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shows that the variance of the matter density field on scales of 8h−1Mpc is about 0.7–0.9 (e.g.
Van Waerbeke et al., 2001), slightly lower than that of the distribution of bright galaxies.

Since the matter distribution around a given galaxy or cluster will cause a distortion of its
background galaxies, weak lensing can also be used to probe the matter distributions around
galaxies and clusters. In the case of clusters, one can often detect a sufficient number of back-
ground galaxies to reliably measure the shear induced by its gravitational potential. Weak lensing
therefore offers a means of measuring the total gravitational mass of an individual (massive) clus-
ter. In the case of individual galaxies, however, one typically has only a few background galaxies
available. Consequently, the weak lensing signal is far too weak to detect around individual
galaxies. However, by stacking the images of many foreground galaxies (for example, according
to their luminosity), one obtains sufficient signal-to-noise to measure the shear, which reflects the
average mass distribution around the stacked galaxies. This technique is called galaxy–galaxy
lensing, and has been used to demonstrate that galaxies are surrounded by extended dark matter
halos with masses 10–100 times more massive than the galaxies themselves (e.g. Mandelbaum
et al., 2006b).

2.8 The Intergalactic Medium

The intergalactic medium (IGM) is the medium that permeates the space in between galaxies. In
the framework laid out in Chapter 1, galaxies form by the gravitational aggregation of gas in a
medium which was originally quite homogeneous. In this scenario, the study of the IGM is an
inseparable part of galaxy formation, because it provides us with the properties of the gas from
which galaxies form.

The properties of the IGM can be probed observationally by its emission and by its absorp-
tion of the light from background sources. If the medium is sufficiently dense and hot, it can
be observed in X-ray emission, as is the case for the intracluster medium described in §2.5.1.
However, in general the density of the IGM is too low to produce detectable emission, and its
properties have to be determined from absorption studies.

2.8.1 The Gunn–Peterson Test

Much information about the IGM has been obtained through its absorption of light from distant
quasars. Quasars are not only bright, so that they can be observed out to large distances, but also
have well-behaved continua, against which absorption can be analyzed relatively easily. One of
the most important tests of the presence of intergalactic neutral hydrogen was proposed by Gunn
& Peterson (1965). The Gunn–Peterson test makes use of the fact that the Lyα absorption of
neutral hydrogen at λα = 1216Å has a very large cross-section. When the ultraviolet continuum
of a distant quasar (assumed to have redshift zQ) is shifted to 1216Å at some redshift z < zQ,
the radiation would be absorbed at this redshift if there were even a small amount of neutral
hydrogen. Thus, if the Universe were filled with a diffuse distribution of neutral hydrogen, pho-
tons bluer than Lyα would be significantly absorbed, causing a significant decrement of flux in
the observed quasar spectrum at wavelengths shorter than (1 + zQ)λα . Using the hydrogen Lyα
cross-section and the definition of optical depth (see Chapter 16 for details), one obtains that the
proper number density of HI atoms obeys

nHI(z) ∼ 2.42×10−11τ(z)hH(z)/H0 cm−3, (2.47)

where H(z) is Hubble’s constant at redshift z, and τ(z) is the absorption optical depth out to
z that can be determined from the flux decrements in quasar spectra. Observations show that
the Lyα absorption optical depth is much smaller than unity out to z ∼< 6. The implied density
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of neutral hydrogen in the diffuse IGM is thus much lower than the mean gas density in the
Universe (which is about 10−7 cm−3). This suggests that the IGM must be highly ionized at
redshifts z ∼< 6.

As we will show in Chapter 3, the IGM is expected to be highly neutral after recombina-
tion, which occurs at a redshift z ∼ 1000. Therefore, the fact that the IGM is highly ionized at
z ∼ 6 indicates that the Universe must have undergone some phase transition, from being largely
neutral to being highly ionized, a process called re-ionization. It is generally believed that photo-
ionization due to energetic photons (with energies above the Lyman limit) are responsible for the
re-ionization. This requires the presence of effective emitters of UV photons at high redshifts.
Possible candidates include quasars, star-forming galaxies and the first generation of stars. But
to this date the actual ionizing sources have not yet been identified, nor is it clear at what red-
shift re-ionization occurred. The highest redshift quasars discovered to date, which are close to
z = 6.5, show almost no detectable flux at wavelengths shorter than (1+ z)λα (Fan et al., 2006).
Although this seems to suggest that the mass density of neutral hydrogen increases rapidly at
around this redshift, it is not straightforward to convert such flux decrements into an absorp-
tion optical depth or a neutral hydrogen fraction, mainly because any τ 	 1 can result in an
almost complete absorption of the flux. Therefore it is currently still unclear whether the Uni-
verse became (re-)ionized at a redshift just above 6 or at a significantly higher redshift. At the
time of writing, several facilities are being constructed that will attempt to detect 21cm line emis-
sion from neutral hydrogen at high redshifts. It is anticipated that these experiments will shed
important light on the detailed re-ionization history of the Universe, as we discuss in some detail
in §16.3.4.

2.8.2 Quasar Absorption Line Systems

Although the flux blueward of (1+zQ)λα is not entirely absorbed, quasar spectra typically reveal
a large number of absorption lines in this wavelength range (see Fig. 2.39). These absorption lines
are believed to be produced by intergalactic clouds that happen to lie along the line-of-sight from
the observer to the quasar, and can be used to probe the properties of the IGM. Quasar absorption
line systems are grouped into several categories:

• Lyα forest: These are narrow lines produced by HI Lyα absorption. They are numerous and
appear as a ‘forest’ of lines blueward of the Lyα emission line of a quasar.

• Lyman-limit systems (LLS): These are systems with HI column densities NHI ∼> 1017 cm−2,
at which the absorbing clouds are optically thick to the Lyman-limit photons (912Å). These
systems appear as continuum breaks in quasar spectra at the redshifted wavelength (1+ za)×
912Å, where za is the redshift of the absorber.

• Damped Lyα systems (DLAs): These systems are produced by HI Lyα absorption of gas
clouds with HI column densities, NHI ∼> 2 × 1020 cm−2. Because the Lyα absorption opti-
cal depth at such column densities is so large, the quasar continuum photons are completely
absorbed near the line center and the line profile is dominated by the damping wing due to the
natural (Lorentz) broadening of the absorption line. DLAs with column densities in the range
1019 cm−2 < NHI < 2×1020 cm−2 also exhibit damping wings, and are sometimes called sub-
DLAs (Péroux et al., 2002). They differ from the largely neutral DLAs in that they are still
significantly ionized.

• Metal absorption line systems: In addition to the hydrogen absorption line systems listed
above, QSO spectra also frequently show absorption lines due to metals. The best-known
examples are MgII systems and CIV systems, which are caused by the strong resonance-
line doublets MgIIλλ2796,2800 and CIVλλ1548,1550, respectively. Note that both doublets
have rest-frame wavelengths longer than λLyα = 1216Å. Consequently, they can appear on the
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Fig. 2.39. The spectrum of a QSO that reveals a large number of absorption lines due to the IGM. The
strongest peak at 5473Å is the emission line due to Lyα at a rest-frame wavelength of 1216Å. The numerous
absorption lines at λ < 5473Å make up the Lyα forest which is due to Lyα absorption of neutral hydrogen
clouds between the QSO and the Earth. The break at 4150Å is due to a Lyman-limit cloud which is optically
thick at the hydrogen Lyman edge (rest-frame wavelength of 912Å). The relatively sparse lines to the
right of the Lyα emission line are due to absorption by metal atoms associated with the absorbing clouds.
[Adapted from Songaila (1998) by permission of AAS]

red side of the Lyα emission line of the QSO, which makes them easily identifiable because
of the absence of confusion from the Lyα forest.

Note that a single absorber may be detected as more than one absorption system. For example,
an absorber at za may be detected as a HI Lyα line at λ = (1+ za)×1216Å, as a CIV system at
λ = (1+ za)×1548Å, if it has a sufficiently large abundance of CIV ions, and as a Lyman-limit
system at λ = (1+ za)×912Å, if its HI column density is larger than ∼ 1017 cm−2.

In addition to the most common absorption systems listed above, other line systems are also
frequently identified in quasar spectra. These include low ionization lines of heavy elements,
such as CII, MgI, FeII, etc., and the more highly ionized lines, such as SiIV and NV. Highly
ionized lines such as OVI and OVII are also detected in the UV and/or X-ray spectra of quasars.
Since the ionization state of an absorbing cloud depends on its temperature, highly ionized lines,
such as OVI and OVII, in general signify the existence of hot (∼ 106 K) gas, while low-ionization
lines, such as HI, CII and MgII, are more likely associated with relatively cold (∼ 104 K) gas.

For a given quasar spectrum, absorption line systems are identified by decomposing the spec-
trum into individual lines with some assumed profiles (e.g. the Voigt profile, see §16.4.3). By
modeling each system in detail, one can in principle obtain its column density, b parameter
(defined as b =

√
2σ , where σ is the velocity dispersion of the absorbing gas), ionization state,

and temperature. If both hydrogen and metal systems are detected, one may also estimate the
metallicity of the absorbing gas. Table 2.8 lists the typical values of these quantities for the most
commonly detected absorption systems mentioned above.

The evolution of the number of absorption systems is described by the number of systems per
unit redshift, dN /dz, as a function of z. This relation is usually fitted by a power law dN /dz ∝
(1 + z)γ , and the values of γ for different systems are listed in Table 2.9. The distribution of
absorption line systems with respect to the HI column density is shown in Fig. 2.40. Over the
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Table 2.8. Properties of common absorption lines in quasar spectra.

System log(NHI/cm−2) b/(kms−1) Z/Z� log(NHI/NH)

Lyα forest 12.5 − 17 15 − 40 < 0.01 < −3
Lyman limit > 17 ∼ 100 ∼ 0.1 > −2
sub-DLA 19 − 20.3 ∼ 100 ∼ 0.1 > −1
DLA > 20.3 ∼ 100 ∼ 0.1 ∼ 0
CIV > 15.5 ∼ 100 ∼ 0.1 > −3
MgII > 17 ∼ 100 ∼ 0.1 > −2

Table 2.9. Redshift evolution of quasar absorption line systems.

System z range γ Reference

Lyα forest 2.0 − 4.0 ∼ 2.5 Kim et al. (1997)
Lyα forest 0.0 − 1.5 ∼ 0.15 Weymann et al. (1998)
Lyman limit 0.3 − 4.1 ∼ 1.5 Stengler-Larrea et al. (1995)
Damped Lyα 0.1 − 4.7 ∼ 1.3 Storrie-Lombardi et al. (1996a)
CIV 1.3 − 3.4 ∼−1.2 Sargent et al. (1988)
MgII 0.2 − 2.2 ∼ 0.8 Steidel & Sargent (1992)

whole observed range, this distribution follows roughly a power law, dN /dNHI ∝ N−β
HI , with

β ∼ 1.5.
From the observed column density distribution, one can estimate the mean mass density of

neutral hydrogen that is locked up in quasar absorption line systems:

ρHI(z) =
(

dl
dz

)−1

mH

∫
NHI

d2N

dNHI dz
dNHI, (2.48)

where dl/dz is the physical length per unit redshift at z (see §3.2.6). Given that dN /dNHI is a
power law with index ∼−1.5, ρHI is dominated by systems with the highest NHI, i.e. by damped
Lyα systems. Using the observed HI column density distribution, one infers that about 5% of the
baryonic material in the Universe is in the form of HI gas at z ∼ 3 (e.g. Storrie-Lombardi et al.,
1996b). In order to estimate the total hydrogen mass density associated with quasar absorption
line systems, however, one must know the neutral fraction, NHI/NH, as a function of NHI. This
fraction depends on the ionization state of the IGM. Detailed modeling shows that the Lyα forest
systems are highly ionized, and that the main contribution to the total (neutral plus ionized) gas
density comes from absorption systems with NHI ∼ 1014 cm−2. The total gas mass density at
z ∼ 3 thus inferred is comparable to the total baryon density in the Universe (e.g. Rauch et al.,
1997; Weinberg et al., 1997b).

Quasar absorption line systems with the highest HI column densities are expected to be gas
clouds in regions of high gas densities where galaxies and stars may form. It is therefore not
surprising that these systems contain metals. Observations of damped Lyα systems show that
they have typical metallicities about 1/10 of that of the Sun (e.g. Pettini et al., 1990; Kulkarni
et al., 2005), lower than that of the ISM in the Milky Way. This suggests that these systems may
be associated with the outer parts of galaxies, or with galaxies in which only a small fraction of
the gas has formed stars. More surprising is the finding that most, if not all, of the Lyα forest lines
also contain metals, although the metallicities are generally low, typically about 1/1000 to 1/100
of that of the Sun (e.g. Simcoe et al., 2004). There is some indication that the metallicity increases
with HI column density, but the trend is not strong. Since star formation requires relatively high
column densities of neutral hydrogen (see Chapter 9), the metals observed in absorption line
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αLy    Forest LLS
DLA
sub DLA

Fig. 2.40. The HI column density distribution of QSO absorption line systems. Here F (NHI) is defined
as the number of absorption lines per unit column density, per unit X (which is a quantity that is related
to redshift according to Eq. [16.92]). The solid line corresponds to F (NHI) ∝ N−1.46

HI , which fits the data
reasonably well over the full 10 orders of magnitude in column density. [Based on data published in Petitjean
et al. (1993) and E. M. Hu et al. (1995)]

systems with low HI column densities most likely originate from, and have been expelled by,
galaxies at relatively large distances.

2.9 The Cosmic Microwave Background

The cosmic microwave background (CMB) was discovered by Penzias and Wilson in 1965 when
they were commissioning a sensitive receiver at centimeter wavelengths in Bell Telephone Labo-
ratories. It was quickly found that this radiation background was highly isotropic on the sky and
has a spectrum close to that of a blackbody with a temperature of about 3K. The existence of
such a radiation background was predicted by Gamow, based on his model of a Hot Big Bang
cosmology (see §1.4.2), and it therefore did not take long before the cosmological significance
of this discovery was realized (e.g. Dicke et al., 1965).

The observed properties of the CMB are most naturally explained in the standard model of cos-
mology. Since the early Universe was dense, hot and highly ionized, photons were absorbed and
re-emitted many times by electrons and ions and so a blackbody spectrum could be established
in the early Universe. As the Universe expanded and cooled and the density of ionized material
dropped, photons were scattered less and less often and eventually could propagate freely to the
observer from a last-scattering surface, inheriting the blackbody spectrum.

Because the CMB is so important for our understanding of the structure and evolution of the
Universe, there have been many attempts in the 1970s and 1980s to obtain more accurate mea-
surements of its spectrum. Since the atmospheric emission is quite close to the peak wavelength
of a 3K blackbody spectrum, most of these measurements were carried out using high-altitude
balloon experiments (for a discussion of early CMB experiments, see Partridge, 1995).
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A milestone in CMB experiments was the launch by NASA in November 1989 of the Cosmic
Background Explorer (COBE), a satellite devoted to accurate measurements of the CMB over the
entire sky. Observations with the Far InfraRed Absolute Spectrophotometer (FIRAS) on board
COBE showed that the CMB has a spectrum that is perfectly consistent with a blackbody spec-
trum, to exquisite accuracy, with a temperature T = 2.728±0.002K. As we will see in §3.5.4 the
lack of any detected distortions from a pure blackbody spectrum puts strong constraints on any
processes that may change the CMB spectrum after it was established in the early Universe.

Another important observational result from COBE is the detection, for the first time, of
anisotropy in the CMB. Observations with the Differential Microwave Radiometers (DMR) on
board COBE have shown that the CMB temperature distribution is highly isotropic over the sky,
confirming earlier observational results, but also revealed small temperature fluctuations (see
Fig. 2.41). The observed temperature map contains a component of anisotropy on very large
angular scales, which is well described by a dipole distribution over the sky,

T (α) = T0

(
1+

v
c

cosα
)

, (2.49)

where α is the angle of the line-of-sight relative to a specific direction. This component can be
explained as the Doppler effect caused by the motion of the Earth with a velocity v = 369±
3kms−1 towards the direction (l,b) = (264.31◦ ±0.20◦,48.05◦ ±0.10◦) in Galactic coordinates

WMAP

41 GHz map

Combination map

Linear scale from –200→200 μK

COBE

T = 2.728 K

ΔT = 3.353 mK

ΔT = 18 μK

DMR 53 GHz Maps

Fig. 2.41. Temperature maps of the CMB in galactic coordinates. The three panels on the left show the
temperature maps obtained by the DMR on board the COBE satellite [Courtesy of NASA Goddard Space
Flight Center]. The upper panel shows the near-uniformity of the CMB brightness; the middle panel is the
map after subtraction of the mean brightness, showing the dipole component due to our motion with respect
to the background; and the bottom panel shows the temperature fluctuations after subtraction of the dipole
component. Emission from the Milky Way is evident in the bottom image. The two right panels show the
temperature maps observed by WMAP from the first year of data [Courtesy of WMAP Science Team]; one
is from the 41 GHz channel and the other is a linear combination of five channels. Note that the large-scale
temperature fluctuations in the COBE map at the bottom are clearly seen in the WMAP maps, and that the
WMAP angular resolution (about 0.5◦) is much higher than that of COBE (about 7◦).
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(Lineweaver et al., 1996). Once this dipole component is subtracted, the map of the temperature
fluctuations looks like that shown in the lower left panel of Fig. 2.41. In addition to emission
from the Milky Way, it reveals fluctuations in the CMB temperature with an amplitude of the
order of ΔT/T ∼ 2×10−5.

Since the angular resolution of the DMR is about 7◦, COBE observations cannot reveal
anisotropy in the CMB on smaller angular scales. Following the detection by COBE, there
have been a large number of experiments to measure small-scale CMB anisotropies, and many
important results have come out in recent years. These include the results from balloon-borne
experiments such as Boomerang (de Bernardis et al., 2000) and Maxima (Hanany et al., 2000),
from ground-based interferometers such as the Degree Angular Scale Interferometer (DASI;
Halverson et al., 2002) and the Cosmic Background Imager (CBI; Mason et al., 2002), and
from an all-sky satellite experiment called the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al., 2003; Hinshaw et al., 2007). These experiments have provided us with extremely
detailed and accurate maps of the anisotropies in the CMB, such as that obtained by WMAP
shown in the right panels of Fig. 2.41.

In order to quantify the observed temperature fluctuations, a common practice is to expand the
map in spherical harmonics,

ΔT
T

(ϑ ,ϕ) ≡ T (ϑ ,ϕ)−T

T
=∑

�,m

a�mY�,m(ϑ ,ϕ). (2.50)

The angular power spectrum, defined as C� ≡ 〈|a�m|2〉1/2 (where 〈. . .〉 denotes averaging over m),
can be used to represent the amplitudes of temperature fluctuations on different angular scales.
Fig. 2.42 shows the temperature power spectrum obtained by the WMAP satellite. As one can
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Fig. 2.42. The angular power spectrum, C�, of the CMB temperature fluctuations in the WMAP full-sky
map. This shows the relative brightness of the ‘spots’ in the CMB temperature map vs. the size of the spots.
The shape of this curve contains a wealth of information about the geometry and matter content of the
Universe. The curve is the model prediction for the best-fit ΛCDM cosmology. [Adapted from Hinshaw
et al. (2007) by permission of AAS]
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see, the observed C� as a function of � shows complex features. These observational results are
extremely important for our understanding of the structure formation in the Universe. First of
all, the observed high degree of isotropy in the CMB gives strong support for the assumption of
the standard cosmology that the Universe is highly homogeneous and isotropic on large scales.
Second, the small temperature fluctuations observed in the CMB are believed to be caused by
the density perturbations at the time when the Universe became transparent to CMB photons.
These same density perturbations are thought to be responsible for the formation of structures
in the Universe. So the temperature fluctuations in the CMB may be used to infer the proper-
ties of the initial conditions for the formation of galaxies and other structures in the Universe.
Furthermore, the observations of CMB temperature fluctuations can also be used to constrain
cosmological parameters. As we will discuss in detail in Chapter 6, the peaks and valleys in
the angular power spectrum are caused by acoustic waves present at the last scattering surface
of the CMB photons. The heights (depths) and positions of these peaks (valleys) depend not
only on the density of baryonic matter, but also on the total mean density of the Universe, Hub-
ble’s constant and other cosmological parameters. Modeling the angular power spectrum of the
CMB temperature fluctuations can therefore provide constraints on all of these cosmological
parameters.

2.10 The Homogeneous and Isotropic Universe

As we will see in Chapter 3, the standard cosmological model is based on the ‘cosmological
principle’ according to which the Universe is homogeneous and isotropic on large scales. As we
have seen, observations of the CMB and of the large-scale spatial distribution of galaxies offer
strong support for this cosmological principle. Since according to Einstein’s general relativity
the space-time geometry of the Universe is determined by the matter distribution in the Universe,
this large-scale distribution of matter has important implications for the large-scale geometry of
space-time.

For a homogeneous and isotropic universe, its global properties (such as density and pressure)
at any time must be the same as those in any small volume. This allows one to study the global
properties of the Universe by examining the properties of a small volume within which Newto-
nian physics is valid. Consider a (small) spherical region of fixed mass M. Since the Universe is
homogeneous and isotropic, the radius R of the sphere should satisfy the Newtonian equation6

R̈ = −GM
R2 . (2.51)

Note that, because of the homogeneity, there is no force due to pressure gradients and that only
the mass within the sphere is relevant for the motion of R. This follows directly from Birkhoff’s
theorem, according to which the gravitational acceleration at any radius in a spherically symmet-
ric system depends only on the mass within that radius. For a given M, the above equation can
be integrated once to give

1
2

Ṙ2 − GM
R

= E, (2.52)

6 As we will see in Chapter 3, in general relativity it is the combination of energy density ρ and pressure P, ρ+3P/c2,
instead of ρ , that acts as the source of gravitational acceleration. Therefore, Eq. (2.51) is not formally valid, even
though Eq. (2.53), which derives from it, happens to be correct.
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where E is a constant, equal to the specific energy of the spherical shell. For simplicity, we write
R = a(t)R0, where R0 is independent of t. It then follows that

ȧ2

a2 − 8πGρ
3

= −Kc2

a2 , (2.53)

where ρ is the mean density of the Universe and K = −2E/(cR0)2. Unless E = 0, which corre-
sponds to K = 0, we can always choose the value of R0 so that |K| = 1. So defined, K is called
the curvature signature, and takes the value +1, 0, or −1. With this normalization, the equation
for a is independent of M. As we will see in Chapter 3, Eq. (2.53) is identical to the Friedmann
equation based on general relativity. For a universe dominated by a non-relativistic fluid, this is
not surprising, as it follows directly from the assumption of homogeneity and isotropy. However,
as we will see in Chapter 3, it turns out that Eq. (2.53) also holds even if relativistic matter and/or
the energy density associated with the cosmological constant are included.

The quantity a(t) introduced above is called the scale factor, and describes the change of the
distance between any two points fixed in the cosmological background. If the distance between
a pair of points is l1 at time t1, then their distance at some later time t2 is related to l1 through
l2 = l1a(t2)/a(t1). It then follows that at any time t the velocity between any two (comoving)
points can be written as

l̇ = [ȧ(t)/a(t)]l, (2.54)

where l is the distance between the two points at time t. Thus, ȧ > 0 corresponds to an expanding
universe, while ȧ < 0 corresponds to a shrinking universe; the universe is static only when ȧ = 0.
The ratio ȧ/a evaluated at the present time, t0, is called the Hubble constant,

H0 ≡ ȧ0/a0, (2.55)

where a0 ≡ a(t0), and the relation between velocity and distance, l̇ = H0l, is known as Hub-
ble’s expansion law. Another quantity that characterizes the expansion of the Universe is the
deceleration parameter, defined as

q0 ≡− ä0a0

ȧ2
0

. (2.56)

This quantity describes whether the expansion rate of the Universe is accelerating (q0 < 0) or
decelerating (q0 > 0) at the present time.

Because of the expansion of the Universe, waves propagating in the Universe are stretched.
Thus, photons with a wavelength λ emitted at an earlier time t will be observed at the present
time t0 with a wavelength λobs = λa0/a(t). Since a0 > a(t) in an expanding universe, λobs > λ
and so the wavelength of the photons is redshifted. The amount of redshift z between time t and
t0 is given by

z ≡ λobs

λ
−1 =

a0

a(t)
−1. (2.57)

Note that a(t) is a monotonically increasing function of t in an expanding universe, and so
redshift is uniquely related to time through the above equation. If an object has redshift z,
i.e. its observed spectrum is shifted to the red relative to its rest-frame (intrinsic) spectrum by
Δλ = λobs −λ = zλ , then the photons we observe today from the object were actually emitted
at a time t that is related to its redshift z by Eq. (2.57). Because of the constancy of the speed of
light, an object’s redshift can also be used to infer its distance.
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From Eq. (2.53) one can see that the value of K is determined by the mean density ρ0 at the
present time t0 and the value of Hubble’s constant. Indeed, if we define a critical density

ρcrit,0 ≡ 3H2
0

8πG
, (2.58)

and write the mean density in terms of the density parameter,

Ω0 ≡ ρ0/ρcrit,0, (2.59)

then K = H2
0 a2

0(Ω0−1). So K =−1, 0 and +1 corresponds toΩ0 < 1, = 1 and > 1, respectively.
Before discussing the matter content of the Universe, it is illustrative to write the mean density
as a sum of several possible components:

(i) non-relativistic matter whose (rest-mass) energy density changes as ρm ∝ a−3;
(ii) relativistic matter (such as photons) whose energy density changes as ρr ∝ a−4 (the

number density changes as a−3 while energy is redshifted according to a−1);
(iii) vacuum energy, or the cosmological constant Λ, whose density ρΛ = c2Λ/8πG is a

constant.

Thus,

Ω0 =Ωm,0 +Ωr,0 +ΩΛ,0, (2.60)

and Eq. (2.53) can be written as (
ȧ
a

)2

= H2
0 E2(z), (2.61)

where

E(z) =
[
ΩΛ,0 +(1−Ω0)(1+ z)2 +Ωm,0(1+ z)3 +Ωr,0(1+ z)4]1/2

(2.62)

with z related to a(t) by Eq. (2.57). In order to solve for a(t), we must know the value of H0

and the energy (mass) content (Ωm,0, Ωr,0, ΩΛ,0) at the present time. The deceleration parameter
defined in Eq. (2.56) is related to these parameters by

q0 =
Ωm,0

2
+Ωr,0 −ΩΛ,0. (2.63)

A particularly simple case is the Einstein–de Sitter model in which Ωm,0 = 1, Ωr,0 =ΩΛ,0 = 0
(and so q0 = 1/2). It is then easy to show that a(t)∝ t2/3. Another interesting case is a flat model
in which Ωm,0 +ΩΛ,0 = 1 and Ωr,0 = 0. In this case, q0 = 3Ωm,0/2− 1, so that q0 < 0 (i.e. the
expansion is accelerating at the present time) if Ωm,0 < 2/3.

2.10.1 The Determination of Cosmological Parameters

As shown above, the geometry of the Universe in the standard model is specified by a set of cos-
mological parameters. The values of these cosmological parameters can therefore be estimated
by measuring the geometrical properties of the Universe. The starting point is to find two observ-
ables that are related to each other only through the geometrical properties of the Universe. The
most important example here is the redshift–distance relation. As we will see in Chapter 3, two
types of distances can be defined through observational quantities. One is the luminosity dis-
tance, dL, which relates the luminosity of an object, L, to its flux, f , according to L = 4πd2

L f .
The other is the angular-diameter distance, dA, which relates the physical size of an object, D,
to its angular size, θ , via D = dAθ . In general, the redshift–distance relation can formally be
written as

d(z) =
cz
H0

[1+Fd(z;Ωm,0,ΩΛ,0, . . .)] , (2.64)
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where d stands for either dL or dA, and by definition Fd � 1 for z � 1. For redshifts much
smaller than 1, the redshift–distance relation reduces to the Hubble expansion law cz = H0d, and
so the Hubble constant H0 can be obtained by measuring the redshift and distance of an object
(ignoring, for the moment, that objects can have peculiar velocities). Redshifts are relatively easy
to obtain from the spectra of objects, and in §2.1.3 we have seen how to measure the distances
of a few classes of astronomical objects. The best estimate of the Hubble constant at the present
comes from Cepheids observed by the HST, and the result is

H0 = 100hkms−1 Mpc−1, with h = 0.72±0.08 (2.65)

(Freedman et al., 2001).
In order to measure other cosmological parameters, one has to determine the nonlinear terms in

the redshift–distance relation, which typically requires objects at z ∼> 1. For example, measuring
the light curves of Type Ia supernovae out to z ∼ 1 has yielded the following constraints:

0.8Ωm,0 −0.6ΩΛ,0 ∼−0.2±0.1 (2.66)

(e.g. Perlmutter et al., 1999). Using Eq. (2.63) and neglecting Ωr,0 because it is small, the above
relation gives q0 ∼−0.33−0.83Ωm,0. Since Ωm,0 > 0, we have q0 < 0, i.e. the expansion of the
Universe is speeding up at the present time.

