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INFLATION 
 

We have already mentioned two problems affecting the Hot Big Bang model: the 

flatness problem and the horizon problem. To them one can add the magnetic 

monopoles problem (monopoles are zero-dimensional topological defects, that are 

produced at the time of the phase transition corresponding to the breaking of GUTs; 

theirnumber density, coupled with their very high mass, would produce a value of  

clearly unacceptable). 

The paradigm of inflation, which solves these problems, has been proposed by Alan 

Guth in 1981. It assumes that there has been an accelerated expansion phase between 

the times ti and tf (with tPl < t i < tf  <<teq), produced by an equation of state that 

mimics that of a cosmological constant: 
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(H ~ constant).  The scale factor grows as in a de Sitter model (which has 0 and 

density of matter negligible), instead of growing as 𝑎(𝑡)~𝑡1 2 , like an EdS model in 

the RD era. 

The exponential growth, if sufficiently prolonged, produces a growth of the particle 

horizon dH sufficient to solve the horizon problem;  converges towards unity (as in 

models dominated by the cosmological constant), resolving the flatness problem 

(remember also that the curvature of the spatial section scale as  𝑎(𝑡)~𝑡−2, and the 

exponential growth of a(t) force this curvature towards zero). The problem of 

monopoles is resolved through a strong dilutionof their number density. 

If inflation occurs around the time of the breaking of grand unification (GUT), the 

above problems are solved provided  
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where N is named number of e-foldings. 

 

Lagrangian formulation of Field Equations 
 

As we have seen, to have a phase of inflation is necessary that the universe possesses, 

for a certain time interval, an equation of state of the type p  - c
2
.  

This can be achieved in a natural way by means of a scalar field present in the early 

stages of the early universe (a scalar field has also the property of being isotropic). To 

understand the mechanism it is necessary to introduce some concepts used in 

Quantum Field Theory. 
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In Classical Mechanics the equations of motion of a dynamical system can be derived 

from a Lagrangian function L 

)()(),( iiii qVqTqqL    

where qi are the generalized coordinates, T is the kinetic energy and V is the potential 

energy. The action S, involved in the motion of the system from one configuration at 

time t1 to another at the time t2, is given by 
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and, according to the principle of least action, the evolution of the system between 

the two configurations is that which corresponds to the minimum value of S. This 

condition leads to the Euler-Lagrange equations: 
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These relations describe the motion of particles, that is, of localized objects. A field 

instead occupies a certain region of space, and the Field Theory wants to calculate 

one (or more) functions of position and time:  =  (x, y, z, t) (eg .: temperature, 

electric potential, the three components of the magnetic field in a room). While, in the 

mechanics of particles, the Lagrangian L is a function of the coordinates qi and of 

their derivatives, Field Theory works with a Lagrangian density L which is a 

function of the field  and of its derivatives with respect to x, y, z, and t. To keep the 

relativistic covariance of physics more apparent, we use space-time coordinates x0 ct 

and x1, x2, x3 x, y, z, so that the Lagrangian is the volume integral of L  

 xdL 3L  
and the action is 

xd
c

S 41
 L

 
(the factor 1/c, inessential, serves to keep the dimensions of the action). 

In relativistic field theory qi is replaced by the field , and the index i is replaced by 

space-time coordinates x
α
. Since each time derivative can be associated to a similar 

term involving a gradient, we use all the covariant derivatives 𝜕𝜙 𝜕𝑥𝛼 = 𝜕𝛼𝜙  and 

Euler-Lagrange equations become 
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Actually this writing is correct in a Euclidean space and in orthogonal coordinates; to 

take account of a more general choice of coordinates (e.g. co-moving spatial 

coordinates) the volume element d
4
x is replaced with g d

4
x  where g is the 

determinant of the metric g. So the Euler-Lagrange equation becomes 
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In a flat, static Minkowski space, the metric is g      diag(1,-1,-1,-1). Then 
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If we use co.moving coordinates (r =a x) in a flat, expanding space: g  diag(1, -a
2
, 

-a
2
, -a

2
) and g = a

3
. We have then ( x  is the gradient referred to the co-moving 

coordinate x) 
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Let’s consider, for instance, the following Lagrangian (density): 
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where  is a real, single scalar field. In this case, i.e. Minkowski space, ( g =1), 
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and hence Euler-Lagrange formula requires 
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which is the Klein-Gordon equation, describing (in Quantum Filed Theory) a particle 

of spin 0 and mass m. 

