that generate the field, the metric tensor is asymptotically
flat: gαβ → ηαβ . We also assume that the field is weak: the deviations from metric ηαβ are small:

gαβ = ηαβ + hαβ with |h| � 1

Since v/c� 1 we have

dx0

ds
=
cdt
cdτ

=
dt
dτ

dxi

ds
=

dxi

cdτ
=

1

c

dxi

dt
dt
dτ

=
vi

c

dt
dτ
� dt

dτ
≡ dx0

ds

The geodesic equation is, as usual,

d2xα

ds2
+ Γαβγ

dxβ

ds
dxγ

ds
= 0

but, keeping α fixed, in the sum on the indices β and γ, the terms containing the dxi/ds are negligible compared
to the term containing

(
dx0/ds

) (
dx0/ds

)
, so

d2xα

ds2
+ Γα00

(
dx0

ds

)2

=
d2xα

ds2
+ Γα00

(
dt
dτ

)2

' 0

By the assumption that gαβ = ηαβ + hαβ (|h| � 1) we can evaluate gαβ . We know that, by definition,
gαδg

δβ ≡ δβα and that ηαδηδβ ≡ δβα. We define the quantity hγδ ≡ ηγαηδβhαβ and show that

(ηαβ + hαβ)(ηβδ − hβδ) = δδα :
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Expanding the left hand side, and neglecting second order terms in h,

(ηαβ + hαβ)(ηβδ − hβδ) = ηαβη
βδ − ηαβhβδ + hαβη

βδ − hαβhβδ =

= δδα − ηαβηβσηδτhστ + hαβη
βδ = δδα

In fact ηαβηβσ ≡ δσα, δσαhστ = hατ and ηδτhατ ≡ hαβηδβ , since τ is a dummy index and we can name it β. We
than see that ηβδ − hβδ = gβδ.

Let us calculate Γα00 (remember that stationarity implies that the derivatives with respect to x0 are zero):

Γα00 =
1

2
gαγ
[
∂g0γ

∂x0
+
∂g0γ

∂x0
− ∂g00

∂xγ

]
=

1

2

(
ηαγ − hαγ

)(
− ∂g00

∂xγ

)
' −1

2
ηαγ

∂h00

∂xγ

at the first order in h. Hence

d2xα

ds2
' 1

2
ηαγ

∂h00

∂xγ

(
dt
dτ

)2

• For α = 0 we have:

d2x0

ds2
=

1

2
η00 ∂h00

∂x0

(
dt
dτ

)2

= 0 ⇒ dx0

ds
= const =

dt
dτ

• For α = 1, 2, 3 instead:

d2xi

ds2
=

d2xi

c2dτ2
=

1

c2
d
dτ

[
dxi

dτ

]
=

1

c2
dt
dτ
· d
dt

[
dt
dτ

dxi

dt

]
=

1

c2

(
dt
dτ

)2 d2xi

dt2

so that

d2xi

ds2
=

1

c2

(
dt
dτ

)2 d2xi

dt2
' 1

2
ηiγ

∂h00

∂xγ

(
dt
dτ

)2

(ηiγ = −1 if i = γ)

which means that

1

c2
d2xi

dt2
' −1

2

∂h00

∂xi
and, by using vector notation,

1

c2
d2x

dt2
' −1

2
∇h00

But, according to Newton’s gravity law, using Φ for the potential,

d2x

dt2
= −∇Φ

and, by comparing the two results:

−∇Φ ' −c
2

2
∇h00 → h00 '

2Φ

c2
+ const.

If far from the field sources (masses), Φ → 0 and also h00 → 0 since we assume that gαβ → ηαβ , the constant
has to be set to zero, and then

h00 '
2Φ

c2
→ g00 ' 1 +

2Φ

c2

The weak field hypothesis, |h| � 1, implies that 2Φ/c2 � 1.

In the case of a mass M in which the density is distributed with spherical symmetry, the external potential is
given by Φ = −GM/r, according to Newton. The assumption that the field is weak implies that |2Φ/c2| � 1,
i.e.

