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The HOT BIG BANG 

The Hot Big Bang model, i.e. the standard (cosmological) model, and its time evolution 

rests on 3 pillars: 

1. the expansion of the Universe 

2. the microwave background radiation at 2.73 K (CMB), which reveals the existence 

of a phase in the  life of the universe during which the there was thermodynamic 

equilibrium 

3. The prediction of the abundances of the light elements (D, 
3
He, 

4
He, 

7
Li), in particular 

helium; this cosmological nucleosynthesis requires also that there was an era in 

which T  10
9
K 

To these facts it may be added that the predicted age for the universe is comparable 

to the age estimated directly for some types of cosmic objects (globular clusters, ), 

and that it is possible to give a reasonable theoretical explanation for the formation 

of cosmic  structures through their gravitational collapse, starting  from the 

perturbations in the microwave background (CMB). 

We also mention the problems of flatness and horizon (+ the monopoles problem, 

see below) which we have already mentioned, and whose solution is not found in the 

standard model of cosmic evolution, but which are solved  through the mechanism of 

inflation. 

The Standard Model of Particle Physics and beyond 

We describe here some aspects of Particle Physics which are connected to cosmology 

and to particular epochs in the evolution of the Universe.  

In the Standard Model (SM) of particle physiscs, described by Quantum Field Theory 

(QFT), only three interactions are considered: electromagnetism, weak and strong 

interactions. Gravitation is much weaker and is not considered, at least at the energy 

scales involved in present experimental projects. But, as we imagine to go back in 

time, the temperature and the energy of particles increases and new aspects have to be 

taken into account. As we shall see, cosmology can set useful constraints to Particle 

Physics, beyond the SM. 

In QFT it is useful to use dimensionless quantities to estimate the strength of these 

interactions, the dimensionless couplings, like the fine structure constant  
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for electromagnetism. For weak interactions one can use the Fermi weak coupling 

constant GF [GF /( c)
3
=1.166×10

-5
 GeV

-2
] and the dimensionless coupling for a 

typical hadronic mass, the proton mass mp, is given by  

 

The weakness of weak interactions is due to the improbability of the emission of the 

very massive bosons W
+
, W

-
, Z

0
. The dimensionless coupling, according to 

Weinberg-Salam theory, is linked to GF by the relation 

  

     
 

 

  

  

  
   

 

where MW ~ 80 GeV/c
2
. For strong interactions (Quantum Chromo Dynamics, QCD) a 

dimensionless coupling αS can be defined.  

In QFT these couplings are not constant, but are “running”, i.e. change their values  

with the energy scale, linked to a distance scale r~ħc/E~ ħ/mc (E=mc
2
). For instance, 

in QCD,  
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and RC~10
-13

 cm (1 fm), the size of hadrons.  

The interesting point, as shown in the following figure, is that the couplings tend to 

converge to one single value at energies on the order of 10
15

 GeV, or higher. From 

this comes the idea that at high energy there is only one interaction, whose symmetry 

is broken at lower energies, as the electroweak interaction splits into weak interaction 

and electromagnetism at energies below ~ 100 GeV. One speaks of Grand Unified 

Theories (GUTs). 
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In GUTs there are new gauge bosons X which link quarks and leptons and mediate 

interactions that violate Baryon number B and Lepton number L. These new 

interactions must be wery weak since they have eluded detection so far, which means 

that the X  bosons must be very massive (MX c
2 

~ EGUT  ~ 10
15

-10
16

 GeV). Even if B 

and  L conservation are violated, in some GUTs B-L is conserved. 

The B-violating interactions would make the proton unstable. Since no proton decay 

has been observed so far, there are lower limits on proton lifetime τP>10
31

-10
32 

years. 

 

The Planck era 

What about gravity? A natural chice for a dimensionless, gravitational coupling is 

given by  

392 106/  cGmpG   

which is extremely small. But m=E/c
2
 and  
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So at energies of the order or above EPl gravitation becomes strong, and cannot be 

neglected in comparison to the other interactions. We need to link QFT and GR, but 

such a theory is not available at the moment (String theory could be such a theory). 

