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Evaluate j i dx. The integrand tends to infinity when x approaches zero; thus we must

1.

Example 5 »
write the given integral as the sum
1 0 1
f X 3::M:f x~3 dx#f 3 dx (say, =h+ 1)
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The integral /; is divergent, because
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Thus, we can conclude immediately, without having to evaluate {5, that the given integral
is divergent,
EXERCISE 14.4

Check the definite integrals given in Exercises 14.3-1 and 14.3-2 to determine whether
any of them is improper. if improper, indicate which variety of improper integral each
one is.

. Which of the following intearals are improper, and why?
X 0
@ f o7 dt (d) f o di
0 -
3 S dx
4 d T
(b) fz x* dx (e) ﬂ 3
1 , 4
© [ 23 dx () f 6dx
Jo -3
. Evaluate all the improper integrals in Prob, 2.

. Evaluate the integral /, of Example 5, and show that it is also divergent,
. {a) Graph the function y = ce™t for nonnegative t, {c >~ 0}, and shade the area under

the curve,

(b} Write a mathematical expression for this area, and determine whether it is a finite
area.

14.5 Some Economic Applications of Integrals

Integrals are used in economic analysis in various ways. We shall iilustrare a few simple
applications in the present section and then show the application to the Domar growih
model in Sec. 14.6.

From a Marginal Function to a Total Function

Given a total function (e.g., a total-cost function), the process ol differentiation can yield
the marginal function (e.g., the marginal-cost function). Because the process of integration
is the opposite of differentiation, it should enable us, conversely, to infer the total function
from a given marginal function.
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If the marginal cost (MC) of a firm is the following function of output, C'(Q) = 2629, and
if the fixed cost is Cr =90, find the total-cost function C(Q). By integrating C'(Q) with
respect to Q, we find that

1
fze"-m dQ =256 +c=10820 4 ¢ (14.9)

This result may be taken as the desired C(Q) function except that, in view of the arbitrary
constant ¢, the answer appears indeterminate. Fortunately, the information that C; = 90
can be used as an initial condition to definitize the constant. When @ =0, total cost C
will consist solely of Cr. Setting Q =0 in the result of (14.9), therefore, we should get a
value of 90; that is, 10e® + ¢ = 90. But this woulid imply that c = 90 — 10 = 80. Hence, the
total-cost function is

Q) =102 1+ 80

Note that, unlike the case of (14.2), where the arbitrary constant ¢ has the same value as
the initial value of the variable H{0), in the present example we have ¢ =80 but
C(0) = C; =90, so that the two take different values. in general, it should not be assumed
that the arbitrary constant ¢ will always be equal to the initial value of the total function.

If the marginal propensity to save (MPS) is the following function of income, $'(¥)=
0.3 - 0.1Y~12, and if the aggregate savings § is nil when income Y is 871, find the saving
function S(¥}). As the MPS is the derivative of the § function, the prablem now calls for the
integration of $'(Y):

500 = 0301112 dr =037 02774

The specific value of the constant ¢ can be found from the fact that § =0 when ¥ = 81.
Even though, strictly speaking, this is not an initiaf condition (not relating to Y = 0), substi-
tution of this information into the preceding integral will nevertheless serve to definitize ¢,
Since

0=0381)-02(9+¢c = c=-225
the desired saving function is
S(Y)=0.3y —02vY'"2 225

The technique illustrated in Examples 1 and 2 can be extended directly 1o other prob-
lems involving the search for total functions (such as total revenue, total consumption)
from given marginal functions. It may also be reiterated that in problems of this type the va-
lidity of the answer (an integral) can always be checked by differentiation.