Important constraints on cosmological parameters can also be obtained from the angular
spectrum of the CMB temperature fluctuations. As shown in Fig. 2.42, the observed angular
spectrum C� contains peaks and valleys, which are believed to be produced by acoustic waves
in the baryon–photon fluid at the time of photon–matter decoupling. As we will see in §6.7, the
heights/depths and positions of these peaks/valleys depend not only on the density of baryonic
matter in the Universe, but also on the total mean density, Hubble’s constant and other cosmo-
logical parameters. In particular, the position of the first peak is sensitive to the total density
parameter Ω0 (or the curvature K). Based on the observational results shown in Fig. 2.42, one
obtains

Ω0 = 1.02±0.02; Ωm,0h2 = 0.14±0.02;

h = 0.72±0.05; Ωb,0h2 = 0.024±0.001, (2.67)

where Ωm,0 and Ωb,0 are the density parameters of total matter and of baryonic matter, respec-
tively (Spergel et al., 2007). Note that this implies that the Universe has an almost flat geometry,
that matter accounts for only about a quarter of its total energy density, and that baryons account
for only ∼ 17% of the matter.

2.10.2 The Mass and Energy Content of the Universe

There is a fundamental difficulty in directly observing the mass (or energy) densities in different
mass components: all that is gold does not glitter. There may well exist matter components with
significant mass density which give off no detectable radiation. The only interaction which all
components are guaranteed to exhibit is gravity, and thus gravitational effects must be studied
if the census is to be complete. The global gravitational effect is the curvature of space-time
which we discussed above. Independent information on the amount of gravitating mass can only
be derived from the study of the inhomogeneities in the Universe, even though such studies may
never lead to an unambiguous determination of the total matter content. After all, one can imagine
adding a smooth and invisible component to any amount of inhomogeneously distributed mass,
which would produce no detectable effect on the inhomogeneities.

The most intriguing result of such dynamical studies has been the demonstration that the total
mass in large-scale structures greatly exceeds the amount of material from which emission can be
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detected. This unidentified ‘dark matter’ (or ‘invisible matter’) is almost certainly the dominant
contribution to the total mass density Ωm,0. Its nature and origin remain one of the greatest
mysteries of contemporary astronomy.

(a) Relativistic Components One of the best observed relativistic components of the Universe
is the CMB radiation. From its blackbody spectrum and temperature, TCMB = 2.73K, it is easy
to estimate its energy density at the present time:

ργ ,0 ≈ 4.7×10−34 gcm−3, or Ωγ ,0 = 2.5×10−5h−2. (2.68)

As we have seen in Fig. 2.2, the energy density of all other known photon backgrounds is much
smaller. The only other relativistic component which is almost certainly present, although not yet
directly detected, is a background of neutrinos. As we will see in Chapter 3, the energy density in
this component can be calculated directly from the standard model, and it is expected to be 0.68
times that of the CMB radiation. Since the total energy density of the Universe at the present
time is not much smaller than the critical density (see the last subsection), the contribution from
these relativistic components can safely be ignored at low redshift.

(b) Baryonic Components Stars are made up of baryonic matter, and so a lower limit on
the mass density of baryonic matter can be obtained by estimating the mass density of stars
in galaxies. The mean luminosity density of stars in galaxies can be obtained from the galaxy
luminosity function (see §2.4.1). In the B band, the best-fit Schechter function parameters are
α ≈−1.2, φ ∗ ≈ 1.2×10−2h3 Mpc−3 and M ∗ ≈−20.05+5logh (corresponding to L∗ = 1.24×
1010h−2 L�), so that

LB ≈ 2×108hL� Mpc−3. (2.69)

Dividing this into the critical density leads to a value for the mass per unit observed luminosity of
galaxies required for the Universe to have the critical density. This critical mass-to-light ratio is(

M
L

)
B,crit

=
ρcrit

LB
≈ 1500h

(
M�
L�

)
B
. (2.70)

Mass-to-light ratios for the visible parts of galaxies can be estimated by fitting their spectra with
appropriate models of stellar populations. The resulting mass-to-light ratios tend to be in the
range of 2 to 10(M�/L�). Adopting M/L = 5(M�/L�) as a reasonable mean value, the global
density contribution of stars is

Ω�,0 ∼ 0.003h−1. (2.71)

Thus, the visible parts of galaxies provide less than 1% of the critical density. In fact, combined
with the WMAP constraints on Ωb,0 and the Hubble constant, we find that stars only account for
less than 10% of all baryons.

So where are the other 90% of the baryons? At low redshifts, the baryonic mass locked up
in cold gas (either atomic or molecular), and detected via either emission or absorption, only
accounts for a small fraction, Ωcold ∼ 0.0005h−1 (Fukugita et al., 1998). A larger contribution
is due to the hot intracluster gas observed in rich galaxy clusters through their bremsstrahlung
emission at X-ray wavelengths (§2.5.1). From the number density of X-ray clusters and their
typical gas mass, one can estimate that the total amount of hot gas in clusters is about (ΩHII)cl ∼
0.0016h−3/2 (Fukugita et al., 1998). The total gas mass in groups of galaxies is uncertain. Based
on X-ray data, Fukugita et al. obtained (ΩHII)group ∼ 0.003h−3/2. However, the plasma in groups
is expected to be colder than that in clusters, which makes it more difficult to detect in X-ray
radiation. Therefore, the low X-ray emissivity from groups may also be due to low tempera-
tures rather than due to small amounts of plasma. Indeed, if we assume that the gas/total mass
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ratio in groups is comparable to that in clusters, then the total gas mass in groups could be
larger by a factor of two to three. Even then, the total baryonic mass detected in stars, cold
gas and hot gas only accounts for less than 50% of the total baryonic mass inferred from
the CMB.

The situation is very different at higher redshifts. As discussed in §2.8, the average density
of hydrogen inferred from quasar absorption systems at z ∼ 3 is roughly equal to the total
baryon density as inferred from the CMB data. Hence, although we seem to have detected the
majority of all baryons at z ∼ 3, at low redshifts roughly half of the expected baryonic mass
is unaccounted for observationally. One possibility is that the gas has been heated to tempera-
tures in the range 105–106 K at which it is very difficult to detect. Indeed, recent observations
of OVI absorption line systems seem to support the idea that a significant fraction of the IGM
at low redshift is part of such a warm-hot intergalactic medium (WHIM), whose origin may be
associated with the formation of large-scale sheets and filaments in the matter distribution (see
Chapter 16).

An alternative explanation for the ‘missing baryons’ is that a large fraction of the gas detected
at z ∼ 3 has turned into ‘invisible’ compact objects, such as brown dwarfs or black holes.
The problem, though, is that most of these objects are stellar remnants, and their formation
requires a star-formation rate between z = 3 and z = 0 that is significantly higher than nor-
mally assumed. Not only is this inconsistent with the observation of the global star-formation
history of the Universe (see §2.6.8), but it would also result in an over-production of metals.
This scenario thus seems unlikely. Nevertheless, some observational evidence, albeit contro-
versial, does exist for the presence of a population of compact objects in the dark halo of our
Milky Way. In 1986 Bohdan Paczyński proposed to test for the presence of massive compact
halo objects (MACHOs) using gravitational lensing. Whenever a MACHO in our Milky Way
halo moves across the line-of-sight to a background star (for example, a star in the LMC),
it will magnify the flux of the background star, an effect called microlensing. Because of
the relative motion of source, lens and observer, this magnification is time-dependent, giving
rise to a characteristic light curve of the background source. In the early 1990s two collabo-
rations (MACHO and EROS) started campaigns to monitor millions of stars in the LMC for
a period of several years. This has resulted in the detection of about 20 events in total. The
analysis by the MACHO collaboration suggests that about 20% of the mass of the halo of
the Milky Way could consist of MACHOs with a characteristic mass of ∼ 0.5M� (Alcock
et al., 2000). The nature of these objects, however, is still unclear. Furthermore, these results
are inconsistent with those obtained by the EROS collaboration, which obtained an upper limit
for the halo mass fraction in MACHOs of 8%, and rule out MACHOs in the mass range
0.6×10−7 M� < M < 15M� as the primary occupants of the Milky Way halo (Tisserand et al.,
2007).

(c) Non-Baryonic Dark Matter As is evident from the CMB constraints given by Eq. (2.67)
on Ωm,0 and Ωb,0, baryons can only account for ∼ 15–20% of the total matter content in the
Universe, and this is supported by a wide range of observations. As we will see in the following
chapters, constraints from a number of other measurements, such as cosmic shear, the abundance
of massive clusters, large-scale structure, and the peculiar velocity field of galaxies, all agree that
Ωm,0 is of the order of 0.3. At the same time, the total baryonic matter density inferred from
CMB observations is in excellent agreement with independent constraints from nucleosynthesis
and the observed abundances of primordial elements. The inference is that the majority of the
matter in the Universe (75–80%) must be in some non-baryonic form.

One of the most challenging tasks for modern cosmology is to determine the nature and
origin of this dark matter component. Particle physics in principle allows for a variety of candi-
date particles, but without a direct detection it is and will be difficult to discriminate between
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the various candidates. One thing that is clear from observations is that the distribution of
dark matter is typically more extended than that of the luminous matter. As we have seen
above, the mass-to-light ratios increase from M/L ∼ 30h(M/L)� at a radius of about 30h−1kpc
as inferred from the extended rotation curves of spiral galaxies, to M/L ∼ 100h(M/L)� at
the scale of a few hundred kpc, as inferred from the kinematics of galaxies in groups, to
M/L ∼ 350h(M/L)� in galaxy clusters, probing scales of the order of 1Mpc. This latter
value is comparable to that of the Universe as a whole, which follows from multiplying the
critical mass-to-light ratio given by Eq. (2.70) with Ωm,0, and suggests that the content of clus-
ters, which are the largest virialized structures known, is representative of that of the entire
Universe.

All these observations support the idea that galaxies reside in extended halos of dark matter.
This in turn puts some constraints on the nature of the dark matter, namely that it has to be rel-
atively cold (i.e. it needs to have initial peculiar velocities that are much smaller than the typical
velocity dispersion within an individual galaxy). This coldness is required because otherwise
the dark matter would not be able to cluster on galactic scales to form the dark halos around
galaxies. Without a better understanding of the nature of the dark matter, we have to live with
the vague term, cold dark matter (or CDM), when talking about the main mass component of the
Universe.

(d) Dark Energy As we have seen above, the observed temperature fluctuations in the CMB
show that the Universe is nearly flat, implying that the mean energy density of the Universe
must be close to the critical density, ρcrit. However, studies of the kinematics of galaxies and of
large-scale structure in the Universe give a mean mass density that is only about 1/4 to 1/3 of
the critical density, in good agreement with the constraints on Ωm,0 from the CMB itself. This
suggests that the dominant component of the mass/energy content of the Universe must have
a homogenous distribution so that it affects the geometry of the Universe but does not follow
the structure in the baryonic and dark matter. An important clue about this dominant component
is provided by the observed redshift–distance relation of high-redshift Type Ia supernovae. As
shown in §2.10.1, this relation implies that the expansion of the Universe is speeding up at the
present time. Since all matter, both baryonic and non-baryonic, decelerates the expansion of the
Universe, the dominant component must be an energy component. It must also be extremely
dark, because otherwise it would have been observed.

The nature of this dark energy component is a complete mystery at the present time. As
far as its effect on the expansion of the Universe is concerned, it is similar to the cosmolog-
ical constant introduced by Einstein in his theory of general relativity to achieve a stationary
Universe (Einstein, 1917). The cosmological constant can be considered as an energy com-
ponent whose density does not change with time. As the Universe expands, it appears as if
more and more energy is created to fill the space. This strange property is due to its pecu-
liar equation of state that relates its pressure, P, to its energy density, ρ . In general, we may
write P = wρc2, and so w = 0 for a pressureless fluid and w = 1/3 for a radiation field (see
§3.1.5). For a dark energy component with constant energy density, w = −1, which means that
the fluid actually gains internal energy as it expands, and acts as a gravitational source with a
negative effective mass density (ρ+ 3P/c2 = −2ρ < 0), causing the expansion of the Universe
to accelerate. In addition to the cosmological constant, dark energy may also be related to a
scalar field (with −1 < w < −1/3). Such a form of dark energy is called quintessence, which
differs from a cosmological constant in that it is dynamic, meaning that its density and equa-
tion of state can vary through both space and time. It has also been proposed that dark energy
has an equation of state parameter w < −1, in which case it is called phantom energy. Clearly,
a measurement of the value of w will allow us to discriminate between these different models.
Currently, the value of w is constrained by a number of observations to be within a relatively
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narrow range around −1 (e.g. Spergel et al., 2007), consistent with a cosmological constant, but
also with both quintessence and phantom energy. The next generation of galaxy redshift surveys
and Type Ia supernova searches aim to constrain the value of w to a few percent, in the hope
of learning more about the nature of this mysterious and dominant energy component of our
Universe.



3

Cosmological Background

Cosmology, the branch of science dealing with the origin, evolution and structure of the Universe
on large scales, is closely related to the study of galaxy formation and evolution. Cosmology
provides not only the space-time frame within which galaxy formation and evolution ought to
be described, but also the initial conditions for the formation of galaxies. Modern cosmology
is founded upon Einstein’s theory of general relativity (GR), according to which the space-time
structure of the Universe is determined by the matter distribution within it. This perspective on
space-time is very different from that in classical physics, where space-time is considered eternal
and absolute, independent of the existence of matter.

A complete description of GR is beyond the scope of this book. As a remedy, we provide a
brief summary of the basics of GR in Appendix A and we refer the reader to the references cited
there for details. It should be emphasized, however, that modern cosmology is a very simple
application of GR, so simple that even a reader with little knowledge of GR can still learn it.
This simplicity is owing to the simple form of the matter distribution in the Universe, which, as
we have seen in the last chapter, is observed to be approximately homogeneous and isotropic on
large scales. We do not yet have sufficient evidence to rule out inhomogeneity or anisotropy on
very large scales, but the assumption of homogeneity and isotropy is no doubt a good basis for
studying the observable Universe. If indeed the matter distribution in the Universe is completely
homogeneous and isotropic, as is the ansatz on which modern cosmology is based,1 GR would
imply that space itself must also be homogeneous and isotropic. Such a space is the simplest
among all possibilities. To see this more clearly, let us consider a two-dimensional space, i.e.
a surface. We all know that the properties of a general two-dimensional surface can be very
complicated. But if the surface is homogeneous and isotropic, we are immediately reminded of
an infinite plane and a sphere. These two surfaces differ in their overall curvature. The plane is
flat, while the sphere is said to have a positive curvature. In both cases the distance between any
two infinitesimally close points on the surface can be written as

dl2 = a2
(

dr2

1−Kr2 + r2 dϑ 2
)

, (3.1)

where K = 0 for a plane and K = 1 for a sphere. In the case of a plane, (r,ϑ) are just the
polar coordinates and a is a length scale (scale factor) relating the coordinate radius r to dis-
tance. To see that K = 1 corresponds to a sphere, we make the coordinate transformation
r = sinχ . In terms of (χ,ϑ), the distance measure becomes dl2 = a2(dχ2 + sin2 χ dϑ 2) , which
is clearly that of a sphere in terms of the spherical coordinates, with a being the radius of
the sphere. In this case, r is a spherical coordinate in the three-dimensional space in which
the two-dimensional surface is embedded; r is not a distance measure on the surface, but

1 Although on relatively small scales the present-day Universe deviates strongly from homogeneity and isotropy, we will
see in Chapter 4 that these structures arise from small perturbations of an otherwise homogeneous and isotropic matter
distribution.
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rather a coordinate used to label positions on the surface. Actual distances have to be com-
puted from the metric (3.1). Only in the case with K = 0 is r both coordinate and distance
measure.

Mathematically it can be shown that there is another two-dimensional homogeneous and
isotropic surface for which K = −1. Changing r to sinhχ , we can write the distance measure
on such a surface as dl2 = a2(dχ2 +sinh2 χ dϑ 2) , where the factor a is again a length scale relat-
ing coordinates to distance. This negatively curved, hyperbolic surface, which is locally similar
to the surface near a saddle point, is not very familiar to us because it cannot be embedded in
a three-dimensional Euclidean space. The existence of a low-dimensional ‘space’ which cannot
be embedded in a space of higher dimensionality is, however, not as strange as it might seem;
for example it is easy to envision that it is impossible to embed a hairspring (an intrinsically
one-dimensional object) into a plane.

These examples show that the description of a homogeneous and isotropic two-dimensional
surface is extremely simple. What we need to do is just to determine the value of K (1, 0, or
−1), which specifies the global geometry of the surface, and the scale factor a, which relates
coordinates to distances. In general, the scale factor a can change with time without violating the
requirement of homogeneity and isotropy, corresponding to a surface that is uniformly expanding
or contracting.

The above discussion can be extended to three-dimensional spaces. As we will see in §3.1,
a homogeneous and isotropic space is also completely determined by the curvature signature K
(again equal to 1 or 0 or −1), which determines the global geometry of the space, and the scale
factor a(t) as a function of time. Thus, as far as the space-time geometry is concerned, the task
of modern cosmology is simply to determine the value of K and the functional form of a(t) from
the matter content of the Universe (see §3.2).

According to GR, the relationships among cosmological events are assumed to be governed
by the physical laws that we are familiar with, while the effects of gravity are included in the
properties of the space-time (i.e. in the transformations of reference frames). This equivalence
principle (that a local gravitational field can be transformed away by choosing an appropriate
frame of reference) allows one to derive physical equations in GR from their ordinary forms by
general coordinate transformations (see Appendix A). Hence, once the value of K and the func-
tional form of a(t) are known, the relationships among cosmological events can be described in
terms of physical laws. Similarly, if we believe that physical laws are applicable on cosmological
scales, the predictions for these relationships will depend only on the space-time geometry, and
so observations of such relationships can be used to test cosmological models.

One of the most important observations in cosmology is that the Universe is expanding [i.e.
a(t) increases with time], which implies that it must have been smaller in the past. Together with
the observational fact that our Universe is filled with microwave photons, this time evolution
of the scale factor determines the thermal history of the Universe. Because the Universe was
denser in the past, it must also have been hotter. Since high density and temperature imply high
probabilities for particles to collide with each other with high energy, the early Universe is an
ideal place for the creation and transmutation of matter. As we will see in §3.3–§3.5, the applica-
tions of particle, nuclear and atomic physics to the thermal history of the early Universe lead to
important predictions for the current matter content of the Universe. Although many of these pre-
dictions are still uncertain, they provide the basis for calculating relations between the dominant
mass components of the Universe. Finally, in §3.6, we discuss some of the most fundamental
problems of the standard model and show how the ‘inflationary hypothesis’ may help to solve
them. Although this chapter gives a fairly detailed description of modern cosmology, readers
interested in more details are referred to the textbooks by Kolb & Turner (1990), Peebles (1993),
Peacock (1999), Coles & Lucchin (2002), Padmanabhan (2002), Börner (2003) and Weinberg
(2008).
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3.1 The Cosmological Principle and the Robertson–Walker Metric

3.1.1 The Cosmological Principle and its Consequences

The cosmological principle is the hypothesis that, on sufficiently large scales, the Universe can
be considered spatially homogeneous and isotropic. While this may appear a reasonable extrap-
olation from current observations (see Chapter 2), it was originally proposed for quite different
reasons. As stated by Milne (1935), this hypothesis follows from the belief that ‘Not only the
laws of Nature, but also the events occurring in Nature, the world itself, must appear the same to
all observers.’ In this sense, the cosmological principle can be thought of as a generalized Coper-
nican principle: our location in the Universe should be typical, and should not be distinguished in
any fundamental way from any other. The cosmological principle is, however, stronger than this
simple statement implies, since it also eliminates the possibility of a self-similar, fractal structure
on the largest scales. All points of such a structure are equivalent, but there are no scales on
which it approaches homogeneity. Milne’s statement is also incomplete, since it is possible to
have a universe which appears the same from each point but is anisotropic, as in Gödel’s model
(Gödel, 1949).

An even stronger hypothesis is the perfect cosmological principle of Bondi & Gold (1948)
and Hoyle (1948). This requires invariance not only under rotations and displacements in space,
but also under displacements in time. The Universe looks the same in all directions, from all
locations, and at all times. This hypothesis led to the steady state cosmology which requires
a continuous creation of matter to keep the mean matter density constant with time. However,
the discovery of the cosmic microwave background radiation, and in particular the demonstration
that it has a perfect blackbody spectrum, has proven an unsurmountable problem for this cosmol-
ogy. Additional evidence against the steady state cosmology comes from numerous detections
of evolution in the galaxy population. We therefore will not discuss this theory further in this
book.

What are the consequences of the cosmological principle for the geometric structure of the
Universe? To answer this question, we put the cosmological principle in a slightly different
form. The cosmological principle can also be stated as the existence of a fundamental observer
at each location, to whom the Universe appears isotropic. The concept of a fundamental observer
is required because two observers at the same point, but in relative motion, cannot both see
the surrounding Universe as isotropic. The fundamental observer thus defines a cosmologi-
cal ‘rest frame’ at each location in space. To better understand the meaning of a fundamental
observer, let us define the fundamental observer, or the cosmological rest frame, in our neigh-
borhood. As discussed in Chapter 2, galaxies in the Universe are strongly clustered on scales

∼< 10h−1Mpc, and have random motions of the order of 100 to 1,000kms−1 with respect to
each other. It is thus unlikely that our own Galaxy defines a cosmological rest frame. On the
other hand, we expect the mean motion of galaxies within a radius much larger than 10h−1Mpc
around us to be small with respect to the cosmological rest frame. In particular the cosmic
microwave background (CMB) should appear isotropic to such a frame. As shown in Chap-
ter 2, the CMB map given by the COBE satellite appears very isotropic around us, when the
dipole component is subtracted. The dipole in the CMB map is best explained by the motion of
the Local Group of galaxies relative to the CMB with a velocity (627±22)kms−1 (Lineweaver
et al., 1996). Thus, an observer in our neighborhood, traveling at the same speed relative to the
Local Group but in the opposite direction, should be close to a fundamental observer. If the
cosmological principle is correct, then the rest frame defined by the mean motion of galax-
ies within a large radius around us should converge to the one defined by the CMB. There
are indeed indications of such convergence in present observational data (e.g. Schmoldt et al.,
1999).
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Since the Universe is isotropic to a fundamental observer, the velocity field in her neighbor-
hood cannot have any preferred direction. The only allowed motion is therefore pure expansion
(or pure contraction),

δv = H δx , (3.2)

where δx and δv are the position and velocity of a particle relative to the fundamental observer,
and H is a constant. Once some definition of distance is adopted, we can consider the set
of all observers, O′, which are equidistant from a given observer O at some given local time
of O. Because of the isotropy, all the observers O′ must measure the same local values of den-
sity, temperature, expansion rate, and other physical quantities. Furthermore, they must remain
equidistant from O at any later time recorded by the clock of O. Thus they can in principle syn-
chronize their clocks using a light signal from O, and once synchronized, the clocks must remain
so. Since the original fundamental observer O is arbitrary, this argument shows that there exists
a three-dimensional hypersurface in space-time, on which density, temperature, expansion rate,
and all other locally defined properties are uniform and evolve according to a universally agreed
time. Such a time is called the cosmic time. Since quantities such as the temperature of the CMB
and the mean density of the Universe are monotonic functions of cosmic expansion, the value of
these quantities can be used to label the cosmic time, as we will see below.

The isotropic and homogeneous three-dimensional hypersurfaces discussed above are maxi-
mally symmetric. As a result their metric can be written as

dl2 = a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]

. (3.3)

A proof of this can be found in Weinberg (1972). In this formula a(t) is a time-dependent scale
factor which relates the coordinate labels (r,ϑ ,ϕ) of the fundamental observers to true physical
distances, and K is a constant which can take the values +1, 0, and −1. The radial coordinate r is
dimensionless in Eq. (3.3). When physical distances are required, a length scale can be assigned
to the scale factor.

To understand better the geometric meanings of a(t) and K, consider an expanding or contract-
ing three-sphere (the three-dimensional analog of the two-dimensional surface of an expanding
or shrinking spherical balloon) whose radius is R(t) = a(t)R0 at time t. The scale factor a(t)
therefore simply relates the radius of the three-sphere at time t to its comoving radius, R0, whose
value does not change as the sphere expands or contracts. (Thus the comoving radius is just
the true radius measured in units of the scale factor.) In Cartesian coordinates (x,y,z,w), this
three-surface is defined by

x2 + y2 + z2 +w2 = a2(t)R2
0 . (3.4)

With the change of coordinates from (x,y,z,w) to the polar coordinates (r,ϑ ,ϕ):⎧⎪⎪⎨⎪⎪⎩
x = a(t)r sinϑ cosϕ
y = a(t)r sinϑ sinϕ
z = a(t)r cosϑ
w = a(t)

(
R2

0 − r2
)1/2

,

(3.5)

the line element in the four-dimensional Euclidean space is

dl2 = dx2 +dy2 +dz2 +dw2

= a2(t)
[

dr2

1− r2/R2
0

+ r2(dϑ 2 + sin2ϑ dϕ2)
]
. (3.6)
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The curvature scalar of such a three-sphere is

R =
6

R2
0a2(t)

(3.7)

(see Appendix A). Comparing Eqs. (3.3) and (3.6) we immediately see that Eq. (3.3) with
K = +1 is the metric of a three-sphere with comoving radius R0 = 1, and with the true radius at
time t given by the value of a(t). This three-sphere has a finite volume V = 2π2a3(t), and the
dimensionless radial coordinate r ∈ [0,1].

For K = 0, metric (3.3) is the same as that given by Eq. (3.6) with R0 → ∞, and so it describes
a Euclidean flat space with infinite volume. In this case the scale factor a(t) describes the change
of the length scale due to the uniform expansion (or contraction) of the space.

Metric (3.3) with K = −1 can be obtained by the replacement R0 → i in Eq. (3.6). The same
replacement in Eq. (3.7) shows that such a metric describes a negatively curved three-surface with
curvature radius set by a(t). Such a three-surface cannot be embedded in a four-dimensional
Euclidean space, but can be embedded in a four-dimensional Minkowski space with line ele-
ment dl2 = dw2 − dx2 − dy2 − dz2. In this space, the negatively curved three-surface with
curvature radius a(t) can be written as x2 + y2 + z2 −w2 = a2(t). Thus, the metric (3.3) with
K = −1 describes a hyperbolic three-surface, with unit comoving curvature radius, embedded
in a four-dimensional Minkowski space. Such a three-surface has no boundaries and has infinite
volume.

3.1.2 Robertson–Walker Metric

Since the isotropic and homogeneous three-dimensional surfaces described above are the space-
like hypersurfaces corresponding to a constant cosmic time t, the four-metric of the space-time
can be written as

ds2 = c2dt2 −dl2

= c2dt2 −a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]

, (3.8)

with c the speed of light. This is the Robertson–Walker metric. As in special relativity, the space-
time interval, ds, is real for two events with a time-like separation, is zero for two events on the
same light path (null geodesic), and is imaginary for two events with a space-like separation.
As before, the coordinates (r,ϑ ,ϕ), which label fundamental observers, are called comoving
coordinates, and the function a(t) is the cosmic scale factor. If we define the proper time of an
observer as the one recorded by the clock at rest with the observer, then the cosmic time t is
the proper time of all fundamental observers. A proper distance l can be defined for any two
fundamental observers at any given cosmic time t: l =

∫
dl. Without losing generality we can

assume one of the observers to be at the origin r = 0 and the other at (r1,ϑ ,ϕ). The proper
distance can then be written as

l = a(t)
∫ r1

0

dr√
1−Kr2

= a(t)χ(r1) , (3.9)

where

χ(r) =

⎧⎨⎩
sin−1 r (K = +1)
r (K = 0)
sinh−1 r (K = −1).

(3.10)
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The χ in the above equations is called the comoving distance between the two fundamental
observers; it is the proper distance l measured in units of the scale factor. It is often useful to
change the time variable from proper time t to a conformal time,

τ(t) =
∫ t

0

cdt ′

a(t ′)
. (3.11)

In terms of χ and τ the Robertson–Walker metric can be written in another useful form:

ds2 = a2(τ)
[
dτ2 −dχ2 − f 2

K(χ)(dϑ 2 + sin2ϑ dϕ2)
]
, (3.12)

where

fK(χ) = r =

⎧⎨⎩
sinχ (K = +1)
χ (K = 0)
sinhχ (K = −1).

(3.13)

This form of the metric is especially useful to gain insight into the causal properties of space-time.
It is instructive to look at the metric on a hypersurface with constant ϕ . In the K = +1 case

the spatial part of the metric is dl2 = a2(τ)(dχ2 + sin2 χ dϑ 2), which is just the metric of a two-
dimensional sphere in terms of the ‘polar angle’ χ and the ‘azimuthal angle’ ϑ (see Fig. 3.1). We
see that χ is the (comoving) geodesic distance, because it measures the length of the shortest path
(arc) connecting two points on the hypersurface, while the radial coordinate r is not a distance
measure on the surface. This conclusion is also true for the case of K = −1. Only for a flat space
(K = 0) where r = χ , is the radial coordinate r also a geodesic distance.

The Hubble parameter, H(t), at a cosmic time t is defined to be the rate of change of the proper
distance l between any two fundamental observers at time t in units of l: dl/dt ≡ H(t)l. It then
follows from Eq. (3.9) that

Fig. 3.1. The ϕ = constant section of a Robertson–Walker metric with K = 1, showing the geometric
meanings of various coordinates.
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H(t) =
ȧ(t)
a(t)

, (3.14)

where an over-dot denotes the derivative with respect to t. The Hubble parameter at the present
time is called the Hubble constant, and is denoted by H0. Quantities that depend on the value of
H0 are often expressed in terms of

h ≡ H0

100kms−1 Mpc−1 . (3.15)

The time dependence of the scale factor a(t) is determined by general relativity and the equa-
tion of state appropriate for the matter content of the Universe. This will be discussed in §3.2.
However, some kinematic properties of an isotropic and homogeneous universe can already be
inferred from the form of the metric [either Eq. (3.8) or Eq. (3.12)] without specifying the form
of a(t). Such discussion is useful, because it is based only on the cosmological principle, and is
valid even if general relativity fails on cosmological scales or if our knowledge about the mat-
ter content of the Universe is incomplete. In the following four subsections, we examine these
‘kinematic’ properties of the Robertson–Walker metric.