This means that all our extrapolations of the known and experimentally tested 

Physics have to stop at the Planck scale. 

At EPl the age of the Universe was t ~ tPl, the particle horizon was ~ lPl, the density 

was  

393

2

5

2
105~~

1
~  cmg

G

c

GtPl

Pl


  

and the mass within the horizon was MH ~ Pl lPl
3 
~ MPl. 

Moreover, EPl , lPl  and tPl  are the only possible results if one combines ħ (Quantum 

Mechanics), c (Special Relativity) and G (Gravitation) to obtain an energy-mass, a 

length and a time, and they are the most natural choice. 

 

SUPERSYMMETRY (SUSY) 

Supersymmetry (SUSY) is a generalizetion of the space-time symmetries of quantum  

field theory that transforms fermions into bosons and vice versa.  In particular, it is  

possible that supersymmetry will ultimately explain the origin of  the large hierarchy  

of energy scales from the W and Z masses to the GUTs and Planck scales.  

If  supersymmetry  were  an  exact  symmetry  of  nature,  then  particles  and  their  

superpartners (which differ in spin by half a unit) would be degenerate in mass. Since  

superpartners  have  not  (yet)  been  observed,  supersymmetry  must  be  a  broken  

symmetry. Nevertheless, the stability of the gauge hierarchy can still be maintained if  

the supersymmetry breaking is soft, and the corresponding supersymmetry-breaking  

mass parameters are no larger than a few TeV.   

In  the  Minimal  Supersymmetric  extension  of  the  Standard  Model  (MSSM)  B-L  

 is conserved.  As  a  consequence  of  B−L  invariance,  the  MSSM  possesses  a  

multiplicative R-parity invariance, where  R = ( − 1) 
3(B − L)+2S 

 for a particle of spin S.  

Note  that  this  implies  that  all  the  ordinary  Standard  Model  particles  have  even  

 R parity, whereas the corresponding supersymmetric partners have odd R parity
1
. 

 

The conservation of R parity in scattering and decay processes has a crucial impact  

                                                 
1
 In the SM: for leptons L=1, B=0, S=1/2; for quarks L=0, B=1/3, S=1/2; for bosons B=L=0 and S is an integer. So R 

turns out to be always +1. For the superpartners B and L are the same, but S=0 for fermionic partners and S=1 for 

bosonic partners, so R is always -1. 
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on  supersymmetric  phenomenology.  For  example,  starting  from  an  initial  state  

involving ordinary (R-even) particles, it follows that supersymmetric particles must  

be produced in pairs. In general, these particles are highly unstable and decay into  

lighter  states.  However,  R-parity  invariance  also  implies  that  the  lightest   

supersymmetric  particle  (LSP)  is  absolutely  stable,  and  must  eventually  be  

produced  at  the  end  of  a  decay  chain  initiated  by  the  decay  of  a  heavy   

unstable supersymmetric particle. In order to be consistent with cosmological  

constraints, a stable LSP is almost certainly electrically and color neutral.  

Consequently, the LSP in an  R-parity-conserving  theory  is  weakly  interacting   

with  ordinary  matter,  i.e.,  it behaves like a stable heavy neutrino and will escape  

collider detectors without being directly observed. So  the LSP is a promising  

candidate for dark matter. 
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Axions 

In QCD the vacuum is a superposition of degenerate states. This introduces a new 

arbitrary parameter Θ in the theory which leads to an additional term in the QCD 

Lagrangian. However, the existence of this term violates CP, T and P and leads to a 

neutron electric dipole moment of dn/e~510
-16

 Θ cm. Observations give an upper 

limit dn/e~10
-25

 cm, so Θ ≤ 10
-10

. Why is Θ so small? This is the strong CP problem 

of QCD.  