Investment and Capital Formation

Capital formation is the process of adding to a given stock of capital. Regarding this
process as continuous over time, we may cxpress capital stock as a function of time, K (1),
and use the derivative ¢ K /¢/7 to denole the raic of capital formation.” But the rate of capital

" As a matter of notation, the derivative of a variable with respect to time often is also dencted by a
dat placed over the variable, such as K = dK/dt. In dynamic analysis, where derivatives with respect
to time occur in abundance, this more concise symbol can contribute substantially to notational
simplicity. However, a dot, being such a tiny mark, is easily lost sight of or misplaced; thus, great care
is required in using this symbal.
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Example 3

formation at time £ is identical with the rate of et imvestment flow al timg ¢, denoted by
(). Thus, capital stock K and net investment / are related by the following two equations:

dK
—d-;EffI‘]
. dK
and K(I):jf(l)df:fg;df=]dK

The first of the preceding equations 1s an identity; it shows the synonymity between net
investment and the increment of capital. Since /() is the derivative of £(f), it stands to
reason that K'(z) is the integral or antiderivative of 7(¢), as shown in the second equation.
The transformation of the integrand in the latter equation is also easy to comprehend: The
switch from f to d K /dt is by definition, and the next transformation 1s by cancellation of
two identical differcntials, i.c., by the substitution rule.

Sometimes the concept of gross imvestment is used together with that of net investment
in a madel. Denoting gross investment by 7, and net investment by /, we can relate them to
each other by the equation.

I=1+3K

where § represents the rate of depreciation of capital and 8K, the rate of replacement
investment.

Suppose that the net investment flow is described by the equation {(£) = 3t'/2 and that the
initial capital stock, at time t = 0, is K (0). What is the time path of capital K7 By integrating
1ty with respect to f, we obtain

K= ] () dt = f 38 gt =287 1 ¢

Next, letting t = 0 in the leftmost and rightmast expressions, we find K (Q) = ¢. Therefore,
the time path of Kis

K(t) = 2832 4 K (0) (14.10)
Observe the basic similarity between the results in (14.10) and in (14.2°).

The concept of definitc integral enters into the picture when one desires to find the
amount of capital formation during some interval of time (rather than the time path of K).
Since (1) di = K(t), we may write the definitc integral

b b
f () dr = K(r]] = K(b) — K(a}
a a
to indicate the total capital accumulation during the time intetval [, 5]. Of course, this also
represents an area under the 1(#) curve. It should be noted, however, that in the graph of the
K{r) function, this definite integral would appear instead as a vertical distance—more
specifically, as the difference between the two vertical distances K(h) and K(a). (cf. Exer-
cise 14,3-4.)

To appreciate this distinction between X(¢) and /(¢) more fully, let us cmphasize that
capital X is a stock concept, whereas investment / is a flow coneept. Accordingly, while
K (1) tells us the amount of K cxisting at each point of time, /(¢) gives us the information
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about the rate of (net) investment per year (or per period of time) which is prevailing at
each point of time. Thus, in order to calculate the amount of nct investment undertaken
(capital accumulation), we must first specify the length of the interval involved. This fact
can also be seen when we rewrite the identity K /dt = I{t) as d K = 1{t) dt, which states
that /K, the increment in X, is based not only on /{¢), the ratc of flow, but also on 4, the
time that elapsed. It 1s this need to specify the time interval in the expression J(#) Jf that
brings the definite integral into the picture, and gives rise to the area representation under
the /(f)—as against the K{f) curve.

if net investment is a constant flow at /() = 1,000 (doilars per year), what will be the total
net investrnent (capital formation) during a year, from t = 0 to t = 17 Obviously, the answer
is $1,000; this can be obtained formally as follows:
1 1 1
f 1f) dt = ] 1,000t = 1,000:] — 1,000

0 0 0
You can verify that the same answer will emerge if, instead, the year involved 7s from t = 1
tot=2.

f 1{t) = 3t"/% (thousands of dollars per year)—a noncenstant flow—what will be the capi-
tal formation during the time interval [1, 4], that is, during the second, third, and fourth
years? The answer lies in the definite integral

4 » 4
f 34142 dt:Zt“] =16-2=14
1 1

On the basis of the preceding examples, we may express the amount of capital accumu-
lation during the time interval [0, t], for any investment rate {{t), by the definite integral
i

fr;‘(f) dt = K(I)] = K(t) - K{0)
0

O

Figure 14.5 illustrates the case of the time interval [0, to]. Viewed differently, the preceding
equation yields the following expression for the time path K (1):

.t
k(D) = K(0)+]U (0) dt

The amount of K at any time ¢ is the initial capital plus the total capital accumulation that
has occurred since.

