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Foreword

The area of modal testing is quite extensive anthaster it perfectly, it is necessary to
integrate knowledge from different fields: vibrationeasurements, signal processing, post-
processing, mathematical background, issues ofatity multi degree-of-freedom systems
with different models of damping, etc. This texedmot aim to discuss in detail all aspects of
modal testing, but only to familiarize studentshailis issue enough to be able to perform a
modal test independently and be aware of problé@isnhay occur during measurements and
data processing. Most of the readers will be sttedehApplied Mechanics specialization. My
main goal is to create awareness in their mindstaft a modal test is about, what it is used
for and when they should consider its implementatio their engineering practice. | have
noticed during the years of working with studetistttheir confidence of the results obtained
using finite element method is sometimes too higth that they often do not realize that even
the results obtained using very sophisticateddirlement programs can be far from reality -
usually due to the fact that when using these paogr they neglected or overly simplified
something. Therefore, verifying and updating thempaotational model with the use of
experimentally derived data is highly advisable amdsome branches (e.g. aircraft) even
mandatory.

The basic source for writing this text was the btdlodal Analysis — theory, practice and
application” written by prof. David J. Ewins frormperial College of Science, Technology
and Medicine in London, who can be regarded asdirlg figure in the modal analysis in
Europe. | hope he would appreciate that | left Wsrds unchanged wherever it was

appropriate.

The second relevant source | used were materiaigidad by Briel&Kjeer company -
articles, application notes, presentations andupst This company produces all the
equipment used for modal testing and also provadeschnical support to their customers by
publishing a lot of technical papers and organizegnical training.

Of course, | added my own experience and tried¢ate a text that would be useful and
well readable for students. | wish to all of yoattthe time spent by reading this text will not
be a loss but contribute to your effort to beconwmpetent and well educated mechanical

engineer.
author
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1. Introduction

Before speaking about the area of modal testimgf itis is worth to know something about
different approaches to vibration measurementsnfyoth methodical and practical points of
view, it is useful to distinguish the two experin@rapproaches dealing with vibrations:

1) Assessment of the nature and level of vibratiopoases signal analysis

2) Deriving theoretical models and presumptions anelirtievaluation -system
analysis

Two types of measurements correspond to theseppiaches:

ad 1) Vibration responses of the machine or the structurder investigation are
measured during operation conditions. Vibrationgd@stics deals with this
area.

ad 2) Structure or a machine part is put into vibratignniieans of known excitation
forces, often out of its working environment. Tiueocess is substantial for
modal tests. It is obvious that we are able torgete accurate and detailed

information about the measured system under cdati@onditions rather than
by simple response measurements.

This material deals with the latter approach thghdyt By performing a modal test, we are
able to determine modal parameters of the systhos having a base for solving many
problems caused by structural vibrations. Problets structural vibrations pose significant
risks and limitations for design of a wide ranger@chinery products. They could be a cause
of a structural integrity failure (for instance &keng of a turbine blade) or they could reduce

machinery performance. At least, excessive vibngtialways cause excessive noise and
discomfort during operation.

Modal test :
"Processes applied to the tested parts or strictath the aim

to get mathematical description of their dynamibdaour."”

1.1 Application of Modal Tests

There are several reasons for performing modas.téstre they are sorted by accuracy
requirements and by the degree of relationshipdoretical analysis:

a) ldentification of modal parameters (natural frequies, modal shapes and modal
damping respectively) without relationship to thetmal model. Doing this, we can

discover e.g. whether excessive vibrations duripgration are caused by resonance
and what the excited modal shape looks like.
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b) Identification of modal parameters to compare theeementally obtained data with
corresponding data obtained by FEM or other thexaemethods. The goal is to verify
the theoretical model before other calculationhsag responses to different loads are
carried out. For this we need:

- precise determination of natural frequencies

- identification of modal shapes with such precistbat their comparison
with computed modal shapes is possible - matchirgy dorresponding
modal shapes together

c) The same as b) plus correction of the theoreticadlehso that it better matches the
measured values. This is done by trial-and-erradhoteusually, e.g. by a slight change
in material parameters or inclusion of modal dargpmthe theoretical model.

d) Correlation of experimental and theoretical resulta/o sets of data are numerically
compared in order to precisely identify the causésdiscrepancy between the
calculated and measured properties. This requiras@ more accurate measurement
of modal shapes than when we only want to animaent(as it is in the previous
cases).

e) Using modal testing to obtain a mathematical maafe component that can be
included in a complex one. This approach is ofteadufor theoretical analysis of
complex structures. It requires accurate valuesatdiral frequencies, modal damping
and modal shapes. All modes must be included,nbtspossible to fit the model to a
few individual natural frequencies. Excluded modéect dynamic behaviour of the
entire structure in the observed frequency ranggs @pplication is more demanding
than all previous ones.

f) Creating a model that can be used to predict thmmamof structural modifications to
the original test structure. It is a smaller chatiga in the case of the substructures, so
here are a little lower accuracy requirements thaie previous case. Yet, in both of
these cases complications usually occur with noasmed rotational degrees of
freedom.

g) Using the model obtained through modal testingetieidnine the excitation forces. It is
possible to compare responses caused by excitbtimes with the mathematical
description of transfer functions of the structanel, on the base of this comparison, to
estimate the excitation forces.

Successful modal testing requires a combinatidhethree skills and knowledge:

- theoretical framework
- accurate measurement of vibration
- realistic and detailed data processing

In this introductory chapter, only the basis ofséh¢hree requirements are presented. They
will further be explained in details.