In 1977 Peccei and Quinn showed that Θ could be driven to zero by introducing in 

the Lagrangian a new symmetry which is spontaneously broken at an energy scale 

fPQ. This induces the existence of a new boson, the axion, which is not massless, but 

has a mass of the order 

   
         

       

        
   

In their original paper  Peccei and Quinn assumed that  fPQ was on the order of the 

vacuum expectation value v of the Electroweak phase transition (v ~ 250 GeV). In 

this case mA would be ~ 100 keV, excluded by experiments. But the value of fPQ can 

be anywhere between 250 GeV and 10
19

 GeV, and mA  spans a huge range of values. 

Limits on mA  are given also by stellar evolution. Detection techniques to find out 

evidence of the existence of axions are based on the conversion of axions into 

microwave photons in the presence of a very strong magnetic field. The contribution 

of axions to the dark matter is given, if they exist, by 

   
       

        

       
 

   

 

which means that, in order to represent a major contribution to dark matter, the mass 

of the axions must be          . 

 

Thermodynamics of the Early Universe 

Going back in time temperature T and density  grow and it is expected that the 

particles reach the thermodynamic equilibrium through rapid interactions. The rate of 

interaction       (n = number density, σ = cross section, v = particle velocity)  

grows more rapidly, with the temperature, than the rate of expansion H, so  » H at 

high T. This means that, with regard to the interactions, the expansion is quasi-static 

and there is enough time for the universe to continuously restore thermodynamic 

equilibrium. 

This allows a very simple treatment of the distribution functions of the particles. In 

thermodynamic equilibrium, the number density n of particles of a given species, 

with momentum between P and P + dP is 
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where E
2
=P

2
c

2
+m

2
c

4
,  is the chemical potential, and g is the spin-degeneracy factor 

, which counts the number of degrees of freedom, taking into account the spins and 

colors of particles (for spin states g=1 if m=0,s=0; g=2 if m=0, s0; g=2s+1 if m0; 

g=2, ge=2, but g =1 since neutrinos are only left handed; for each quark flavour 

g=6, a factor 2 for the spin and a factor 3 for the colors) The + or - sign corresponds 

to fermions (f) and bosons (b).   

For photons  is naturally zero since they have a planckian distribution with 

temperature T(t); if a species A is in thermal equilibrium with photons (A » H), 

TA=T and the same holds for all species in equilibrium. So we use the photon 

temperature as reference: T  TUniverse=T. 

In thermodynamic equilibrium the number density ni and the energy density ρic
2
 of 

“i” particles are given by 

    
  

  
   

 

 

  

     
 

  

 
   
    

 

 

   

 

   
    

  

  
   

 

 

  

     
 

   

 
   
    

 

 

   

For the pressure p, from   
 

 
        , and 

                                            

 

    
 

 
        

  

  
   

 

 

  

     
 

 

 

    

 

  

 
   
    

 

 

   

   
   

 

     
 

 

 

  

 
   
    

 

 

   

In the Early Universe, for various reasons, the chemical potentials are negligible 

(fermions are non-degenerate, bosons do not form a Bose condensate). The main 

argument comes from the fact that the net chemical potential in the early universe can 

be set to zero, because the asymmetry between particles and antiparticles is very 

small. From chemical thermodynamics, for a reaction 1 + 2 ↔ 3 + 4, the relation 

among chemical potentials is            . From a reaction like ( +  ↔    ), 
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since  =0, then         . So, for number densities,          and this gives a 

nonzero value for the quantum numbers (electric charge, baryon number, color 

charge, …) associated to particle A. But electric charge, color charge, …, of the 

Universe seem to be consistent with zero; moreover, the number density of baryons is 

much smaller than that of photons:                 . So, in the Early Universe, 

it is usually assumed that        and chemical potentials are set to zero. 

The above relations for number density, energy density, and pressure are general. It is 

easy to evaluate these integrals in two extreme cases: ultrarelativistic, non-

degenerate particles and non-relativistic particles. 

 Ultrarelativistic case: kT » mic
2
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For the energy density  

 









0

3

332

4

0

/

3

32

2

1212 u

i

kTPc

i
i

e

duu

c

kTg

e

dPPcg
c

 
  

 

 

(x): Riemann Zeta function  
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Remember that (4)= 
4
/90 and so, using Stefan-Boltzmann constant, 
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which can be approximated by         .  