{

{=1{n

f n“j(:) dt = Kigp) ~ K@)

o ——

2
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Present Value of a Cash Flow
Qur eatlier discussion of discounting and present value, limited to the casc of a single
future value ¥, led us to the discounting formulas

A=V +i) " [discrere case]

and A=Ve™ [continuous case]

Now suppose that we have a stream or flow of future values—a serics of revenues receiv-
able at various times or of cost outlays payable at various times, How do we compute the
present value of the entire cash stream, or cash fow?

In the discrete case, if we assume three future revenue figures R, (¢ = 1, 2, 3) available
at the end of the tth year and also assume an interest rate of / per annum, the present values
of R, will be, respectively,

RO+ Ri+i)? B+

It follows that the total present value is the sum

3

N=Y R(l+)~ (14.11)

1=1

(T is the uppercase Greek letter p1, here signifying present.) This differs from the single-
value formula only in the replacement of ¥ by R, and in the insertion of the Z sign.

The idea of the sum readily catries over to the casc of a continuous cash flow, but in the
latter context the T symbol must give way, of course, to the definite integral sign. Consider
4 continuous revenue stream at the rate of R(¢) dollars per year. This means that at + = ¢
the rate of flow is R(#) dollars per year, but at another point of time ¢ = ¢; the rate will
be R(1:) dollars per year—with ¢ taken as a continuous variable. At any pomt of time,
the amount of revenue during the interval [£, # + dt] can be written as R(7) dt [cf. the
previous discussion of dK = I{f) d]. When continuously discounted at the rate of  per
year, its present value should be R{r)e "' dt. If we let our problem be that of finding the
total present value of a 3-year stream, our answer is to be found in the follewing definite
integral:

3
n:fnmf%n (14.11")
0

This expression, the continuous version of the sum in (14.11), differs from the single-value

formula only in the replacement of ¥ by R(r} and in the appending of the definite integral

sign.’

"It may be noted that, whereas the upper summation index and the upper limit of integration are
identical at 3, the lower summation index 1 differs from the lower limit of integration 0. This is
because the first revenue in the discrete stream, by assumption, will not be forthcoming until ¢t = 1
tend of first year), but the revenue flow in the continuous case is assurned to commence immediately
after t = 0.
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What is the present value of a continuous revenue flow lasting for y years at the constant
rate of D dollars per year and discounted at the rate of r per year? According to {14.11%), we

have
y y _1 ¥
l'[:f pe! dt:Df e‘”dt:D[—-e‘”]
0 0 r )

_ =y _
Ly ”} - TD(e-W—n: ?(1 _ey (1412)

r 1-0
Thus, T depends on D, r and y. If & = §3,000, r = 0.06, and y = 2, for instance, we have
3,000
- 0.06

The value of T naturally is always positive; this follows from the positivity of D and r, as well
as (1 —e™"¥). (The number e raised to any negative power will always give a positive frac-
tional value, as can be seen from the second quadrant of Fig. 10.3a.)

m (1 — e %12y = 50,000(1 — 0.8869) = $5,655  [approximately]

In the wine-storage problem of Sec. 10.6, we assumed zero storage cost. That simplifying
assumption was necessitated by our ignorance of a way to compute the present value of a
cost flow. With this ignorance behind us, we are now ready to permil the wine dealer to
incur storage costs.