2GM

rc2
� 1
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For a black hole or a generic spherical body, RS ≡ 2GM/c2 is the so-called Schwarzschild radius, corresponding,
for a non-rotating and electrically neutral black hole, to the event horizon, the zone from which nothing can
come out (apart from quantum effects of evaporation). In this case we see that the condition of weak field is

RS
r
� 1 ⇒ r � RS

For our Sun, RS ∼ 3 km.

Let’s see now, with the same assumptions made above, that the Einstein equations reduce to Poisson equation
∇2Φ = 4πGρ0. Then we will determine the value of the constant κ. The curvature tensor is:

Rαβγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓσβδΓ
α
σγ − ΓσβγΓασδ '

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

(the other terms are of the second order, O(h2))

The Christoffel symbols are:

Γαβγ =
1

2
gασ
(
∂gβσ
∂xγ

+
∂gγσ
∂xβ

− ∂gβγ
∂xσ

)
' 1

2
ηασ

(
∂hβσ
∂xγ

+
∂hγσ
∂xβ

− ∂hβγ
∂xσ

)
(at the orderO(h))

The Ricci tensor is obtained from Rαβγδ by contracting the first and third index:

Rβδ = Rαβ(γ≡α)δ =
∂Γαβδ
∂xα

−
∂Γαβα
∂xδ

=

=
1

2
ηασ

∂

∂xα

(
∂hβσ
∂xδ

+
∂hδσ
∂xβ

− ∂hβδ
∂xσ

)
− 1

2
ηασ

∂

∂xδ

(
∂hβσ
∂xα

+
∂hασ
∂xβ

− ∂hβα
∂xσ

)
=

=
1

2
ηασ

[
∂2hβσ
∂xα∂xδ

+
∂2hδσ
∂xα∂xβ

− ∂2hβδ
∂xα∂xσ

− ∂2hβσ
∂xδ∂xα

− ∂2hασ
∂xδ∂xβ

+
∂2hβα
∂xδ∂xσ

]
=

=
1

2
ηασ

[
∂2hδσ
∂xα∂xβ

+
∂2hβα
∂xδ∂xσ

− ∂2hβδ
∂xα∂xσ

− ∂2hασ
∂xδ∂xβ

]
Let us take Einstein equation with the term containing Λ brought to the right:

Rαβ −
1

2
gαβR = κTαβ + Λgαβ

If we multiply it by gαγ we get:

Rγβ −
1

2
Rδγβ = κT γβ + Λδγβ

Let us putγ = β (that is, we add on β = γ = 0, 1, 2, 3, δββ = δ0
0 + δ1

1 + δ2
2 + δ3

3 = 1 + 1 + 1 + 1 = 4) and contract
tensors; since R = Rγγ we get:

R− 1

2
R · 4 = κT γγ + 4Λ → R = −κT γγ − 4Λ

Substituting this result into the starting equation, it becomes:

Rαβ = κTαβ + Λgαβ +
1

2
gαβ
(
− κT γγ − 4Λ

)
= κ

(
Tαβ −

1

2
gαβT

γ
γ

)
− Λgαβ

We evaluate now, always with the assumed approximations, the component00 of Rαβ :

R00 '
1

2
ηασ

[
∂2h0σ

∂xα∂x0
+

∂2h0α

∂x0∂xσ
− ∂2h00

∂xα∂xσ
− ∂2hασ
∂x0∂x0

]
' −1

2
ηασ

∂2h00

∂xα∂xσ
(for stationarity ∂/∂x0 = 0)

but if α = 0 and/or σ = 0 the derivative is zero; then remain only the terms with indices 1, 2, 3 (and η11 =
η22 = η33 = −1):