For the pressure p it is easy to realize that, if E~Pc,  

pi=1/3 i c
2
. 

 Non relativistic case: kT<<mic
2 
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2
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Note the strong exponential cut, since kT << mic
2
. This cut is due to 

annihilation of particles with their antiparticles. When particles are 

ultrarelativistic (kT » mic
2
), annihilation is balanced by pair production, but for 

kT<<mic
2
 pair production is ineffective and annihilation prevails. 

In a similar way we get  
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The contribution to the total energy density c
2
 (as well as the total pressure p) of the 

non-relativistic species is negligible (due to the exponential cut), so c
2
 can be well 

approximated only by the contribution of relativistic species 
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where g*(T) represents the total, effective number of degrees of freedom of 

relativistic) particles.  

For kT<<1 MeV the only relativistic species are photons and the three neutrinos (if  

m is negligible); since (see the proof below) T=(4/11)
1/3

T , 

g*=2+7/823(4/11)
4/3

=3.36 (2=    , 3=N). For 1 MeV kT 100 MeV we add e
+
 

and e
-
 and T=T , g*=43/4=10.75. Above 300 GeV all particles included in the 

Standard Model are relativistic, and g*=474/4=106.75. At energies higher than  EEW  

~ MWc
2 

~ 100 GeV (Electroweak breacking) g* depends on the adopted theory (for 

instance, in the minimal model of GUT, SU(5), for kT > EGUT ~10
16

GeV , g* ~ 160). 

In supersymmetric models, at each particle corresponds a supersymmetric partner, 

and  g* approximately doubles. If some sparticles have mass smaller than the Higgs 

boson, then there may be some changes in the following graph representing the 

behaviour  of g* as a function of temperature for the Standard Model of particle 

physics. 
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Time scale: In the Radiation Dominated (RD) era the Universe is well approximated 

by an EdS model,  so =3/(32 G t
2
), E ~ 3kT,  =R and 
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Thermodynamic equilibrium (TE): The Universe turns out to be in TE for 

1 MeV  kT  10
-3

 MPl c
2
 ~10

16
GeV (~EGUT) 

The upper limit is set by interactions mediated, at very high energy, by  

ultrarelativistic gauge bosons. The lower limit corresponds to interactions mediated 

by a massive gauge boson, like W
+
, W

-
 and Z

0
 below the scale of electroweak 

symmetry breaking (~ 100 GeV). At a mean particle energy of  ~ 1 MeV  these 

interactions are no more effective, are “frozen out”.  

Neutrinos do no interact any more with matter and radiation: they decouple when the 

mean energy per particle is about 1 MeV.  

Moreover, the mean free path of the particles is much greater than their average 

mutual distance  perfect gas. 

 

Entropy 

In thermodynamic equilibrium, the entropy S in a comoving volume element is 

preserved during the expansion (entropy can increase if processes like particle decay 

or phase transitions happen under condition which do not preserve thermodynamic 

equilibrium).  

Entropy S and the first law of thermodynamics are related by (we use 

d(pV)=pdV+Vdp) 

              
         
                                     

If we consider S=S(V,T)  
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Since entropy is a function of state, its differential form is exact and the integrability 

condition  
   

    
 

   

    
  gives 

 

  
 
           

 
  

 

  
 
 

 

         

  
  

 

  
  

     

  
 

  

  
             

 

 

     

  
 

  

  
 

     

 
               

  

 
 

We can use this result in the previous relation 

                     

and  we get 
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So, up to an additive constant, the entropy S for a comoving volume V=a
3
 (a is the 

scale factor) can be written as 
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This (due to the exponential cut in number density) is dominated by the contribution 

of relativistic particles. For each relativistic species si=(ic
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Note that if  Ti  T  for all relativistic particles, as it is for most of the time in the early 

Universe, then g*=g*S (see the figure above). 