Let the purchase cost of the case of wine be an amount , incurred at the present time.
Its (future) sale value, which varies with time, may be generally denoted as V{(£)—its present
value being V{t)e . Whereas the sale value represents a single future value (there can be
only one sale transaction on this case of wine), the storage cost is a stream. Assuming this
cost to be a constant stream at the rate of s dollars per year, the total present value of the
storage cost incurred in a total of f years will amount to

t
f se” T dt = §(1 —e Yy (. (34.12))
0
Thus the net present value—what the dealer would seek to maximize—can be expressed as
ri $ —rt 5 —rl 5
- — 21—y -C= Z -——-
N(D) = V{de - (1 - - C [V(t)—l—r}e - ¢

which is an objective function in a single choice variable ¢,
To maximize N({), the value of t must be chosen such that N°(¢) = Q. This first derivative is

N =V (e ™ —r [V(t) + ;] e’ [product rule]
=V —rv(t)—sle "
and it will be zero if and only if
Vii=rV{t)+s

Thus, this last equation may be taken as the necessary optimization condition for the choice
of the time of sale t*.

The economic interpretation of this condition appeals easily to intuitive reasoning: V'(t)
represents the rate of change of the sale value, or the increment in V, if sale is postponed for
a year, while the two terms on the right indicate, respectively, the increments in the interest
cost and the storage cost entailed by such a postponement of sale (revenue and cost are
both reckoned at time £*). So, the idea of the equating of the twao sides is to us just some “old
wine in a new bottle,” for it is nothing but the same MC = MR condition in a different guise!
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Example 8

Present Value of a Perpetual Flow

If a cash flow were to persist forcver—a situation exemplified by the intercst from a per-
petual bond or the revenue from an indestructible capital asset such as land -the present
value of the flow would be

(2%
1 :f Ri{e™" di
1

which is an improper integral.

Find the present value of a perpetual income stream flowing at the uniform rate of D dol-
lars per year, if the continuous rate of discount is r. Since, in evaluating an improper inte-
gral, we simply take the limit of a proper integral, the result in (14.12) can still be of help.
Specitically, we can wnte

= y
M= [ De " dt = lim [ De~ dt = lim 2{1 —e M= 0
Ja y==.to o f F
Note that the y parameter (number of years) has disappeared from the final answer. This
is as it should be, for here we are dealing with a perpetual flow. You may also observe that
our result (present value = rate of revenue flow -+ rate of discount) corresponds precisely to
the familiar formula for the so-called capitalization of an asset with a perpetual yield.

EXERCISE 14.5

1. Given the following marginal-revenue functions:
(@) R(Q) = 28Q~ €™ () R(Q) =100+ Q)
find in each case the total-revenue function R(Q). What initial condition can you
introduce to definitize the constant of integration?
2. {g) Given the marginal propensity to import M'(Y) = 0.1 and the information that
M = 20 when Y = 0, find the import function M(Y).
(b) Given the marginal propensity to consume C'(Y)=0.8+0.1Y""2 and the
information that C = ¥ when Y = 100, find the consumption function C(Y).
3. Assume that the rate of investment is described by the function /() = 12t"'? and that
K(0y = 25:
{@) Find the time path of capital stock K.
{b) Find the amount of capital accurnulation during the time intervals [0, 1] and [1, 3],
respectively.
4, Given a contindous income stream at the constant rate of 31,000 per year:

(g} What will be the present value TT if the income stream lasts for 2 years and the
continuous discount rate is 0.05 per year?

(b) What wili be the present value IT if the income stream terminates after exactly
3 years and the discount rate is 0.047

5. What is the present value of a perpetual cash flow of:
(0} $1,450 per year, discounted at r = 5%?7
(0 $2,460 per year, discounted at 7 = §%?
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14.6 Domar Growth Model

In the population-growth problem of (14.1) and (14.2) and the capital-formation problem
of' (14.10), thc common objective is to delineate a time path on the basis of some given pat-
tern of change of a variable. In the classic growth model of Professor Domar." on the other
hand, the idea is to stipulate the type of time path required to prevail if a certain equilibrium
condition of the economy is to be satisfied.