3.1.3 Redshift

Almost all observations about astronomical objects are made through light signals. It is therefore
important to understand how photons propagate in a homogeneous and isotropic universe. With-
out losing generality, consider a light signal propagating to the origin along a radial direction
(dϑ = dϕ = 0). Since photons travel along null geodesics on which ds = 0, their trajectories can
be written as

dτ = dχ (3.16)

[see Eq. (3.12)]. Thus, if a wave crest is emitted at the time te from a fundamental observer
(re,ϑe,ϕe), then the time t0 when it reaches the origin is given by

τ(t0)− τ(te) = χ(re)−χ(0) = χ(re) . (3.17)

Since the comoving distance χ(re) between the fundamental observer and the origin does not
change with time, a successive wave crest emitted at a later time te + δ te reaches the origin at a
time t0 +δ t0 given by

τ(t0 +δ t0)− τ(te +δ te) = χ(re) . (3.18)

Combining Eqs. (3.17) and (3.18) gives

τ(t0 +δ t0)− τ(t0) = τ(te +δ te)− τ(te) . (3.19)

In real applications δ te � te and δ t0 � t0, and so we can use the definition of τ to obtain

δ t0
a(t0)

=
δ te

a(te)
. (3.20)

Thus the period of the wave, and hence its wavelength, increases (or its frequency decreases) in
proportion to the scale factor:

λ0

λe
=
νe

ν0
=
δ t0
δ te

=
a(t0)
a(te)

. (3.21)

Defining the relative change of wavelength by a redshift parameter, z ≡ (λ0 −λe)/λe, we have

1+ z ≡ λ0

λe
=

a(t0)
a(te)

. (3.22)
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If the light wave is emitted from the transitions of a given kind of atoms between two energy lev-
els E1 and E2, and if these atoms are at rest with respect to the fundamental observer (re,ϑe,ϕe)
at time te, then νe = |E1 −E2|/hP (where hP is Planck’s constant). Eq. (3.21) then describes the
relation between the observed wavelength and the rest-frame wavelength which can be deter-
mined by the observer in his local laboratory. In an expanding universe a(t0) > a(te) so that z > 0
and spectral features are shifted redwards (redshift). On the other hand, in a contracting universe
a(t0) < a(te), so that z < 0 and spectral features are shifted bluewards (blueshift). As we have
seen in Chapter 2, distant galaxies in the Universe are all observed to show redshifted spectra,
indicating that the Universe is expanding.

3.1.4 Peculiar Velocities

As we will see later in Chapter 4, small perturbations in the background energy density dis-
tribution cause the growth of structures, which in turn induce velocities that deviate from pure
expansion. These velocities with respect to the cosmological rest frame of fundamental observers
are called peculiar velocities.

The proper velocity of a particle with respect to a fundamental observer at the origin is defined
as v = dl/dt, with l(t) the proper distance between the particle and observer. Using Eq. (3.9) we
can write this as

v(t) = ȧ(t)χ(t)+a(t)χ̇(t) = vexp + vpec , (3.23)

where vexp = H(t)l(t) is the velocity component due to the universal expansion, and vpec is the
peculiar velocity.

Let O1 be a fundamental observer at the same location as a particle P which has a peculiar
velocity vpec with respect to O1. Since locally the geometry at O1 is that of a Minkowski space,
O1 will observe the light from P with a Doppler redshift

1+ zpec =

√
1+ vpec/c

1− vpec/c
. (3.24)

But what is the redshift of P observed by a fundamental observer O2, located at a proper distance
δ l12 from O1? For simplicity we assume that the peculiar velocity of P is along the geodesic
connecting O1 and O2. Using the definition of redshift in Eq. (3.22) we can write for the observed
redshift

1+ zobs =
λ2

λP
=
λ1

λP

λ2

λ1
, (3.25)

where λP is the wavelength emitted by P , and λ1 and λ2 are the wavelengths observed by
O1 and O2, respectively. The physical correspondence of the second equality is a simple relay
station at O1 that passes the information from P on to O2. The first factor on the right-hand side
of Eq. (3.25) is simply the Doppler redshift of Eq. (3.24), while the second factor corresponds to
the cosmological redshift zcos of O1, and thus also of P . Therefore

1+ zobs = (1+ zpec)(1+ zcos) , (3.26)

which shows that the observed redshift of any object consists of a contribution due to the univer-
sal expansion and one due to its peculiar velocity along the line-of-sight. In the non-relativistic
case we can approximate Eq. (3.24) with zpec = vpec/c, so that Eq. (3.26) reduces to

zobs = zcos +
vpec

c
(1+ zcos) . (3.27)
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Thus, for a cluster of galaxies at redshift z, the (peculiar) velocity dispersion of galaxies, σv , is
related to the observed dispersion in redshifts, σz, as

σv = σz
c

1+ z
. (3.28)

Next let us consider the motion of a non-relativistic particle P in a homogeneous and isotropic
universe. Consider once again the fundamental observers O1 and O2, and let P pass O1 at time
t1 with a peculiar velocity v1 in the direction of O2. If P moves freely to O2, what is the peculiar
velocity of P when it passes O2 at time t2? To answer this question, focus first on the velocity
of P at t = t2 with respect to O1. This velocity consists of two components: a peculiar velocity
v2 as well as a velocity vexp = H(t2)δ l12 due to the universal expansion. Since P has not been
accelerated with respect to O1, the sum of these two velocities has to be equal to v1, such that
from the perspective of O1 the line-of-sight velocity of P has not changed. Therefore

δv ≡ v2 − v1 = − ȧ(t2)
a(t2)

δ l12 . (3.29)

Using Taylor expansion we can write, to first order in δ t = t2 − t1, the proper distance between
O1 and O2 as δ l12 = v1δ t. Substitution in Eq. (3.29) and integration then yields

v2 = v1
a(t1)
a(t2)

. (3.30)

Therefore, the peculiar velocity of a free, non-relativistic particle decreases as the inverse of the
scale factor:

vpec(t) ∝ a−1(t) . (3.31)

Since the momentum p of a non-relativistic particle is proportional to its peculiar velocity,
Eq. (3.31) also implies that p(t) ∝ a−1(t). Note that for a photon with zero rest mass pc = E =
hPν. As is evident from Eq. (3.21) ν ∝ a−1, so that the decay law p ∝ a−1 holds for photons as
well as for massive particles.

3.1.5 Thermodynamics and the Equation of State

The homogeneous and isotropic properties of the expanding Universe also allow an analysis of its
thermodynamic properties. Let us consider a uniform, perfect gas contained in a (small) comov-
ing volume V ∝ a3(t) which expands with the Universe. Since the Universe is homogeneous and
isotropic, there should not be any net heat flow across the boundaries of V . This implies that we
can consider V as an adiabatic system, and since V can be chosen arbitrarily small, no GR is
required to describe its thermodynamic properties.

According to the first law of thermodynamics, the increase in internal energy, dU , is equal to
the heat, dQ, transferred into the system plus the work, dW , done on the system: dU = dQ+dW .
The second law of thermodynamics is related to the entropy S, and states that dS = dQ/T , with
T the temperature. For our adiabatically expanding volume V we therefore have

dU +PdV = 0; dS = 0 , (3.32)

with P the pressure. This shows that the entropy per unit comoving volume is conserved, and that
the expansion of the Universe causes a decrease or increase of its internal energy depending on
whether P > 0 or P < 0.

In order to be able to apply the first law to both relativistic and non-relativistic fluids, we
write the internal energy, U , in terms of the energy density ρc2. In principle there may be many
different sources contributing to the energy density of the Universe: matter (both non-relativistic
and relativistic), radiation, vacuum energy, scalar fields, etc. As we shall see later in this chapter,
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the Universe transited from a radiation dominated phase early on to a matter dominated phase
at later stages. In addition, the Universe may have become dominated by vacuum energy in the
recent past. In what follows we therefore focus on these three energy components only, so that
the total energy density may be written as

ρc2 = ρmc2 +ρmε+
4σSB

c
T 4 +ρvacc2 . (3.33)

Here ρm is the matter density, and ε the internal energy per unity mass (ε = 3
2 kBT/m for

a monatomic ideal gas, with kB Boltzmann’s constant). The first two terms of Eq. (3.33)
therefore express the energy density due to non-relativistic matter, split in a contribution of
rest-mass energy and internal energy. The third term indicates the energy density of the radi-
ation, with σSB the Stefan–Boltzmann constant.2 Finally, ρvacc2 is the energy density of the
vacuum.

In terms of the energy density, the first law of thermodynamics for our adiabatically expanding
volume can now be written as

V dρ+(ρ+P/c2)dV = 0 . (3.34)

Using that V ∝ a3, and differentiating with respect to a we obtain

dρ
da

+3

(
ρ+P/c2

a

)
= 0 . (3.35)

For a given equation of state, P(ρ), this equation gives the density and pressure as functions of
a. It is common practice to introduce the equation of state parameter w and to write

P = wρc2 . (3.36)

If w is time-independent, then substitution of Eq. (3.36) into Eq. (3.35) gives

ρ ∝ a−3(1+w) . (3.37)

To describe the evolution of ρ , P, and T during the matter dominated phase, we approximate
the Universe as an ideal gas, for which PV = N kB T , with N the number of atoms of the gas. For
a monatomic gas consisting of particles of mass m we have ρm = mN/V , so that

Pm =
kBT
mc2 ρmc2 . (3.38)

Note that since ρm �= ρ , this does not imply that w = kBT/mc2. To determine the true equation
of state parameter, it is useful to write the equation of state as function of the adiabatic index γ
(for a monatomic gas γ = 5/3):

Pm = (γ−1)(ρ−ρm)c2 . (3.39)

Note that Eq. (3.39) makes it explicit that, in the non-relativistic limit, the rest-mass energy does
not contribute to the pressure of the gas. Combining Eqs. (3.38)–(3.39) we can write the pressure
in the form of Eq. (3.36) with

w = w(T ) =
kBT
mc2

(
1+

1
γ−1

kBT
mc2

)−1

. (3.40)

Since kBT � mc2 we immediately see that w(T )� 1. A non-relativistic gas is thus well approx-
imated by a fluid of zero pressure (w = 0), often referred to as a dust fluid. Since ρ ∝ a−3(1+w) a

2 Since the Universe is homogeneous and isotropic, the radiation fluid is in thermal equilibrium, and its energy density
follows from integrating the Planck function corresponding to a blackbody of temperature T .
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Table 3.1. Thermodynamics of a
homogeneous and isotropic universe.

Dominant component w ρ P T

matter 0 a−3 a−5 a−2

radiation 1/3 a−4 a−4 a−1

vacuum energy −1 a0 a0

dust fluid has ρm ∝ a−3, as expected. To obtain the relation between T and a we use kinetic the-
ory which relates the gas temperature to the peculiar motions of the gas particles: kBTm ∝m〈v2〉.
Since v ∝ a−1 [see Eq. (3.31)], we have that Tm ∝ a−2. Finally, using Eq. (3.38) we find that
Pm ∝ a−5. This rapid decrease of pressure with the scale factor indicates that the Universe quickly
approaches a dust fluid once it becomes matter dominated.

At early times the Universe is radiation dominated. To investigate how ρ , P and T scale with
a during this period, we approximate the fluid as an ultra-relativistic radiation fluid for which
w = 1/3. This implies that ρr ∝ a−4, which is consistent with the fact that the number density
of photons scales as a−3, while the energy per photon, E = hPν, scales as a−1 [see Eq. (3.21)].
From the equation of state we obtain that Pr ∝ a−4, while the scaling relation for the temperature,
Tr ∝ a−1, follows from the fact that for radiation ρ ∝ T 4 [see Eq. (3.33)]. As a result, a blackbody
radiation field remains blackbody with a temperature decreasing as a−1. This is an important
result which explains how the cosmic microwave background radiation maintains its blackbody
form as the Universe expands.

Finally, if the energy density is dominated by vacuum energy, it only depends on the energy
difference between the true and false vacua and so is independent of a. It then follows from
Eq. (3.35) that

Pvac = −ρvacc2 , (3.41)

i.e. w = −1. This equation of state can be understood as follows: in order to keep a constant
energy density ρvac as the Universe expands, the pressure Pvac must be negative so that the PdV
work in Eq. (3.32) is a positive contribution to the total internal energy in a given comoving
volume as it expands.

Although the above relations are derived from the application of thermodynamics to a small
volume in the Universe, they are applicable to the Universe as a whole, because the Universe is
assumed to be homogeneous and isotropic. These relations are important, because they allow us
to obtain the mean density, temperature and pressure of the Universe at any redshift from their
values at the present time. Table 3.1 summarizes how energy density, pressure, and temperature
evolve with the scale factor a for different dominating components of the energy density. Before
we continue, it is important to emphasize that these scaling relations only hold while the equa-
tion of state remains constant. In the early Universe, however, the adiabatic cooling due to the
expansion of the Universe may cause various particle species to change from relativistic to non-
relativistic. During these transitions, the true scaling relations follow from an application of the
entropy conservation law (see § 3.3).

3.1.6 Angular-Diameter and Luminosity Distances

The comoving distance χ and the proper distance a(t)χ from a source are not directly observ-
able, because the light from a distant source observed at the present time was emitted at an earlier
time. In this subsection we consider two other distances that can be measured directly from astro-
nomical observations. Consider an object of size D and intrinsic luminosity L at some distance
d. The observable properties of such an object are the angular size ϑ subtended by the object,
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and the flux F . These allow us to define the angular-diameter distance, dA, and the luminosity
distance, dL, according to

ϑ =
D
dA

, (3.42)

and

F =
L

4πd2
L

. (3.43)

In a static space, dA = dL = d, consistent with our everyday experience. However, when cosmic
distances are concerned in an expanding Universe, dA, dL, and d may all have different values,
as we will see in the following.

To obtain an expression for dA in a Robertson–Walker metric, we recall that the proper size D
can be considered as the proper distance between two light signals, sent from two points with the
same radial coordinate re at a given cosmic time te, and reaching the origin at the time t0. Thus,
the value of D is just the integral of dl in Eq. (3.8) over the transverse direction:

D = aere

∫
dϑ =

a0re

1+ z
ϑ , (3.44)

where a0 = a(t0) and ae = a(te). It then follows from Eq. (3.42) that

dA =
a0re

1+ ze
= aere . (3.45)

To get an expression for dL, we consider a proper area, A , which is at the origin (the position of
the observer) and subtends a solid angle, ω , at the object. By definition of the angular-diameter
distance dA, such a solid angle at the origin corresponds to a proper area ωd2

A at the position
of the object. If the universe were static, this area would, by symmetry arguments, be equal
to A . Because of expansion, however, the proper area at the origin subtended by a fixed solid
angle at a given object is stretched by a factor in proportion to the square of the scale factor,
and so

A = ωd2
A(a0/ae)2 = (a0re)2ω . (3.46)

Without losing generality, we can assume that the object emits monochromatic radiation with
rest-frame frequency νe. The number of photons emitted from the object into the solid angle ω
within a time interval δ te is Lδ teω/(4πhPνe). If the same number of photons pass through the
area A in a time interval δ t0, we have

Lδ teω
4πhPνe

=
F δ t0 A

hPν0
, (3.47)

where ν0 is the observed frequency of the photons at the origin. It then follows from Eqs. (3.21)
and (3.46) that

F =
ω
4π

L
A

[
ae

a0

]2

=
L

4π[a0re(1+ z)]2
. (3.48)

The luminosity distance defined in Eq. (3.43) can thus be written as

dL = a0re(1+ z) . (3.49)

Since we observe the object using photons, the quantity a0re in the expressions of dL and
dA is related to the redshift z by Eqs. (3.17) and (3.22).3 This relation can be obtained once the
dynamical equations have been solved to specify a(t). Although we will address the dynamical

3 In the case of a flat universe (K = 0), a0re is equal to the proper distance between object and observer at the time of
observation.
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behavior of a(t) in detail in §3.2, we can make a simple approximation by using the first few
terms of its Taylor expansion:

a(t) = a0

[
1+H0(t − t0)− 1

2
q0H2

0 (t − t0)2 + . . .

]
, (3.50)

where

q0 ≡− ä0 a0

ȧ2
0

(3.51)

is known as the deceleration parameter. Using Eq. (3.17), the power series can be manipulated
to give

a0re ≈ c
H0

[
z− 1

2
z2(1+q0)+ . . .

]
. (3.52)

Inserting this into Eqs. (3.44) and (3.48), we can obtain D as a function of ϑ and z, and L as
a function of F and z, respectively. Thus, for given values of H0 and q0, the proper size D
(or the intrinsic luminosity L) of an object can be obtained by measuring its redshift z and
its angular size ϑ (or its flux F). Similarly, if the proper sizes (or intrinsic luminosities) of
a set of objects are known, one can estimate the values of H0 and q0 by measuring ϑ (or
F) as a function of redshift. Although this way of using Eq. (3.52) to interpret observational
data is common practice, it is valid only for z � 1. It is therefore preferable to use the exact
equations for a0r as function of z (derived in the next section) rather than this small-z approxima-
tion. Nevertheless, the present values of H0 and q0 are often used to characterize cosmological
models.

Finally, Eqs. (3.44) and (3.48) can be combined to give the apparent surface brightness of an
object,

S ≡ F
1
4πϑ 2

=
L

π2D2 (1+ z)−4 . (3.53)

Unlike dA and dL, the apparent surface brightness S is independent of the relationship between
a0re and ze, and so is independent of the dynamical evolution of a(t). This arises because
Eq. (3.53) depends only on the local thermodynamics of the radiation field, and follows, in
fact, directly from S ∝ T 4. For given L and D, the apparent surface brightness decreases
with redshift as (1 + z)−4, which is usually referred to as cosmological surface brightness
dimming.

3.2 Relativistic Cosmology

In general relativity, the geometric properties of space-time are determined by the distribution of
matter/energy. The standard model of cosmology arises from the application of general relativity
to the very special class of matter/energy distributions implied by the cosmological principle, i.e.
homogeneous and isotropic distributions. As we have seen above, the geometric properties of
a homogeneous and isotropic universe are described by the Robertson–Walker metric which, in
turn, is specified by the scale factor a(t) and the curvature signature K. The task of this section
is to obtain an expression for a(t) and the value of K for any given homogeneous and isotropic
matter/energy content.
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3.2.1 Friedmann Equation

In the standard model of cosmology, the geometry of space-time is determined by the mat-
ter/energy content of the Universe through the Einstein field equation (see Appendix A):

Rμν − 1
2

gμνR−gμνΛ=
8πG
c4 Tμν . (3.54)

Here Rμν is the Ricci tensor, describing the local curvature of space-time, R is the curvature
scalar, gμν is the metric, T μν is the energy–momentum tensor of the matter content of the Uni-
verse, and Λ is the cosmological constant, which was introduced by Einstein to obtain a static
universe. Contracting Eq. (3.54) with gμν yields the trace of the field equation,

R+4Λ= −8πG
c4 T , (3.55)

where T = T λ λ . This allows the field equation to be written in the form

Rμν +gμνΛ=
8πG
c4

(
Tμν − 1

2
gμνT

)
. (3.56)

For a uniform ideal fluid,

T μν = (ρ+P/c2)UμUν −gμνP , (3.57)

with ρc2 the energy density, P the pressure, and Uμ = cdxμ/ds the four velocity of the fluid. In
a homogeneous and isotropic universe, the density and pressure depend only on the cosmic time,
and the four-velocity is Uμ = (c,0,0,0) (i.e. no peculiar motion is allowed). This implies that
T μν = diag(ρc2,−P,−P,−P) and T = ρc2 −3P.

For a homogeneous and isotropic universe, gμν is given by the Robertson–Walker metric,
which allows the Ricci tensor Rμν and curvature scalar R to be expressed in terms of the scale
factor a(t) and the curvature signature K (see Appendix A). Inserting the results into Eq. (3.56),
and using the energy–momentum tensor of a perfect fluid given in Eq. (3.57), one obtains

ä
a

= −4πG
3

(
ρ+3

P
c2

)
+
Λc2

3
(3.58)

for the time-time component, and

ä
a

+2
ȧ2

a2 +2
Kc2

a2 = 4πG

(
ρ− P

c2

)
+Λc2 (3.59)

for the space-space components. It then follows from substituting Eq. (3.58) into Eq. (3.59) that(
ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λc2

3
. (3.60)

As one sees from Eqs. (3.58)–(3.60), the cosmological constant can be considered as an energy
component with ‘mass’ density ρΛ = Λc2/8πG and pressure PΛ = −ρΛc2. Indeed, the term of
Einstein’s cosmological constant in Eq. (3.54) can be included as an energy–momentum tensor,
Tμν = (c4Λ/8πG)gμν , on the right-hand side of the field equation.

Eq. (3.60) is the Friedmann equation, and a cosmology that obeys it is called a Friedmann–
Robertson–Walker (FRW) cosmology. Together with Eq. (3.35), an equation of state, and an
initial condition, it determines the time dependence of a, ρ , P, and other properties of the
Universe.

It is interesting to note that one can derive the Friedmann equation (without the cosmological
constant term) for a matter dominated universe purely from Newtonian gravity (see §2.10). This
follows from the assumption that the Universe is homogeneous and isotropic so that the global
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properties of the Universe can be represented by those in a small region where Newtonian physics
applies. The Newtonian derivation, however, does not contain the pressure term, 3P/c2, in the
equation for the acceleration, which can be considered a relativistic correction. As is evident
from Eq. (3.58), in general relativity this pressure term acts as a source of gravity.

The density which appears in Eq. (3.60) can be made up of various components. At the moment
we distinguish a non-relativistic matter component, a radiation component, and a possible vac-
uum energy (cosmological constant) component. We denote their energy densities (written in
terms of mass densities) at the present time t0 by ρm,0, ρr,0 and ρΛ,0, respectively. As the Uni-
verse expands, these quantities scale with a in different ways, as described in §3.1.5. We can then
write the Friedmann equation as(

ȧ
a

)2

= H2(t) =
8πG

3

[
ρm,0

(a0

a

)3
+ρr,0

(a0

a

)4
+ρΛ,0

]
− Kc2

a2 , (3.61)

where a0 = a(t0).4 Using the fact that the Universe is in its expanding phase at the present time
(i.e. H0 = ȧ0/a0 > 0), we can examine the behavior of a(t) in various cases, even without solving
the Friedmann equation explicitly.

If Λ≥ 0 and if K = 0 or K = −1, the right-hand side of Eq. (3.61) is always larger than zero,
and a(t) always increases with t. If K = +1 and Λ= 0, the right-hand side of Eq. (3.61) becomes
zero in the future as the scale factor increases until the curvature term, K/a2, is as large as the sum
of the matter and radiation terms. Thereafter a(t) decreases with t, and the Universe contracts
until a = 0. If K = +1 and Λ> 0, the situation is similar to that with K = +1 and Λ= 0, provided
that the Λ term in Eq. (3.61) is smaller than the matter plus radiation terms at the present time.
If the Λ term is sufficiently large at the present time, there may have been a minimum value of
a at some previous epoch. This corresponds to a time when the right-hand side of Eq. (3.61) is
equal to zero, and an initially contracting universe ‘bounced’ on its vacuum energy density and
started to re-expand. As one can see from Eq. (3.61), this re-expansion will continue forever. For
positive Λ a static (but unstable) solution is also possible – Einstein’s original static model –
as are solutions which asymptotically approach this model in the infinite future or infinite past.
Finally, if Λ < 0, the expansion will eventually halt and be followed by recollapse, giving a
history qualitatively similar to that of a K = +1, Λ= 0 universe.

3.2.2 The Densities at the Present Time

To solve Eq. (3.61), we need to know K and the various densities at the present time, ρm,0, ρr,0 and
ρΛ,0. Here we summarize constraints on these quantities based on observational and theoretical
considerations.

The total rest mass density of non-relativistic matter in the Universe is conventionally
expressed as

ρm,0 =Ωm,0ρcrit,0 ≈ 1.88×10−29Ωm,0h2 gcm−3 , (3.62)

where, for reasons that will soon become clear, the density

ρcrit(t) ≡ 3H2(t)
8πG

(3.63)

is known as the critical density at time t. The subscript ‘0’ denotes the values at the present time.
The dimensionless quantity, Ωm,0, is the present cosmic density parameter for non-relativistic

4 Note, however, that Eq. (3.61) only applies if there is no transformation from one density component to another. If
such transformation occurs, the time dependence of the equation of state must be taken into account.
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matter, and h is defined in Eq. (3.15). As discussed in §2.10, current observational constraints
suggest

Ωm,0 = 0.27±0.05; h = 0.72±0.05 . (3.64)

The current density in the relativistic component appears to be dominated by the cosmic
microwave background which is, to high accuracy, a blackbody at temperature Tγ = 2.73K. Thus,
using ργ = 4σSBT 4/c3 with σSB the Stefan–Boltzmann constant, we have

ργ ,0 ≈ 4.7×10−34 gcm−3 or Ωγ ,0 ≡ ργ ,0/ρcrit,0 ≈ 2.5×10−5h−2 . (3.65)

In addition, if the three species of neutrinos and their antiparticles are all massless (or relativistic
at the present time), they will have a temperature Tν = (4/11)1/3Tγ (see §3.3). Because each
neutrino has only one spin state (while a photon has two) and because neutrinos are fermions
(and so for a given temperature the statistical weight of each degree of freedom is only 7/8
of that for photons; see §3.3 for details), the energy density in neutrinos at the present time is
3× (7/8)× (4/11)4/3 times that of the CMB photons. This brings the total energy density in the
relativistic component to

ρr,0 ≈ 7.8×10−34 gcm−3 or Ωr,0 ≈ 4.2×10−5h−2 . (3.66)

Combining Eqs. (3.62) and (3.66) shows that the ratio of the energy densities in the non-
relativistic and relativistic components varies with redshift as

ρm

ρr
≈ 2.4×104Ωm,0h2(1+ z)−1 , (3.67)

where we have used that ρm ∝ a−3 and ρr ∝ a−4 (see Table 3.1). Thus, provided the Universe did
not bounce in the recent past due to a large cosmological constant, it has been matter dominated
and effectively pressure-free since the epoch of matter/radiation equality defined by ρr = ρm, i.e.
since the redshift given by

1+ zeq ≈ 2.4×104Ωm,0h2 . (3.68)

To constrain the present day energy density provided by the cosmological constant, we use the
Friedmann equation (3.61), which we rewrite as

8πG
3
ρΛ,0 = H2

0 [1−Ωm,0 −Ωr,0]+
Kc2

a2
0

. (3.69)

As discussed in §2.9, observations of the microwave background show that our Universe is almost
flat and that the current density in non-relativistic matter is significant [see Eq. (3.64)]. This
excludes the possibility of a bounce in the recent past due to a large cosmological constant. Such
an expansion history is also excluded by the observation of objects out to redshifts beyond 6, so
we will not consider such cosmological models any further. Setting K = 0 in Eq. (3.69) we obtain

ρΛ,0 = ρcrit,0(1−Ωm,0 −Ωr,0) i.e. ΩΛ,0 = 1−Ωm,0 −Ωr,0 . (3.70)

Data from WMAP combined with other observations give ΩΛ,0 ∼ 0.75± 0.02 (Spergel et al.,
2007).

3.2.3 Explicit Solutions of the Friedmann Equation

(a) The Evolution of Cosmological Quantities Taking t = t0, the Friedmann equation can be
rewritten as

ΩK,0 ≡− Kc2

H2
0 a2

0

= 1−Ω0 , (3.71)
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where

Ω0 =Ωm,0 +ΩΛ,0 +Ωr,0 (3.72)

is the total density parameter at the present time. As is immediately evident from Eq. (3.71), the
curvature of space-time depends on the matter density of the Universe. In particular, Ω0 is less
than 1 for a negatively curved, open universe, is equal to 1 for a flat universe, and is bigger than 1
for a positively curved, closed universe. The terminology ‘open’ and ‘closed’ only has a logical
meaning for a Λ = 0 universe; open (and flat) universes expand forever, while closed universes
recollapse in the future. For non-zero Λ, however, open and flat universes can recollapse and
closed universes can expand forever, depending on the values of the various density parameters
(see discussion at the end of §3.2.1). Since Ω0 is just the total energy density of the Universe
in units of ρcrit,0, it follows that ρcrit,0 defines a critical density for closure. Note that Eq. (3.71)
defines the scale factor a0 at the present time:

a0 =
c

H0

√
K

Ω0 −1
, (3.73)

which goes to infinity as Ω0 approaches 1 from either side. This follows from our definition of
the coordinate r in Eqs. (3.3) and (3.8). Since a0 is only a scale factor, its value does not have
physical meaning and so can be set to any positive value. A choice for the value of a0 corresponds
to a choice in the definition of the coordinate r. In fact, physical distances are all related to a0

through the combination a0r, which is well behaved near Ω0 = 1 and independent of the choice
of a0. It is common practice to adopt a0 = 1.