Also note that s is proportional to n; in fact  
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)3(45
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Today (kT 1 MeV) g*S=2+7/8234/11=3.909 and  

nks  04.7  

Above ~ 1 MeV : g*  g*S (Note: g*S depends in general on T  s and n cannot be 

always considered as proportional!) 

Entropy S conservation implies s  a
-3

, and also 

constant33

*  aTg S  

while the Universe expands. 

The physical size of a comoving volume is  a
3
 and, since s  a

-3
, it is also  s

-1
. The 

number N of particles of a species inside a comoving volume (named comoving 

number density), N  na3
, is also equal (actually, proportional) to n/s, so we also 

write Ni  ni/s. If particles are neither created nor destroyed, then Ni  ni/s=const. For 

relativistic particles in TE the comoving number density can be written as 

       
      

  
 
  

  
 
 

 
  

           
 
  

  
 
  

     
      

   
 

  

        
 

where       is equal to 1 for bosons and to ¾ for fermions. 

The baryon number NB (the difference between baryons   and antibaryons   ) in a 

comoving volume is 

s

nn

s

n
N bbB

B


  

As long as the interactions violating  baryon number conservation (if they exist!) are 

very slow, nB/s is conserved. 

However, the baryon-photon ratio , a crucial parameter in primordial (or Big Bang) 

nucleosynthesis, 

s

n
Tgk

n

n B
S

B  )(8.1 *



  

doesn’t stay constant since  g*S  depends on T. But after e
+
 add e

-
 annihilation (at ~ 

0.5 MeV) g*S is constant (=3.909), so   7.04 k nB/s or nB/s can be indifferently 

used. 
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We shall see that primordial nucleosynthesis requires that   510
-10

, so in our 

Universe there are today about 10
9
 photons for each baryon.  Also the entropy per 

baryon, s/nB=7.04 k/  710
10

 k/10, is extremely high (10 /10
-10

) 

The fact that S = const. implies  

1

*
3

1 
 agT S  

If g*S is costant T  a
-1

. The g*S
-1/3

 factor enters the game when a species becomes 

non relativistic, annihilates and disappears (since annihilation is less and less 

balanced by pair creation): its entropy is transferred to photons and to the other 

interacting relativistic particles, so  T decreases more gently.  

If a relativistic particle decuples at time t=tD, when T=TD and a=aD, it doesn’t 

benefits of the entropy exchage due to the annihilation (at T<TD) of the other species. 

After decoupling P 1/a  P=(aD/a)PD and (if the particle is stable) n=(aD/a)
3
nD; 

since P 1/a, n will be given by 


















0

23

32

1
2

a

Pa

kT

c

DDDi

DD

e

dPP

a

ag
n

  

which gives the right dependance on a if T=(aD/a)TD. The distribution function of 

momenta keeps its shape, but with T a
-1

 instead of T g*S
-1/3

a
-1

  which holds for  

particles still coupled. If the particle, for instance a “light” neutrino, becomes 

eventually non relativistic, the shape of the distribution function of its momentum is 

preserved, with T a
-1

. 

This also explains the reason for CMB photons shows a black body spectrum even 

after the last scattering (at zls  1100), when they decouple  from baryons and are no 

more in thermodynamic equilibrium. 

 

Neutrinos 

We have already seen that at kT~E~1Mev, when a=a , neutrinos () decouple from 

other species, and so, while before T=T , after decoupling T =T(a)a /a. However, 

at a slightly lower Energy, at E~0.5Mev (a=ae), electrons and positrons annihilate and 

their entropy goes to photons, but not to the decoupled neutrinos. Entropy is 

conserved (g*S T
 3

a
 3 

= const.) for still coupled particles (e
+
, e

-
 e   for a < ae, only   

for a > ae). We denote with a-, T- and a+, T+ the values just before and 

immediatleyafter electron-positron; we suppose that annihilation occurs 

instantaneously and we have
2
 (a+  ae  a-): 

                                                 
2
 We could also add, both on the left hand side and on the right hand side, the contribution of neutrinos, but this 

contribution is the same immediately before and after annihilation, since neutrinos are decoupled. So we omit their 

contribution. 
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333333

* 2)22
8

7
2(   aTaTaTg S  

 

     From this relation we get the the ratio (see also the following figure)  





T

T

T

T















31

11

4
   

After ae both T  and T scale as 1/a, 

and their ratio stays constant until 

now. So, if T0=2.73 K, T0=1.95 K. 