In analogy with  L = T - V, in the Lagrangian written above the first term,  

½()(

), is named kinetic energy term, while the second term, in this case 

quadratic in  (the term corresponding to the mass), is the potential energy term. For 

a scalar field we will write the Lagrangian in the general form 

   )(
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where V() is a suitable potential (V()=1/2   2 
in Klein-Gordon case). If L , written 

as above, depends on x only through   and its derivatives  , the following 

quantity (energy-momentum tensor) is preserved (i.e., has four-divergence equal to 

zero): 

L  gT   

In the case of a perfect fluid we have seen that the energy-momentum tensor has the 

form 
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where P is the pressure, c
2
 the Energy density and u


 is the four-velocity (u
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
=(1,0,0,0). In a flat space, by using co-

moving coordiantes, the comparison of the two relations gives: 
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(see the following scanned page for the proof). 

In the case in which the field  is spatially homogeneous (from which ∇ xϕ = 0; even 

if ∇ xϕ is different from zero the term containing ∇ xϕ becomes rapidly negligible due 

to the a
-2

 factor 
1
) and the term 1/2c

2
 (/t)

2
 is negligible compared to the potential 

V(), we have
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that is, an equation of state that mimics that which corresponds to the cosmological 

constant! 

                                                 
1
 Actually there are small fluctuations on the scale of the Hubble radius, which are the 

"seeds" of the large-scale structure of the universe 
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If  :  is negligible with respect to V() 
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and the term of potential energy corresponds to an effective cosmological constant. 
 

Phase transitions and Symmetry Breaking 

In the history of the early universe one or more phase transitions have occurred. At 

high energies, according to the unified theory of the electroweak interaction, the 

weak and electromagnetic interactions were manifestations of a single force. Then, 

due to the progressive cooling produced by cosmic expansion, at a certain time 

(around a critical temperature TEW10
15

K,  EEW10
2
GeV) the universe has undergone 

a phase transition, after which the two interactions separated. 

The Grand Unified Theories (GUTs), which attempt to unify electromagnetism and 

weak and strong interactions, in turn, require a phase transition in the universe at 

critical temperature TGUT10
28

-10
29

K, EGUT~10
15

-10
16

 GeV,  above which there was 

symmetry between the three interactions. 

Let’s consider an analogy with the magnetization of a ferromagnetic material. Above 

the Curie temperature TC the magnetic moments linked to the spins of atoms are 

randomly oriented and rapidly fluctuating, there is rotational symmetry around each 

point of the material and the expectation value of (the mean value) of the spin is null 

(<S> = 0). However, falling the temperature below TC, alignemet of spins becomes 

energetically more favorable, and there is a phase transition to a magnetized state, 

with <S> 0 in a certain direction î. The original symmetry is lost, broken, because 

the different domains that begin to form, independently of each other, have spins with 

different directions. In the end, when the whole mass has turn into domains, defects 

form at the borders of the different regions. 

In a similar way, while above TGUT there was symmetry between the three 

interactions, below TGUT it is broken. Going back to the case of the ferromagnetic 

material, the way in which the rotational symmetry is broken in the different portions 

of the mass can be measured by the growth of the spin S and the orientation of the  

different domains. Similarly, the way in which the symmetry between the three 

interactions breaks down can be characterized by the acquiring of non-null values of  

parameters named Higgs fields; this phenomenon is called spontaneous symmetry 

breaking (SSB). The symmetry is present when the Higgs fields have zero 

expectation value; it is spontaneously broken when at least one of the boson fields 

acquires an expectation value other than zero. As in the case of ferromagnetic 

domains, defects remain at the boundaries of the different regions in which the 

symmetry is broken in different ways, assuming different sets of values for the Higgs 

fields. These defects are called topological defects, and may be two-dimensional 

(domain walls), uni-dimensional (cosmic strings) and zero-dimensional (magnetic 
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monopoles). During the phase transition that leads to the breaking of the symmetry a 

period of exponential expansion may also occur: the inflation. Let's see how. 