R00 '
1

2

[
∂2h00

∂x1∂x1
+

∂2h00

∂x2∂x2
+

∂2h00

∂x3∂x3

]
' 1

2
∇2h00
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On the other hand

R00 = κ

[
T00 −

1

2
g00T

γ
γ

]
− Λg00

For Tαβ in the dust case: Tαβ = ρ0c
2uαuβ , neglecting, with respect to ρ0c

2, terms containing pressure. We get

Tµν = gµαgνβρ0c
2uαuβ (ui � u0 ' 1)

T00 = g0αg0βρ0c
2uαuβ ' g00g00ρ0c

2u0u0 ' g2
00ρ0c

2

But g00 = 1 + h00 ' 1 and so

T00 ' ρ0c
2

Tαγ = gγβT
αβ = gγβρ0c

2uαuβ

T γγ = gγβρ0c
2uγuβ ' g00ρ0c

2u0u0(+negligible terms) ' g00ρ0c
2 ' ρ0c

2

We then have
1

2
∇2h00 ' κ

(
ρ0c

2 − 1

2
ρ0c

2
)
− Λ → ∇2h00 ' κρ0c

2 − 2Λ

but h00 = 2Φ/c2 and then:

∇2Φ ' κρ0c
4

2
− Λc2 ' κ

(
ρ0c

4

2
− c2Λ

κ

)
Poisson equations tells that ∇2Φ = 4πgρ0; the two relations coicide if

(A)
ρ0c

4

2
�
∣∣∣∣c2Λ

κ

∣∣∣∣
(B) 4πGρ0 =

κρ0c
4

2
→ κ =

8πG

c4

Finally we arrive to the complete Einstein equation

Rαβ −
1

2
gαβR− Λgαβ =

8πG

c4
Tαβ

The above conditio on Λ becomes:

|Λ| � 4πGρ0

c2
= ΛE

In 1916, when Einstein wrote the equations of General Relativity, he was not aware of cosmic expansion, and
sought a static solution for his model of universe. We see, from the “classical” point of view, that if Λ = ΛE
and ρ0 is the density of the universe, we have ∇2Φ = 0, Φ = const, g = −∇Φ = 0.

A similar result comes from the equations of General Relativity. This static model, however, is unstable: just
a small density fluctuation and locally we have expansion or contraction.

According to dimensional analysis [c2Λ] = [4πgρ0] = [∇2Φ] that is [Λ] = [∇2(Φ/c2)] = L−2(remember that
Φ/c2 is adimensional).

From the relation ∇2Φ = 4πG[ρ0 − c2Λ/4πG] we can think that Λ corresponds to the mass-energy of vacuum.

To estimate an upper limit of Λ we can assume for ρ0 the average density of a gravitating systems for which
Newton’s laws are good and therefore requires Λ ∼ 0. If we take as gravitating system the solar system (mass
= M� = 2 · 1033g, radius of the orbit of Pluto ∼ 6 · 109km) we obtain

|ΛSS | � 2 · 10−39cm−2

If we use a cluster of galaxies as self gravitating system (but in this case the confidence in Newton’s laws is
lower), with a mass equal to ∼ 1015h−1M� and radius ∼ 3h−1Mpc, we obtain

|ΛSS | � 10−54h2cm−2

After the discovery, by Hubble, that the universe expands, Einstein described the introduction of Λ as the
biggest mistake of his life, but, as we shall see, it has come back strongly in vogue in recent years.

Recent observations (1997) based on Type Ia supernovae in distant galaxies, and the study of the cosmic micro-
wave background, we have obtained no longer an upper limit, but a possible estimate ofΛ ∼ 2 · 10−56h2cm−2.
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3.9 Weak field metric, gauge transformations and gravitational waves