The Framework
The basic premises of the Domar model are as follows:

1. Any change in the rate of investment flow per year J(7) will produce a dual effect: it will
affect the aggregate demand as well as the productive capacity of the econony.

2. The demand cffect of a change in /(£) operates through the multiplier process, assumed
to work instantancously. Thus an increase m /() will raise the rate of income flow per
year Y(¢) by a multiple of the increment in /(). The multiplier is & = 1 /s, where s
stands for the given (constant) marginal propensity to save. On the assumption that 7{t)
15 the only {parametric) expenditure flow that influences the ratc of income flow, we can
then state that

dY dl
dt dt s (14.13)

3, The capacity effect of mvestment is to be measured by the change in the rate of posen-
tiel output the economy is capable of producing. Assuming a constant capacity-capital
ratio, we can write

K

K

P (= a constant)

where « (the Greek letler kappa) stands for capacity or potential output flow per year,
and p (the Greek letter tho) denotes the given capacity-capital ratio. This implies, of
course, that with a capital stock X (1) the economy is potentially capable of producing
an annual product, or income, amounting to ¥ = pK dollars. Note that, from « = pK
(the production function), it follows that dic = p dK, and

dic dK
e =pf (14.14)

In Domar’s model, equilibrium is defined to be a situation in which productive capacity
is fully uiilized. To have ¢quilibrium is, therefore, to require the aggregate demand to be
exactly equal to the potential output producible in a year; that1s, ¥ = «, [f we start initially
from an equilibrium situation, however, the requirement will reduce to the balancing of the
respective changes in capacity and in aggregate demand; that is,

d}’_a'f(

P A5
dt dt (14.15)

" Evsey D. Domar, “Capital Expansion, Rate of Growth, and Employment,” Feonometrica, April 1946,
pp. 137-147; reprinted in Domar, £ssays in the Theory of Economic Growth, Oxford University Press,
Fair Lawn, N.|., 1957, pp. 70-82.
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What kind of time path of investment /(#) can satisty this equilibrium condition at all
times?

Finding the Solution
To answer this question, we first substitute (14.13) and (14.14} into the equilibrium condi-
tion (14.15). The result is the following differcntial equation:

dar 1 1 di
— - =pl or - — =
I dt

5 1416
dt s pe ( )

Since (14.16) specifies a definite pattern of change for 7, we should be able to find the equi-
libriym (or required) investment path from it.

In this simple casc, the solution is obtainable by dircetly integrating both sides of the
second equation in {14.16) with respect to 7. The fact that the two sides arc identical in equi-
librium assures the cquality of their intcgrals. Thus,

By the substitution rule and the log rule, the left side gives us
di
T=1n|1’|+c| (f#0)
whereas the right side yields (s being a constant)

[,os dt = pst+ s

Equating the two results and combining the two constants, we have
In|f|=pst+¢ (14.17)

To obtain | /| from In |7}, we perform an operation known as “raking the antilog of In | 7],
which utilizes the fact that ™ = x. Thus, leiting cach side of {14.17) become the exponent
of the constant e, we obtain

e|n|}'| — plost lc)
or |T| = e™'e" = Ae”"  where A = ¢

If we take investment to be positive, then /| = /, so that the preceding result becomes
1(t) = Ae™! where A is arbitrary. To get rid of this arbitrary constant, we set { = 0 in the
equation [(t) = A toget 1{0) = 4 ¢ = 4. This definitizcs the constant A, and enables
us to express the solution— the required investment path—as

(1) = T{0)e™ (14.18)

where 1(0) denotes the initial rate of investment.”
This result has a disquieting economic meaning, In order to maintain the balance
between capacity and demand over time, the rate of investment flow must grow preciscly

t The solution {14.18) will remain valid even if we let investment be negative in the result || = Aerl,
See Exercise 14.6-3.
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at the exponential rate of ps, along a path such as illustrated i Fig. 14,6, Obvicusly, the
larger the capacily-capital ratio or the marginal propensity (o save, the larger the required
rate of growth will be. But at any rate, once the values of p and s are known, the required
growth path of investment becomes very rigidly set.