For simplicity we consider a single Higgs field, the scalar field . We consider again 

a Lagrangian  

   )(
2

1
 

 VL
 

The equation of motion, a generalization of Klein-Gordon (KG) equation, becomes
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Free particle states are the solution of this equation with only a quadratic term in  in 

the potential V(), like in KG case; the coefficient of this term specifies the mass m of 

the particle: V()=1/2   2
 ,  =m c/ħ. The “vacuum” state, which by definition is 

the state in which there are no particles, occurs when V/0; in the KG case this 

occurs at 0.  

Higher-order terms in V() correspond to the interactions between these particles. 

The equation written above admits the solution constant at  any value of  for 

which V/0. The vacuum (no particles) state will therefore be one of those in 

which the expectation value of  assumes one of these constant values. There are 

several possibilities: 

 It may be that the V/0 has only one solution. In order for the energy to be 

bounded below, this should correspond to a minimum of V() and also 

corresponds to the unique vacuum of the theory 

 On the other hand there may be multiple solutions of  V/0. The maxima of 

the  potential are unstable, but all the minima are possible vacua of the theory. 

If there is more than a minimum, the lowest would be the ultimate vacuum, the 

"true vacuum" of the universe.  

 However, the universe may be, at a certain moment, in a local minimum with a 

higher value of the potential; it would be in a "false vacuum", with the 

possibility, for instance by tunnel effect, to move to the true vacuum.  

 

2 

Potential shape for “old 

inflation” (see below).  

The Inflation phase, for 

this potential, corresponds 

to the trapping of the field 

in the well at ϕ=0. 
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 In some cases there may be several such minima that have the same value of the 

potential, and the vacuum is degenerate. 

 
This Figure corresponds to a potential of the form 

)0(
4

1

2

1
)( 422 VV  

 

with μ and λ real constants (λ > 0 if the potential is bounded from below). The first 

term on the r.h.s. looks like a mass term and the second like an interaction, but the 

sign of the mass term is wrong, the mass should be imaginary! However, ϕ=0 is a 

maximum for the potential, and we have two, degenerate, minima corresponding to 

possible “vacua” or groud states for 
 

v   

Peturbation theory involves an expansion of L in ϕ around a minimum of the 

potential. We arbitrarily choose one of the two minima, for instance +v, and define a 

new field 𝜂 ≡ 𝜙 − 𝑣. We write the potential as a function of the new field 𝜂 and now 

the Lagrangian is 

ℒ =
1

2
(∂αη) ∂αη −  μ2η2 + terms cubic and higher in η + const.   

which possess the right sign of the mass term and complicated interactions. If we 

chose the other minimum the mass term remains the same (only the 𝜂3 term changes 

his sign).  

This is an example with only two possible 

values for the true vacuum, but more 

general potentials can lead to an infinite 

number of possible values in which the 

true vacuum may end. Here we see a two-

dimensional (complex) case for the 

potential [we substitute 𝜙𝜙∗ to 𝜙2 and 

(𝜙𝜙∗)2 to 𝜙4, where 𝜙∗ is the complex 

conjugate of 𝜙]. True possible vacua 
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correspond to points belonging to the circle of the minimum values of V(). 

The random choice of one of the minima generates a spontaneous symmetry 

breaking (SSB),  similar to the formation of a domain with a particular orientation of 

the spins of its atoms in a portion of a ferromagnetic material that cools below TC. 