Actually, the photon temperature does 

not rise abruptly at a=ae, but 

decreases more slowly than 1/a  until 

the annihilation of e 
+
 and e

-  
ends (see 

the dotted line).  

 

 

 

It is now easy to derive the present values of number densities of CMB photons and 

of cosmological neutrinos. 

For today’s CMB the density and the number density are easily derived: 
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For each neutrino family, counting   and  , 
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COSMIC RELICS 

The Universe seems to be neutral both from the point of view of electric charge and 

color charge. So Dark Matter candidates are thought to be indifferent to 

electromagnetic and strong forces. 

It is possible to foresee the cosmological effect produced by weakly interacting 

massive particles (WIMPs) or, viceversa, to see the constraints posed by 

cosmological observations on the properties of such particles. Here we assume that 

these particles interact exactly as neutrinos do, but the term WIMP is also used for 

much weaker, possible interactions beyond the Standard Model of Particle Physics.  

There are two main cases: WIMPs can decouple when they are still relativistic (Hot 

Dark Matter, HDM,         ) or when they are non relativistic (Cold Dark 

Matter, CDM,         ).  

 

g     
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Lee-Weinberg limit
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can form very small structures (remember that        ). 



Marino Mezzetti                                                                            COSMOLOGY I 

 

26 

 

Recombination and Last Scattering 
When the temperature of the Universe drops below kT~13.6 eV (the ionization 

potential of hydrogen in the ground level) protons and electron begin to combine and 

form neutral hydrogen. This is the epoch of the recombination (actually, 

recombination is the name of the radiative process involved; for the Universe “first 

combination” would be more appropriate). But, due to the very large number of 

photons for each baryon (about 10
9
, as we have seen), hydrogen becomes (almost) 

neutral at a lower temperature (kT~ 0.3 eV, T~3000 K)
3
. We neglect recombination of 

He, which takes place earlier.  
 

There are different mechanisms involved in the making of neutral hydrogen. If 

recombination takes place in an isolated cloud of ionized hydrogen (HII cloud), two 

processes are dominant:  direct recombination to the ground state, and the capture of 

an electron to an excited state which then cascades to the ground level. In the first 

case, a Lyman continuum photon (with energy larger than 13.6 eV) is produced, 

while in the second case one of the recombination photons must have an energy 

higher than or equal to that of  Ly-α. If the cloud is optically thin (optical depth 

   ), all recombination photons can escape and do not contribute to further 

ionization.  
 

In the case of cosmological recombination, however, recombination photons will be 

absorbed again because they cannot escape from the Universe. In fact, the direct 

capture of electrons to the ground state does not contribute to the net recombination, 

because the resulting photon is energetic enough to ionize another hydrogen atom 

from its ground state. The normal cascade process is also ineffective, because the 

Lyman series photons produced can excite hydrogen atoms from their ground states, 

so that multiple absorptions lead to re-ionization. Therefore, recombination in the 

early Universe must have proceeded by different means. 
 

That leaves two main processes for the production of neutral, atomic hydrogen. One 

is two-photon decay from the metastable 2s level to the ground state, at the rate Γ2γ ≈ 

8.23 s
-1

 (in this process two photons must be emitted in order to conserve both energy 

and angular momentum, and the energies of the two photons may not be able to 

contribute to ionization). The second is the loss of the Lyman-α resonance photons by 

the cosmological redshift. Two-photon decay turns out to be the dominant process.  

Moreover, since expansion dilutes proton and electrons, at a certain time (redshift) 

recombination stops, is frozen, and a tiny fraction of ionized hydrogen remains. 