We have seen, treating the weak field, that Ricci tensor can be written

Rβδ '
1

2
ηασ

[
∂2hδσ
∂xα∂xβ

+
∂2hβα
∂xδ∂xσ

− ∂2hβδ
∂xα∂xσ

− ∂2hασ
∂xδ∂xβ

]
Bringing ηασ (constant) within the partial derivation operators, and calling h the trace of hασ

h = hαα = ηασhασ = h00 − (h11 + h22 + h33)

we can rewrite the above relationship as

2Rβδ '
∂2hαδ
∂xα∂xβ

+
∂2hσβ
∂xδ∂xσ

− ηασ ∂2hβδ
∂xσ∂xα

− ∂2h

∂xδ∂xβ

We now define an auxiliary field hβδ, definmed in such a way that hβδ ≡ hβδ − 1
2ηβδ · h and we have, by

multiplying by ηβδ:

h = h− 1

2
h · 4 = −h since ηβδ · ηβδ = δββ = 4

hβδ = hβδ −
1

2
ηβδh

We also observe that, by using hβδ, we have, for the mixed terms of hβδ,

hαδ = ηαβhβδ = ηαβhβδ −
1

2
ηαβηβδh = h

α

δ −
1

2
δαδ h

Substituting in the expression of Ricci tensor we have:

2Rβδ ' ∂2h
α

δ

∂xα∂xβ
− 1

2
δαδ

∂2h

∂xα∂xβ
+

∂2h
σ

β

∂xδ∂xσ
− 1

2
δσβ

∂2h

∂xδ∂xσ
− ηασ ∂2hβδ

∂xα∂xσ
+

∂2h

∂xδ∂xβ

=
∂2h

α

δ

∂xα∂xβ
+

∂2h
σ

β

∂xδ∂xσ
− ηασ ∂2hβδ

∂xα∂xσ

since the second and fourth term are equal, but of opposite sign, to the half of the sixth one and vanish with
this.

We observe that the Einstein equations for Gµν are 10, being Gµν symmetrical. But Gµν also satisfies the
four conditions Gµν;µ = 0, so we are left with 10 − 4 = 6 independent equations. The unknowns are the 10
components of the metric tensor, in this case hβδ. Thus we see that the Einstein equations can not uniquely
define the solution. To do this it is necessary to impose other four conditions on hβδ, that is we have to choose
a particular gauge. In this case, the so-called Lorentz gauge is particularly suitable (we will see later that this
can be done and what is its meaning):

∂h
α

δ

∂xα
≡ 0 (4 conditions: δ = 0, 1, 2, 3)

With this choice, the two terms containing h
α

δ in the equation above are zero and we are left with:

Rβδ ' −
1

2
ηασ

∂2hβδ
∂xα∂xσ

= −1

2

[
1

c2
∂h2

βδ

∂t2
−
(
∂2hβδ
∂x2

+
∂2hβδ
∂y2

+
∂2hβδ
∂z2

)]
≡ −1

2
�2hβδ

where �2 is the d’Alembert operator or d’Alembertian.

=⇒Metric of the weak field (stationary)

=⇒Gauge transformations

We have seen that the Einstein equations can be written also in the form Rβδ = a function of Tβδ and Λ. If we
are in vacuum, and we neglect Λ, they become:

Rβδ ≡ 0 ⇒ �2hβδ ≡ 0

which is the equation of a wave propagating at the speed of light.
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We must add to this equation the gauge conditions

∂h
α

δ

∂xα
= 0 but since h

α

δ = ηαβhβδ = ηαβhβδ −
1

2
ηαβηβδh = hαδ −

1

2
δαδ h

⇒ ∂hαδ
∂xα

− 1

2
δαδ

∂h

∂xα
=
∂hαδ
∂xα

− 1

2

∂h

∂xδ
= 0

We look for a solution represented by a plane wave: hβδ = Aβδ e
i kγ ·xγ with Aβδ = const.

As hβδ is symmetric (10 independent components), after imposing the 4 gauge conditions, 6 degrees of freedom
remain. But of these six, four are actually fictitious, related to the arbitrariness of the reference system (see
the discussion on gauge transformations), so at the end we are left with only 2 true degrees of freedom. Let’s
see how.

We choose, as 4 conditions which fix the reference system, the following:

h = 0 h0i = 0

From the first it follows that hαβ ≡ hαβ .