The potential written above has this form, with a negative coefficient for 2
, at a 

temperature T = 0. But in the early universe, when the temperature is very high, to 

take into account this effect, corrections to V() produce an effective potential with 

additional terms proportional to 2 
T

2
. In this way the coefficient of 2

 is positive at a 

temperature high enough, the minimum of the potential is at  = 0, and the symmetry 

is unbroken. 

During the cooling of an expanding universe, according to details that depend on the 

particular shape of V (), the spontaneous symmetry breaking will take place: 

 Through a phase transition of first order, in which the field, initially in  = 0, 

crosses, by tunnel effect, a potential barrier within which it remains trapped for a 

certain time; inflation, with /t  0, occurs during this trapping phase. This is 

the model initially proposed by Guth, named old inflation, which presents, 

however, some problems. In fact, a phase transition of first order occurs through 

the formation of bubbles of the new phase in the middle of the old phase; these 

bubbles expand, collide and coalesce until the new phase completely replaces the 

old one. 

 

But in the model of Guth, to have a phase inflationary sufficiently long, the 

probability of forming bubbles is low and, since the false vacuum expands 

exponentially, the bubbles can not coalesce and the transition to the true vacuum 

does not occur. 

 Through a phase transition of the second order, in which the field evolves 

smoothly from one phase to another. This is the model of new inflation, proposed 

by Linde, Albrecht and Steinhardt in 1982, in which the field evolves very slowly 

(slow-roll) from the condition of false vacuum at  = 0 to the true vacuum. Again, 

if the evolution from   = 0 takes place slowly and V ()  V (0) for a long enough 

time before falling into the true vacuum, we have a phase of inflation (we will see, 

later, what are the conditions for this to happen). 
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Orders of magnitude for Inflation 
 

The expansion in the Early Universe, if we neglect the curvature (which, however, 

tends rapidly towards zero due to the enormous growth of the scale factor), will be 

given by the equation 
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and the energy density is given by 
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Where V() corresponds to the energy density of the field  that, at high temperature, 

has its minimum in  = 0.  

Until ρc
2
 is dominated by ρRc

2
, the universe behaves as in the model of EdS 

dominated by radiation, with a(t) ~ t
1/2

. But while ρRc
2
 scale as 1/a

4
, ρΛc

2
 remains 

constant. At a certain time ti, ρRc
2 

~ ρΛc
2
, and, from that moment, the expansion 

becomes dominated by an "effective" cosmological constant Λeff, as in the 

exponentially expanding de Sitter model: 

 

slow-roll 

V() 

oscillations 

and 

reheating 

t 

V(0) 

inflation 
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where ai  is the scale factor at  ti. At the equality time, at T=T, 
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where kT15 is the energy scale in units of 10
15

GeV. To this energy density 

corresponds  an "effective" cosmological constant 
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If we compare this value (GUT) for  kT15= 1, with that of the cosmological constant 

today (0  10
-56

 cm
-2

) we get a huge ratio (fine-tuning?): 
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The Hubble constant, during the phase in which the system is trapped in the false 

vacuum and the expansion occurs exponentially, is 

12

15

3626 )(106.2)(106.2
3



 


 skTkTcH GeV

 

If we take  kT15= 1 , and we want that Htf  60 to solve the horizon and flatness 

problems, then we have that 

s
H

t f

35102
60 

 

as the epoch of the end of inflation, while the start, using a model of EdS dominated 

by radiation, is given by 
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s
H

ti

37102
2

1 

 

These are order of magnitude estimates and depend on the value of kT adopted. 

 

Dynamics of the Inflaton 

 
Let us derive the evolution equation of inflaton, i.e. the scalar field , starting from 

the Lagrangian density: 

xdg
c

S 41
  L 

 

For an expanding universe, spatially flat, in orthogonal coordinates,  −𝑔 = 𝑎3 and 

the Euler-Lagrange equations are applied to the quantity a
3L: 
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3
3

3  
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a
a L

 

If the inflaton is solely dependent on time, and not on the spatial coordinates, only 0 

will be different from zero and 
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and the Euler-Lagrange equations give: 
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Putting together and simplifying we get ( Haa / ) 
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03 2 



d

dV
cH 

 

which represents the evolution of the inflaton. 