We use the following definitions and relations: ionization fraction Xenp/(np+nH), 

nB/n = const. =2.710
-8bh

2
, nB=np+nH=0b/mp, mp proton mass, b=0b(1+z)

3
, 

0b=b0cr, T=T0(1+z). So electron (and proton) density is given by 

 325 11013.1)(/)()()( zhzXmzXnzXzn bepbeBee    

                                                 
3
 For order of magnitude estimates, the Kelvin temperature TK can be linked to energy 

by:               
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The following figure shows the evolution of the ionization fraction versus redshift for 

ΩM=0.3, Ωb=0.04 and h=0.7. 

 

Conventionally recombination corresponds to Xe=0.1. We see in the figure that Xe ~ 

0.1 at a redshift around 1100. The figure also shows that recombination is never 

complete. The recombination process freezes, and a residual ionization remains (at z 

~ 10): 

               
     

   
 

 

on the order of 10
-4

 . 

The dependence on cosmological parameters is due to the balance between the 

recombination rate, proportional to np (equal to ne), and the expansion rate H. So 
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An approximation for      , good for 800 <z <1200 is given by (Jones & Wise, 

1985): 

  75.12

2

212
3

1000
104.2)( 












  z

h

h
zX

b

M
e  

Recombination is also associated to the last scattering of CMB photons, since after 

recombination the Universe becomes finally transparent.  

A useful parameter is the  optical depth: since d = - ne σT c dt ( grows starting 

from us, cosmic time increases toward us), where σT is the Thomson 

scattering cross section (T=6.6510
-25

cm
2
). When we integrate we have 

[                  ] 
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When estimating the optical depth , the dependence on cosmological parameters 

disappears since ne(z)=Xe(z) nB(z) ~ Xe(z) ΩBh
2
, and H0 E(z) ~ ΩM

1/2
 h, so  

25.14

1000
37.0)( 










z
z  

The probability of receiving a photon from the optical depth  is equal to e
-
. The 

probability of receiving a photon from the interval between  and +d corresponds 

to the probability of receiving it from the interval between z and z+dz: 

dz

d
ezgdzzgde


    )()(  

With the above approximation for (z) 
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which has a maximum for z=1067, and conventionally we assume that the last 
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scattering corresponds to this redshift (        ). The following figure shows the 

probability distribution for the last scattering redshift. The 68% probability is 

included in a z ≈ 170  around the maximum, so the last scattering event is not 

instantaneous and does not correspond to a single redshift. This means that the last 

scattered photons have a spread in their temperatures, but this is compensated by the 

higher redshift suffered by photon which decoupled earlier. 

The age of the Universe at the last scattering can be derived, approximately, by using 

a MD – EdS model with ΩM =0.3 and h=0.7, which gives 

       
 

             
   

               

while a better approximation gives about 410
5
 years. 

Probability distribution for the last scattering redshift 

 

BIG BANG NUCLEOSYNTHESIS (BBN) 
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where mn and mp are neutron and proton masses, and  (mn-mp)c
2
=1.293 

MeV. The rate of the interactions exchanging n into p and vice versa is 

(GF = Fermi weak coupling constant) : 

5215)(2 TGskT FMeVpn  

  

Compare this with H=1/2t (EdS in RD era), where 

221

* )(4.2(sec)  MeVkTgt  

(g*  10). np  H for kTD  0.7 MeV , tD  1.5 sec. The neutron to 

proton ratio freezes at 

r0=nn,0/np,0  exp(-1.293/0.7)  0.16. 

Only neutron  decay is possible, with n=885.70.8 sec (about 15 

minutes). 

 

The key process is the formation of deuterium 
2
H, which has a binding 

energy BD = 2.23MeV. Because of the relatively large number of 

photons with respect to baryons, the high energy tail of the distribution 

of photons immediately dissociates the deuterium which is formed, and 

this until the number of dissociating  photons n
diss  

becomes comparable 

with that of baryons, nB . We will have: 


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The density of the dissociating photons is obtained by putting        

in the relation that gives the density of photons, placing BD as the lower 

limit in the integration: 

 
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 , 

a good approximation since E/kT > BD/kT » 1. For 1<10<10, n
diss

/ nB  

1 if kT  0.1 MeV, T10
9
K. (10= / 10

-10
) 

At this time the deuterium is no longer destroyed by photons and quick 

reactions occur leading to the formation 
4
He: this is the era of BBN. The 

universe has an age of about (g* = 3.36 at kT = 0.1 MeV) 

sgt MeVBBN 150)1.0(4.2(sec) 221

*  
 

That is about three minutes. 