Substituting Eq. (3.71) into Eq. (3.61) gives

H(z) ≡
(

ȧ
a

)
(z) = H0E(z) , (3.74)

where

E(z) =
[
ΩΛ,0 +(1−Ω0)(1+ z)2 +Ωm,0(1+ z)3 +Ωr,0(1+ z)4]1/2

. (3.75)

Defining the cosmic density parameters at cosmic time t as

Ω(t) ≡ ρ(t)
ρcrit(t)

, (3.76)

we have

ΩΛ(z) =
ΩΛ,0

E2(z)
; Ωm(z) =

Ωm,0(1+ z)3

E2(z)
; Ωr(z) =

Ωr,0(1+ z)4

E2(z)
. (3.77)

Thus, once H, ΩΛ, Ωm and Ωr are known at the present time, Eqs. (3.74)–(3.77) can be used
to obtain their values at any given redshift. It is also clear from Eqs. (3.61) and (3.71) that the
geometry of a FRW universe is completely determined by the values of H0, ΩΛ,0, Ωm,0 and
Ωr,0. Since Ωr,0 �Ωm,0 (see §3.2.2), the deceleration parameter, q0, defined in Eq. (3.51) can be
written as

q0 =Ωm,0/2−ΩΛ,0 , (3.78)

where we have used Eq. (3.58) with P = 0, as appropriate for a matter dominated universe.
Finally, using Eq. (3.71) and the definition of E(z), we can write down the redshift evolution

of the total density parameter

Ω(z)−1 = (Ω0 −1)
(1+ z)2

E2(z)
. (3.79)
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As long asΩm,0 orΩr,0 are non-zero,Ω(z) always approaches unity at high redshifts, independent
of the present day values of H0, ΩΛ,0, Ωm,0 and Ωr,0. Therefore, every FRW universe with non-
zero matter or radiation content must have started out with a total density parameter very close
to unity. As we will see in §3.6, this results in the so-called flatness problem.

(b) Radiation Dominated Epoch In the absence of a contracting phase in the past, the right-
hand side of Eq. (3.61) is dominated by the radiation term at z 	 zeq. In this case, integration of
Eq. (3.61) yields

a
a0

=
(

32πGρr,0

3

)1/4

t1/2. (3.80)

Using that ρr ∝ a−4, ρm ∝ a−3 and Tr ∝ a−1 (see Table 3.1), this gives the following rough
scalings for the early Universe:

T
1010 K

∼ kBT
1MeV

∼
[

ρ
107 gcm−3

]1/4

∼
[

ρm

1gcm−3

]1/3

∼ 1+ z
1010 ∼

[ t
1s

]−1/2
. (3.81)

These relations are approximately correct for 0 < t < 1010 s, or z > 105. The arbitrarily high
temperatures and densities which are achieved at sufficiently early times have given this standard
cosmological model its generic name, the Hot Big Bang.

(c) Matter Dominated Epoch and ΩΛ,0 = 0 At redshift z � zeq, the radiation content of the
Universe has little effect on its global dynamics, and assuming Λ= 0, Eq. (3.61) reduces to(

ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3 − Kc2

H2
0 a2

0

(a0

a

)2
]

. (3.82)

For K = 0 the solution is particularly simple:

a
a0

=
(

3
2

H0t

)2/3

. (3.83)

This is the solution for an Einstein–de Sitter (EdS) universe. For K = −1, the solution can be
expressed in parametric form:

a
a0

=
1
2

Ωm,0

(1−Ωm,0)
(coshϑ −1) ; H0t =

1
2

Ωm,0

(1−Ωm,0)3/2
(sinhϑ −ϑ) , (3.84)

where ϑ goes from 0 to ∞. At early epochs, a ∝ t2/3, which follows directly from the fact that
the curvature term in Eq. (3.82) can be neglected when a is sufficiently small. At later epochs
when ϑ 	 1 and sinhϑ = coshϑ so that a ∝ t, the universe enters a phase of free expansion,
unretarded by gravity.

The corresponding parametric solution for a K = +1 universe is

a
a0

=
1
2

Ωm,0

(Ωm,0 −1)
(1− cosϑ) ; H0t =

1
2

Ωm,0

(Ωm,0 −1)3/2
(ϑ − sinϑ) , (3.85)

where 0 ≤ ϑ ≤ 2π . Such models reach a maximum size, amax, at a time, tmax, given by

amax

a0
=

Ωm,0

Ωm,0 −1
; H0tmax =

π
2

Ωm,0

(Ωm,0 −1)3/2
. (3.86)

This maximum expansion is followed by recollapse to a singularity. At early epochs, a ∝ t2/3,
for the same reason as that for the K = −1 case.

Note that H0t0 depends only on Ωm,0 in these models. Since the normalization time, t0, can be
chosen arbitrarily, it is easy to see that H(t)t depends only on Ωm(t).
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(d) Flat (Ωm,0 +ΩΛ,0 = 1) Models at z � zeq In this case Eq. (3.61) can be written as(
ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3
+ΩΛ,0

]
. (3.87)

When the matter term is negligible, the model is called a de Sitter universe for which the solution
of Eq. (3.87) is particularly simple:

a
a0

= exp [H0(t − t0)] , (3.88)

and the universe expands exponentially without an initial singularity. For 0 < Ωm,0 < 1, using
the fact that H0 ≡ ȧ/a > 0, Eq. (3.87) can be easily solved to give

a
a0

=
(
Ωm,0

ΩΛ,0

)1/3 [
sinh

(
3
2
Ω1/2
Λ,0H0t

)]2/3

. (3.89)

At early epochs, a ∝ t2/3 as in an Einstein–de Sitter universe; when t is large, a ∝ exp(Ω1/2
Λ,0H0t)

so that the universe approximates the de Sitter model.

(e) Open and Closed Models withΩΛ,0 �= 0 at z � zeq The Friedmann equation in this case is(
ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3 − Kc2

H2
0 a2

0

(a0

a

)2
+ΩΛ,0

]
. (3.90)

This equation can be cast into a dimensionless form:

1
2

(
dx
dη

)2

=
1
x
−κ+λx2, (3.91)

where x = a/a0, η =
√
Ωm,0/2H0t, λ =ΩΛ,0/Ωm,0, and κ = Kc2/(H2

0 a2
0Ωm,0). The evolution of

x can thus be discussed in terms of the Newtonian motion of a particle with total energy ε = −κ
in a potential φ(x) = −1/x−λx2.

When λ < 0, the potential φ(x) monotonically increases from 0 to ∞ so that x is confined, and
all solutions evolve from an initial singularity into a final singularity.

When λ > 0, the potential φ(x) is always negative, and x can go to infinity if ε > 0 or K =−1.
Hence an open universe with ΩΛ,0 > 0 expands from an initial singularity forever. If λ > 0 and
K = +1, the potential φ(x) has a maximum, φmax = −(27λ/4)1/3, at x = xmax = 1/(2λ )1/3. In
this case, if the total energy ε > φmax, i.e.

λ > λc ≡ 4
27

[
c2

H2
0 a2

0Ωm,0

]3

, (3.92)

the universe still expands forever, starting from an initial singularity. If, however, ε < φmax or
λ < λc, then there is the possibility that the universe contracts from large radii to a minimum
radius, amin, given by φ(amin/a0) = ε , and expands thereafter to infinity. This happens if the
universe starts with a radius a > a0xmax. If the universe starts with an initial singularity, then it
will evolve into a final singularity, giving a situation similar to that of a closed universe without
cosmological constant.

If λ > 0 and K = +1, a special situation occurs when ε = φmax or λ = λc. In this case, there
is a static solution with a constant radius aE = a0/(2λc)1/3. Such a model is called the ‘Einstein
universe’. If the universe expands from an initial singularity, or contracts from a large radius, it
will coast asymptotically towards the radius aE. If the universe expands from an initial radius
larger than aE, it will do so forever.
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3.2.4 Horizons

A light ray emitted by an event (re, te) reaches an observer at the origin at time, t0, given by

χ(re) =
∫ t0

te

cdt
a(t)

=
∫ a0

ae

da
a

[
8πGρ(a)a2

3c2 −K

]−1/2

, (3.93)

with ρ = ρm +ρr +ρΛ. The second equality follows from substituting dt = da/ȧ and using the
Friedmann equation (3.60). If the t (or a) integral converges, as te → 0, to a value χh = χ(rh),
then there may exist particles (fundamental observers) for which χ(r) > χh and from which no
communication can have reached the origin by time t0. Such particles (or values of r) are said
to lie beyond the particle horizon of the origin at time t0. From the form of the last integral in
Eq. (3.93) it is clear that convergence requires ρa2 → ∞ as a → 0. Thus particle horizons exist
in a universe which is matter or radiation dominated at the earliest times, but do not exist in a
universe which was initially dominated by vacuum energy density. As t0 increases, χh becomes
bigger, all particle horizons expand, and signals can be received from more and more distant
particles.

If the t integral in Eq. (3.93) converges as t0 → ∞ (or as t0 approaches the recollapse time for
a universe with a finite lifetime), there may exist events which the observer at the origin will
never see, and which therefore can never influence him/her by any physical means. Such events
are said to lie beyond the event horizon of this observer. Event horizons exist in closed models
and in models that are vacuum dominated at late times, but do not exist in flat or open universes
with zero cosmological constant. In the latter case, therefore, any event will eventually be able
to influence every fundamental observer in the Universe.

The existence of particle horizons in the Big Bang model has important implications, because
it means that many parts of the presently observable Universe may not have been in causal contact
at early times. This gives rise to certain difficulties, as we will see in §3.6.

3.2.5 The Age of the Universe

In currently viable models the Universe has been expanding since the Big Bang, so that ȧ > 0
holds over its entire history. The age of the Universe at redshift z can then be obtained from
Eqs. (3.22) and (3.74):

t(z) ≡
∫ a(z)

0

da
ȧ

=
1

H0

∫ ∞

z

dz
(1+ z)E(z)

, (3.94)

where E(z) is given by Eq. (3.75). With this, the lookback time at redshift z, defined as t0 − t(z),
can also be obtained. For a given set of cosmological parameters, t(z) can be calculated easily
from Eq. (3.94) by numerical integration. In some special cases, the integration can even be
carried out analytically.

In the radiation dominated epoch (i.e. at z 	 zeq), the solution of the Friedmann equation is
given by Eq. (3.80), and the age of the Universe is

t(z) ≈
(

1+ z
1010

)−2

s . (3.95)

In the matter dominated epoch (z � zeq), we can neglect the radiation term in E(z). It can then
be shown that for an EdS universe (i.e. for Ωm,0 = 1 and ΩΛ,0 = 0),

t(z) =
1

H0

2
3
(1+ z)−3/2 ≈ 2

3
(1+ z)−3/2 ×1010h−1 yr . (3.96)



120 Cosmological Background

For an open universe with ΩΛ,0 = 0 and Ω0 =Ωm,0 < 1,

t(z) =
1

H0

Ω0

2(1−Ω0)3/2

[
2
√

(1−Ω0)(Ω0z+1)
Ω0(1+ z)

− cosh−1
(
Ω0z−Ω0 +2
Ω0z+Ω0

)]
. (3.97)

For a closed universe with ΩΛ,0 = 0 and Ω0 =Ωm,0 > 1,

t(z) =
1

H0

Ω0

2(Ω0 −1)3/2

[
−2
√

(Ω0 −1)(Ω0z+1)
Ω0(1+ z)

+ cos−1
(
Ω0z−Ω0 +2
Ω0z+Ω0

)]
. (3.98)

Finally, for a flat universe with Ωm,0 +ΩΛ,0 = 1,

t(z) =
1

H0

2

3
√
ΩΛ,0

ln

[√
ΩΛ,0(1+ z)−3 +

√
ΩΛ,0(1+ z)−3 +Ωm,0√
Ωm,0

]
. (3.99)

In all these cases, the behavior at z 	 1 is

t(z) ≈ 2
3H0

Ω−1/2
m,0 (1+ z)−3/2. (3.100)

Fig. 3.2 shows the product of the Hubble parameter, h, defined by Eq. (3.15), and the lookback
time, t0 − t(z), as a function of (1 + z) for models with ΩΛ,0 = 0, and for flat models with a

Fig. 3.2. The lookback time as a function of redshift for (a) models withΩΛ,0 = 0 andΩm,0 = 0.1, 0.3, 0.5,
1, 2 (from top down); and (b) flat models (Ωm,0 +ΩΛ,0 = 1) with Ωm,0 = 0.1, 0.3, 0.5, 1 (from top down).
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cosmological constant (Ωm,0 +ΩΛ,0 = 1). It is clear that for given h and Ωm,0, the age of the
Universe is larger in models with a cosmological constant. By definition, the age of the Universe
at the present time should be larger than that of the oldest objects it contains. The oldest objects
whose ages can be determined reliably are a class of star clusters called globular clusters, which
have ages ranging up to 13Gyr (e.g. Carretta et al., 2000). This requires h ∼< 0.5 for an EdS
universe, and h ∼< 0.7 for a flat universe with Ωm,0 = 0.3 and ΩΛ,0 = 0.7.

3.2.6 Cosmological Distances and Volumes

As defined in §3.1.6, the luminosity distance, dL, and the angular-diameter distance, dA, are
related to the redshift, z, and the comoving coordinate, r, by

dL =
(

L
4πF

)1/2

= a0r(1+ z) ; dA =
D
ϑ

=
a0r

1+ z
. (3.101)

In order to write dL and dA in terms of observable quantities, we need to express the unobservable
coordinate r as a function of z. To do this, recall that r(t) is the comoving coordinate of a light
signal (an event) that originates at cosmic time t and reaches us at the origin at the present time
t0. It then follows from Eq. (3.17) that the comoving distance corresponding to r is

χ(r) = τ(t0)− τ(t) = c
∫ a0

a(t)

da
aȧ

, (3.102)

where we have used the definition of the conformal time in Eq. (3.11) and the fact that dt = da/ȧ.
Using Eq. (3.74) and the fact that a(z) = a0/(1+ z) this can be rewritten as

χ(r) =
c

H0a0

∫ z

0

dz
E(z)

, (3.103)

where E(z) is given by Eq. (3.75). Using Eqs. (3.10) and (3.13), this gives

r = fK

[
c

H0a0

∫ z

0

dz
E(z)

]
. (3.104)

Note that r is the angular-diameter distance in comoving units. In general Eq. (3.103) can be
integrated numerically for a given set of cosmological parameters. When z � zeq and ΩΛ,0 = 0,
a closed expression can be derived for all three values of K,

a0r =
2c
H0

Ω0z+(2−Ω0)
[
1− (Ω0z+1)1/2

]
Ω2

0(1+ z)
, (3.105)

which is known as Mattig’s formula (Mattig, 1958). For a flat (Ωm,0 +ΩΛ,0 = 1) universe r = χ ,
so that for z � zeq

a0r =
c

H0

∫ z

0

dz

[ΩΛ,0 +Ωm,0(1+ z)3]1/2
. (3.106)

Luminosity (or angular-diameter) distances can be measured directly for objects of known
intrinsic luminosity (or proper size). Such objects are known as ‘standard candles’ (or ‘standard
rulers’). Since the relation of redshift to these distances depends on cosmological parameters, in
particular on H0, Ωm,0 and ΩΛ,0, measuring the redshift of properly calibrated standard candles
(or standard rulers) can provide estimates of these parameters.

One of the most reliable and historically most important standard candles is a class of pulsating
stars known as Cepheids, for which the pulsation period is tightly correlated with their mean
intrinsic luminosity (see §2.1.3). Using the HST, Cepheids have been measured out to distances
of about 10Mpc. At such distances, the dL-z relation is still linear, dL ≈ cz/H0, so interesting
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Fig. 3.3. The upper panel shows distance modulus, (m−M ) = 5log(dL/10pc), against redshift for Type
Ia supernovae for which the light curve shape has been used to estimate their absolute magnitudes (data
points). The predicted relations for three cosmological models are indicated by dashed (Ωm,0 = 1,ΩΛ,0 = 0),
dotted (Ωm,0 = 0.2, ΩΛ,0 = 0) and solid (Ωm,0 = 0.28, ΩΛ,0 = 0.72) curves. The lower panel shows the
difference between the distance modulus and the prediction for the (Ωm,0 = 0.2,ΩΛ,0 = 0) model. [Adapted
from Riess et al. (1998) by permission of AAS]

constraints can be obtained only for the Hubble constant. The current best estimate is H0 =
(72±8)kms−1 Mpc−1 (e.g. Freedman et al., 2001).

In order to measure other cosmological parameters we must go to sufficiently large distances so
that nonlinear terms in the distance–redshift relation are important, i.e. to z ∼> 1. In Chapter 2 we
have seen that Type Ia supernovae can be used as standard candles and that they have now been
observed out to z ∼ 1. In Fig. 3.3 the observed luminosity distance–redshift relation for Type
Ia supernovae is compared with the predictions of a number of cosmological models. Detailed
analyses of these data give the following constraint:

0.8Ωm,0 −0.6ΩΛ,0 �−0.2±0.1 (3.107)

(Perlmutter et al., 1999).
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The proper-distance element at time t is dl = a(t)dχ . Using Eq. (3.103) we have

dl
dz

=
c

H0

1
(1+ z)

1
E(z)

. (3.108)

This gives the proper distance per unit redshift at redshift z. Suppose that there is a population of
objects with proper number density n(z) = n0(z)(1+ z)3 (so that n0 is a constant if the number of
the objects is conserved) and with average proper cross-section σ(z). The number of intersections
between such objects and a sightline in a unit redshift interval around z is

dN

dz
= n0(z)(1+ z)3σ(z)

dl
dz

= n0(z)σ(z)
c

H0

(1+ z)2

E(z)
. (3.109)

The ‘optical depth’ for the intersection of objects up to redshift z is therefore

τ(z) =
∫ z

0
dN (z) =

c
H0

∫ z

0
n0(z)σ(z)

(1+ z)2

E(z)
dz . (3.110)

These quantities are relevant for the discussion of QSO absorption line systems (see Chapter 16).
In this case n0(z) is the comoving number density, σ(z) is the average absorption cross-section
of absorbers, and dN /dz is just the expected number of absorption systems per unit redshift.
Another application of Eqs. (3.109) and (3.110) concerns the interpretation of the observed
number of gravitational lensing events caused by foreground objects. In this case, n0(z) is the
comoving number density of lenses, and σ(z) is the average lensing cross-section. A third appli-
cation is to the scattering of the microwave background by ionized intergalactic gas. Here, σ(z)
is the Thomson cross-section and n0(z) is the comoving number density of free electrons.

Consider next the proper volume element at a redshift z. The proper-length element in the
radial direction is again a(t)dχ , and the proper distance subtended by an angle element dϑ is
a(t)r dϑ . The proper-volume element at redshift z corresponding to a solid angle dω = dϑ 2 and
a depth dz is thus

d2Vp = a3(t)r2 dχ dω =
c

H0

dz
(1+ z)E(z)

[a0r(z)]2 dω
(1+ z)2 , (3.111)

where r(z) is related to z by Eq. (3.104). Using Eq. (3.111), the total, proper volume out to redshift
z is

Vp(z) = 4πa3(t)
∫ r(z)

0

r′2 dr′√
1−Kr′2

=

⎧⎪⎪⎨⎪⎪⎩
2πa3(t)

(
sin−1 r− r

√
1− r2

)
(K = +1)

4π
3 a3(t)r3 (K = 0)

2πa3(t)
(

r
√

1+ r2 − sinh−1 r
)

(K = −1).

(3.112)

We can also use Eq. (3.111) to compute the total number of objects per unit volume. Assuming
the proper number density of objects at redshift z to be n(z) = n0(z)(1+ z)3, the predicted count
of objects per unit redshift and per unit solid angle is

d2N
dzdω

= n(z)
d2Vp

dzdω
= n0(z)

c
H0

[a0r(z)]2

E(z)
. (3.113)

Thus, if the z dependence of n0 is known, one can use Eq. (3.113) to put constraints on cosmolog-
ical parameters by simply counting objects (e.g. galaxies) as a function of z (see Loh & Spillar
(1986) for a discussion).

Another important quantity in cosmology is the comoving distance between any two observed
objects in the Robertson–Walker metric. Suppose that these two objects (labeled O1 and O2) are
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at redshifts z1 and z2, and are separated by an angle α on the sky. Their comoving distances from
an observer at the origin are given by Eq. (3.102), and we denote them by χ1 and χ2, respectively.
As shown in §3.1.2, for K = +1 the comoving distance, χ12, between O1 and O2 is equal to the
distance on the unit sphere between two points with polar angles χ1 and χ2 and with azimuthal
angles differing by α . Thus

cosχ12 = cosχ1 cosχ2 + sinχ1 sinχ2 cosα . (3.114)

The corresponding equation for K = −1 is

coshχ12 = coshχ1 coshχ2 − sinhχ1 sinhχ2 cosα , (3.115)

and for K = 0 is

χ2
12 = χ2

1 +χ2
2 −2χ1χ2 cosα . (3.116)

Finally, consider the case in which α is zero (or very small). In this case, the angular-diameter
distance from O1 to O2 can be written as

dA,12 =
a0r12

1+ z2
, (3.117)

where

r12 ≡ fK(χ12) = fK(χ2 −χ1) = r(z2)
√

1−Kr2(z1)− r(z1)
√

1−Kr2(z2) . (3.118)

For the ΩΛ,0 = 0 case this gives

dA,12 =
2c
H0

√
1+Ω0z1(2−Ω0 +Ω0z2)−

√
1+Ω0z2(2−Ω0 +Ω0z1)

Ω2
0(1+ z2)2(1+ z1)

(3.119)

(Refsdal, 1966). Note that |dA,12| �= |dA,21|, and that, as required, Eq. (3.119) reduces to Mattig’s
formula for z1 = 0. Eq. (3.119) plays an important role in gravitational lensing, where z1 and z2

are the redshifts of the lens and the source, respectively (see §6.6).

3.3 The Production and Survival of Particles

An important feature of the standard cosmology is that the temperature of the Universe was
arbitrarily high at the beginning of the Big Bang [see Eq. (3.81)] and has decreased continuously
as the Universe expanded to its present state. As we have seen in §3.1.5, the thermal history
of the Universe follows from a simple application of thermodynamics to a small patch of the
homogeneous and isotropic Universe. In this section we show that this thermal history, together
with particle, nuclear and atomic physics, allows a detailed prediction of the matter content of
the Universe at each epoch. The reason for this is simple: when the temperature of the Universe
was higher than the rest mass of a kind of charged particles, the photon energy is high enough
to create these particles and their antiparticles. This, in turn, could give rise to other kinds of
particles. For example, when the temperature of the Universe was higher than the rest mass
of an electron, i.e. kBT > mec2 ≈ 0.511MeV (corresponding to T ∼ 5.8×109 K), electrons and
positrons could be generated via pair production, γ+γ↔ e+e, and electronic neutrinos could be
produced via neutral current reactions, such as e+e ↔ νe +νe. When the density of the Universe
was sufficiently high, the creation and annihilation of (e,e) pairs, and the Compton scattering
between (e,e) and photons, could establish a thermal equilibrium among these particles, while
the neutrinos established such an equilibrium via their neutral current coupling to the electrons.
Consequently, the Universe was filled with a hot plasma that included γ , e, e, νe and νe, all in
thermal equilibrium at the same temperature.
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In order to maintain thermodynamic equilibrium the frequency of interactions among the var-
ious particle species involved needs to be sufficiently high. The interaction rate is Γ ≡ n〈vσ〉,
where n is the number density of particles, v is their relative velocity, and σ is the interaction
cross-section (which usually depends on v ). As the Universe expands and the temperature drops,
this rate in general decreases. When it becomes smaller than the expansion rate of the Universe,
given by the Hubble parameter, H(t), the particles ‘decouple’ from the photon fluid, and, as
long as the particles are stable, their comoving number density ‘freezes-out’ at its current value.
Except for possible particle species created out of thermal equilibrium (e.g. axions), and for par-
ticles that have been created more recently in high-energy processes, all elementary particles in
the present-day Universe are thermal relics that have decoupled from the photon fluid at some
time in the past.

In what follows we first present a brief outline of the chronology of the early Universe, and
then discuss the production and survival of particles during a number of important epochs. Since
the early Universe was dominated by relativistic particles, Eq. (3.81) can be used to relate tem-
perature T (or energy kBT ) to the cosmic time. As this section is concerned with high energy
physics, we will use the natural unit system in which the speed of light c, Boltzmann’s constant
kB, and Planck’s constant h̄ = hP/2π are all set to 1. In cgs units [c] = cms−1, [h̄] = g cm2 s−1,
and [kB] = g cm2 s−2 K−1. Therefore, making these constants dimensionless implies that

[energy] = [mass] = [temperature] = [time]−1 = [length]−1 , (3.120)

and all physical quantities can be expressed in one unit, usually mass or energy. However,
they can also be expressed in one of the other units using the following conversion fac-
tors: 1MeV = 1.602 × 10−6 erg = 1.161 × 1010 K = 1.783 × 10−27 g = 5.068 × 1010 cm−1 =
1.519× 1021 s−1. Whenever needed, the ‘missing’ powers of c, kB, and h̄ in equations can be
reinserted straightforwardly from a simple dimensional analysis.

3.3.1 The Chronology of the Hot Big Bang

Since our understanding of particle physics is only robust below energies of ∼ 1GeV (∼ 1013 K),
the physics of the very early Universe (t ∼< 10−6 s) is still very uncertain. In popular, although
speculative, extensions of the standard model for particle physics, this era is characterized by
a number of symmetry-breaking phase transitions. Particle physicists have developed a number
of models which suggest the existence of many exotic particles as a result of these symmetry
breakings, and it is a popular idea that the elusive dark matter consists of one or more of such
particle species. However, it should be kept in mind that the theories predicting the existence
of these exotic particles are not well established and that there is not yet any convincing, direct
experimental evidence for their existence.

For the purpose of the discussion here, the two most important events that (probably) took
place during this early period after the Big Bang are inflation and baryogenesis. Inflation is
a period of exponential expansion that resulted from a phase transition associated with some
unknown scalar field. Inflation is invoked to solve several important problems for the standard
Hot Big Bang cosmology, and is described in detail in §3.6. Baryogenesis is a mechanism that
is needed to explain the observed asymmetry between baryons and antibaryons: one does not
observe a significant abundance of antibaryons. If they were there, their continuous annihilation
with baryons would produce a much greater gamma-ray background than observed, unless they
are spatially segregated from the baryons, which is extremely contrived. Apparently, the Universe
has a non-zero baryon number. If baryon number is conserved, this asymmetry between baryons
and antibaryons must have originated at very early times through a process called baryogenesis.
The details of this process are still poorly understood, and will not be discussed in this book (see
Kolb & Turner, 1990).
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In what follows we give a brief overview of some of the most important events that took place
in the early Universe after it had cooled down to a temperature of ∼ 1013 K. At this point in time,
the temperature of the Universe was still higher than the binding energy of hadrons (baryons and
mesons). Quarks were not yet bound into hadronic states. Instead, the matter in the Universe was
in a form referred to as quark soup, which consists of quarks, leptons and photons.

• At T ∼ 3×1012 K (t ∼ 10−5 s), corresponding to an energy of 200–300MeV, the quark–hadron
phase transition occurs, confining quarks into hadrons. If the phase transition was strongly
first order, it may have induced significant inhomogeneities in the baryon-to-photon ratio, and
affected the later formation of elements, a topic discussed further in §3.4. Once the transition
was complete, the Universe was filled with a hot plasma consisting of three types of (rela-
tivistic) pions (π+, π−, π0), (non-relativistic) nucleons (protons, p, and neutrons, n), charged
leptons (e, e, μ , μ; the τ and τ have already annihilated), their associated neutrinos (νe, νe,
νμ , νμ ), and photons, all in thermal equilibrium. In addition, the Universe comprises several
decoupled species, such as the tau-neutrinos (ντ and ντ ) – their coupling has to be through
their reactions with τ and τ , and possible exotic particles that make up the (non-baryonic)
dark matter.

• At T ∼ 1012 K (t ∼ 10−4 s) the (π+,π−) pairs annihilate while the neutral pions π0 decay into
photons. From this point on the nucleons (and a small abundance of their antiparticles which
escaped annihilation) are the only hadronic species left. At around the same time, the muons
start to annihilate, and their number density becomes negligibly small as T drops to about
1011 K. At this time, νμ and νμ also decouple from the hot plasma, and expand freely with the
Universe.

• When T drops below 1011 K, the number of neutrons becomes smaller than that of protons by
a factor of about exp(−Δm/T ), where Δm≈ 1.3MeV is the mass difference between a neutron
and a proton. This asymmetry in the numbers of n and p continues to grow until the reaction
rate between neutrons and protons becomes negligible.

• At T ∼ 5× 109 K (t ∼ 4s), the annihilations of (e,e) pairs begins. As the number density of
(e,e) pairs drops, νe and νe decouple from the hot plasma. Since the (e,e) annihilations heat
the photons but not the decoupled neutrinos, the neutrinos expand freely with a temperature
that is lower than that of the photons. Because of the reduction in the number of (e,e) pairs
and the cooling of νe and νe, reactions such as n+νe ↔ p+e and n+e ↔ p+νe are no longer
effective. Consequently, the n/p ratio freezes out at a value of about exp(−Δm/T ) ∼ 1/10.
Note that this ratio does not change much due to beta decay of the neutrons, because the
half-time of the decay (about 10 minutes) is much longer than the age of the Universe at this
time.

• At T ∼ 109 K (t ∼ few minutes), nucleosynthesis starts, synthesizing protons and neutrons
to produce D, He and a few other elements. Since the temperature is still too high for the
formation of neutral atoms, all these elements are highly ionized. Consequently, the Universe
is now filled with freely expanding neutrinos (and possibly exotic particles) and a plasma of
electrons and highly ionized atoms (mainly protons and He++). However, as the temperature
continues to decrease, electrons start to combine with the ions to produce neutral atoms.