-12 -



1.2 Summary of Theory

The system under investigation can be described
by three different types of models. Each of them is ————
defined by system matrices.

e spatial model B fI;-t .
- [M[ ... mass matrix %:E—Z—.;DWD - ﬂ%:jﬂ;g

- [K] ... stiffness matrix

- [B] or [H] ... viscous damping or structural (hystgc) damping matrix
Matrices are of dimensionsXNl.
(N = number of degrees of freedom = number of agoatof motion)

* modal model | -
[ ¢ : 2”§ mrcr)]c?ede
- [A% ... spectral matrix, diagonal, 1 = mode
eigenvalues are on the diagonal ’ AT T NT .

- [®] ... modal matrix, columns are modal shapes
w=...Hzym=,.%

* response model

- [H(w)] ... FRF matrix (matrix of FRFs - frequency respe functions,
e.g. mobilities Y@) or IRFs - impulse | |5_'_'_‘1 Y31
response functions, symmetrical) it Y,

Performingtheoretical vibration analysis, we advance from a spatial rhtal@ response
model in the following steps:

1. establish equations of moties spatial model
2. free vibration analysis> modal model
3. analysis of forced vibration using harmonic exddat= response model

Performing experimental vibration analysis, we advance in opposite dicgctin the
following steps:

1. measurements of the appropriate set of FRF®sponse model
2. curve-fitting of the measured data modal model
3. further calculations= spatial model (it is not common to perform this step)

Frequency Response Function - FRF, which is thés bladsthe response model, can be
expressed as:

H (oo) _ output _ movement_ response
input force excitation

-13 -



There are three basic types of FRFs accordingetdyiie of response parameter, which can
be either displacement, velocity or acceleratisae Table 1.1.

One element of the receptance matixw) represents harmonic responsge
at pointj caused by a single harmonic fofgeacting at the different poirk

Precise definition of one element of frequency oesg function (for receptance matrix

[a(w)]):
X; oo,
ajk(w)_F_k_Z)\zr_wz (11)

r=1

where:
Ar - eigenvalue of thé'rmode (natural frequency + modal damping)
@ -the " element of the™ natural shapes' vecto®}, i.e. relative displacement

at the | point as vibrating with thé"rshape
N - number of modes

Note: With the experimental procedure, the numbieexiracted modes N is usually
smaller than the number of degrees of freedom (D@HRich is caused by limited frequency
range of measurements. An experimentally obtainedeains a so called incomplete model, in
contrast to a complete model obtained by computatie can theoretically obtain a number
of modes of vibration equal to a number of DOFa oomputational model.

The expression (1.1) is the basis of modal testgeflects a direct connection between
modal properties of the system and its responsectasistics. From a purely theoretical point
of view it provides an effective means to calculasponses, whereas from a practical point
of view it allows to determine modal propertiesnfronobility measurements.

If we apply the theoretical knowledge of the relaship between receptance functions and
modal parameters, it is possible to prove that"#ppropriate” set of measured receptances
must only contain one row or one column of the rikybmatrix [a(w)]. In practice, this

means that we either excite the structure at oma& pod measure responses at all points or
we measure the response at one point and excitstrilngure at all points. The first option
applies when a dynamic exciter is used, the seashen an impact hammer or other
contactless device is used.

dynamic exciter= one column of FRF matrix is measured

impact hammer excitatioe> one row of FRF matrix is measureg

1.3 Various Types of Frequency Response Functions

When a frequency response function is referred tithowt response parameter
specification, it is usually denoted as Whi( When a response parameter is specified,
individual FRFs have their own denotation (see @4dbl).

-14 -



Frequency response function

Response parameter Standard% Inverse F
r
displacemenk receptance dynamic stiffness
admittance

dynamic compliance
dynamic flexibility

o (o)
velocity V mobility mechanical
Y() impedance
acceleratiorA inertance apparent mass
accelerance
Alw)

Tab 1.1 Various Types of FRFs According to Response Parameter

Displacement as a function of time is in completation expressed as:

x(t) = Xe™* (1.2)
Expressions for velocity and acceleration can bdainlby simple derivative:

v(t) = x(t) = iwXe'™ (1.3)

a(t) = x(t) = —w’Xe™ (1.4)
FRF of type receptance with displacement as a nsgpparameter is defined:

o (w) :é (1.5)

And again, using derivatives we obtain anothersypeFRF:

Y (w) :%:iwézim(w) ... mobility (1.6)

M@:%

= —wa(w) .. inertance 1.7)

1.4 Summary of Measurement Methods

The following aspects demand special attentionroteoto ensure acquisition of high-
quality data:

a) mechanical aspects of supporting and correcthtiexcihe structure

b) correct transduction of the quantities to be meabur force input and motion
response

c) signal processing which is appropriate to the tfpide test used

-15 -



Various Ways of Supporting the Testpiece

Before a modal test, we have to consider variougswa supporting the measured
structure. Generally, we choose one of the follgwthree options of support corresponding to
the aim of the modal test and to the limitationsseal by operating conditions, respectively:

- free (unrestrained) - It is the simplest way how to support the temtpi and it is
preferably used each time we want to correlate exgatal model with a theoretical one.
It is usually implemented by suspending the testp@n very soft springs (rubber ropes or
foam pad).

- grounded (clamped)- It requires rigid clamping of the testpiece attain points. It is
more complicated, because ideal fixation is imgmesin real. Then, discrepancies
between an experimental and theoretical model ctanigely originate from unequal
boundary conditions. However, this support needshbéoused occasionally (e.g. for
determination modal parameters of turbine blades).