This equation, if we refer to the typical potential of new inflation, has two different 

regimes, one called "slow roll" and one during which rapid oscillations around the 

minimum develop. Let's look at them in more detail. 

a) Slow-roll regime: is this phase there is a slow "rolling" of the non-accelerated  

field  which corresponds to the phase of inflation. In this regime the term 𝜙  is 

negligible and the equation of motion reduces to 




d

dV
cH 23 

 

that is, the “friction” due to the expansion is dynamically balanced by the 

acceleration due to the slope of the potential. 

By using the derivative of the above relation, recalling that H is essentially constant 

during inflation, and naming  V  the d
2
V/d2

, the condition |𝜙 | ≪ |3𝐻𝜙 | gives 

4222

22 24

3

899
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3

"

c
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c
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cc

H
VH

H

Vc 



 


 

  1
"

24
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
V

V

G

c


  

Another crucial condition to have 𝑝 = −𝜌𝑐2 is that 𝜙 2/2𝑐2 ≪ 𝑉(𝜙), which leads to 

2

2222

2
2

3

8
9292'2

3

'

c

GV
VHVVcVc

H

Vc 









 

  1
'

48

24











V

V

G

c


  

The two constraints on the potential,  𝜂 ≪ 1, 𝜀 ≪ 1 are the slow-roll conditions. 

b) Fast oscillations: At the end of the inflation phase, the potential "falls" in the true 

vacuum and the inflaton oscillates rapidly around the minimum. If nothing more 

happened, we would have oscillations undergoing redshift as time goes on, in a 

universe that has already cooled dramatically during the inflationary adiabatic 

expansion. In order that the thermal history of the universe evolves as suggested by 

the evidence (e.g. BBN) it is required that the energy of the false vacuum is converted 

into matter and radiation with a certain efficiency. This process is called reheating. 

We have already noted that inflation rapidly diluted magnetic monopoles because the 

energy density of the scalar field remains constant, while the density of monopoles 
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decreases as 1/a
3
 (this does not mean that they disappeared completely, one day they 

will return within the horizon) . However, in order not to be recreated by reheating, it 

is necessary that this does not bring again the temperature of the universe to values 

able to remake them. 

The number of e-foldings: It is immediate to calculate the number N of e-foldings. 

We start from 

 
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dtHaddtH
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
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
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8
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22

2 
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 
  

f

i

d
V

V

c

G









'

8
4

N . 

Other models of inflation 
In the model of inflation that we have described, a spontaneous breaking of the 

symmetry occurs, but it is possible to achieve inflation even without SSB, as in the 

case of the so-called chaotic inflation proposed by Linde (1983), in which the 

potential V() is simply 

  4 V  

and the potential has a minimum at  = 0. The phase of inflation takes place if, within 

the horizon, the field, due to quantum fluctuations, assumes a value different from 

zero in a region of the universe and then returns toward the minimum. This is more 

likely to happen at the end of Planck era, rather than at the time of the breaking of 

great unification. 

To solve the problems of the standard model it is not necessary a stage with 

exponential expansion of the scale factor; it is sufficient that 

  1 ptta p  

(power-law inflation) The required potential has the shape 

   eV   

In the above discussions we have assumed that space is flat, homogeneous and 

isotropic. What happens if it is not the case? It can be seen (see for example chap. 8, 

paragraph 6, in "The Early Universe" Kolb and Turner) that, unless the initial space 

curvature is so high to force the universe to recollapse before inflation, this phase 

produces, for a wide class of models, huge regions uniform and flat, which exceed in 
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size the current Hubble radius, and then solve the problems of the standard model. 

Inhomogeneity and/or anisotropy are, however, only delayed and will eventually 

reappear. 