• At T ∼ 4000K (t ∼ 2× 105 yr) roughly 50% of the baryonic matter is in the form of neutral
atoms. This point in time is often called the time of recombination. Because of the resulting
drop in the number density of free electrons, the Universe suddenly becomes transparent to
photons. These photons are observed today as the cosmic microwave background. From this
point on, photons, neutrinos, H, He and other atoms all expand freely with the Universe. At
around the same time, the energy density in relativistic particles has become smaller than
that in the rest mass of non-relativistic matter, and the Universe enters the matter dominated
epoch.
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Once the processes involved are known from particle, nuclear and atomic physics, it is in
principle straightforward to calculate the matter content at different epochs summarized above.
A detailed treatment of such calculations is beyond the scope of this book, and can be found
in Börner (2003) and Kolb & Turner (1990), for example. In what follows, we present a
brief discussion about the basic principles involved and their applications to some important
examples.

3.3.2 Particles in Thermal Equilibrium

As discussed above, at any given epoch, some particles are in thermal equilibrium with the hot
plasma, some in free expansion with the Universe, and others are in transition between the two
states. The number density n, energy density ρ , and pressure P of a given particle species can
be written in terms of its distribution function f (x,p, t). Since the Universe is homogeneous and
isotropic f (x,p, t) = f (p, t), with p = |p|, so that

n(t) = 4π
∫

f (p, t) p2 dp , (3.121)

ρ(t) = 4π
∫

E(p) f (p, t) p2 dp , (3.122)

P(t) = 4π
∫

p2

3E(p)
f (p, t) p2 dp , (3.123)

where the energy E is related to the momentum p as E(p) = (p2 + m2)1/2. Eq. (3.123) fol-
lows from kinetic theory, according to which the pressure is related to momentum and velocity
as P = 1

3 n〈pv〉. Using the components of the four-momentum, we have v = pc2/E, so that
P = n〈p2c2/3E〉.

For a particle species in thermal equilibrium

f (p, t)d3p =
g

(2π)3

{
exp

[
E(p)−μ

T (t)

]
±1

}−1

d3p , (3.124)

where μ is the chemical potential of the species, and T (t) is its temperature at time t. The signa-
ture, ±, takes the positive sign for Fermi–Dirac species and the negative sign for Bose–Einstein
species. The factor 1/(2π)3 is due to Heisenberg’s uncertainty principle, which states that no
particle can be localized in a phase-space volume smaller than the fundamental element (2π h̄)3

(recall that we use h̄ = c = kB = 1), and g is the spin-degeneracy factor (neutrinos have g = 1,
photons and charged leptons have g = 2, and quarks have g = 6).

Substituting Eq. (3.124) in Eqs. (3.121)–(3.123) yields

neq =
g

2π2

∫ ∞

m

(E2 −m2)1/2EdE
exp[(E −μ)/T ]±1

; (3.125)

ρeq =
g

2π2

∫ ∞

m

(E2 −m2)1/2E2dE
exp[(E −μ)/T ]±1

; (3.126)

Peq =
g

6π2

∫ ∞

m

(E2 −m2)3/2dE
exp[(E −μ)/T ]±1

. (3.127)
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Let us consider two special cases. In the non-relativistic limit, i.e. when T � m, the number
density, the energy density and pressure are the same for both Bose–Einstein and Fermi–Dirac
species, and can be written in the following analytic forms:

neq = g

(
mT
2π

)3/2

e(μ−m)/T , (3.128)

ρeq = nm , Peq = nT . (3.129)

For a relativistic (T 	 m and E = p), non-degenerate (μ� T ) gas, the corresponding analytical
expressions are

neq =
{ [

ζ (3)/π2
]

gT 3 (Bose–Einstein)
(3/4)

[
ζ (3)/π2

]
gT 3 (Fermi–Dirac),

(3.130)

ρeq =
{ (

π2/30
)

gT 4 (Bose–Einstein)
(7/8)

(
π2/30

)
gT 4 (Fermi–Dirac).

(3.131)

Peq = ρeq/3 , (3.132)

where ζ (3) ≈ 1.2021... is the Riemann zeta function of 3.
In general, in order to use Eqs. (3.125)–(3.127) to calculate the density and pressure, one needs

to know the chemical potential μ . The principle for determining the chemical potential of a
species is that chemical potential is an additive quantity which is conserved during a ‘chem-
ical’ reaction (e.g. Landau & Lifshitz, 1959). Thus, if species ‘i’ takes part in a reaction like
i+ j ↔ k + l, then μi +μ j = μk +μl . The values of the chemical potentials therefore depend on
the various conservation laws under which the various reactions take place. For example, since
the number of photons is not a conserved quantity for a thermodynamic system, the chemical
potential of photons must be zero. This is consistent with the fact that photons at thermal equilib-
rium have the Planck distribution. It then follows that the chemical potential for a particle is the
negative of that for its antiparticle (because particle–antiparticle pairs can be annihilated to pho-
tons). Put differently, the difference in the number density of particles and antiparticles depends
only on the chemical potential. Similar to electric charge, particle reactions are thought to gen-
erally conserve baryon number (which explains the long lifetime of the proton, of > 1034 years)
and lepton number. Since the number densities of baryons and leptons are found to be (or, in the
case of leptons, believed to be) much smaller than the number density of photons, the chemical
potential of all species may be set to zero to good approximation in computing the mean energy
density and pressure in the early Universe.

There is one caveat, however. Since the chemical potential of a particle is the negative of that of
its antiparticle, it follows from Eq. (3.121) that, for fermions, their difference in number densities
is given by

n− n̄ =
gT 3

6π2

[
π2
(μ

T

)
+
(μ

T

)3
]

. (3.133)

When the Universe cools to temperatures below the rest mass of the particles, all particle–
antiparticle pairs will be annihilated5 leaving only this small excess, which is zero when μ = 0.
Therefore, the fact that we do have non-zero baryon and lepton number densities in the Uni-
verse today implies that μ cannot have been strictly zero at all times. In the early Universe, some
physics must have occurred that did not conserve baryon number or lepton number, and that
resulted in the present-day number densities of protons and electrons. The actual physics of this

5 In principle, because of the expansion of the Universe, tiny fractions of particles and antiparticles may survive, but
their number densities are negligibly small.
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baryon- and lepton-genesis are poorly understood, and will not be discussed further in this book.
Detailed descriptions can be found in Kolb & Turner (1990).

With all chemical potentials set to zero, it is evident from Eqs. (3.125) and (3.130) that the
number density of non-relativistic particles is suppressed exponentially with respect to that of
relativistic species. This reflects the coupling to the photon fluid. When T 	 m the photons
have sufficient energy to create a thermal background number density of particle–antiparticle
pairs. However, when T � m only an exponential tail of the photon distribution function has
sufficient energy for pair creation, causing a similar suppression of their number density. Conse-
quently, particles in thermal equilibrium with the photon gas can only contribute significantly to
the energy density and pressure when they are relativistic. Thus, to good accuracy, we can write
the total energy density, number density and pressure of the Universe, in the radiation dominated
era, as

ρ(T ) =
π2

30
g∗T 4 , n(T ) =

ζ (3)
π2 g∗,nT 3 , P(T ) = ρ(T )/3 , (3.134)

with

g∗ = ∑
i∈Boson

gi

(
Ti

T

)4

+
7
8 ∑

i∈Fermion

gi

(
Ti

T

)4

, (3.135)

g∗,n = ∑
i∈Boson

gi

(
Ti

T

)3

+
3
4 ∑

i∈Fermion

gi

(
Ti

T

)3

. (3.136)

Note that we have included the possibility that the temperature of a species Ti may be different
from that of the radiation background T . The values of g∗ and g∗,n at a given time can be calcu-
lated once the existing relativistic species are identified. For example, at T � 1MeV, the only
relativistic species are photons at temperature T and three species of neutrinos and their antipar-
ticles (all assumed to be massless) at temperature Tν = (4/11)1/3T (as we will see in §3.3.3).
Therefore g∗ = gγ +(7/8)(3×2×gν)(Tν/T )4 ≈ 3.36. At higher T (earlier times) more species
are relativistic, so that the degeneracy factors are larger. Fig. 3.4 shows g∗ as a function of T
obtained from the standard model of particle physics. It increases from 3.36 at the present-day
temperature of 2.73K to 106.75 at T ∼> 300GeV.

3.3.3 Entropy

An important thermodynamic quantity for describing the early Universe is the entropy S =
S(V,T ). If we continue to ignore the chemical potential, the second law of thermodynamics,
as applied to a comoving volume V ∝ a3(t), states that

dS(V,T ) =
1
T
{d [ρ(T )V ]+P(T )dV} , (3.137)

where ρ is the equilibrium energy density of the gas.
Alternatively, we can write the differential of S in terms of its general form

dS(V,T ) =
∂S
∂V

dV +
∂S
∂T

dT . (3.138)

Using Eq. (3.137) to identify the two partial derivatives, the integrability condition,

∂ 2S
∂T∂V

=
∂ 2S
∂V∂T

, (3.139)

yields
dP
dT

=
ρ(T )+P(T )

T
. (3.140)
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Fig. 3.4. The statistical weights g∗ and g∗,s as functions of temperature, T , in the standard SU(3)×SU(2)×
U(1) model of particle physics.

Inserting this in Eq. (3.137) we obtain

dS(V,T ) =
1
T

d{[ρ(T )+P(T )]V}− V
T 2 [ρ(T )+P(T )]dT , (3.141)

which may be integrated to show that, up to an additive constant, the entropy density, s(T ) ≡
S(V,T )/V , is given by

s(T ) =
ρ(T )+P(T )

T
. (3.142)

It is easy to show with the use of Eqs. (3.35) and (3.140) that

dS
da
∝

d(sa3)
da

= 0 , (3.143)

which is the ‘entropy conservation law’, owing to the adiabaticity of the universal expansion (see
§3.1.5).

Using Eqs. (3.131) and (3.132) the entropy density for non-degenerate, relativistic particles in
thermal equilibrium is

seq(T ) =
2π2

45
gT 3 . (3.144)

The entropy density of non-relativistic particles in thermal equilibrium with the photon fluid can
be expressed in terms of the entropy density of photons, sγ(T ), as

seq(T )
sγ(T )

=
3
4
ρ(T )
ργ(T )

(
1+

P
ρ

)
. (3.145)
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Since ρ � ργ ,6 the contribution of non-relativistic particles to the total entropy density is neg-
ligible. To good accuracy, therefore, the total entropy density of the Universe is obtained by
summing over all relativistic species:

s(T ) =
2π2

45
g∗,sT 3 (3.146)

with

g∗,s = ∑
i∈Boson

gi

(
Ti

T

)3

+
7
8 ∑

i∈Fermion

gi

(
Ti

T

)3

. (3.147)

Combining Eq. (3.146) with the entropy conservation law we see that g∗,sT 3a3 is a conserved
quantity, so that

g1/3
∗,s (T )T ∝ a−1 . (3.148)

Therefore, as long as g∗,s remains constant, T ∝ a−1, consistent with the thermodynamic deriva-
tion in §3.1.5. However, as the Universe cools, every now and then particle species become
non-relativistic and stop contributing (significantly) to the entropy density of the Universe. Their
entropy is transferred to the remaining relativistic particle species, causing T to decrease some-
what slower. An interesting application of this is the decoupling of light neutrinos. Although
neutrinos do not couple directly to the photons, they can maintain thermal equilibrium via weak
reactions such as e + e ↔ νe + νe, etc. At a freeze-out temperature of Tf ∼ 1MeV the interac-
tion rate for these reactions drops below the expansion rate of the Universe, and the neutrinos
decouple from the photon fluid. From this point on, their temperature will decrease strictly as
Tν ∝ a−1, while the photon temperature, Tγ , obeys Eq. (3.148). Since the neutrinos are relativis-
tic both before and after decoupling, their freeze-out leaves g∗,s invariant. Consequently, despite
being decoupled, the temperature of the neutrinos remains exactly the same as that of the pho-
tons. This changes a little time later, when the temperature has dropped to T ∼ 0.51MeV and
electrons start to annihilate and freeze-out from the photon fluid. The entropy released in this
process is given to the photons, but not to the decoupled neutrinos (who conserve their entropy
density separately). Consequently, after electron annihilation, Tγ > Tν . Their ratio follows from
the entropy conservation law, according to

Tγ ,after

Tν,after
=

Tγ ,after

Tγ ,before
=
[

g∗,s(Tbefore)
g∗,s(Tafter)

]1/3

, (3.149)

where we have used that Tν,after = Tν,before = Tγ ,before. Before electron annihilation, the relativistic
species in the Universe are photons, electrons, positrons, and three flavors of neutrinos with
their antiparticles, all at the same temperature. Therefore, g∗,s(Tbefore) = gγ + (7/8)(ge + ge +
3gν + 3gν) = 2 + (7/8)(2 + 2 + 3 + 3) = 43/4. After electron annihilation, g∗,s(Tafter) = gγ +
(7/8)(3gν +3gν)(Tν,after/Tγ ,after)3. Substitution of these degeneracy parameters into Eq. (3.149)
yields

Tν,after =
(

4
11

)1/3

Tγ ,after . (3.150)

It is thus expected that the present-day Universe contains a relic neutrino background with a
temperature of Tν,0 � 0.71×2.73K = 1.95K. This difference in the temperature of the two rel-
ativistic species (neutrinos and photons) is also apparent from Fig. 3.4. At T ∼> 0.5MeV, g∗,s(T )
is identical to g∗, indicating that all relativistic particle species have a common temperature. At

6 The rest-mass density of particles should not be included as part of the equilibrium energy density of the gas, because
there is no creation or annihilation of particles.
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lower temperatures, however, electron annihilation has increased Tγ with respect to Tν , causing
an offset of g∗,s with respect to g∗.

3.3.4 Distribution Functions of Decoupled Particle Species

In §3.3.2 we discussed the distribution functions of particles in thermal equilibrium. We now
turn our attention to species that have dropped out of thermal equilibrium, and have decoupled
from the hot plasma. If particle species i decoupled at a time tf, where the subscript ‘f’ stands
for ‘freeze-out’, its temperature is approximately equal to the photon temperature at that time,
i.e. T ≈ Tf ≡ Tγ(tf). After decoupling, the mean interaction rate of the particle drops below the
expansion rate, and the particle basically moves on a geodesic. As we have seen in §3.1.4, the
momentum of the particle then scales as p ∝ a−1, which is valid for both relativistic and non-
relativistic species. Since the relative momenta are conserved, the actual distribution function at
t > tf can be written as

f (p, t) = f

(
p

a(t)
a(tf)

, tf

)
. (3.151)

In other words, the form of the distribution function is ‘frozen-in’ the moment the particles
decouple from the hot plasma.

If a species is still relativistic after decoupling, we have E = p, so that

f (p, t)d3p =
g

(2π)3

{
exp

[
pa(t)
Tfa(tf)

]
±1

}−1

d3p . (3.152)

Thus, the distribution function of a decoupled, relativistic species is self-similar to that of a
relativistic species in thermal equilibrium, but with a temperature

T = Tf
a(tf)
a(t)

. (3.153)

Note that this differs from the temperature scaling of species still in thermal equilibrium, which
is instead given by Eq. (3.148). As we discussed in §3.3.3 this explains why the present-day
temperature of the neutrino background is lower than that of the CMB.

If the species is already non-relativistic when it decouples, its energy is given by E = m +
p2/2m. Since for non-relativistic species we can ignore the ±1 term, the distribution function is
given by

f (p, t)d3p =
g

(2π)3 exp

[
−m

Tf

]
exp

[
− p2

2mT

]
d3p (3.154)

with

T = Tf

[
a(tf)
a(t)

]2

. (3.155)

Note that Eq. (3.154) is a Maxwell–Boltzmann distribution, and that the temperature scales as
expected from kinetic theory (see §3.1.5).

As is immediately evident from substituting Eq. (3.151) in Eq. (3.121), the number density of
decoupled particles (both relativistic and non-relativistic) is given by

n(t) =
[

a(tf)
a(t)

]3

neq(tf) , (3.156)
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so that n∝ a−3, as expected. For relativistic species, we can contrast this number density against
that of the photons:

n(t)
nγ(t)

=
geff

2

(
Tf

T

)3 [a(tf)
a(t)

]3

=
geff

2
g∗,s(T )
g∗,s(Tf)

(3.157)

with geff = g for bosons and geff = (3/4)g for fermions, where we have used that the pho-
ton temperature, T , scales as in Eq. (3.148). This illustrates that the number density of any
relic background of relativistic particles is comparable to the number density of photons. Note
that Eq. (3.156) remains valid even if the particles become non-relativistic some time after
decoupling.

3.3.5 The Freeze-Out of Stable Particles

Having discussed the distribution functions of particles before and after decoupling, we now turn
to discuss the actual process by which a species decouples (‘freezes out’) from the hot plasma. We
first consider cases where the particles involved are stable (i.e. their half-time of decay is much
longer than the age of the Universe), and derive their relic abundances. We distinguish between
‘hot’ relics, which correspond to species that decouple in the relativistic regime, and ‘cold’ relics,
whose decoupling takes place when the particles have already become non-relativistic.

The evolution of the particle number density is governed by the Boltzmann equation, which,
for a given species ‘i’, can be written as

d fi

dt
= Ci[ f ] , (3.158)

where Ci[ f ] (called the collisional term) describes the change of the distribution function of
species ‘i’ due to the interactions with other species. Since the Universe is homogeneous and
isotropic, fi depends only on the cosmic time, t, and the value of the momentum, p ∝ a−1(t). It
then follows from Eq. (3.158) that

∂ fi

∂ t
−H(t)p

∂ fi

∂ p
= Ci[ f ] , (3.159)

where H = ȧ/a is the Hubble parameter. Integrating both sides of Eq. (3.159) over momentum
space, and using the definition of ni, we obtain

dni

dt
+3H(t)ni =

∫
Ci[ f ]d3p . (3.160)

Here the second term on the left-hand side (often called the Hubble drag term) describes the
dilution of the number density due to the expansion of the Universe, while the right-hand side
describes the change in number density due to interactions. Note that in the limit Ci[ f ] → 0 the
number density scales as ni ∝ a−3, as expected.

In general, the collisional term Ci[ f ] depends on fi and on the distribution functions of all other
species that interact with ‘i’. If the cross-sections of all these interactions are known (from rele-
vant physics), we can obtain the functional form of Ci[ f ]. Species that do not have any channel
to interact with ‘i’ collisionally can still affect the distribution function of ‘i’ via their contribu-
tions to the general expansion of the Universe. Thus, the evolution of the matter content of the
Universe is described by a coupled set of Boltzmann equations for all important species in the
Universe, which can in principle be solved once the initial conditions are given.

For illustration, consider a case in which species ‘i’ takes part only in the following two-body
interactions:

i+ j ↔ a+b . (3.161)
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If the production and destruction rates of ‘i’ due to this reaction are α(T ) and β (T ), respectively,
then Eq. (3.160) can be written as

dni

d t
+3H(t)ni = α(T )nanb −β (T )nin j . (3.162)

The meaning of this equation is clear: particles of species ‘i’ are destroyed due to their reactions
with species ‘ j’, and are created due to the reactions between species ‘a’ and ‘b’. A similar
equation can be written for ‘ j’. Subtracting these two equations gives (ni − n j)a3 = constant.
Now suppose that ‘a’ and ‘b’ are in thermal equilibrium with the general hot plasma, so that their
distribution functions are given by Eq. (3.124) with Ta = Tb = T , while ‘i’ and ‘ j’ are coupled to
the hot plasma through their reactions with ‘a’ and ‘b’. We define an equilibrium density for ‘i’,
ni,eq, and an equilibrium density for ‘ j’, n j,eq, so that

β (T )ni,eqn j,eq = α(T )nanb . (3.163)

Thus defined, ni,eq and n j,eq are just the number densities of ‘i’ and ‘ j’ under the assumption that
they are in thermal equilibrium with the hot plasma. Consider the case in which ‘ j’ and ‘b’ are
the antiparticles of ‘i’ and ‘a’, respectively. As long as the chemical potential of ‘i’ is small, the
number densities of ‘i’ and ‘ j’ will be virtually identical [see Eq. (3.133)]. In what follows we
therefore set ni = n j, but note that the discussion is easily extended to cases where ni �= n j by

using that (ni−n j)a3 = constant. With these definitions, we can write the rate equation (3.162) as

dni

dt
+3H(t)ni = β (T )(n2

i,eq −n2
i ) . (3.164)

Since the entropy density s is proportional to a−3 (see §3.3.3), it is convenient to define both ni

and ni,eq in units of s:

Yi ≡ ni

s
, Yi,eq ≡ ni,eq

s
. (3.165)

Using ds/dt = −3Hs, Eq. (3.164) becomes

dYi

dt
= β (T )s(T )(Y 2

i,eq −Y 2
i ) . (3.166)

If we now introduce the dimensionless variable, x ≡ mi/T , and use the fact that, in the radiation
dominated era, t ∝ a2 ∝ T−2 (or t = tmx2, where tm is the cosmic time when x = 1), the rate
equation can be written in the following form:

x
Yi,eq

dYi

dx
= − Γ(x)

H(x)

[(
Yi

Yi,eq

)2

−1

]
, (3.167)

where Γ(x) ≡ ni,eq(x)β (x) and H = (2t)−1 = (2tmx2)−1 (which follows from a ∝ t1/2).
Given a particle species’ rest mass mi and its interaction cross-section β (T ) = 〈σv〉(T ), ther-

mally averaged over all reactions in which ‘i’ partakes, the rate equation (3.167) can be solved
for Yi(x) numerically. The initial conditions follow from the fact that for x � 1 the solution is
given by Yi = Yi,eq. Fig. 3.5 shows the solutions of Yi thus obtained for different values of β [here
assumed to be constant, β (T ) = β0]. A larger interaction cross-section (larger β0) implies that
the species can maintain thermal equilibrium for a longer time. As long as β0 is such that decou-
pling occurs in the relativistic regime (x � 1), the final freeze-out abundance will be comparable
to that of the photons [see Eq. (3.157)], and depend very little on the exact value of β0. For suffi-
ciently large β0, the particles remain in thermal equilibrium well into the non-relativistic regime
(x 	 1), causing an exponential suppression of their final freeze-out abundance. In this regime
the relic abundances are extremely sensitive to β , and thus to the exact epoch of decoupling.
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Fig. 3.5. The solution of Eq. (3.167) assuming a constant annihilation cross-section; β = β0 (dashed
curves). The solid curve shows the equilibrium abundance.

In what follows we present a simple, but relatively accurate, estimate of the relic abundances of
various particle species. Rather than solving Eq. (3.167), which needs to be done numerically or
by other approximate methods, we make the assumption that freeze-out occurs at a temperature
Tf, corresponding to xf, when Γ/H = 1, and that the relic abundance is simply given by Yi(x →
∞) = Yi,eq(xf). Using Eqs. (3.128) and (3.130) for ni,eq, and Eq. (3.146) for s, we have

Yi,eq(x) =
{

(45ζ (3)/2π4)[gi,eff/g∗,s(x)] (x � 1)
(90/(2π)7/2)[gi/g∗,s(x)]x3/2e−x (x 	 1),

(3.168)

where gi,eff = gi for bosons and gi,eff = (3/4)gi for fermions. The freeze-out temperature follows
from Γ(xf) = ni,eq(xf)β (xf) = H(xf). From Eq. (3.61) we have that in the radiation dominated era
H2(t) = (8πG/3)ρr(t). Substitution of Eq. (3.134) then gives

H(x) =
(mimPl

x

)2
√

4π3g∗(x)
45

, (3.169)

where mPl = G−1/2 is the Planck mass in the natural units used here. Our definition of freeze-out
then yields

xf =

√
45
π7

ζ (3)
2

gi,eff√
g∗,s(xf)

mPl miβ (xf) (xf � 1) ;

x−1/2
f exf =

√
45

32π6

gi√
g∗,s(xf)

mPl miβ (xf) (xf 	 1) . (3.170)

Note that since xf appears on both sides of these equations, they typically need to be solved
numerically.

Let us first consider the case of hot relics that have remained relativistic to the present day, i.e.
their rest mass mi � T0 = 2.4×10−4 eV. Its energy density follows from Eq. (3.131), which can
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be written in terms of the photon energy density, as is done in Eq. (3.157) for the number density.
Expressing this energy density in terms of the critical density for closure, we obtain

Ωi,0h2 =
gi,eff

2

[
g∗,s(x)
g∗,s(xf)

]4/3

Ωγ ,0h2 . (3.171)

Since g∗,s(x) ≤ g∗,s(xf), and since Ωγ ,0h2 = 2.5×10−5 [see Eq. (3.65)], we immediately see that
a relic particle that is still relativistic today (e.g. zero mass neutrinos) contributes negligibly to
the total energy density of the Universe at the present time.

Next we consider the case of weakly interacting massive particles, usually called WIMPs.
Examples of WIMPs are massive neutrinos and stable, light supersymmetric particles. Note that
WIMPs can be either hot or cold, depending on whether xf � 1 or xf 	 1. The present-day
mass density of massive relics is ρi,0 = miYi,eq(xf)s0, with s0 the present-day value of the entropy
density. After electron annihilation, g∗,s = 2 +(7/8)× 3× 2× 1× (4/11) = 3.91. Substituting
this in Eq. (3.146) and using T0 = 2.73K gives s0 = 2,906cm−3. For hot relics, we then obtain

Ωi,0h2 ≈ 7.64×10−2
[

gi,eff

g∗,s(xf)

]( mi

eV

)
. (3.172)

This abundance depends only very weakly on the exact moment of freeze-out, xf, reflecting the
fact that Yi(x) is virtually constant for x � 1. Since Ω0h2 ∼< 1, we obtain a cosmological bound
to the mass of hot relics,

mi ∼< 13.1eV

[
g∗,s(xf)

gi,eff

]
. (3.173)

For massive neutrinos, g∗,s(xf) = 43/4 and gi,eff = 6/4 (assuming gi = 2 to account for
antiparticles), the limit is mi ∼< 93.8eV.

Finally we examine cold WIMPs, which are considered to be candidates for the cold dark
matter. Solving Eq. (3.170) for e−xf , and substituting the result in Eq. (3.168) gives

Yi,eq(x) =

√
45
π

xf√
g∗,s(xf)

[mpl miβ (xf)]−1 . (3.174)

Using the present-day entropy density s0 we obtain a density parameter for cold relics:

Ωi,0h2 ≈ 0.86
xf√

g∗,s(xf)

[
β (xf)

1010 GeV−2

]−1

. (3.175)

Contrary to the case of hot relics, Ωi,0h2 now depends strongly on the interaction cross-section,
owing to the exponential decrease of Yi,eq(x) in the non-relativistic regime. As an example, con-
sider a (hypothetical) stable neutrino species with mi 	 1MeV but less than mZ ∼ 100GeV (the
mass of the Z boson). Because of its large mass, xf 	 1 and its relic abundance follows from
Eq. (3.175). For neutrinos, the annihilation rate can be approximately written as

β (x) ≈ c2

2π
G2

Fm2
i x−b , (3.176)

with GF the Fermi coupling constant, and c2 a constant depending on the type of neutrinos
(‘Dirac’ or ‘Majorana’). The value of b is determined by the details of the annihilation processes
involved, but is typically of the order unity. Substituting Eq. (3.176) in Eq. (3.175) yields

Ωi,0h2 ≈ 3.95
c2

xb+1
f√

g∗,s(xf)

[ mi

GeV

]−2
. (3.177)
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For Dirac-type neutrinos c2 ∼ 5 and b = 0 (Kolb & Turner, 1990). Taking gi = 2 (to also account
for the antiparticles) and g∗,s ∼ 60 at around the time of freeze-out, and solving Eq. (3.170) for
xf gives

xf ≈ 17.8+3ln(mi/GeV) , (3.178)

so that

Ωi,0h2 ≈ 1.82
( mi

GeV

)−2 [
1+0.17ln

( mi

GeV

)]
. (3.179)

The cosmological bound, Ω0h2 ∼< 1, to the mass of massive neutrinos is thus

mi ∼> 1.4GeV . (3.180)

Note that Ωi,0 decreases with increasing particle mass. This reflects the fact that the annihilation
cross-section in Eq. (3.176) increases as m2

i , so that more massive species can stay in thermal
equilibrium longer, resulting in a lower freeze-out abundance. The cross-section will not continue
to grow as m2

i indefinitely, however. For particles with mi 	 mZ � 100GeV the cross-section
actually decreases with particle mass as m−2

i . Using the same argument as above and inserting
the appropriate numbers, we find

Ωi,0h2 ≈
( mi

3TeV

)2
. (3.181)

Therefore, the cosmological bound to the mass of such species is

mi ∼< 3TeV . (3.182)

Fig. 3.6 summarizes the relation between the WIMP mass (assumed to interact as a Dirac-type
neutrino) and its relic contribution to the cosmological density parameter. At mwimp ∼< MeV the
WIMPs produce ‘hot’ relics for which Ωwimph2 ∝ mwimp.7 At particle masses above ∼ 1MeV,
decoupling occurs in the non-relativistic regime, resulting in ‘cold’ relics for which Ωwimph2 ∝
m−2

wimp. Finally, for particle masses above that of the Z boson (mwimp ∼> 100GeV) the scaling

changes to Ωwimph2 ∝m2
wimp. Combining these results with observational constraints on the cos-

mological density parameter (0.1 ∼< Ω0h2 ∼< 1.0), we find that there are only three narrow mass
ranges of WIMPs allowed, at ∼ 30eV, ∼ 2GeV and ∼ 2TeV (see Fig. 3.6). Note, however, that
these constraints are only valid under the assumption that the WIMPs have the same interaction
cross-sections as neutrinos. Since the nature of the dark matter particles is still unknown, there are
large uncertainties regarding the possible interaction cross-sections. Consequently, the observa-
tional constraints on Ω0h2 currently only constrain the combination of interaction cross-section
and WIMP mass, and large ranges of WIMP masses are still allowed.