- in situ (under operational conditions) - It is used wheadal parameters under real
operational conditions are needed and no correlatith a theoretical model is required.

Excitation of the Structure

The way of how to excite vibrations of the measwst&dcture is again given mostly by the
aim of the modal test, precision requirements amdjuency range in which the modal
parameters are to be determined. There are bgdwallways of excitation:

- excitation by means of dynamic exciter
by harmonic signal
by random signal
by other types of signals (see chapter 4.2.1.1.3)

- impulse excitation
by means of impact hammer
step release (from deformed position)

Transducers

Transducers used for sensing force and responsédsafiect the measured structure as
little as possible and their effectiveness showdalequate to measurement frequency range
and to displacements under consideration. Nowagagsoelectric transducers of both force
and acceleration are used; response is mostly goickeéhe form of acceleration. Chapter
4.5.1.2 deals with transducers in more detail.
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1.5 Summary of Modal Analysis

An analysis of measured data is a process in wtliehmeasured frequency response
functions are analyzed in order to find a theoatimodel that most closely resembles the
dynamic behaviour of the structure under test. Tpast of the modal test is called
experimental modal analysis, although this termfien incorrectly used for the entire modal
test. The process of data analysis proceeds irstages:

1. Identifying the appropriate type of model (with a@sis or structural damping). This
choice is often in practice limited by software difer the modal analysis. Most of
software packages work with one type of dampinggined no choice to the user.

2. Determining appropriate parameters of the choseteindhis stage, also called modal
parameters extraction, is done by curve-fittingtled measured frequency response
functions to the theoretical expressions. Thisestagliscussed in detail in chapter 4.3.
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2. Dual-channel Analysis

In this chapter we will introduce some terms thatcern modal tests and that fall within
signal processing area. Whilst we use a singlesatlaamalysis for vibration diagnostics tasks
(even if there could be more channels processedltsineously), system analysis tasks work

on the principle of a dual-channel analysis. Theidbacheme of dual-channel FFT (Fast
Fourier Transform) analyzer is in Fig. 2.1.

During a simultaneous analysis of signals in astléao channels, the signals themselves
are not in the forefront any more, but rather propee of the physical system responsible for
the differences between those signals. The metlbadsbe theoretically expanded to any
number of channels, but basically two of them ace@ssed simultaneously each time. In the
following text, individual functions that occur gystem analysis will be described.

F 7!
. Fourier auto- ol N auto-
——» fime :> spectrum I:> spectrum V| correlation
channel A
a(t) A (f) Gaa (f) Raa(T)
1
:> frequency Z- impulse
__> response :> response
h(t
H2 () .o
F
__> cross N cross
—_> spectrum v> correlation
Gas () Ran(T)
:> coherent
output
coherence power
v () ¥ (f) Toss(f)
-1
channel B . Z, [ Fourier auto- SN auto-
4’| e |:> spectrum |:> spectrum V| correlation
b (1) B (f) Ggs () Rin(T)
N J \ J N J — _
Y ] Y '
recording, Fourier averaging processing
sampling transform

Fig. 21  Scheme of Dual-channel Analyzer

2.1 Autospectrum

Autospectrum is a function commonly explored bathsignal and system analysis. It is
computed from the instantaneous (Fourier) specasm

S (f)=EA() A" (f)]= 7 Elalt)* al- 1) = & [R..(1)] (2.1)

m N AlF)=|A®F) &> 2.2)

% S Re A (f)=|A(f) e (2.3)

N T Su ()= EJAQ) A" () ° | =E|AI° (7)) (2.4)
Al
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There is a new, fundamental function - cross spattrin the dual channel processing. It is
computed from instantaneous spectra of both chanAdll other functions in the scheme in
Fig. 2.1 are computed during post-processing frdra tross spectrum and the two
autospectra. Of course, all functions are the fanstof frequency.

2.2 Cross Spectrum

Based on complex instantaneous spectra A(f) angd B¢ cross spectrumys (from A to
B) is defined as:

S (f)=Ela"(F)B(f)]= FEf-1)*b{t)] = FIR,, () (2.5)
Im Af)=|A(F) e (2.6)

A B(f
Y . ! B(f) =|B(f ) &'*" (2.7)

Qs .

e — i(‘PB (f )“PA (f ))
,‘J@B_ o - (F)=E|A() 0B(f ) e | (2.8)
A*(HB(f)

2

Amplitude of the cross spectrumagSis the product of amplitudes, its phase is the
difference of both phases (from A to B). Cross sp@e Sa (from B to A) has the same
amplitude, but opposite phase. The phase of thes@pectrum is the phase of the system as
well.

Both autospectra and cross spectrum can be deditiegl as two-sided (notationS Ssg,
Sae, Sga) Or as one-sided (notationaf3y Gee, Gas, Gsa). One-sided spectrum is obtained
from the two-sided one as:

A
Gag(f) 0 forf<O0
forf=0 (2.9)

Sps(f) Gae(f) =1 Sas(f)
/ AB(f)  forf>0

f

The cross spectrum itself has little importance,itig used to compute other functions. Its
amplitude |Gg| indicates the extent to which the two signalsredate as the function of
frequency, phase angléGag indicates the phase shift between the two siggmthe function
of frequency. The advantage of the cross spectsuimat influence of noise can be reduced by
averaging. That is because the phase angle ofdise spectrum takes random values so that
the sum of those several random spectra tendsreo(gee Fig. 2.2). It can be seen that the
measured autospectrum is a sum of the true autivapeand autospectrum of noise, whilst
the measured cross spectrum is equal to the toss spectrum.
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true input true output
u(f) H(f) V()
M(f) =2 — A() N () @ B()
noise at input measured input noise at output measured output

channel A autospectrum:

S = Elu+m) cfu+ )= ellu )+ el D+ el e Elw w) =5, +5

channel B autospectrum:

S =V +N) v+ N)|= v )]+ D]+ R el )=, +s,

Cross spectrum:

Sw =El(U+ M) v+ )| = Ellu” v ] [P0+ RV )]+ W) = s,

ImA su'™, - 0

l/*{J Re

Fig. 2.2  Reduction of Noise at the Cross Spectrum by Averaging

2.3 Coherence

Coherence function indicates the degree of linetationship between two signals as a
function of frequency. It is defined by two autosfpa and a cross spectrum as:

206\ — |GAB(f)|2
A i)

At each frequency coherence can be taken as alatmre coefficient (squared) which
expresses the degree of linear relationship betwsernvariables, where the magnitudes of
autospectra correspond to variances of those tw@blas and the magnitude of cross
spectrum corresponds to covariance.

(2.10)

Coherence value varies from zero to one. Zero meanglationship between the inpiit
and outpuB, whilst one means a perfectly linear relationgbge Fig. 2.3).

0<vy?(f)<1 (2.11)
There are four possible relationships between idpamd output B in Fig. 2.3 :

a) perfectly linear relationship

b) sufficiently linear relationship with a slight stetcaused by noise
C) non-linear relationship

d) no relationship
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> A > A
Fig. 2.3 Analogy Between Coherence and Correlation Coefficient

Coherence function provides useful informationyamhen spectra £ (f), Ges(f) a Gas(f)
are estimates, i.e. spectra averaged from morerdgcd-or only one sample (without
averaging) applies:

G ()= AC P BEY =G0 ) Bwlf) 0 yi(r)=1

In the case of no averaging, coherence is alwayalegq 1. In the case of averaging and
samples Gg influenced by noise, deviations in the phase angkuse that the resulting
magnitude |Gs| is lower than it would be without presence ofseqjsee Fig. 2.4). Presence of
non-linearities has similar influence.

(2.12)

If signals are random or if they include some nomsemore reliable estimate could be
obtained with the help of averaging. Generally, tbgult may be loaded with two types of
errors:

- systematic (bias) errors

\
"\ random error
- random errors i

tematic error
real value

For linear systems, a systematic error doesn'traocthe cross spectrum if the analysis is
performed with sufficient resolution (see chaptér.2).

with noise without noise
5 Gagi < 2 |Gasi] =¥ <1 Y Gagi =2 |Grai] > V=1
Im Im
5G G Gasg
ABI AB4 GA33 Z GABi
Ghg Ghes G Ap2
Crel 2 Gral Gagy > G
Re Re
|Gae1| [Gaszl 1Gagsl [Gasdl |Gag1l [Gagzl 1Gass| |Gagal

Fig. 2.4

I nfluence of Noise to the Coherence
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The most important application of the coherencetion is verification of other functions
and determination whether they are affected byenoisoy the presence of nonlinearities. Low
coherence does not automatically mean that theureragnt was invalid, but sometimes it is
a sign that a lot of averages should be perforraagkt a valid result. The reasons for reduced
coherence may be:

- difficult measurements:
noise in measured output signal
noise in measured input signal
other inputs not correlated with measured inputalig
system nonlinearities

- bad measurements:
leakage
time varying systems
DOF jitter (while impact excitation, when we do ot exactly the same position
in all of the hits)

Coherence is also used to obtain some of the deriuactions that have various
applications. One of these functiongCisherent Output Power :
COP= y? [G,(f) (2.13)
COP gives a measure of what part of the measurgnipautospectrum, g (f), is fully
coherent with a particular input signal represeigdutospectrum £ (f).

COP can be used when low coherence is caused by imothe measured output signal. It
has no sense when there is noise in the input Isagn&hen there are nonlinearities in the
system.

Another function derived from the coherence funti®Signal-to-Noise Ratio
2

SIN=—Y_

1-y

Here, noise in the measured output signal is censitlas the only factor affecting the

coherence. Then, coherent output (proportiongf)tgives the measure of signal contained in

the output and the non-coherent output (proportitma-?) gives the measure of noise in the
output.

(2.14)

2.4 System descriptors

When the signals A and B represent input and outpube physical system, frequency
response function H(f) in the frequency domain mmglulse response functiont(n the time
domain are used to describe the relationship betwbese two signals (see Fig. 2.5).
Frequency response function and impulse respomszidn are so-called system descriptors.
They are independent of the signals involved.
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excitation M response b(t)
A
testpiece

" HO)

time \M/\
' frequency
a(t) b(t)
— Mo A B()
— H(f) —>
Convolution: Multiplication:
b(t) = [ h(x) Bt -ttt = h(t)* alt) B(f) = H(f ) iA(f)
Fig. 2.5 System Descriptors

2.4.1 Frequency Response Function (FRF)

The main reason for using FRFs is the simplicityhwithich the response of the real
system can be described. A detailed derivationRiF Bf a single degree of freedom system
(SDOF, see Fig. 2.6) will be carried out in cha@et. Here, we will mention only the fact
that for an ideal physical system, the propertiesviosich could be described by system of
linear differential 2® order equations, using Laplace transform leadsotoversion of these
differential equations to algebraic equations of ttaplace variables. Solution of these
equations can be expressed in the form of trafisfetionsH;(s) that represent the ratio of
the response in the pointo the input in the point The typical transfer function of the
degree-of-freedom system (Multi-Degree-of-Freedgsatesn - MDOF) can be expressed as:

nl R, R:
Hy(g) =Y —2+—2 (2.15)
k=1 STP STPy
where:
P« ... poles - global property for all the transfendtions of a system
Rik ... residues - specific for each of the transfercfions