Cosmological constant and Dark Energy 

How can we interpret today's cosmological constant? In Einstein's equations (and 

those of Friedmann), if we remove all matter and radiation, the cosmological constant 

is the only source of the field:  Λ corresponds to the density of the vacuum. 

But, according to Quantum Field Theory, the vacuum is not the nothingness of 

metaphysics, but the ground state of minimum energy, with no particles, of the field 

itself. We have seen that the cosmological constant behaves as a perfect fluid with 

ρΛc
2
=εΛ=Λc

4
/8πG and pΛ=-εΛ=-ρΛc

2
, and the energy-momentum tensor is 

diagonal 
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


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


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Moreover, it must be expected that the values of εΛ and pΛ, that define the state of 

vacuum, are the same in any, not accelerated, reference frame, so they have to be 

relativistic invariants. 

If, for example, we make a Lorentz transformation with velocity v=βc [γ
2
=1/(1-β

2
)] 

along the axis x
1
, T

αβ
 changes according to the rule 

 

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and T
γδ

 is diagonal, as above. We get (see the following scanned page for the proof): 
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and all the other terms of T'
αβ

 are null. In order that ε'Λ = εΛ, p'Λ = pΛ and T'
αβ

 is 

diagonal pΛ =-εΛ =-ρΛc
2 

is required. Thus we see that  the "false" vacuum of inflation, 

and the "true" void share a similar equation of state. 

We can also consider the vacuum as a "substance" with given εΛ and pΛ, in the sense 

that the relation dL = -dV = -pdV (since dQ = 0) is satisfied. Indeed dU = d (εΛV) = 

εΛdV = - pΛdV if pΛ = -εΛ. 

But can we estimate the expected value for εΛ? (Note that in the following pages 

c=1). 
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This is the so-called cosmological constant problem from the point of view of Field 

Theory. There is a second problem linked to the coincidence between matter-energy 

density and cosmological constant: why do they are comparable today? 

Many attempts have been done to find a solution to these problems. 

The discovery of SUSY led to the hope that, since bosons and fermions (of identical 

mass) contribute equally but with opposite sign to the vacuum expectation value, the 

cosmological constant should be zero. But SUSY is today broken, so Λ could be zero 

only in the early universe. Attempts has been done to produce a (almost) vanishing 

cosmological constant also with broken SUSY. 

Anthropic explanations have been proposed. In several cosmological theories the 

observed big bang is just one member of an ensemble. The ensemble may consist of 

different expanding regions at different times and locations in the same spacetime, or 

of different terms in the wave function of the universe. If the vacuum energy density 

ρV varies among the different members of this ensemble, then the value observed by 

any species of astronomers will be conditioned by the necessity that this value of ρV 

should be suitable for the evolution of intelligent life. 

The anthropic bound on a positive vacuum energy density is set by the requirement 

that ρV should not be so large as to prevent the formation of galaxies (the accelerated 

expansion stops the growing of the amplitude of density fluctuations). A negative 

value for the cosmological constant, as we have seen, acts as an additional self-

gravity and forces the recollapse of the universe; if this recollapse happens too early, 

no intelligent life can develop.  

 



Marino Mezzetti                                                                            COSMOLOGY I 

 

19 

 

Dynamical models of Dark Energy 

 
Many ideas have been proposed to solve the problem of Dark Energy (if you are 

interested in this subject you can refer to the book “DARK ENERGY, Theory and 

Observations” by Luca Amendola and Shinji Tsujikawa, 2010, Cambridge University 

Press).  

There are basically two approaches for the construction of dark energy models. The 

first approach is based on “modified matter models” in which the energy-momentum 

tensor Tµν on the r.h.s. of the Einstein equations contains an exotic matter source with 

a negative pressure. The second approach is based on “modified gravity models” in 

which the Einstein tensor Gµν on the l.h.s. of the Einstein equations is modified. 

Here  we mention the so-called quintessence
2
 model as one of the representative 

modified matter models. 