3.3.6 Decaying Particles

So far we have discussed the freeze-out of stable particles (those with a lifetime much larger
than the age of the Universe) and their cosmological consequences. For unstable particles, the
situation is different. In particular, if massive particles decay into photons and other relativistic
particles, they will release energy into the Universe, and depending on how effectively this energy
is thermalized, the decay may produce a radiation background, increasing the entropy of the
Universe. Consider a heavy particle, ‘h’, with mass mh and with a mean lifetime τh, which decays

7 When their mass is this low, one normally would not speak of WIMPs, but of weakly interacting particles instead. For
brevity, we also refer to these particles as WIMPs in Fig. 3.6.
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Fig. 3.6. Cosmological constraints on the mass of weakly interactive dark matter particles under the
assumption that they interact as a Dirac-type neutrino. The solid curve shows the predicted cosmologi-
cal density parameter of the WIMPs as a function of WIMP mass, while the shaded area roughly brackets
the observed range of the cosmological density parameter. The mass ranges in which the particles make up
‘hot’ and ‘cold’ dark matter are indicated.

into light particles while it is non-relativistic. The number of decay events per proper volume at
any time t is nh(t)/τh, with nh(t) given by

dnh

dt
+3H(t)nh = α(T )nanb −β (T )nhn j −nh/τh , (3.183)

where, as an example, we assume that ‘h’ takes part in the reaction h + j ↔ a + b in addition to
the decay. Without implicitly solving Eq. (3.183), we can directly infer the evolution of nh(t) at
two extremes. At early time when the reaction rate (∼ βn j) is higher than both the decay rate
(1/τh) and the expansion rate (H), the species ‘h’ has the equilibrium abundance, and basically
behaves as stable particles. At later times, when the right-hand side of Eq. (3.183) is dominated
by decay, it is easy to show that

nh(t) = nh(tD)
[

a(t)
a(tD)

]−3

exp(−t/τh) , (3.184)

where tD is the time when the decay becomes more important than other reactions. If the rest mass
of the decaying particles is thermalized, then the entropy density per unit comoving volume (see
§3.1.5) increases with time as

dS = −d
(
nhmha3

)
T

=
ρha3

T
dt
τh

, (3.185)

where ρh ≡ mhnh. Using Eqs. (3.134) and (3.146), we have

dS
S

=
3
4

g∗
g∗,s

ρh

ρr

dt
τh

, (3.186)
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where ρr is the total energy density in relativistic particles. The entropy of the Universe can
therefore be increased significantly if ρh(τh)∼> ρr(τh), i.e. if the Universe is dominated by species
‘h’ at the time of decay. Since ρh ∝ a−3 while ρr ∝ a−4, we can define a time of equality for
species ‘h’ by ρr(teq,h) = ρh(teq,h), and express the relative increase in ρr due to the decay of ‘h’
in terms of the ratio of teq,h to the decay time τh:

Δρr

ρr
=
ρh(τh)
ρr(τh)

=
a(τh)

a(teq,h)
=
(
τh

teq,h

)2/3

. (3.187)

Therefore, any species with a decay time teq,h ∼< τh ∼< t0 can have caused a significant increase
of ρr. Such an increase can have profound impacts on the evolution of the Universe. If it occurs
before radiation–matter equality it may cause a delay in the time teq when the Universe eventually
becomes dominated by matter. Since perturbations cannot grow before the Universe becomes
matter dominated, as we will see in the next chapter, such a particle decay can have a significant
impact on the development of large-scale structure. An increase in ρr also causes the Universe
to expand faster in the period τh ∼< t ∼< teq, affecting the production of other particle species
during that era. For example, as we will see in the next section, the abundance of helium can be
significantly affected if the decay occurs before primordial nucleosynthesis.

If the decay product contains photons, there are additional stringent limits on the mass and
lifetime of the decaying particle. If the lifetime were comparable to the present age of the Uni-
verse, we would observe a strong radiation background in X-ray and gamma-ray produced by
the decay. The lack of such background requires that either τh 	 t0 (i.e. the particle is almost
stable) or that the decay occurs at a time when the Universe is still opaque to high-energy pho-
tons (so that they can be down-graded by scattering with matter). Another stringent constraint
comes from the fact that the observed CMB has a blackbody spectrum to a very high degree of
accuracy. This requires the decay occur at a time when high-energy photons can be effectively
thermalized (see §3.5).

3.4 Primordial Nucleosynthesis

We all know that the Universe contains not only hydrogen (whose nuclei are single protons) but
also heavier elements like helium, lithium, etc. An important question is therefore how these
heavier elements were synthesized. Since nuclear reactions are known to be taking place in
stars – for example, the luminosity of the Sun is powered mainly by the burning of hydrogen
into helium – one possibility is that all heavier elements are synthesized in stars. However, the
observed mass fraction of helium is roughly a constant everywhere in the Universe, suggesting
that most of the helium is in fact primordial. In this section we examine how nucleosynthesis
proceeds in the early Universe.

3.4.1 Initial Conditions

All nuclei are built up of protons and neutrons. Before we explore the nuclear reactions that syn-
thesize deuterium, helium, lithium, etc., we therefore examine the abundances of their building
blocks. Protons and neutrons have a very comparable rest mass of ∼ 940MeV, which implies that
they become non-relativistic at very early times (t � 10−6 s, T � 1013 K). Down to a temperature
of ∼ 0.8MeV they maintain thermal equilibrium through weak interactions like

p+ e ↔ n+νe , n+ e ↔ p+νe . (3.188)
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In thermal equilibrium, their number densities follow from Eq. (3.128):

nn,p = 2

(
mn,pT

2π

)3/2

exp

[
−mn,p −μn,p

T

]
, (3.189)

where we have used that both protons and neutrons have two helicity states (gn = gp = 2). Writing
the mass difference as Q ≡ mn−mp = 1.294MeV, and using that mn/mp � 1, we obtain the ratio
between the number densities of protons and neutrons in thermal equilibrium:

nn

np
= exp

(
−Q

T
+
μn −μp

T

)
≈ exp

(
−Q

T

)
, (3.190)

where μn −μp = μe −μν ≈ 0 (see §3.3). When T 	 1010 K the reactions (3.188) go equally fast
in both directions and there are as many protons as neutrons. When the temperature decreases
towards ∼ 1MeV, however, the number density of neutrons starts to drop with respect to that of
protons, because neutron is slightly more massive. If thermal equilibrium were to be maintained,
the ratio would continue to decrease to very small values. However, as we have seen in §3.3.3,
at about the same temperature of ∼ 1MeV, neutrinos start to decouple. Therefore, the rate of
the weak reactions (3.188) is no longer fast enough to establish thermal equilibrium against the
expansion rate of the Universe, and the ratio nn/np will eventually ‘freeze out’ at a value of
∼ exp(−1.294/0.8) ∼ 0.2. However, neutrons are unstable to beta decay,

n → p+ e+νe , (3.191)

so that even after freeze-out the neutron-to-proton ratio continuous to decrease. If we define the
neutron abundance as

Xn ≡ nn

nn +np
, (3.192)

then it evolves due to the neutron decay as

Xn ∝ exp

[
− t
τn

]
, (3.193)

where τn = (887± 2) s is the mean lifetime of neutrons. The main reason that the present-day
Universe contains a large abundance of neutrons is that, shortly before the Universe reaches
an age t = τn, most neutrons have already ended up in helium nuclei (which stabilizes them
against beta decay due to Pauli’s exclusion principle) through the process of nucleosynthesis to
be described below.

3.4.2 Nuclear Reactions

Nuclei can form in abundant amounts as soon as the temperature of the Universe has cooled down
to temperatures corresponding to their binding energy, and the number densities of protons and
neutrons are sufficiently high. For a (non-relativistic) species with mass number A and charge
number Z [such a species will be called A(Z), and contains Z protons and A−Z neutrons], the
equilibrium number density can be obtained from Eq. (3.128):

nA = gA

(
mAT
2π

)3/2

exp

(
−mA −μA

T

)
. (3.194)

The chemical potential μA is related to those of protons and neutrons as

μA = Zμp +(A−Z)μn , (3.195)
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which allows us to rewrite Eq. (3.194) as

nA = gA

(
mAT
2π

)3/2

exp
(
−m

T

)[
exp
(μp

T

)]Z [
exp
(μn

T

)](A−Z)
. (3.196)

Writing exp(μp/T ) and exp(μn/T ) in terms of the proton and neutron mass densities given by
Eq. (3.189), respectively, and defining the nucleon mass mN ≡ mA/A ≈ mn ≈ mp, we obtain

nA =
gAA3/2

2A nZ
p nA−Z

n

(
mNT
2π

)3(1−A)/2

exp

(
BA

T

)
, (3.197)

where

BA ≡ Zmp +(A−Z)mn −mA (3.198)

is the binding energy of the species A(Z). Next we define the ‘mass fraction’ or ‘abundance’ of
nucleus A as

XA ≡ AnA

nb
. (3.199)

Here nb ≡ nn + np +∑i AinA,i is the number density of baryons in the Universe, with the sum-
mation over all nuclear species so that ∑i XA,i = 1. Substituting Eq. (3.197) in Eq. (3.199) we
obtain

XA =
gA

2
A5/2

[
4ζ (3)√

2π

]A−1

XZ
p XA−Z

n ηA−1
(mN

T

)3(1−A)/2
exp

(
BA

T

)
, (3.200)

where η ≡ nb/nγ is the present-day baryon-to-photon ratio. Since nγ = [2ζ (3)/π2]T 3 [see
Eq. (3.130)], and T0 = 2.73K, we have

η ≡ nb/nγ ≈ 2.72×10−8Ωb,0h2 , (3.201)

where Ωb,0 is the present-day baryon density in terms of the critical density for closure.
Eq. (3.200) reveals that species A(Z), with A > 1, can only be produced in appreciable amounts
once the temperature has dropped to a value TA given by

TA ∼ |BA|
(A−1)

[|lnη |+ 3
2 ln(mN/T )

] . (3.202)

The binding energies of the lightest nuclei, such as deuterium and helium, are all of the order of
a few MeV, corresponding to a temperatures of a few ×1010 K. However, because of the small
number of baryons per photon (10−10 ∼< η ∼< 10−9), or, in other words, the high entropy per
baryon, their synthesis has to wait until the Universe has cooled down to temperatures of the
order of (1 → 3)×109 K.

At such low temperatures, however, the number densities of protons and neutrons are already
much too low to form heavy elements by direct many-body reactions, such as 2n+2p → 4He.
Therefore, nucleosynthesis must proceed through a chain of two-body reactions. The dominant
reactions in this chain are:

p(n,γ)D (3.203)

D(n,γ)3H, D(D,p)3H (3.204)

D(p,γ)3He, D(D,n)3He, 3H(p,n)3He, 3H( ,eνe)3He (3.205)
3H(p,γ)4He, 3H(D,n)4He, 3He(n,γ)4He, 3He(D,p)4He, (3.206)

23He( ,2p)4He, 7Li(p, )2 4He (3.207)
4He(3H,γ)7Li, 4He(3He,γ)7Be, 7Be(e,νe)7Li . (3.208)
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Here the notation X (a,b)Y indicates a reaction of the form X + a → Y + b. Since the cross-
sections for almost all these reactions are accurately known, the reaction network can be
integrated numerically to compute the final abundances of all elements.

Note that the reaction network does not produce any elements heavier than lithium. This is a
consequence of the fact that there are no stable nuclei with atomic weight 5 or 8. Since direct
many-body reactions at earlier epoch are very inefficient in producing heavy elements, we can
conclude that elements heavier than lithium are not produced by primordial nucleosynthesis.
Indeed, as we will see in Chapter 10, heavy elements can be synthesized in stars where the
density of helium is so high that a short-lived 8Be, formed through 4He–4He collisions, can
quickly capture another 4He to form a stable carbon nucleus (12C), thus allowing further nuclear
reactions to proceed.

Inspection of the reaction network of primordial nucleosynthesis given above reveals that it
can only proceed if the first step, the production of deuterium, is sufficiently efficient. Since
deuterium has the lowest binding energy of all nuclei in the network, its production serves as a
‘bottleneck’ to get nucleosynthesis started. The production of deuterium through p(n,γ)D has a
rate per free neutron given by

Γ= (4.55×10−20 cm3 s−1)np

≈ 2.9×104XpΩb,0h2
(

T
1010 K

)3

s−1 , (3.209)

which is much larger than the expansion rate H ∼ (T/1010 K)2 s−1. Therefore, for temperatures
T ∼> 5×108 K, deuterium nuclei are always produced with the equilibrium abundance:

XD ≈ 16.4ηXnXpη
(mN

T

)−3/2
exp

(
2.22MeV

T

)
. (3.210)

From this we see that large amounts of deuterium are only produced once the temperature drops
to TD ∼ 109 K [see also Eq. (3.202)]. This occurs when the Universe is about 100 seconds old,
and signals the onset of primordial nucleosynthesis. The subsequent reaction chain proceeds
very quickly, because at T � TD all nuclei heavier than deuterium can possess high equilibrium
abundances. However, nuclei heavier than helium are still rare because of the instability of nuclei
with A = 5 and A = 8, and because the temperature is already too low to effectively overcome the
large Coulomb barrier in reactions like 4He(3H,γ)7Li and 4He(3He,γ)7Be. As a result, almost
all free neutrons existing at the onset of nucleosynthesis will be bound into 4He, the most tightly
bound species with A < 5. The mass fraction of 4He can therefore be approximately written as

Y ≡ X4He ≈
4(nn/2)
nn +np

=
2(nn/np)D

1+(nn/np)D
, (3.211)

where (nn/np)D is the neutron-to-proton ratio at T = TD.

3.4.3 Model Predictions

Once the relevant reactions are specified and their cross-sections are given, the nucleosynthe-
sis reaction network can be integrated forwards from the initial conditions at early times to
make detailed predictions for the abundances of all species. This was first done with a com-
plete network by Wagoner et al. (1967), and subsequent work using updated cross-sections and
modernized computer codes (e.g. Wagoner, 1973; Walker et al., 1991; Cyburt et al., 2008) has
modified their conclusions rather little. Detailed calculations show that the bulk of nucleosyn-
thesis occurs at t ≈ 300 s (T ≈ 0.8 × 109 K = 0.07MeV), in agreement with the qualitative
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Fig. 3.7. Primordial abundances of light elements as a function of the baryon-to-photon ratio, η . The
line thicknesses in each panel reflect the remaining theoretical uncertainties, while the vertical shaded
band shows the range of η consistent with the WMAP measurements of fluctuations in the microwave
background. [Courtesy of R. Cyburt; see Cyburt et al. (2008)]

arguments given above. At this point in time, the neutron-to-proton ratio nn/np is about 1/7.
Using Eq. (3.211) this implies a final abundance of primordial 4He of

Yp ≡ X4He ≈ 1/4 . (3.212)

Observations of the mass fraction of helium everywhere and always give values of about 24%,
which would be very difficult to understand if such an abundance were not primordial. This
prediction (3.212) is therefore considered a great success of the standard Big Bang model.

The primordial abundances predicted by an updated version of the code of Wagoner et al.
(1967) are shown in Fig. 3.7. Note that the abundances of deuterium and 3He are about three
orders of magnitude below that of 4He, while that of 7Li is nine orders of magnitude smaller; all
other nuclei are expected to be much less abundant. The predicted abundances of light elements
depend on three parameters: the baryon-to-photon ratio, η , the mean lifetime of the neutron, τn,
and g∗(T ∼ 1010 K), which measures the number of degrees of freedom of effectively massless
particles at the relevant temperature T ∼ 1010 K [see Eq. (3.135)]. Given the discussion earlier
in this section, we can understand the sensitivity of the abundances to all these parameters.

As η increases (|lnη | decreases), nucleosynthesis of D, 3He and 3H starts slightly earlier
[see Eq. (3.202)]. As a result, the synthesis of 4He commences at an earlier epoch when the
depletion of neutrons by beta decay is less significant, and so more neutrons are bound into
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4He. This explains why the 4He abundance increases with η . Since the age of the Universe
at temperature TD is smaller than τn, the neutron-to-proton ratio decreases only slowly at the
time when nucleosynthesis begins. Therefore, the η-dependence of the 4He abundance is weak.
However, since the burning rates of D and 3He are proportional to their equilibrium abundances,
which increase with η as XA ∝ ηA−1 [see Eq. (3.200)], a larger baryon-to-photon ratio results in
a smaller abundance of these two nuclei. The more complex behavior of the 7Li abundance is
a result of competition between the formation and destruction reactions in the network. Direct
formation dominates at small η , and formation via 7Be dominates at large η .

The neutron mean lifetime affects the predicted helium abundance by influencing the num-
ber density of neutrons at the onset of nucleosynthesis. An increase of τn leads to an increase
in the number of neutrons and so to an increase in Yp. In the relevant range of η , ΔYp ∼
2×10−4(Δτn/1s), implying that the uncertainty in Yp arising from that of τn is quite small.

Finally, substituting Eq. (3.134) in Eq. (3.80), and using that ρr ∝ a−4, one finds

t =
(

45
16π3Gg∗

)1/2

T−2 . (3.213)

Since H = (2t)−1, the expansion rate H ∝ √
g∗ T 2. Consequently, an increase of g∗ leads to a

faster expansion rate for given T . This raises the temperature at which the reaction rates equal
the expansion rate, thus increasing the neutron-to-photon ratio at ‘freeze-out’. Consequently, the
predicted 4He abundance increases with increasing g∗. In the relevant range of η , ΔYp ∼ 0.01Δg∗.
Therefore, the abundance of primordial helium provides a stringent constraint on the number of
relativistic species at T ∼> 109 K. The standard model of primordial nucleosynthesis assumes
these species to be photons and three species of massless neutrinos.

3.4.4 Observational Results

The predictions of primordial nucleosynthesis are of vital importance in the standard cosmology,
and therefore much effort has been devoted to the observational determination of the primor-
dial abundances of the light elements. Such determination can be used not only to constrain
the number of relativistic species at the time of nucleosynthesis, but also to constrain η and
so the number density of baryons in the Universe through Eq. (3.201). Unfortunately, precise
determination of the primordial abundances is far from trivial. They usually rely on the emis-
sion or absorption of gas clouds due to the ions of the element in consideration. Turning this
into an abundance often requires careful modeling of the properties of the observed cloud. An
even greater problem comes from the fact that the material we observe today may have been
processed through stars, so that (often uncertain) corrections have to be applied in order to derive
a ‘primordial’ abundance. In the following we give a brief summary of the present observational
situation.

• Helium-4: Because the abundance of helium is large, it is relatively easy to determine. Most
measurements are made from HII clouds where the gas is highly ionized, and the abundance
of both helium and hydrogen can be inferred from the strengths of their recombination lines.
Since 4He is also synthesized in stars, some of the observed 4He may not be primordial. In
order to reduce this contamination, it is desirable to use metal-poor clouds, as stars which
produce the 4He contamination also produce metals. Observations have been made for clouds
with different metalicities, and an extrapolation to zero metalicity gives Yp = 0.24±0.01 (e.g.
Fields & Olive, 1998). From Fig. 3.7 we see that this observational result requires η = (1.2 →
8)×10−10. Since the predicted Yp depends only weakly on η , extremely precise measurements
are needed to give a more stringent constraint.



3.4 Primordial Nucleosynthesis 145

• Deuterium: Because of its strong dependence on η , the measurement of the primordial deu-
terium abundance is crucial in determining Ωb,0. Accurate determinations of the deuterium
abundance have been obtained from UV absorption measurements in the local interstel-
lar medium (ISM). The deuterium-to-hydrogen ratio (in mass) is found to be [D/H]ISM ≈
1.6×10−5 (e.g. Linsky et al., 1995). Since deuterium is weakly bound, it is easy to destroy but
hard to produce in stars. Therefore, this observed ISM value represents a lower limit on the pri-
mordial abundance. An alternative estimate of the deuterium abundance can be obtained from
the absorption strength in Lyman-α clouds along the line-of-sight to quasars at high redshift.
Since these high-redshift clouds are metal poor and perhaps not yet severely contaminated by
stars, the deuterium abundance thus derived may actually be close to the primordial one. The
observational data are still relatively sparse. The values of [D/H] obtained originally ranged
from ∼ 2.4× 10−5 (Tytler et al., 1996) to ∼ 2× 10−4 (Webb et al., 1997) but now seem to
have settled at 2.82± 0.53× 10−5 (Pettini et al., 2008). This agrees well with the value of η
inferred from WMAP data on microwave background fluctuations.

• Helium-3: The abundance of 3He has been measured both in the solar system (using mete-
orites and the solar wind) and in HII regions (based on the strength of the 3He

+
hyperfine

line, the equivalent of the 21 cm hyperfine line of neutral hydrogen). The abundance inferred
from HII regions is [3He/H] = (1.3 → 3.0)×10−5 (e.g. Gloeckler & Geiss, 1996). A similar
abundance, [3He/H] = (1.4±0.4)×10−5, is obtained from the oldest meteorites, the carbona-
ceous chondrites. Since these meteorites are believed to have formed at about the same time
as the solar system, the observed abundance may be representative of pre-solar material. The
abundance of 3He in the solar wind has been determined by analyzing gas-rich meteorites and
lunar soil. Because D is burned to 3He during the Sun’s approach towards the main sequence,
the observed 3He in the solar system may be a good measure of the pre-solar sum (D+ 3He).
All the measurements are consistent with [(D+ 3He)/H] ≈ (4.1±0.6)×10−5. Although 3He
can be reduced by stellar burning, it is much more difficult to destroy than deuterium and the
reduction factor is no more than a factor of 2. The measurements in the solar system therefore
give an upper limit on the primordial abundance of [(D+ 3He)/H]p ∼< 10−4, corresponding to
a lower limit of η ∼> 3×10−10.

• Lithium-7: Estimates of the 7Li abundance come from stellar atmospheres. Since 7Li is
quite fragile, it can be depleted by circulation through the centers of stars. The observa-
tional estimates therefore vary from one stellar population to another. Since mass circulation
(convection) does not go as deep in metal-poor stars as in metal-rich ones, it is desirable
to use metal-poor stars where the depletion of 7Li from the atmosphere is expected to be
smaller. There have been attempts to observe 7Li lines in the atmospheres of old stars with
very low metalicity (e.g. Spite & Spite, 1982), from which the primordial 7Li abundance was
originally inferred to be [7Li/H]p ≈ (1.1± 0.4)× 10−10. More recent attempts paying close
attention to systematics give values in the range 1.0 to 1.5× 10−10 (Asplund et al., 2006).
From Fig. 3.7 we see that this abundance is inconsistent by a factor of about 4 with the value
[7Li/H]p = 5.24±0.7×10−10 inferred from the five-year WMAP data on fluctuations in the
microwave background.

At the present time, Big Bang nucleosynthesis is essentially a parameter-free theory. Improve-
ments in experimental determinations of the neutron lifetime have shrunk the uncertainties so that
they are no longer significant for this problem; the standard model of particle physics is now suf-
ficiently constrained by accelerator experiments that the number of light particle species present
at nucleosynthesis cannot differ significantly from the standard value; and WMAP measurements
of the power spectrum of the cosmic microwave background lead to a photon-to-baryon ratio esti-
mate, η = 6.23±0.17×10−10 (see §2.10.1). With these parameters the theory gives quite precise
predictions for all the light element abundances. These agree with observational estimates of the
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observed abundance of 4He and D, where the first is only weakly constraining because of its
logarithmic dependence on parameters, but the second can be considered a major success. The
situation with 3He is too complex for a meaningful comparison to be possible, and the results
for 7Li appear to disagree with observation. While this discrepancy may still reflect observa-
tional difficulties in inferring the primordial abundance of 7Li, it may also be an indicator of
unexpected physics in the early Universe. Notice that independent of inferences from microwave
background observations, the baryon density required for successful primordial nucleosynthesis
is much too small to be consistent with the large amounts of dark matter required to bind groups
and clusters of galaxies, thus providing an independent argument in favor of non-baryonic dark
matter (see §2.5).

3.5 Recombination and Decoupling

Immediately after primordial nucleosynthesis (when T ∼ 0.1MeV∼ 109 K) the Universe consists
mainly of the following particles: hydrogen nuclei (i.e. protons), 4He nuclei, electrons, photons,
and decoupled neutrinos. Since the temperature is already lower than me = 0.51MeV, baryons
and electrons can all be considered non-relativistic. All the particles (except the decoupled neu-
trinos) interact through electromagnetic processes, such as free–free interactions among charged
particles, Compton scattering between charged particles and photons, and the recombinations8

of ions with electrons to form atoms. In this section, we examine these processes in connection
to several important cosmological events at T < 109 K.

3.5.1 Recombination

As soon as the temperature of the Universe drops below ∼ 13.6eV, electrons and protons start to
combine to form hydrogen atoms. Here we examine how this ‘recombination’ process proceeds.
In addition, we compute the fractions of electrons and protons that remain unbound after recom-
bination, namely the ‘freeze-out’ abundances of free electrons and protons. For simplicity, we
ignore all elements heavier than hydrogen.

Let us start from an early enough time when recombination and ionization can maintain equi-
librium among the reacting particles. The number densities of electrons, protons, and hydrogen
atoms are then all given by Eq. (3.128) with i = e, p or H. As we will see below, the tempera-
tures of all three species are identical to that of the photons, so that Ti = T . Since the chemical
potentials are related by μH = μp + μe, we can write the equilibrium density of H as the Saha
equation:

nH,eq =
(

gH

gpge

)
np,eqne,eq

(
meT
2π

)−3/2

exp

(
BH

T

)
, (3.214)

where BH = mp + me −mH = 13.6eV is the binding energy of a hydrogen atom, and we have
used (mH/mp)3/2 ≈ 1 in the prefactor. Expressing the particle number densities in terms of the
baryon number density, nb = np + nH, and the ionization fraction, Xe ≡ ne/nb = np/nb, then
yields

1−Xe,eq

X2
e,eq

=

√
32
π
ζ (3)η

(me

T

)−3/2
exp

(
BH

T

)
, (3.215)

8 Note that the term ‘recombination’ is somewhat unfortunate, as this will be the first time in the history of the Universe
that the electrons combine with nuclei to form atoms.
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where we have used that ge = gp = 2, gH = 4, and nb = ηnγ . This is the Saha equation for the
ionization fraction in thermal equilibrium, which holds as long as the reaction rate p + e ↔ H is
larger than the expansion rate.

Assuming for the moment that thermal equilibrium holds, we can use Eq. (3.215) to com-
pute the temperature, Trec, and redshift, zrec, of recombination. For example, if we define
recombination as the epoch at which Xe = 0.1, we obtain that

θ 3/2
rec exp(13.6/θrec) = 3.2×1017 (Ωb,0h2)−1

, (3.216)

where

θ ≡ (T/1eV) ≈ (1+ z)/4250 . (3.217)

Taking logarithms and iterating once we get an approximate solution for θrec:

θ−1
rec ≈ 3.084−0.0735ln

(
Ωb,0h2) , (3.218)

which corresponds to a redshift given by

(1+ zrec) ≈ 1367
[
1−0.024ln

(
Ωb,0h2)]−1

. (3.219)

Assuming Ωb,0h2 = 0.02, we get Trec ≈ 0.3eV and zrec ≈ 1,300. Note that Trec � BH, which is a
reflection of the high entropy per baryon (i.e. the small value of η); since there are many times
more photons than baryons, there can still be sufficient photons with hPν > 13.6eV in the Wien
tail of the blackbody spectrum to keep the majority of the hydrogen atoms ionized, even when
the temperature has dropped below the ionization value.

As the Universe expands and the number densities of electrons and protons decrease, the rate
at which recombination and ionization can proceed may become smaller than the expansion rate.
The assumption of equilibrium will then no longer be valid. In order to examine in detail how
recombination proceeds, we need to understand the main reactions involved. In a normal cloud of
ionized hydrogen (HII cloud), recombination occurs mainly via two processes: (i) direct recom-
bination to the ground state, and (ii) the capture of an electron to an excited state which then
cascades to the ground level. In the first case, a Lyman continuum photon (with energy larger
than 13.6eV) is produced, while in the second case one of the recombination photons must have
an energy higher than or equal to that of Lyα . If the cloud is optically thin, all recombination
photons can escape and do not contribute to further ionization. In the case of cosmological recom-
bination, however, recombination photons will be absorbed again because they cannot escape
from the Universe. In fact, the direct capture of electrons to the ground state does not contribute
to the net recombination, because the resulting photon is energetic enough to ionize another
hydrogen atom from its ground state. The normal cascade process is also ineffective, because
the Lyman series photons produced can excite hydrogen atoms from their ground states, so that
multiple absorptions lead to re-ionization. Therefore, recombination in the early Universe must
have proceeded by different means.