Each member in the sum represents the responsegh siegree of freedom system with
the pole

Pk = Ok +1Qx (2.16)

The real part represents damping and the imaginary g@presents natural angular
frequency of the damped vibration of #{&mode.
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Ideal physical system: l F(t)

- massm is a point mass m
- movement only in one direction (X)

- dampetb and spring are massless K %Ej b
- damperb and spring are linear

- m, k ab constant in time

Fig. 2.6 |deal SDOF System

l x(t), v(1), a(t)

4

A transfer function is three-dimensional; for an@Dsystem it is shown in Fig. 2.7. it
is put fors (i.e. transfer function is evaluated along thegmary axis), frequency response
functionH; (iw) is obtained, that is in fact a slice of the trangtinction along the imaginary
axis. The same as with the transfer function, FR¥® @&ould be treated as a sum of
components, each of which corresponds to the regpoinan SDOF system. Global properties
o« aQy could be basically obtained from any of the meagdunctionsH;;, whereas residues
Riix define the eigenvectdp, and are specific for each of thig functions.

real part [
magnitude
Re (Hs), : |(H(s))]

Al

|
imaginary part
Im (H(s))

Fig. 2.7 Transfer Function

FRF for a single degree of freedom system from Ei§.is shown in Fig. 2.8. Various
forms of displaying FRF are discussed in detadhapters 3.1.2.2 and 3.1.3.1.

An SDOF system (or one mode of MDOF system) isrilesd by means of 3 parameters:

- undamped natural frequency Q, = 1/£ (2.17)
m
- damping ratio 4 :L :i (2.18)
2Vkm  Q, '
- residuum R :_i (2.19)
2imw
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IH(iwy

Fig. 2.8 FRF of Sngle Degree-of-Freedom System

2.4.2 Impulse Response Function - IRF

An impulse response of a system is an output sighah the Dirac impulse (unit impulse,
delta function) is applied at the input. It is arwverse Fourier transform of the frequency
response function, and this is the procedure usedltulated it in an FFT analyzer:

h(t) =.F ™ {H(} (2.20)

An impulse response of an SDOF system is one-sldatped sinusoid (see Fig. 2.9) given
by the formula:

h(t) = 20R| @™ Bin(Qt) (2.21)

Just like the FRF, also IRF of an MDOF system s ofn IRFs ofn SDOF systems.
Summing all then modes, more general formula is obtained:

h; (1) = anz Ry, | & Bin(Q,t) (2.22)

The average decay constant of this summarized semasponse can be used to estimate
average damping properties of the system.

h(t) PRE
2[R, /
L
"""
P
Q
Fig. 2.9 IRF of Sngle Degree-of-Freedom System
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If the magnitude of IRF is displayed in logarithnsicale, the envelope of the function is a

line, and its slope indicates damping of the syst&ome out of the definition of logarithmic
decremenu:

_o X))
u=1In (1) 5T (2.23)

Magnitude decreasestimes in the time (1 is so-called systems's time constant):
In e =0T
1 =31
0=1h
Written in dB: 20loge =8.7dB

If there is logarithmic scale for the magnitudelRF on the vertical axis, timg, during
which magnitude drops by 8.7 dB can be read outdaedy constard can be calculated (see
Fig. 2.10). This procedure is the same for botimeding the decay constant of the SDOF
system and estimating the average decay constéme &IDOF system.

Ih(©)] [dB]
20RK

8,7 dB

Fig. 2.10 Estimating Damping from Impul se Response Function

2.5 Effect of Noise on the FRF

A frequency response function could be also defaeed slope of the line which, for linear
systems, defines output as a function of inputthé system is not linear, its linear
approximation is obtained using Fourier transforimne influence of random noise is
eliminated by linear approximation as well (see Rid1).

A frequency response function is defined as the @t output to input. Three alternative

estimates are at disposal using a dual channeyzaralThey are defined using autospectra
and cross spectrum:

Hl(f)= Gre (f)

&) (2.24)
H,(f)= gBng (2.25)
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B8 H f H,(f 2.26
1/ Ganlt) G %G (2.26)
Coherence function could be defined as:
G (f)
yz(f): | AB( X — Hl(f) (227)
G () Beo(f)  H.(F)
common state - system with noise nonlinear system
=0 . o H(f) - B0 ol
N4 the best linear ey
LV R approximation * H(f) T
i .,-' the best linear
o A e approximation
|AC)] |AC)]
Fig. 2.11 Linearization

Which of these three estimates is better to userdipon whether there is noise on the
input or output. When FRF is measured using imacitation, the input signal is clean,
without noise, whilst the output signal is modifibg system response and deteriorated by
noise, particularly in antiresonances. On the eoptrwhen FRF is measured using dynamic
exciter, the input signal is deteriorated by narséhe vicinity of resonances, particularly for
slightly damped structures. The structure behawesaashort circuit in the vicinity of
resonances and the input power spectrum has lavesaven if the signal entering the exciter
is white noise. The output signal is relativelyacielf there is a need for having as accurate
values of FRF magnitudes as possible, the besti@olis to read magnitudes of resonant

peaks from Hfunction and the rest from;Hunction.
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Fig. 2.12 Influence of Noise at the Output