Between the freezing, tD  1.5 sec, and tBBN neutrons decay to protons 

and, from r0  0.16, we arrive to 
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After the bottleneck of deuterium, all neutrons that did not decay end up 

embedded in the nuclei of 
4
He. Since it takes two neutrons for each 

4
He nucleus 

and this has atomic weight 4, the abundance in mass YBBN, of  
4
He  is 

 npn

n
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nnn
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The detailed calculation, much more complicate, provides similar values, in 

agreement with the experimental data that suggest Yobs around 0.24-0.25. 

As shown in the following figure, the predicted abundance of  
4
He does not vary 

much with the baryon-to-photon ratio η, because n is long (compared to the age 

of the universe) and neutrons decay slowly. However, YBBN  depends strongly on 

TD , which depends on H, which in turn depends on g* at a temperature of about 1 

MeV: 
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where    is the number of neutrino species. The higher the value of    the higher 

is TD  and so the greater are r0 and YBBN (                 , see the 

lines in the figure). The observational limits on YBBN give       . In the 

80ies, until LEP at CERN measured the decay (width) of Z
0
 and obtained    

           , the best estimate of     was given by BBN. We notice that BBN 

and LEP are sensitive to different kinds of particles: BBN is sensitive to particles 

that were relativistic at kT~1 MeV; the width of Z
0
 is sensitive to neutrinos with 

masses         . So they measure different things.
4
  

 

                                                 

4
 If you are interested in the possibilities offered by BBN to explore physics beyond the 

Standard Model, look at the Particle Data Group site (http://pdg.lbl.gov/), and in particular the 

review on BBN (http://pdg.lbl.gov/2014/reviews/rpp2014-rev-bbang-nucleosynthesis.pdf). 
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So, for the production of Carbon, Nitrogen Oxigen and so on, we have to wait for 

the formation and evolution of stars. 

 

Concordance, Dark Matter, and the CMB 

We now use the observed light element abundances to test the theory. We first 

consider standard BBN, which is based on Standard Model physics alone, so Nν = 

3 and the only free parameter is the baryon-to-photon ratio η. Thus, any 

abundance measurement determines η, while additional measurements 

overconstrain the theory and thereby provide a consistency check. Also 

observations of the CMB constrain the value of η. 

First we note that the overlap in the η ranges spanned by the larger boxes (which 

include systematic errors) in the Figure above indicates overall concordance. More 

quantitatively, when we account for theoretical uncertainties, as well as the 

statistical and systematic errors in observations, there is acceptable agreement 

among the abundances when 

5 ≤ η10 ≤ 6.5 (95% CL).  

However, the agreement is much less satisfactory if we use only the quoted 

statistical errors in the observations. In particular, as seen in the Figure, D and 
4
He 

are consistent with each other, but favor a value of η which is higher than that 

indicated by the 
7
Li abundance determined in stars. Actually, there is a possible 

problem with Lithium, which maybe requires new physics. 

Even so, the overall concordance is remarkable: using well-established 

microphysics we have extrapolated back to an age of ∼ 1 s to correctly predict 

light element abundances spanning 9 orders of magnitude. This is a major success 

for the standard cosmology, and inspires confidence in extrapolation back to still 

earlier times. This concordance provides a measure of the baryon content 

0.019 ≤  Ωbh
2
 ≤ 0.024 (95% CL),  

a result that plays a key role in our understanding of the matter budget of the 

Universe.  
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Primordial Baryosynthesis 

 

  

 

The asymmetry could be linked to the breaking of GUTs or of the electro-weak 

interaction. The question is open and, very likely, requires new physics. 