There are two main channels by which cosmological recombination can proceed. One is the
two-photon decay from the metastable 2S level to the ground state (1S). In this process two pho-
tons must be emitted in order to conserve both energy and angular momentum, and it is possible
that the energies of the emitted photons fall below the ionization threshold. This process is forbid-
den to first order and so it has a slow rate: Γ2γ ≈ 8.23s−1. The second process is the elimination
of Lyα photons by cosmological redshift. Once redshifted to a lower energy, the Lyα photons
produced in the cascade will no longer be able to excite hydrogen atoms from their ground state.
The details of these recombination processes have been worked out by several authors (Peebles,
1968; Zel’dovich et al., 1968; Peebles, 1993). They show that, of the two processes discussed,
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Fig. 3.8. The ionization fraction as a function of redshift, z. The curve marked Xe,eq shows the redshift evo-
lution of the equilibrium ionization fraction, while the one marked Xe shows the actual ionization fraction
for a cosmology with Ωm,0h2 = 1 and Ωb,0h2 = 0.01.

the two-photon emission dominates, and that the ionization fraction drops from approximately
unity at z ∼> 2000, to a ‘freeze-out’ value of

Xe ≈ 1.2×10−5

(√
Ωm,0

Ωb,0h

)
(3.220)

at z ∼< 200. An example of the evolution of Xe with redshift is shown in Fig. 3.8.

3.5.2 Decoupling and the Origin of the CMB

Charged particles and photons interact with each other via Thomson scattering. The rate at which
a photon collides with an electron is ΓT = neσTc, where

σT =
8π
3

(
q2

e

mec2

)2

≈ 6.65×10−25 cm2 (3.221)

is the Thomson cross-section, with qe the charge of an electron. In what follows we only con-
sider this scattering between electrons and photons, since the interaction rate with ions is much
lower. Substituting the electron number density with ne = Xeηnγ , and using the Saha equation to
compute Xe in the limit Xe � 1, we obtain

ΓT = 1.01
(
Ωb,0h2)1/2 θ 9/4 exp(−6.8/θ) s−1 . (3.222)
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In order to estimate at what redshift the photons decouple from the matter, we compare this
interaction rate with the expansion rate. At z 	 1, we can use Eq. (3.74) to write

H(T ) =

{
3.8×10−13θ 2 s−1 (for z > zeq)

9.0×10−13
(
Ωm,0h2

)1/2 θ 3/2 s−1 (for z < zeq),
(3.223)

where zeq is the redshift at which the Universe becomes matter dominated, and we have used g∗ =
3.36 in calculating the energy density of relativistic species. Equating Eqs. (3.222) and (3.223)
with the assumption that decoupling occurs as z < zeq, we obtain the decoupling temperature:

θ−1
dec ≈ 3.927+0.074ln(Ωb,0/Ωm,0) . (3.224)

Taking Ωb,0/Ωm,0 = 0.1 we get

Tdec ≈ 0.26eV; (1+ zdec) ≈ 1,100 . (3.225)

As expected, the decoupling of matter and radiation occurs shortly after the number density of
free electrons has suddenly decreased due to recombination.

A somewhat more accurate derivation of the redshift of decoupling can be obtained by defining
an optical depth of Thomson scattering from an observer at z = 0 to a surface at a redshift z:

τ(z) =
∫ z

0
neσT

dt
dz

dz . (3.226)

Using the solution of Xe(z) shown in Fig. 3.8, rather than the equilibrium ionization fraction used
in the previous estimate, one finds to good approximation

τ(z) = 0.37(z/1,000)14.25 . (3.227)

The probability that a photon was last scattered in the redshift interval z ± dz/2 can be
approximated as

P(z) = e−τ
dτ
dz

≈ 5.26×10−3
(

z
1,000

)13.25

exp

[
−0.37

(
z

1,000

)14.25
]

. (3.228)

This distribution peaks sharply at z ≈ 1,067 and has a width Δz ≈ 80 (e.g. Jones & Wyse, 1985).
This represents the last scattering surface of photons, which is the surface probed by the cosmic
microwave background (CMB) radiation. Similar to the photosphere of the Sun, it acts as a kind
of photon barrier. No information carried by photons originating from z ∼> 1100 can reach the
Earth, as the photons involved will be scattered many times.

As discussed in §2.9, one of the most important properties of the observed CMB is that its
spectrum is very close to that of a blackbody. This implies that the emission must have originated
when the Universe was highly opaque. In the standard cosmology, such an epoch is expected
because photons and other particles are tightly coupled at z > 106. However, the CMB photons
have been scattered many times by electrons and ions between their redshift of origin and the
last scattering surface. An important question therefore is whether the background radiation can
retain a blackbody spectrum during this process. The answer is yes and the reason is, as we
show below, that the high entropy content of the Universe can keep the gas particles at the same
temperature as that of the photons. In this case, there is no net energy transfer between the
photons and electrons, ensuring that the radiation field remains blackbody. Furthermore, although
the finite thickness of the last scattering surface (Δz≈ 80) implies a spread in photon temperatures
at their last scattering event, this does not lead to observable distortions in the CMB temperature
spectrum. The reason is that the higher initial temperature of a photon that decoupled somewhat
earlier is exactly compensated by the larger redshift it experiences before reaching the observer.
Thus, the blackbody nature of the CMB is naturally explained in the standard cosmology. In
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what follows we examine more closely the temperature evolution of matter and radiation from
the epoch of electron–positron annihilation to that of decoupling.

3.5.3 Compton Scattering

By far the most dominant electromagnetic interaction during the era of decoupling is the
Coulomb interaction, which is sufficiently strong to maintain thermal equilibrium among var-
ious matter components. In the absence of any interactions between matter and radiation, the
temperature of the former would decrease as Tm ∝ a−2, while the photon temperature Tγ ∝ a−1

(see Table 3.1). However, as we have seen above, photons and electrons interact with each other
via Compton scattering. As long as Te > Tγ there will be a net energy transfer from the elec-
trons to the photons, and vice versa. The mean free path is lγ = 1/(neσT) for the photons, and
le = 1/(nγσT) for electrons. Their ratio can be expressed in terms of the ionization fraction
Xe = ne/nb as

le
lγ

= Xeη = 2.72×10−8(XeΩb,0h2) . (3.229)

Since Xe ≤ 1, we have le � lγ . This shows that it is much easier for photons to change the energy
distribution of the electrons than the other way around. This is, once again, a consequence of the
high entropy per baryon, or, put differently, of the fact that the heat capacity of the radiation is
many orders of magnitude larger than that of the electrons. Therefore, as long as the Compton
interaction rate is sufficiently large compared to the expansion rate, the matter temperature will
follow that of the photons.

To compute the redshift at which the matter temperature will finally decouple from that of the
radiation, we proceed as follows. The average energy transfer per Compton collision is

ΔE =
4
3

(v
c

)2
hPν̄ = 4

(
kBTe

mec2

)
εγ
nγ

, (3.230)

where we have used that the average electron energy is 1
2 mev2 = 3

2 kBTe and that the mean energy
of the photons is hPν̄ = εγ/nγ with εγ the photon energy density (see §B1.3.6). The rate at which
the energy density of the matter, εm, changes due to Compton interactions with the radiation
field is

dεm

dt
= nenγσTcΔE = 4neσTεγ

(
kBTe

mec

)
. (3.231)

This allows us to define the Compton rate at which electrons can adjust their energy density to
that of the photons as

Γγ→e ≡ 1
εm

dεm

dt
= 8.9×10−6

(
Xe

Xe +1

)
θ 4 s−1 , (3.232)

where we have used that εm = 3
2 nkBTe, with n = ne +nb, and εγ = (4σSB/c)T 4

γ . Comparing this to
the expansion rate given by Eq. (3.223), we find that decoupling of matter from radiation occurs
at a redshift

1+ z = 6.8

(
Xe

Xe +1

)−2/5 (
Ωm,0h2)1/5

. (3.233)

As we have seen above, before the onset of the first ionizing sources, the residual ionization

fraction at z ∼< 200 is Xe ∼ 10−5Ω1/2
m,0/(Ωb,0h) (see Fig. 3.8). Substituting this in Eq. (3.233),

and adopting Ωb,0h2 = 0.02, yields a redshift, z � 150, at which the temperatures of matter and
radiation decouple. This is a much lower redshift than the redshift of decoupling defined by an
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optical depth of unity for Compton scattering . This reflects the small values of η and Xe, which
ensure that there are about 3× 1012(Ωm,0h2)1/2 photons for every free electron. The electron
temperature can remain coupled to that of the photons even if only a tiny fraction of photons are
scattered by the electrons.

3.5.4 Energy Thermalization

In addition to Γγ→e defined above, we can also define the rate at which Compton scattering can
adjust the photon energy density to that of the electrons:

Γe→γ ≡ 1
εγ

dεγ
dt

= 1.3×10−13 (XeΩb,0h2)θ 4 s−1 , (3.234)

where we have used that in thermal equilibrium |dεγ/dt| = |dεm/dt|. This is equal to the
expansion rate in Eq. (3.223) at a redshift

1+ z = 7.2×103 (XeΩb,0h2)−1/2
. (3.235)

At z ∼> 2,000, Xe = 1 to good approximation. Using Ωb,0h2 = 0.02 we thus find that Compton
scattering can significantly modify the energy distribution of the photon fluid at z ∼> 5× 104.
Since Compton scattering (e+ γ → e+ γ) does not change the number of photons, this process
alone cannot lead to a Planck distribution. However, since the photon fluid starts out in thermal
equilibrium with the matter, it will remain properly thermalized (i.e. the Compton scattering does
not lead to any net energy transfer between matter and radiation). On the other hand, one might
envision scenarios in which physical processes (e.g. turbulence, black hole evaporation, decay
of heavy unstable leptons) heat the electrons to a temperature above that of the photons. If this
occurs at z∼> 5×104, Compton scattering is sufficiently efficient that photons experience multiple
scattering events, which bring them into thermal equilibrium with the electrons. Since there is
no change in the photon number, such scattering results in a modification of the photon energy
distribution from a Planck distribution to a Bose–Einstein distribution with a negative chemical
potential (μ < 0). Such a distortion is usually referred to as a μ-distortion. In the absence of
any photon-producing processes, an increase of the electron temperature therefore leads to a
Comptonization of the CMB, which is observable as a μ-distortion of its spectrum.

Two examples of photon producing processes, which may thermalize the injected energy and
bring the photon energy distribution back to that of a blackbody, are bremsstrahlung (also called
free–free emission) and the double-photon Compton process (e+ γ → e+2γ). In a medium with
relatively high photon density, such as that in the radiation dominated era, double Compton
emission is the dominant photon producing process and its rate is higher than the expansion rate
of the Universe at

z ∼> 2.0×106
(
Ωb,0h2

0.02

)−2/5(
1− Yp

2

)−2/5

, (3.236)

where Yp is the helium abundance in mass (e.g. Danese & de Zotti, 1982). Thus, any energy input
into the radiation field at z > 2×106 can be effectively thermalized into a blackbody distribution.
If the energy ejection occurs at z < 5× 104 the Compton rate is insufficient to establish a new
thermal equilibrium. Therefore, only energy injection in the redshift range 5×104 ∼< z ∼< 2×106

can lead to a μ-distortion in the CMB. Detailed observations with the COBE satellite have
established that the CMB has a blackbody spectrum to very high accuracy; the correspond-
ing limit on the chemical potential is |μ | ≤ 9× 10−5 (Fixsen et al., 1996). Apparently, there
have not been any major energy ejections into the baryonic gas in the above mentioned redshift
interval.
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Because multiple Compton scattering becomes rare at z ∼< 5 × 104, any energy input into
the electron distribution no longer drives the photon field towards a Bose–Einstein distribution
to produce a μ-distortion. However, single Compton scattering of low-energy photons in the
Rayleigh–Jeans tail of the CMB can still cause those photons to gain energy. Although this does
not bring the photons in thermal equilibrium with the electrons, it does result in a distortion of
the photon energy distribution. This kind of distortion is called y-distortion, because it is propor-
tional to the Compton y-parameter defined in §B1.3.6. Such distortions can be produced by the
hot intracluster medium, which is called the Sunyaev–Zel’dovich (SZ) effect, and is discussed in
detail in §6.7.4.

3.6 Inflation

So far we have seen that the standard relativistic cosmology provides a very successful frame-
work for interpreting observations. There are, however, a number of problems that cannot be
solved within the standard framework. Here we summarize some of these problems and show
how an ‘inflationary hypothesis’ can help to solve them.

3.6.1 The Problems of the Standard Model

(a) The Horizon Problem As shown in §3.2.4, the comoving radius of the particle horizon for
a fundamental observer, O , at the origin at cosmic time t is

χh =
∫ t

0

cdt ′

a(t ′)
. (3.237)

For a universe which did not have a contracting phase in its history, radiation was the dominant
component of the cosmic energy density at z > zeq, and the scale factor a(t)∝ t1/2. In this case χh

has a finite value, so that there must be fundamental observers (denoted by O ′) whose comoving
distances to O are larger than χh. No physical processes at any O ′ could have influenced O by
time t. To get a rough idea of the size of the particle horizon at the time of decoupling, assume for
simplicity an Einstein–de Sitter universe (Ωm,0 = 1), and ignore for the moment that the Universe
was radiation dominated at z > zeq. It then follows from Eqs. (3.74)–(3.75) that

χh(z) = 6,000h−1Mpc(1+ z)−1/2 . (3.238)

At the time of decoupling, which occurs at a redshift of ∼ 1,100 (see §3.5), the comoving radius
of the particle horizon is ∼ 180h−1Mpc. The comoving distance from us to the last scattering
surface is ∼ 5,820h−1Mpc, so that the particle horizon at decoupling subtends an angle of about
1.8 degrees on the sky. This implies that many regions that we observe on the CMB sky have not
been in causal contact. Yet, as discussed in §2.9, once measurements are corrected to the frame
of the fundamental observer at the position of the Sun, the temperature of the CMB radiation is
the same in all directions to an accuracy of better than one part in 105. The problem is how all
these causally disconnected regions can have extremely similar temperatures. This problem is
known as the horizon problem of the standard model.

(b) The Flatness Problem This problem concerns the processes which determine the density,
age, and size of the Universe at the present time. In the standard model, these properties are
assumed to ‘arise’ as initial conditions at the Planck time, when the Universe emerged from the
quantum gravity epoch. The problem arises if Ω = Ωm +ΩΛ+Ωr differs mildly from unity at
the present time, because such a universe requires extreme ‘fine-tuning’ of Ω at the Planck time.
A simple way to illustrate the situation is to focus on the quantity, Ω−1 −1, which measures the
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fractional deviation of the total density from the critical density. Using the Friedmann equation,
we can write that

Ω(a)−1 −1 = − 3Kc2

8πGρ(a)a2 , (3.239)

which is proportional to a2 at z > zeq and to a at z < zeq. Therefore, in the standard model,

Ω−1
Pl −1

Ω−1
0 −1

∼ T0

Teq

(
Teq

TPl

)2

∼ 10−60 , (3.240)

where subscripts ‘eq’ and ‘Pl’ denote the values at the time of radiation/matter equality, teq ∼
104 yr (corresponding to a temperature Teq ∼ 104 K), and the Planck time, tPl ≡ (h̄G/c5)1/2 ∼
10−43 s (corresponding to a temperature TPl ∼ 1032 K), respectively. This demonstrates thatΩPl is
about 60 orders of magnitude closer to unity thanΩ0. For example, ifΩ= 0.1 today, it must have
been 1− 10−59 at the Planck time, which clearly constitutes a fine-tuning problem. A ‘trivial’
way out of this problem is to postulate that Ω0 is exactly equal to unity, in which case it has
been exactly unity throughout the history of the Universe. However, this cannot be considered a
proper solution unless it has a proper physical explanation. This problem is known as the flatness
problem.

(c) Monopole Problem In the early stages of the Hot Big Bang, particle energies are well above
the threshold at which grand unification (GUT) is expected to occur (TGUT ∼ 1014–1015 GeV).
As the temperature drops through this threshold, a phase transition associated with spontaneous
symmetry breaking (SSB) can occur. One speaks of SSB when the fundamental equations of
a system possesses a symmetry which the ground state does not have. For example, one may
have a situation in which the Lagrangian density is invariant under a gauge transformation, while
the vacuum state, the state of the least energy, does not possess this symmetry. SSB plays a
crucial role in quantum field theory, where it provides a mechanism for assigning masses to the
gauge bosons without destroying the gauge invariance. As we will see below, SSB also plays an
important role in inflation.

Depending on the properties of the symmetry breaking, the phase transition can produce topo-
logical defects, such as magnetic monopoles, strings, domain walls or textures (see Vilenkin &
Shellard (1994) for a detailed description). In the case of the GUT phase transition, one expects
the formation of magnetic monopoles with a density of about one per horizon volume at that
epoch. The mass of each monopole is expected to be of the order of the energy scale in consid-
eration, i.e. m ∼ TGUT. This predicts a present-day energy density in magnetic monopoles of

ρmono,0 ∼ TGUT

t3
GUT

(
T0

TGUT

)3

∼
(

TGUT

1011 GeV

)4

ργ ,0 , (3.241)

where T0 and ργ ,0 are the temperature and energy density of the cosmic microwave background at
the present time, and we have used Eq. (3.81) to relate tGUT to TGUT. With Ωγ ,0 ≈ 2.5×10−5h−2

and TGUT ∼ 1015 GeV, we see that monopoles are expected to completely dominate the present
matter density with Ω0 ∼ 5 × 1011, in fatal conflict with observations. Since monopoles are
expected to arise in almost any GUT, there is a monopole problem in the standard cosmology.

(d) Structure Formation Problem This problem concerns the origin of the large-scale struc-
ture in the Universe. The observed structures such as the clusters of galaxies have an amplitude
which may be characterized by their dimensionless binding energy per unit mass, E /c2 ∼ 10−5.
Such structures are coherent over a mass of about 1015 M� (corresponding to ∼ 10Mpc in
comoving size) and are presumed to have grown via gravitational instability from small initial
perturbations. Since both the mass and binding energy of a perturbation are approximately con-
served during gravitational evolution, the perturbation must have been generated while its entire
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mass was within the particle horizon (i.e. when χh > 10Mpc), in order to explain its coherence.
This requires that the perturbations associated with present-day clusters be generated at z ∼< 106.
Since the standard scenario of structure formation via gravitational instability does not include
any processes which could produce the binding energy of clusters at such low redshift, the origin
of large, coherent density perturbations constitutes another problem for the standard cosmology.

It should be pointed out, however, that this particular problem is not fully generic for the
standard cosmology. In particular, the problem may be avoided if we abandon the assumption
that structures form via gravitational instability. For example, density perturbations with large
amplitudes may be generated in the early Universe within patches of the horizon size at the
time of generation. If these perturbations collapse and form objects which can eject energy to
large distances, structures of much larger scales may form out of the perturbations created by
these ejecta. Such non-gravitational models for the formation of large-scale structure have, for
example, been considered by Ostriker & Cowie (1981). However, as we will see later in the book,
the large-scale structure observed in the Universe is best explained by gravitational instability,
implying that the structure formation problem must be considered seriously.

(e) Initial Condition Problem It should be pointed out that the problems mentioned above do
not falsify the standard cosmology in any way. All of these problems can be incorporated into the
standard cosmology as initial conditions, even though the standard cosmology does not explain
them. In this sense, standard cosmology only provides a consistent theory to explain the state of
the observable Universe with some assumed initial conditions, but does not explain their origin.

For many years it was believed that the initial conditions for standard cosmology would arise
from quantum cosmology (a quantum treatment of space-time) at very early times when the
Universe was so small that classical cosmology is no longer valid. Unfortunately, such theory
is still highly incomplete and no reliable predictions can be presented. However, the situation
changed dramatically in the early 1980s when it was realized that a new concept, called inflation,
can solve all the aforementioned problems within the classical theory of space-time. Inflation
basically provides an explanation for the initial conditions, and it operates at an energy scale that
is much lower than the Planck scale, so that gravity can be treated classically. In what follows
we present a brief overview of cosmological inflation, and illustrate how it solves the problems
mentioned here. A more detailed treatment of this topic can be found in Kolb & Turner (1990)
and Liddle & Lyth (2000).

3.6.2 The Concept of Inflation

As discussed above, the horizon problem arises because the comoving radius of the particle
horizon of a fundamental observer (at time t),

χh =
∫ t

0

dct ′

a(t ′)
=
∫ a

0

da′

a′

[
8πGρ(a′)a′2

3c2 −K

]−1/2

, (3.242)

is finite in the standard model, where ρ(a) ∝ a−4 as a → 0. To get rid of this problem, χh must
diverge, making the radius of the particle horizon infinite. From Eq. (3.242) one sees that this
requires ρ(a) ∝ a−β with β < 2 as a → 0. Inserting this a-dependence of ρ into the first law of
thermodynamics, Eq. (3.35), one obtains

ρ+3P/c2 < 0 , (3.243)

which, in Eq. (3.58), gives ä > 0. Such a phase of accelerated expansion is called inflation, and
arises when the Universe is dominated by an energy component whose equation of state satisfies
Eq. (3.243).
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Fig. 3.9. A sketch of the light-cone structure in an inflationary universe. The cosmic time flows from bottom
up (with the Big Bang labeled by O) and the horizontal axis marks the comoving radius, χ , of the light cone.
In the absence of inflation, the forward light cone (the dashed lines) would be smaller than our past light
cone, χp, at the last scattering surface (corresponding to t = tls), resulting in the causality problem discussed
in §3.6.1. With a period of inflation (from ti to te), however, the forward light cone can be (much) larger
than the past light cone at tls (i.e. χf > χp).

An example of such an energy component is vacuum energy, whose equation of state is
P = −ρvacc2. In this case, the solution of the Friedmann equation corresponds to an exponentially
expanding universe,

a ∝ eHt where H =
√

8πGρvac/3 (3.244)

(see §3.2.3). Fig. 3.9 illustrates how such an inflationary period can solve the horizon problem.
Suppose that inflation begins at some very early time ti and ends at some later time te. The
period of inflation is therefore Δt = te − ti. During inflation, the forward light cone expands
exponentially, whereas the past light cone of an observer at the present time t0 is not affected by
the exponential expansion for t > te. Therefore, if Δt is sufficiently long, the size of the forward
light cone on the last scattering surface of the CMB photons, χf(tls), can be larger than the size of
the past light cone, χp(tls). Since tls � t0, the size of the past light cone is χp(tls) =

∫ t0
tls

dt/a(t) ≈
3t0. The size of the forward light cone at tls is χf(tls)∼

∫ tls
ti

dt/a(t) = (1/H)[eHΔt −1]a−1(te). The
condition that χf(tls) > χp(tls) therefore requires

eHΔt > 3Ha(te)t0 ∼ a(te)
t0
te

∼ 1√
1+ zeq

Te

T0
∼ 1025, (3.245)

where the final value is for Te ∼ 1014 GeV (roughly the GUT energy scale) and T0 ∼ 10−13 GeV
(the temperature of the CMB). Thus, in order to solve the horizon problem, an inflationary
period of

Δt ∼> 60H−1 (3.246)

is required, corresponding to 60 e-foldings in the scale factor.
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Inflation can also solve the flatness problem. To see this we use Eq. (3.79) to write

Ω−1(te)−1
Ω−1(ti)−1

=
[

a(ti)
a(te)

]2

∼< 10−52 , (3.247)

where we have inserted the number of e-foldings implied by Eq. (3.245). Therefore, even when
Ω(ti) deviates substantially from unity, at the end of inflation Ω(te) � 1 to very high accuracy. If
we assume that inflation ends at about the GUT time (i.e. Te ∼ 1015 GeV), then the present-day
value of Ω is related to that at the beginning of inflation according to

Ω−1(t0)−1
Ω−1(ti)−1

=
Ω−1(t0)−1
Ω−1(te)−1

× Ω−1(te)−1
Ω−1(ti)−1 ∼< 10−52

(
Teq

T0

)(
Te

Teq

)2

∼ 1 . (3.248)

Thus the same number of e-foldings needed to solve the horizon problem also solves the flatness
problem. Since the value of Ω at the present time depends very sensitively on the number of
e-foldings, unless it is exactly unity, extreme fine-tuning is required to give Ω �= 1. In this sense,
inflation predicts that the Universe is spatially flat, with Ωm,0 +ΩΛ,0 = 1. This can be under-
stood as follows. Because of inflation the curvature radius (measured in physical scale) increases
exponentially, and the observed piece of space in the past light cone looks essentially flat after
inflation even if it had a large curvature before.

If monopoles are produced before inflation, their number density will be diluted exponen-
tially during inflation. At the end of inflation, the number density would be reduced by a factor
∼ (eHΔt

)3 ∼ 1078, making the contribution of monopoles to the cosmic density completely
negligible. Thus, inflation also solves the monopole problem discussed in §3.6.1.

Finally, inflation also provides a mechanism to explain why structures like clusters can form in
a causal way. Because of inflation, small-scale structures present before and during inflation can
be blown up exponentially. Thus, the different parts of a perturbation responsible for a cluster
and a larger-scale structure, although not in causal contact after inflation, were actually in causal
contact before or during inflation. It is therefore possible to have causality if the perturbations
responsible for the formation of clusters were generated before or during inflation. In fact, infla-
tion not only allows such perturbations to exist, but also provides a mechanism to generate them,
as we will discuss in detail in §4.5.1.

3.6.3 Realization of Inflation

The above discussion shows that inflation can solve many problems (or, more appropriately,
puzzles) regarding the initial conditions of the Big Bang cosmology, as long as it operates for
a sufficiently long time. All that is needed is a dominant energy component with an equation
of state obeying Eq. (3.243). As already mentioned, the cosmological constant is an example of
such a component. However, it cannot serve to describe inflation for the simple reason that it
will never stop. By definition, Λ is a constant, and once it dominates the energy density of the
Universe it will continue to do so eternally. A successful inflation model, however, needs to stop
after some time, and it needs to end in a particular way. After all, at the end of inflation the
matter and radiation density of the Universe will be virtually zero, so will be its temperature: the
Universe is basically a vacuum. We thus need a mechanism, called reheating, which at the end of
inflation creates matter and radiation. In other words, at the end of inflation the Universe needs to
undergo a cosmological phase transition. The temperature at the end of this phase transition has
to be sufficiently low so that during the subsequent evolution no new phase transition can create
large quantities of magnetic monopoles. Otherwise we are back to where we started. In addition,
the temperature needs to be sufficiently high so that the process of baryogenesis can still operate.

It was Guth (1981) who first realized that all these requirements can be realized in a natural
way with scalar fields. These quantum fields, which describe scalar (spin-0) particles, play an
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important role in quantum field theory. Their dominant role is to cause spontaneous symmetry
breaking (SSB) via the Higgs mechanism. These so-called Higgs fields have a non-zero vacuum
expectation value. As a result, the interactions of the fermion and boson fields with the Higgs field
give a finite potential energy to the fermions and bosons, which is expressed as an effective mass.
Before the symmetry is broken, the Higgs field has a zero expectation value, and the fermions
and bosons are massless. In what follows we show that under certain conditions, a similar scalar
field can also cause inflation. The key point here is that the zero-point energy (vacuum energy)
of such fields can mimic a cosmological constant. A scalar field that causes inflation is generally
called an inflaton.

The Lagrangian density of a scalar field ϕ(x, t) is

L =
1
2
∂μϕ∂ μϕ−V (ϕ) , (3.249)

where V (ϕ) is the potential of the field. Different inflationary models, i.e. different inflatons,
correspond to different choices for V (ϕ). The energy–momentum tensor of the inflaton is

T μν = ∂ μϕ∂ νϕ−gμνL . (3.250)

If the inhomogeneity in ϕ is small, this T μν has the form of a perfect fluid, Eq. (3.57), with
energy density and pressure given by

ρ =
ϕ̇2

2
+

(∇ϕ)2

2a2 +V (ϕ) and P =
ϕ̇2

2
− (∇ϕ)2

6a2 −V (ϕ) , (3.251)

where ϕ̇ ≡ (∂ϕ/∂ t), and ∇ is the derivative with respect to the comoving coordinates x. We
therefore have

ρ+3P = 2
[
ϕ̇2 −V (ϕ)

]
, (3.252)

and the condition for inflation becomes

ϕ̇2 �V (ϕ) , (3.253)

which is called the slow-roll approximation. Note that in this case ρ = V (ϕ), and for inflation to
happen V (ϕ) thus needs to be sufficiently large to dominate the total energy density. As soon as
inflation operates it drives the curvature to zero so that the Friedmann equation (3.60) becomes

H =
√

8πGV (ϕ)/3 =
1

mPl

√
8πV

3
, (3.254)

where mPl ≡ (h̄c/G)1/2 is the Planck mass and we have used h̄ = c = 1.
Since the scale factor a increases exponentially during inflation, the spatial derivative term

∇ϕ/a in ρ and P rapidly becomes negligible, provided V is large enough for inflation to start in
the first place. Therefore any spatial inhomogeneities can be neglected and, under the slow-roll
approximation, one obtains P = −ρ , an equation of state similar to that for the cosmological
constant.