The influence of noise at the output is shown itadiéen Fig. 2.12, the influence of noise at
the input in Fig. 2.13 and the influence of noiséath input and output, which is a common
case, is shown in Fig. 2.14.

u (t) h( T) b (t)

H(f) f
m(t)gz; a(t) H(f) = %

Gam =Gyy *Gyum

~——

Gae =Guy H1=GAB = Cue =HEG !
GAA GUU +GMM 1+GMM /GUU
Gga =Ggy szgBB =gBB =H
BA BU
Gos =Cos =g = =
GAA GUU +GMM 1+GMM /GUU
2 Hl — 1 2 _ — 2 _ —
y o =—= Yy =0proG,, =G y =1proG,, =0
H2 1+GMM
GUU
Fig. 2.13 Influence of Noise at the Input
u(t) h(z) v(t)
H(f) iy = V()
m(t) a(t) n(t b(t) u(f)
En = CgMM €outr = gNN
uu \AY%
H. = GAB =HI[A 1 y2 :i = 1
' GAA 1+8IN H2 (1+€IN)[61+SOUT)
HZ:GBB:HD 1 H,<H<H,
GBA 1+80UT
> G 2 G1:+£
|H3| :GBB :|H| 1+80UT
AA IN

Fig. 2.14 Influence of Noise at Both Input and Output
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2.6 Digital Signal Processing

The main function of a spectral analyzer is to qenf Fourier transform of signals that are
coming to the input. It is useful to recall theatenship between two major versions of basic
Fourier transform, between time and frequency damlaiits simplest form it means that the
functionx(t), periodic in timeT, can be expressed as an infinite sequence:

_ay 2mt : thj
x(t)y=—"+ a [to +b, [$inf — 2.28
(1) > Z;,[ " { T j N [ T (2.28)
wherea, andb,, can be computed frox(t) using formulas (2.29) a (2.30):
2 T 2mt
a, —?Ejo (1) m:o{Tjdt (2.29)
_ 2 T (2Tt
b, == qo x(1) E‘sln(?jdt (2.30)

When x(t) is discretized and takes finite time, so it isyodefined on the set o
individual time moments (k= 1, N), we can write the finite Fourier series:

X, (= x(tk)):%+NZ/2(an Eo{thkj+bn E'Ein(ZT_[:tk D CK=1N (2.31)

n=1

Coefficientsa, andb,, are Fourier or spectral coefficients of the fumetk(t) and they are
often denoted in the form of amplitudeand phase:

c,(=X,)=ya +b? a @ = arctg{— &j (2.32)
a‘n
This is the form of Fourier transform concernegiactical applications of theory used in
modal test area. Due to discretization of the inpiginals (from force transducers and

accelerometers) it is called discrete Fourier fians (DFT).

The input signal is then digitized by an A/D corteerand recorded as a setMfdiscrete
values with regular spacing in the time interVatluring which the measurement was made.
Then, assuming that the sample is periodic in timdinite Fourier series (transform) is
calculated according to the relation (2.31), asestimate of the desired Fourier transform.
There is a basic relationship between the length@tsampld’, number of discrete valudg
sample (or capture) frequentyand range and resolution of the frequency spectitime
range of the spectrum is Raf, wherefax is Nyquist frequency and the resolution between
frequency lines i&f, where:

f max =f§ =%E’¥ (2.33)
Af :%S :% (2.34)

Since the transformation sizB)(is usually fixed for the given type of analyzand it is
usually (even though not always) the power of,512, 1024 etc., the frequency range and
spectral resolution is determined only by durabbeach sample.
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The fundamental equation, that is solved for deit@ation of spectral content is derived
from the equation (2.35):

x,] [05 cod2r/T) ... (a,
X,| |05 cod4m/T) a,
b

X, =105 cod6m/T) ...|Qb, or {x.}=[c]da,} (2.35)
: 05 : :

Xy| |05 cod2Nm/T)

To solve unknown spectral or Fourier coefficierastained in{a,} following equation is
used:

{a.}=[c"{x} (2.36)

An optimized algorithm of solving the equation @.3vas derived, that is calldéast
Fourier Transform (FFT). This algorithm requirell to be an integral power of 2. Usually,
values between 256 and 4096 are used.

Digital Fourier analysis has many features whid¢hnot properly treated, can lead to
erroneous results. Generally speaking, they rdsuit discretization and from the need to
reduce the length of time signal. In the followisgctions, specific features of aliasing,
leakage, weighting windows, frequency zoom andayiag will be discussed.

2.6.1 Aliasing

There is a problem called "aliasing”, which is asst®d with a digital spectral analysis and
results from discretisation of the originally contous time signal. If the sampling frequency
in relation to the frequency content of the sigedbo small, the presence of high frequencies
in the original signal could be misinterpreted e tiscretisation process. In fact, such high
frequencies will appear as low frequencies, ory thl be rather indistinguishable from
genuine low frequency components. Fig. 2.15 shdws digitising a low frequency signal
(above) produces exactly the same set of discr@ies as a result from the same process
applied to a higher frequency signal (below).

low-frequency signal

high-frequency signal

Fig. 2.15 Aliasing - High Frequency Manifested as Low Frequency

If the sampling frequency ig, then the signal of frequenéyand signal of frequencyf)
are indistinguishable after discretization, and tbauses distortion of the measured spectra
using DFT, although the calculation is performeduaately. In the description of the DFT, it

-30 -



was stated that the highest frequency that camdieded in the spectrum (transform)fi&,
and the spectrum should stop at this frequencgrdbess of the number of discrete values.