We substitute now the plane wave in the �2hβδ = 0, that we write in the form

ηασ
∂2hβδ
∂xα∂xσ

= 0

and we get

Aβδ η
ασ ∂

∂xα

(
∂

∂xσ
ei kγ ·x

γ

)
= Aβδ η

ασ ∂

∂xα

(
i kσe

i kγ ·xγ
)

= i kσAβδ η
ασ · ei kγ ·x

γ

· i kα =

= −Aβδ ei kγ ·x
γ

· kσkαηασ = −Aβδ ei kγ ·x
γ

· kσkσ = 0 ⇒ kσk
σ = 0

We write the four vector kσ as kσ ≡ (ωc , k). Since kσ = ησαk
α we have:

kσk
σ = ησαk

αkσ = k0k0 − (k1k1 + k2k2 + k3k3) =
ω2

c2
− |k|2 ≡ 0

So we have ω = kc → }ω = }k · c ⇒ E = P · c as for photons, with zero rest mass: the quantum
mediating the gravitational interaction, the graviton, has zero mass.

We also observe that
kγ · xγ = ηγσk

σ · xγ = k0x0 − |k · x| = ωt− k · x

From the gauge condition:

∂hαδ
∂xα

= 0 since hαδ = ηασhσδ = ηασAσδ e
i kγ ·xγ

∂

∂xα

(
Aσδ η

ασei kγ ·x
γ

)
= Aσδ η

ασei kγ ·x
γ

· i kα ≡ 0

that is
i kαA

α
δ e

i kγ ·xγ = i kαh
α
δ = 0 ⇒ hαδ · kα = 0

which is called transversality condition. Let’s see why.

We choose the direction of propagation along the x-axis: thus k ≡ (k, 0, 0) and hασ ·kα = ηαδhδσkα = hδσk
δ = 0.

We remember the conditions of choice of the reference system (h = 0 e h0i = 0).

σ = 0 → h00k
0 + h10k

1 + h20k
2 + h30k

3 = 0 → h00 = 0

σ = 1 → h01k
0 + h11k

1 + h21k
2 + h31k

3 = 0 → h11 = 0

σ = 2 → h02k
0 + h12k

1 + h22k
2 + h32k

3 = 0 → h12 = h21 = 0

σ = 3 → h03k
0 + h13k

1 + h23k
2 + h33k

3 = 0 → h13 = h31 = 0

Summarizing all in matrix form

48



3 GENERAL RELATIVITY 3.10 Gravitational lenses

hβδ =


0 0 0 0
0 0 0 0
0 0 h22 h23

0 0 h32 h33

 h = 0⇒ h22 + h33 = 0⇒ h22 = −h33 ≡ h+

and for symmetry h23 = h32 ≡ h×
⇒ hβδ =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+


We see that if k is along the x axis, the non null components of the wave are perpendicular to the x axis. They
are transverse waves with two components (polarization):{

h+ = A+ ei(ωt−k·x)

h× = A× e
i(ωt−k·x)

3.10 Gravitational lenses

We have seen that the metric of the weak, stationary field can be written in the form

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)(
dx2 + dy2 + dz2

)
This allows us to obtain another very interesting result. For a light ray ds2 = 0 and, assuming dx2 +dy2 +dz2 ≡
dl2, we have

(
1 +

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)
dl2

from which (
dl
dt

)2

= c2

(
1 + 2Φ

c2

)
(

1− 2Φ
c2

) ≡ v2
eff ≡

c2

n2
g

where veff is the effective speed of propagation of the luminous wave and ng can be thought as an index of
refraction of gravity. it is

ng =

√√√√√√√
(

1− 2Φ
c2

)
(

1 + 2Φ
c2

) ∼√(1− 2Φ

c2

) (
1− 2Φ

c2

)
→ ng ' 1− 2Φ

c2

If Φ = 0 to the infinity and is negative near a mass, ng > 1 and veff < c. This relation show us that space, as
a consequence of gravitation, behaves as a refractive medium: this is the basis of those phenomena known as
gravitational lenses.
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