To translate the slow-roll requirement into a requirement for the shape of the potential, V (ϕ),
which is the ‘free parameter’ in the construction of inflation models, we need to look at the
dynamics of a scalar field. The classical equation of motion is obtained by writing down the
action

S =
∫

L
√−gd4x , (3.255)

where g is the determinant of the metric tensor gμν . The Euler–Lagrange equation, which follows
from the least-action principle, δS = 0, then yields

ϕ̈+3Hϕ̇+dV/dϕ = 0 , (3.256)
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where we have ignored any spatial inhomogeneity (∇ϕ = 0). Equivalently, Eq. (3.256) follows
from conservation of the energy–momentum tensor (T μν ;ν = 0), or from substituting Eq. (3.251)
in the continuity equation for a FRW cosmology, ρ̇ = −3H(ρ + P) [see Eq. (3.35)]. Note that
Eq. (3.256) is similar to the equation of motion of a ball moving under the influence of a potential
V in the presence of friction (the Hubble drag) proportional to 3H. Using that ϕ̇ ∼ ϕ/t, so that
ϕ̈ ∼ ϕ/t2 ∼ ϕ̇2/ϕ , the slow-roll approximation implies that ϕ̈ �V (ϕ)/ϕ ∼ dV/dϕ . Therefore,
the first term in Eq. (3.256) is negligible, and

3Hϕ̇+dV/dϕ = 0 . (3.257)

This equation expresses that the acceleration due to the gradient in the potential is balanced
by the Hubble drag due to the expansion. This together with Eq. (3.253) leads to the following
slow-roll condition:

ε ≡ m2
Pl

16π

(
dV/dϕ

V

)2

=
m2

Pl

16π
(3Hϕ̇)2

V 2 � m2
Pl

(3H)2

V
∼ 1 , (3.258)

where we have used the Friedmann equation (3.254). Similarly, since (d2V/dϕ2)/V ∼
(dV/dϕ)/(ϕV ) ∼ (dV/dϕ)2/V 2, we have

η ≡ m2
Pl

8π
1
V

d2V
dϕ2 � 1 . (3.259)

Conditions (3.258) and (3.259) indicate the intuitively obvious, namely that for the slow-roll
condition to be satisfied the potential needs to be very flat. Any scalar field that obeys these two
constraints will cause an inflationary phase, whose duration increases with the flatness of V (ϕ).

As emphasized above, inflation is only successful if it can also stop and reheat the Universe.
Below we illustrate how this comes about with scalar fields using three specific examples. In
each of these the end of inflation and the reheating mechanism are somewhat different.

3.6.4 Models of Inflation

(a) Old Inflation The ‘old inflation’ model, proposed by Guth (1981), is based on a scalar
field which initially gets trapped in a false vacuum at ϕ = 0 and which at some point undergoes
spontaneous symmetry breaking to its true vacuum state via a first order phase transition. The
prototype of such a potential has the form

V (ϕ) =
1
4
ϕ4 − 1

3
(α+β )|ϕ|3 +

1
2
αβϕ2 +V0 , (3.260)

where V0 = α3(α − 2β )/12 > 0 and α > 2β > 0. The field is assumed to be in thermal
equilibrium with a radiation field at temperature T , and so the effective potential of the field is

Veff(ϕ) = V (ϕ)+
1
2
λ̃T 2ϕ2 (3.261)

according to finite-temperature field theory (e.g. Brandenberger, 1995), where λ̃ is a coupling
constant. Fig. 3.10 a shows Veff(ϕ) at different temperatures. When the temperature is high, the
effective potential has a single minimum at ϕ = 0. As the temperature decreases, two other
minima develop. This occurs at a critical temperature Tc = (α − β )/(2λ̃ 1/2). For T � Tc, the
three minima are at ϕ = 0,±α , and the values of the potential at these points are Veff(0) = V0

and Veff(±α) = 0. Thus, the vacua at ϕ = ±α represent two true vacua of the field, while the
one at ϕ = 0 is called a false vacuum state. When T 	 Tc the expectation value of the inflaton
is ϕ = 0. At this stage no inflation occurs simply because the energy density of the radiation still
exceeds that of the inflaton. When the temperature drops below Tc, the field gets trapped in the
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Fig. 3.10. Two examples of effective scalar potentials, at three different temperatures, that can lead to infla-
tion. In example (a) ϕ experiences a first-order phase transition, characteristic of the old inflation models,
while in (b) the phase transition is of second order.

false vacuum at ϕ = 0, and the system is said to undergo supercooling. At this point, the slow-
roll condition is satisfied, and ρ ∼V (ϕ = 0) is dominated by the energy density of the inflaton.
Consequently, ϕ(x) acts like a cosmological constant, the Universe enters a de Sitter phase with
a Friedmann equation of the form (3.254), and the Universe expands exponentially. The epoch of
inflation only ends when thermal fluctuations or quantum tunneling moves ϕ across the barrier so
that it can proceed towards its true vacuum. This transition is a spontaneous symmetry breaking,
and since the field value changes discontinuously, it is of first order. During the transition the
energy V (ϕ = 0) associated with the inflaton field, the so-called latent heat, is rapidly liberated
and can be used for reheating. If the system stays in the false vacuum sufficiently long, the
Universe can be inflated by a sufficiently large number of e-foldings. It thus appears that this
model fulfills all requirements.

However, it was realized that this model has a ‘graceful exit’ problem (Guth, 1981; Guth &
Weinberg, 1981). Because the transition is of first order, it proceeds through the nucleation of
bubbles of the true vacuum in a surrounding sea of false vacuum. These bubbles must grow in
a causal way, and so their sizes at the end of inflation cannot be larger than the horizon size at
that time, which is much smaller than our past light cone. In addition, the latent heat needed
for reheating is stored in the kinetic energy of the nucleated bubbles, and reheating only occurs
when this kinetic energy is thermalized via bubble collisions. Thus, unless bubbles can collide
and homogenize in the Hubble radius, the model will predict too large inhomogeneities to match
the observed isotropy of the CMB and too little reheating. However, since the space between
the bubbles is filled with exponentially expanding false vacuum, while the volume of a bubble
expands only with a low power of time, percolation and homogenization of bubbles can never
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happen. Instead, inflation continues indefinitely, and the bubbles of true vacuum have only a
small volume filling factor at any time. The volume filling factor can be increased by increasing
the nucleation rate of true-vacuum bubbles, but this would require a high tunneling rate, making
the inflation period too short.

(b) New Inflation Because of the ‘graceful exit’ problem, a modified scenario has been pro-
posed by Linde (1982) and Albrecht & Steinhardt (1982). The prototype potential in this scenario
has the form

V (ϕ) =
1
4
λ
(
ϕ2 −σ2)2

, (3.262)

and the effective potential Veff(ϕ) is plotted in Fig. 3.10 b for different temperatures. At high
temperature, the effective potential has a single minimum at ϕ = 0, but when the temperature
drops below a critical value, Tc = σ(λ/λ̃ )1/2, the minimum at ϕ = 0 disappears (and becomes a
local maxima) while two new minima develop. As in old inflation, the scalar field is confined to
the neighborhood of ϕ(x) = 0 by the thermal force at T 	 Tc, when the Universe is dominated by
radiation. As the temperature drops to T ∼ Tc (when the vacuum energy of ϕ begins to dominate
over radiation), the field configuration at ϕ(x) = 0 becomes unstable and it evolves towards
ϕ =±σ as the temperature decreases. The change from ϕ = 0 to ϕ =±σ is smooth everywhere,
and so the spontaneous symmetry breaking occurs via a second-order phase transition. As long
as the evolution obeys the slow-roll requirements derived above, inflation will occur. When ϕ
approaches σ (or −σ ), the field rolls rapidly towards the minimum (because of the large potential
gradient). Since this violates the slow-roll requirement, it signals the end of inflation. The inflaton
ϕ subsequently oscillates around the minimum with a frequencyω given byω2 = (d2V/dϕ2)σ =
λσ2. If the field is coupled to the radiation field, these oscillations will be damped by the decay
of ϕ into photons and other particles, and the Universe is reheated to a temperature T ∼ ω ∼ Ti,
with Ti the temperature at the onset of inflation. The Universe then enters the radiation dominated
era of the ordinary FRW cosmology.

The spatial fluctuations in ϕ(x) are expected to be correlated over some microphysical scale
and, as a result, the field is homogeneous within domains with sizes typically of the correlation
length. Since the correlated domains are established before the onset of inflation, any domain
boundaries are inflated outside the present Hubble radius and the inflation in a domain stops
when |ϕ| ∼ σ . Since our Universe is thus contained within a single domain, there is no ‘graceful
exit’ problem in this model. Hence the new inflation model is an improvement over the old one.
Unfortunately it also has problems. In order to obtain inflation, we must have d2V/dϕ2 �V/m2

Pl
[see Eq. (3.259)] which, for V = (ϕ2−σ2)2/4, requires σ 	 mPl. This is obviously an unnatural
condition, since mPl is the highest energy scale expected in particle physics. There is also a more
general problem. In order to ensure a large-enough number of e-foldings, the initial value of ϕ
must satisfy |ϕi| � σ . However, since the thermal fluctuations of ϕ at the initial time (when
T = Ti) are expected to be of the order λ−1/4Ti ∼ [V (0)/λ ]1/4 ∼ σ , fine-tuning is needed to get
the required initial condition, |ϕi| � σ .

(c) Chaotic Inflation Chaotic inflation was proposed to give a more natural explanation for the
initial conditions leading to inflation (Linde, 1986). Unlike in the old and new inflation models,
no phase transition is involved here so that no initial thermal bath is required. In this model, one
starts with a simple potential, e.g. V (ϕ) = mϕ2/2, and inflation simply arises because of the slow
motion of ϕ from some initial value, ϕi, towards the potential minimum. At any given point x,
the initial field configuration is assumed to be set by some chaotic processes. The values of ϕ are
expected to be the same within regions with a size set by the correlation length. Inflation only
occurs in those regions where the conditions needed for inflation are attained; the other regions
simply never inflate. Chaotic inflation therefore predicts that the Universe is locally homoge-
neous, but globally inhomogeneous. In a region where inflation persists for a sufficiently long
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period, the boundary of this region can be blown out of the current particle horizon, leaving a
universe in which the initial inhomogeneities generated by the chaotic processes have no observ-
able consequences. In this scenario our Universe is assumed to have emerged from one of such
regions.

In order to solve the horizon and flatness problems, the number of e-foldings must be N ∼> 60.
Using the slow-roll approximation, we can write the number of e-foldings between ti and te (the
times when inflation starts and terminates) as

N =
∫ te

ti
H dt ∼− 1

m2
Pl

∫ ϕe

ϕi

V
|dV/dϕ| dϕ . (3.263)

For a smooth potential such as V (ϕ) = m2ϕ2/2, |dV/dϕ | ∼V/ϕ and so N ∼ (ϕi/mPl)2 (assum-
ing that ϕe � ϕi). It then follows that ϕi 	 mPl is needed to have successful inflation. If inflation
starts near the Planck time, the fluctuations in V are about m4

Pl, and for the potential in consid-
eration m � mPl is required. It is unclear if such a small mass scale can be achieved in a Planck
time, because the most natural mass scale at this time is mPl. Indeed, if inflation happened at the
Planck time, it may not be really possible to construct a realistic inflation model without a proper
understanding of quantum gravity. In this sense, our initial hope that inflation models would
solve some of the problems in the standard model within the classical space-time framework is
not realized.

The schemes and problems discussed above are typical of many other inflation models sug-
gested. At the present time, it is fair to say that, although the concept of inflation can help to solve
several outstanding problems in standard cosmology, a truly successful model is still lacking.



Appendix A

Basics of General Relativity

General relativity (hereafter GR) is the subject dealing with the structure of space-time and with
how to describe physical laws in any given space-time. The perspective of space-time in GR
is very different from that in Newtonian physics. In Newtonian physics, space is considered
to be flat, infinite and eternal, time is considered to flow uniformly, and physical processes are
considered to act in this external space-time frame. In the framework of GR, however, space-time
is a four-dimensional manifold which may be curved and the properties of space-time itself are
determined by dynamical processes.

This appendix provides a brief summary of the aspects of GR that are used in this book. More
details can be found in the excellent textbooks by Weinberg (1972), Misner et al. (1973), Rindler
(1977), and Carroll (2004).

A1.1 Space-time Geometry

In order to gain some insight in how to describe space-time as a four-dimensional manifold
(hypersurface), consider a two-dimensional analog. To describe a two-dimensional surface, we
can construct a coordinate system and label each point on the surface by its coordinates. The
geometrical properties of the surface can be obtained by considering the distance between each
pair of infinitesimally close points on the surface in terms of the differences in coordinates. In
general, the square of this distance can be written as

dl2 =
2

∑
i, j=1

gi j(x)dxi dx j, (A1.1)

where x = (x1,x2) are the coordinates and gi j(x) is the metric which gives the distance in terms of
the difference in coordinates. As an example, if we use Cartesian coordinates (x,y), then gi j = δi j

is the metric for a plane, because ds2 = dx2 +dy2. Similarly,

ds2 =
R2 − y2

R2 − x2 − y2 dx2 +
R2 − x2

R2 − x2 − y2 dy2 +
2xy

R2 − x2 − y2 dxdy (A1.2)

gives the metric of a sphere with radius R. This is evident by using the spherical coordinates:

dl2 = R2(dϑ 2 + sin2ϑ dϕ2), (A1.3)

where (ϑ ,ϕ) is related to (x,y) by x = Rsinϑ cosϕ , y = Rsinϑ sinϕ . This shows that the metric
not only depends on the properties of the surface, but also on the choice of the coordinate system.
In general, one chooses a coordinate system which simplifies the problem at hand.

The geometrical properties of the space-time can be described in a similar manner. Each point
on the four-dimensional space-time hypersurface is an event, represented by a time coordinate
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and three spatial coordinates. The ‘distance’ between any two points (events) on this hypersurface
is the interval ds. For a flat space-time this interval has the same form as in special relativity:

ds2 = c2dt2 −dx2 −dy2 −dz2 = ημν dxμdxν = c2dt2 −δi j dxidx j, (A1.4)

where x,y,z are the Cartesian coordinates, (x0,x1,x2,x3) = (ct,x,y,z), δi j is the Kronecker delta
function, and

ημν = diag(1,−1,−1,−1) (A1.5)

is the Minkowski metric. In Eq. (A1.4) and in the following, a pair of repeated upper and lower
indices implies summation over their range, Greek indices run from 0 to 3 while Latin indices
run from 1 to 3. For a general space-time, the interval can be written as

ds2 = gμν dxμ dxν , (A1.6)

where xμ (μ = 0,1,2,3) are general space-time coordinates and the metric gμν gives the interval
in terms of the difference in space-time coordinates. Note that gμν = gνμ .

Since ds is invariant under coordinate transformation, the metric must transform as

gμν(x) → g′μν(x
′) =

∂xα

∂x′μ
∂xβ

∂x′ν
gαβ (x), (A1.7)

under a general coordinate transformation x → x′. The inverse four-metric gμν is the inverse of
gμν :

gμαgαν = δμν , (A1.8)

and so transforms as

gμν(x) → g′μν(x′) =
∂x′μ

∂xα
∂x′ν

∂xβ
gαβ (x). (A1.9)

From the space-time metric, one can derive other useful geometric quantities. The affine
connection, Γμαβ , which connects vectors in nearby tangent spaces, is defined as

Γμαβ =
1
2

gμσ
(
∂βgσα +∂αgσβ −∂σgαβ

)
, (A1.10)

where ∂μ ≡ ∂/∂xμ . The Riemann–Christoffel curvature tensor, Rμναβ , which describes the
curvature of the space-time manifold, is defined as

Rμναβ = ∂αΓμνβ −∂βΓμνα +ΓμσαΓσ νβ −ΓμσβΓσ να . (A1.11)

The Ricci tensor and the curvature scalar are defined as

Rμν ≡ Rσ μσν and R ≡ gμνRμν , (A1.12)

respectively.
For the Robertson–Walker metric,

ds2 = c2dt2 −a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]
, (A1.13)

the non-zero components of the affine connection are

Γ0
11 = c−1aȧ/(1−Kr2); Γ0

22 = c−1aȧr2; Γ0
33 = c−1aȧr2 sin2ϑ ;

Γ1
01 = Γ2

02 = Γ3
03 = ȧ/ca; Γ2

12 = Γ3
13 = 1/r;

Γ1
11 = Kr/(1−Kr2); Γ1

22 = −r(1−Kr2); Γ1
33 = −r(1−Kr2)sin2ϑ ;

Γ2
33 = −sinϑ cosϑ ; Γ3

23 = cotϑ ,

(A1.14)



A1.2 The Equivalence Principle 743

where (x0,x1,x2,x3) = (ct,r,ϑ ,ϕ) and ȧ = da/dt. The non-zero components of the Ricci
tensor are

R00 = − 3
c2

ä
a
, Ri j = − 1

c2

[
ä
a

+2
ȧ2

a2 +
2c2K

a2

]
gi j, (A1.15)

and the curvature scalar is

R = − 6
c2

[
ä
a

+
ȧ2

a2 +
Kc2

a2

]
. (A1.16)

For small perturbations of Minkowski space-time, the perturbed metric can in general be
written as

ds2 = c2(1+2Ψ/c2)dt2 −2cwi dt dxi − [(1−2Φ/c2)δi j +Hi j
]

dxi dx j, (A1.17)

where the perturbation quantities |Ψ|/c2, |Φ|/c2, |wi|, and |Hi j| are all � 1. To the first order of
the perturbation quantities, the non-zero components of the affine connection are:

Γ0
00 = ∂0Ψ; Γ0

i0 = ∂iΨ;

Γi
00 = ∂iΨ+∂0wi; Γi

j0 = 1
2 (∂ jwi −∂iw j)+ 1

2∂0hi j;

Γ0
jk = − 1

2 (∂ jwk +∂kw j)+ 1
2∂0h jk; Γi

jk = 1
2 (∂ jhki +∂kh ji)− 1

2∂ih jk,

(A1.18)

where hi j = Hi j −2Φδi j. The components of the Ricci tensor are

R00 = δ i j∂i∂ jΨ+3∂ 2
0Φ+∂0∂ jw j;

R0 j = − 1
2δ

kl∂k∂lw j + 1
2∂ j∂kwk +2∂0∂ jΦ+ 1

2∂0∂kHj
k;

Ri j = ∂i∂ j(Φ−Ψ)− 1
2∂0(∂iw j +∂ jwi)+δi jημν∂μ∂νΦ− 1

2η
μν∂μ∂νHi j + 1

2∂k(∂iHj
k +∂ jHi

k).
(A1.19)

These results can also be used in dealing with small metric perturbations of a flat, expanding
universe. Here the perturbed metric can be written as

ds2 = c2(1+2Ψ/c2)dt2 −2cawi dt dxi − [(1−2Φ/c2)δi j +Hi j
]

a2 dxi dx j, (A1.20)

where a(t) is the scale factor. It is evident that if we use a new set of space-time coordinates,
(ct,x′1,x′2,x′3) where dx′i = adxi, the affine connection and Ricci tensor corresponding to metric
(A1.20) will have the same forms as given by Eqs. (A1.18) and (A1.19), except that all spatial
derivatives are with respect to x′i. The quantities in terms of the comoving coordinates, xi, can
then be obtained by using general coordinate transformations (see below).

A1.2 The Equivalence Principle

According to the principle of general relativity, all reference frames are equivalent, and a physical
law should have the same form under general coordinate transformation (the general covariance).
Because of this, physical fields defined on a space-time must transform according to a set of rules
under the general coordinate transformation. Depending on whether it is a scalar, S, a vector, V,
or a tensor, T, a physical field transforms as

S′(x′) = S(x); V ′μ(x′) =
∂x′μ

∂xα
Vα(x); T ′μν(x′) =

∂x′μ

∂xα
∂x′ν

∂xβ
Tαβ (x), (A1.21)

under the general coordinate transformation xμ → x′μ . From a given vector or a given tensor, we
can define another vector or another tensor as

Vμ = gμνV
ν ; Tμν = gμαgνβTαβ . (A1.22)
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In general, new tensors can be obtained by using gμν to lower indices and by using gμν to raise
indices. As in special relativity, Vα and Vα are called the covariant and contravariant components
of V. Generally, a lower index is called the covariant index while an upper index is called a
contravariant index. It is easy to prove that under general coordinate transformation, Vμ and Tμν
transform as

V ′
μ(x

′) =
∂xα

∂x′μ
Vα(x); T ′

μν(x
′) =

∂xα

∂x′μ
∂xβ

∂x′ν
Tαβ (x). (A1.23)

Thus, both V μVμ and T μνTμν are invariant under general coordinate transformations.
From the perspective of GR, gravitation is manifested as curved space, and so the space-

time must be (locally) Minkowskian in a frame which is in free fall in a gravitational field. An
important aspect of GR is embodied in the equivalence principle that can be stated as follows: In
a reference frame which is in free fall in a gravitational field, all physical laws have their special
relativistic form, except the gravitational force which disappears. Together with the principle
of general relativity, the equivalence principle enables us to find physical equations valid for any
general reference frame: what we need to do is just to write the usual special relativistic equations
in covariant forms.

Since physical equations generally involve derivatives with respect to the space-time coordi-
nates, we need to find the covariant forms of the derivatives of physical fields. The covariant
derivative with respect to a space-time coordinate xμ is usually denoted by a subscript ‘;μ’. For
a scalar field it is defined as

S;μ ≡ ∂μS, (A1.24)

while for vector fields it is defined as

Vα
;β = ∂βVα +ΓαμβV μ , Vα;β = ∂βVα −ΓμαβVμ . (A1.25)

It is easy to show that, under general coordinate transformation, S;μ transforms as a vector, while
Vα

;β and Vα;β transform as tensors. In general, to obtain the covariant derivative of the tensor
T ······ with respective to xα , we add to the ordinary derivative ∂αT ······ a term −ΓμβαT ····μ· for each

covariant index β (T ···
·β ·), and a term Γβ μαT ·μ·

··· for each contravariant index β (T ·β ·
··· ). Note that

the affine connection itself is not a tensor.
Using the definition of the metric, one can show that

√−gd4x =
√

−g′ d4x′, (A1.26)

where g is the determinant of gμν . This means that
√−gd4x is an invariant volume ele-

ment. Thus, if S(x) is a scalar field, then
∫

S(x)
√−gd4x is independent of the choice of

coordinates.

A1.3 Geodesic Equations

As an application of the equivalence principle, consider the motion of a free particle with non-
zero mass in a gravitational field. In the reference frame comoving with the particle (where,
according to the principle of equivalence, the space-time must be locally Minkowskian with
metric ημν), the motion of the particle is given by

d2ξ μ

ds2 = 0, (A1.27)
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where ds/c is the proper time interval measured in the free-fall frame, and ξ μ is the space-time
coordinates of the particle. For a general reference frame with coordinates xμ related to ξ ν by
xμ(ξ ), the metric is related to ημν by

gμν = ηαβ
∂ξα

∂xμ
∂ξβ

∂xν
. (A1.28)

In the x-frame, the equation of motion (A1.27) becomes

d2xμ

ds2 = −Γμαβ
dxα

ds
dxβ

ds
, (A1.29)

where

Γμαβ =
∂xμ

∂ξ ν
∂ 2ξ ν

∂xα∂xβ
. (A1.30)

One can prove that Γμαβ is just the affine connection defined by Eq. (A1.10). This can be done
by using the relation

∂λgμν = Γαλμgαν +Γαλνgαμ , (A1.31)

and the results of cyclically permuting the three indices. Thus, in the x-frame there is a force
exerting on the free-fall particle. This is gravity. But in the perspective of GR it is because the
particle is moving in a curved space (non-zero affine connection). Free particles move along
geodesics, and so Eq. (A1.29) is also the geodesic equation. If we define the four-momentum as

pμ = mUμ , Uμ = c
dxμ

ds
, (A1.32)

where m is the rest mass of the particle, Eq. (A1.29) can be written in the form

p0

c
dpμ

dt
= −Γμαβ pα pβ , (A1.33)

where p0 = mcdx0/ds = mc2dt/ds. Another useful form of Eq. (A1.29) is

p0

c

dpμ
dt

=
1
2
(∂μgαβ )pα pβ , (A1.34)

where pμ = gμν pν . Note that

gμν pμ pν = m2c2. (A1.35)

In time-orthogonal coordinates, where g00 = 1 and g0i = 0, we have

(p0)2 +gi j p
i p j = m2c2. (A1.36)

If we define the magnitude of the three-momentum as p2 = −gi j pi p j, then

(p0)2 = p2 +m2c2, (A1.37)

and cp0 can be considered the total energy of the particle in the time-orthogonal frame.
For massless particles ds → 0 and so Eq. (A1.29) is invalid. However, both Eqs. (A1.33)

and (A1.34) are well defined for massless particles, provided that pμ is properly defined. One
possibility is to define the four-momentum as

pμ =
p0

c
dxμ

dt
, (A1.38)

which is the same as Eq. (A1.32) for massive particles if we choose p0 = mc2 dt/ds. For massless
particles, gμν pμ pν = 0. It can then be shown that in time-orthogonal coordinates, cp0 is the
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energy of the particle. To cast the equation of motion for massless particles in the form of the
geodesic equation (A1.29), we introduce an affine parameter λ by the equation

p0 ≡ dx0

dλ
. (A1.39)

Eq. (A1.33) can then be written in the form

d2xμ

dλ 2 = −Γμαβ
dxα

dλ
dxβ

dλ
. (A1.40)

A1.4 Energy–Momentum Tensor

If a charge Q is invariant under Lorentz transformation, the equation of charge conservation can
be written in the form

∂ (nQ)
∂ t

+∇ · j = 0, (A1.41)

where j = nQv is the current density. In covariant form this is

Jμ ;μ = 0, (A1.42)

where Jμ is the four-current density vector. One might consider applying this to the mass to
obtain a covariant form for the continuity equation. However, mass is not invariant under Lorentz
transformation; it depends on momentum because of its connection to energy. Thus, a covariant
continuity equation must involve both energy and momentum. The conserved quantity we are
seeking is expected to have 16 components: the energy and energy current in three directions,
plus momenta in three directions and their currents (each momentum has three components).
Thus the quantity must be a 4×4 tensor which we call the energy–momentum tensor and denote
by T μν . The conservation of energy–momentum can then be written in the covariant form

T μν ;μ = 0. (A1.43)

In many cosmological applications, the material content can be approximated by a fluid. To
obtain the corresponding energy–momentum tensor, we again use the equivalence principle. A
fluid is characterized by the density, ρ(x), and pressure, P(x), both measured by an observer
comoving with the fluid at the point x, and the velocity of the fluid element relative to some
reference frame. Note that ρ and P defined in this way are invariant under general coordinate
transformation. In the rest frame of a fluid element, the energy–momentum tensor is

T μν = diag(ρc2,P,P,P) = (ρ+P/c2)UμUν −Pημν , (A1.44)

where Uμ = (c,0,0,0) is the four-velocity of the fluid element in the comoving frame. We can
make a Lorentz transformation to get the energy–momentum tensor in a reference frame which
is in free fall in the gravitational field at the point of the fluid element:

T μν = (ρ+P/c2)UμUν −Pημν , (A1.45)

where Uμ is the four-velocity of the fluid element in the free-fall reference frame. Thus, using
the principle of equivalence, the energy–momentum tensor in a general coordinate system is

T μν = (ρ+P/c2)UμUν −Pgμν , (A1.46)

where Uμ = cdxμ/ds.
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A1.5 Newtonian Limit

One interesting question is what form the space-time metric takes in the Newtonian limit of
gravity. Such a metric tells us how Newtonian gravity (the gravitational potential) is interpreted
in terms of geometric quantities, thereby providing a hint how to construct the field equation in
GR by generalizing the Newtonian field equation (Poisson’s equation). To start with, consider a
reference frame O′ which is in free fall in a Newtonian gravitational potential Φ which is zero at
some large distance. In this frame, the metric has the Minkowski form:

ds2 = c2dt ′2 −dx′2. (A1.47)

Now consider another reference frame O relative to which O′ has the free-fall velocity given by
v2 = −2Φ (assumed to be in the x-direction). According to Lorentz transformation, we have

dt ′ = (1+2Φ/c2)1/2 dt; dx′ = (1−2Φ/c2)1/2 dx. (A1.48)

Thus, the metric in terms of the coordinates in the O system can be written as

ds2 = c2 (1+2Φ/c2) dt2 − (1−2Φ/c2)(dx2 +dy2 +dz2) . (A1.49)

This is the metric in the Newtonian limit.

A1.6 Einstein’s Field Equation

In the Newtonian limit, the 0–0 component of the energy–momentum tensor has the form T00 =
ρc2, and g00 = (1+2Φ/c2). The Poisson equation for gravity therefore takes the form

∇2g00 = 8πGT00/c4. (A1.50)

This is a relation between the energy–momentum tensor and the derivatives of the metric. In
general, the field equation must be a covariant extension of the above relation. We therefore
expect the right-hand side of the above equation to be replaced by 8πGTμν/c4, and the left-hand
side to be replaced by a 4× 4 tensor constructed from the metric and its derivatives. Einstein
proposed a tensor (the Einstein tensor) of the form

Gμν = Rμν − 1
2

gμνR, (A1.51)

and so the Einstein field equation takes the form

Gμν =
8πG
c4 Tμν . (A1.52)

Using that gμνgμν = 4, we see that the trace of the field equation is R = −8πGT/c4, where
T = Tμ μ . The field equation can then be written in the form

Rμν =
8πG
c4

(
Tμν − 1

2
gμνT

)
. (A1.53)

It can be shown that, in the Newtonian limit (A1.49), this equation reduces to the Poisson
equation.

Einstein also realized that he could add to Gμν a term −Λgμν and write the field equation as

Rμν − 1
2

gμνR−Λgμν =
8πG
c4 Tμν , (A1.54)

where Λ is a constant called the cosmological constant. Using the expression of Tμν for an ideal
fluid [see Eq. (A1.46)], we see that the Λ term can be included in the energy–momentum tensor
as an ideal fluid with ρ = −P/c2 = c2Λ/8πG.