The signal, which has the actual frequency condesilayed in Fig. 2.16, appears in DFT
as a distorted form. Distortion towards the uppet ef the applicable frequency range can be
explained by the fact that the portion of the sigwiaich has frequency components abaoy2 f
will be reflected in the range @2. These high frequency components then put on the
appearance of being low frequency ones and creaitedestinguishable mixture with the real
low frequency components.

true spectrum of signal

fs

_/\\“!\\ indicated spectrum from DFT
>

________ D reflecting of high-frequency components
f42 fs

\*ZJ

Fig. 2.16 Alias Distortion of Spectrum by DFT

original spectrum

——X anti-aliasing filter
| —_

filtered spectrum

]
fs

Fig. 2.17 Anti-aliasing Filter Process

The solution to the problem is to use an anti-ai@éilter which subjects the original time
signal to a low-pass, sharp cut-off filter with laacacteristic of the form shown in Fig. 2.17.
This results in submitting a modified time histoéoythe analyzer. Because the filters used are
inevitably less than perfect and have a finite affitrate, it remains necessary to reject the
spectral measurements in a frequency range appngadhe Nyquist frequency,d®.
Typically, the range from 0.8/2 to /2 is rejected. It is for this reason that a 2048
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transform does not result in a complete 1024-lipecsum being given on the analyzer
display. Typically, only the first 800 lines willebshown because the higher ones are liable to
be contaminated by imperfect anti-aliasing.

It can be concluded that time signal should be stibdhto an anti-aliasing filter prior it
enters an A/D converter, and therefore these diliee an integral part of each analyzer.

2.6.2 Leakage

Leakage is a problem which is a direct consequehtee need to take only a finite length
of time history coupled with the assumption of pditity. The problem is best illustrated by
the two examples shown in Fig. 2.18, where two simal signals of slightly different
frequencies are subjected to the same analysiegso0On the left side, the signal is perfectly
periodic in the time window T, and the resultingesjpum is simply a single line at the
frequency of the sine wave. On the right side,géBodicity assumption is not satisfied and
there is a discontinuity at the end of the samiea result, the spectrum does not indicate the
single frequency which the original time signal gessed, and this frequency is not even
prevailing in the spectral lines. The energy haakéd" into a number of spectral lines close
to the true frequency and the spectrum is sprea eeveral lines. The two examples
represent the best case and the worst case. Théepras more serious for low frequency
signals.

Leakage is a serious problem in many applicatiowligital signal processing, including
FRF measurements. There are several ways of agadiat least minimizing its effects:

- Changing the duration of the measurement samplgtieto match any underlying
periodicity in the signal, e.g. by changing measwest timeT so that to capture an exact
number of cycles of the signal. Although such aisoh can remove the leakage effect
altogether, it can only do so if the signal beinglgzed is periodic - which is not always
the case - and if the period of that signal caddiermined - which is often difficult and it
could be the first objective of the analysis. M@ measurement time T can not be
changed fully arbitrary in FFT analyzers, but objysome steps according to frequency
range of measurement (see formula 2.33).

- Increasing the duration of measurement time Thabthe separation between the spectral
lines - the frequency resolution - is finer (seenfola 2.34). This does not remove but
does reduce the severity of the leakage effect.

- Modifying the signal sample obtained in such a veayto reduce the severity of the
leakage effect. This process is referred tevieglowing or window transformation and is
widely employed in signal processing and modalirigst Windowing involves the
imposition of a prescribed profile w(t) on the tirsggnal prior to performing Fourier
transform. The analyzed signal is then productrafimal signal and window profile (see
Fig. 2.19). The influence of often used Hanningdww to Fourier transform of a signal is
shown in Fig. 2.18 (below). Other types of windaviten used in modal testing (transient
and exponential) are discussed in the chapter.4.2.10ther well known type is flat-top
window, which is used for transducers' calibration.

-32-



periodic signal non-periodic signal

a(t) b(i)
WANAAAAAAN
time UUVVVTVUVV time

T

,
J_\vﬂvﬁvﬂvﬂuﬂvﬁvﬂvﬂvﬂv_ AAAAAAAA
rectangular VVVVVVUVUL

window < A(f) B(f),
IHHHHIHHH||||

(no window)
frequency frequency

Hanning
window

1- co{z_:t j< A(f) I B(f)
I

frequency frequency

Fig. 2.18 Influence of Weighting Windows and Periodicity of the Sgnal on Leakage Error

Fig. 2.19 shows what influence has truncation mietisignal on frequency spectrum. For
digital signal processing, spectral frequency nesah Af is equal to the inverse time length of
the samplel (according to formula 2.34). It means that thedrefrequency resolution is
required (with the same frequency range), the lotige measurement time should be. And
vice versa: the longer measurement time is, theertiore the transient signal has to decay to
zero and, consequently, the less is the leakage @nd better frequency resolution at the
same time). Thus, the leakage error can be eliethay extending the measurement time.