The Razor’s Edge

[t now becomes relevant to ask what will happen if the actual rate of growth of investment—
call that rate r—differs from the required ratc ps.
Domar’s approach is to define a coefficient of utilization

Y
U = lim ﬁ

[ = 1 means full utilization of capacily]
=5 j{(j)

and show that ¥ = »/ps, so that u z I as# % ps. In other words, if there 13 a discrepancy
between the actual and required rates (1 # ps), we will find in the end {as ¢ — oc) cither
a shortage of capacity (¢ > 1) or a surplus of capacity (u < 1), depending on whether r is
grcater or less than ps.

We can show, however, that the conclusion about capacity shortage and surplus really
applics at any time £, not only as # — 20. For a given growth rate » implies that

. di
O =1{0e"  and E=m'(0)e“’
[/
Therefore, by (14.13) and (14.14), we have

day vdi oy
asa =
dic vt
== pl{t) = pl{0)e
The ratio between thesc two derivatives,
dYjdt r
dicjdt ~ ps

should tell us the relative magnitudes of the demand-creating effect and the capacity-
generating effect of investment at any time ¢, under the actual growth rate of r. If r (the
actual rate) exceeds ps (the required ratc), then dY/dt > dic/dt, and the demand cffect
will outstrip the capacity effect, causing a shortage of capacity. Conversely, if » < ps, there
will be a deficiency in aggregaie demand and, hence, a surplus of capacity.
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The curious thing about this conclusion is that if investment actually grows at a faster
rate than required (r = ps), the end result will be a shoriage rather than a surplus of
capacity. It is cqually curious that if the actual growth of investment lags behind the
required rate {r < py), we will encounter a capacity surplus rather than a shortage. Indeed,
because of such paradoxical results, if we now altow the entrepreneurs 1o adjust the actual
growth rate r (hitherto taken to be a constant) according to the prevailing capacity situation,
they will most certainly make the “wrong™ kind of adjustment. In the case of r > ps, for
instance, the emergent capacity shortage will motivate an even faster rate of investment.
But this would mean an increasc in r, instead of the reduction called for under the circum-
stances. Consequently, the discrepancy between the two rates of growth would be 1ntensi-
fied rather than reduced.

The upshot is that, given the parametric constants o and s, the only way to avoid both
shortage and surplus of productive capacity is to guide the investment flow ever so care-
fully along the equilibrium path with a growth rate »* = ps. And, as we have shown,
any deviation {rom such a “razor’s edge” time path will bring about a persisteat failure to
satisfy the norm of full utilization which Domar envisaged tn this model. This 15 perhaps
not too cheerful a prospect 1o contemplate. Fortunately, more flexible resulis become pos-
sible when certain assumptions of the Domar model are modificd, as we shall see from the
growth model of Professor Selow, to be discussed in Chap, 15.

EXERCISE 14.6

1. How many factors of production are explicitly considered in the Darmar model? What
does this fact imply with regard to the capital-labor ratio in production?

2. We learned in Sec. 10.2 that the constant rin the exponential function Ae'* represents
the rate of growth of the functicn. Apply this to (14.16), and deduce (14.18) without
going through integration.

3. Show that even if we let investment be negative in the equation |f| = Ae”', upon
definitizing the arbitrary constant A we will still end up with the solution (14.18).

4. Show that the result in (14.18) can be obtained alternatively by finding—and
equating—the definite integrals of both sides of (14.16),

1 di
Idt
with respect to the variable t, with fimits of integration t = 0 and t = {. Remember that
when we change the variable of integration from ¢ to /, the limits of integration will
change from t = 0 and t = t, respectively, to { = /(0} and } = I{{},

ps