Quintessence is a canonical scalar, uniform field Q with a potential V(Q) responsible 

for the late-time cosmic acceleration. Unlike the cosmological constant, the equation 

of state of quintessence dynamically changes with time: 𝑝𝑄 = 𝑤𝑄𝜌𝑄𝑐2 with 

𝜌𝑄𝑐2 =
𝑄 2

2𝑐2
+ 𝑉 𝑄  

𝑝𝑄 =
𝑄 2

2𝑐2
− 𝑉 𝑄  

𝑤𝑄 =

𝑄 2

2𝑐2 − 𝑉 𝑄 

𝑄 2

2𝑐2 + 𝑉 𝑄 

 

where 𝑤𝑄  can be in the range from -1 to +1. Here we can use relations similar to 

those used when working on inflation. We assume a flat, k=0, universe. The 

evolution of the field and the dynamics of the universe  are given by the already 

known relations 

 
Peebles and Ratra proposed a potential like 

                                                 
2
 According to ancient Greek science, the quintessence (from the Latin “fifth element”) denotes a 

fifth cosmic element after earth, fire, water, and air. 
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and assumed that at high redshift the density of the field is “subdominant” with 

respect to that of matter/radiation, in order to preserve the BBN. We assume that the 

scale factor grows as 

𝑎(𝑡) ∝ 𝑡𝑞  

 

 

 

the solution is 

 doesn’t depend on q !!! 

The equation of the field is 
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In any case, the first thing to understand is if the vacuum energy density is constant or 

varies over time. To do that, people uses all the available sets of cosmological 

observations to fit, for instance, a linear dependence on scale of the equation of state 

 w(a)=w0 + wa (1 – a/a0) 

The results are not conclusive, and a cosmological constant is still consistent with the 

data (plot taken from Planck satellite 2015 results).  

 

 

 

 

 

 

 

 

 

Since, in EdS, 𝜌 ∝ 1/𝑡2, both for matter and radiation 

α=0, V(Q)=const., corresponds to the cosmological constant, 𝜌𝑄 ∝ 𝑡0. 

For α>0 the scalar field becomes dominant with respect to matter, even if it was 

negligible at high redshift.  
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SHORT COSMIC HISTORY 

Era t (sec) E T (K)
3
 Events 

Planck 10
-44

 10
19

GeV 10
32

 Quantum Gravity 

GUT 
10

-38
 

10
-36

 

10
16

GeV 

10
15

GeV 

10
29

 

10
28 

GUT’s SSB 

Inflation? 

Baryogenesis? 

Electroweak 10
-10

 10
2
GeV 10

15
 Electroweak SSB 

Adronic 10
-4

 200 MeV 10
12 

 Quark-adrons transition 

Leptonic 
0.7 1 MeV 10

10 
Decoupling of e 

5 0.5 MeV 510
9 Annichilation  e

+
e

- 

BBN 2-3 min 0.1 MeV 10
9 

BBN:  
4
He, 

3
He, D, 

7
Li 

Radiation-Matter 

Equality 
610

4
 yr 2 – 3 eV (2 – 3)10

4  Matter-dominated era begins  

Recombination 410
5
 yr 0.3 eV 3000 

The universo becomes neutral 

and transparent 

Void 10 Gyr 10
-3

 eV 3.6 Void-dominated era begins 

Today 13.7 Gyr 310
-4 

eV 2.73  

yr sidereal year (1900) 3.155814998410
7 

sec 

ly light year 9.460510
17 

cm 

a.u. astronomical unit 1.49598510
13

 cm 

pc parsec 3.085610
18

 cm 

H0 Hubble constant  3.24110
-18 

h sec
-1 

1/H0 Hubble time 3.08610
17 

h
-1

 sec 

M


 solar mass 1.98910
33 

g 

R


 solar radius 6.959810
7
 cm 

L


 solar luminosity 3.9010
33

 erg sec 

M Earth mass 5.97710
27 

g 

R equatorial Earth radius 6.3781710
3
 km 

 

                                                 
3
 We use :   𝑇𝐾~1013𝐸𝐺𝑒𝑉  

 