Similarly to spectrum, a leakage error also ocaardrequency response function as
resolution bias error. Due to this error, magnitude of the measured E&Hd be, compared
with the true value, lower in resonances and higheantiresonances (see Fig. 2.20). This
error occurs if the frequency resolution of measwetAf is much coarser than the frequency
resolution of the systeilifs, i.e. than the frequency resolution than wouldwagpthe function
accurately. It corresponds to time truncation ef ¢signal, i.e. to the fact that the measurement
time T is much shorter than the true response of thesyst:

T<<Ts = Af>>Afg
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<

leakage

Fig. 219 Relation Between Time Limitation of the Sgnal and Leakage Error in Spectrum

Measurement time can be extended by increasinguhmber of frequency lines of Fourier
transform when using FFT analyzer (see chapter. ZBis way, the frequency resolution
increases without changing the frequency rangaéehteasurement. When using an analyzer
with a fixed number of frequency lines, there ither way how to improve frequency
resolution - to reduce the frequency range of teasurement. When measurements are done
in baseband (from 0 tonfx Hz), it means to limit the frequency range fromowd If
resonances of interest are of higher frequenciesthar approach - frequency zoom - should
be applied. The frequency range is then fregmtb f,ax (See chapter 2.6.3).

v

Af

A
resolution bias
_/ \ measured values

e

\

o

e

/(true FRF

of

Fig. 2.20

Influence of Leakage in FRF - Resolution Bias Error

The relationship between the true FRF ant its radtiere estimates Hand H when leakage
occurs is shown in Fig. 2.21. The magnitude oftthe FRF is always higher in resonances
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and always lower in antiresonances than both essnalevertheless, closer to the true values
is H, in resonances and; th antiresonances.

resonance.:
[H| > |Hz| > |Hy

antiresonance:
[H| < |Hi| < |Hy|

Fig. 2.21 Influence of Leakage in Alternative FRF Estimates

2.6.3 Frequency Zoom

The common solution to the need for a finer freqyemesolution is to "zoom in" on the
frequency range of interest and to concentratidalspectral lines to the narrow band between
fmin @ndfmax (instead of between O angl.). There are various ways of achieving this result
but perhaps the one which is easiest to undergtbgsically is that which uses a frequency
shifting process coupled with a controlled aliasilayice.

Suppose the signal to be analysdt), has a spectrunX(w), of the type shown in Fig.2.22
and that a detailed (zoom) analysis around thenskpeak, between andf, , is of interest. If
a band-pass filter to the signal is applied (see Z22 below), and DFT is performed between
0 andf,-f;, then because of the aliasing phenomenon desaribelbpter 2.7, the frequency
components between andf, will appear aliased in the analysis rar@¢o f,-f; with the
advantage of a finer resolution.

X(w)
! o
0 f1 fa
LN
0 f1 fa

Fig. 2.22 Frequency Zoom Realized by Band-Pass Filter

This is not the only way of achieving a zoom meament, but it serves to illustrate the
concept. Other methods are based on effectiveftirghthe frequency origin of the spectrum
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by multiplying the original time history by@os(ft) function and then filtering out the higher
of the two components thus produced. For exampfgase the signal to be analysed is:

x(t) = A Bin(2mt)

Multiplying this bycos(2tt) yields:
x(t) = A in(2rt ) icod2rt 1) :%(sinZT[(f —f )t +sin2rdf +1,)t) (2.37)

and if the second component is then filtered dug, driginal signal translated down the
frequency range by, is left. The modified signal is then analysed e range0 to f,-f;,
yielding a zoom measurement of the original sidreiveerf; andf,. In this method, sample
times are multiplied by the zoom magnification &g2x, 4x etc.) but the sampling is carried
out at a slower rate (alse24x, etc.) dictated by the new effective frequencygean

When using a frequency zoom for measuring FRF inagow frequency band, it is
important to ensure that as low vibrational enexgypossible is out of the frequency band of
interest. It means that whenever possible, exoitatf the structure should be restricted to the
frequency band of analysis. This problem is disedss more detail in chapter 4.2.1.1.

2.6.4 Averaging

This chapter deals with another feature of a digppactral analysis that concerns particular
requirements for processing random signals. Wheiyzing random vibration signals, it is
not sufficient to compute the Fourier transfornri¢lly, it does not exist for a random
process), and instead estimates for spectral densibhd correlation functions which are used
to characterize this type of signal must be obthiddthough these properties are computed
from the Fourier transform, there are additionalsiderations concerning their accuracy and
statistical reliability which must be given dueeation. Generally, it is necessary to perform
an averaging process, involving several individtiale records (samples) before a result
which can be used with confidence is obtained. TWwe major considerations which
determine the number of averages required aretttistgal reliability and the removal of
spurious random noise from the signals.

There are several possibilities or averaging madegided by analyzers - common are:

- peak hold - it is used mostly in vibration diagnostics witisplacement transducers
- exponential - latest samples are weighting more than olderadsy
- linear - all samples are weighting equally

In modal testing, linear averaging is used, eithigh or withoutoverlap. When averaging
without overlap is used, it means fon samples each of duratioh that the overall
measurement time would lbexT (see Fig.2.23 below). Nowadays, analyzers comp&iEin
extremely short times, which enables to computew transformation prior to capturing a
complete new data sample. In this case it is dfieter to perform a new transformation as
soon as possible and use the last N data poirgg, iegome of them could have already been
used in the previous transform. This process iedalverlapping (see Fig. 2.23 below). It is
clear that 100 averages performed with overlappilog not have the same statistical
parameters as if completely independent 100 sanapéeaveraged. Nevertheless, the process
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with overlapping is more efficient than without oka@ping and provides smoother spectra.
This is perhaps because of windowing - when usiagrithg window, samples are suppressed

to zero in their edges and consequently, when usiegaging without overlap, parts of the
signal are not utilized.

averaging
without l | '

overlap ’

averaging N gﬁ @ !& &\j M A A
with overlap

processing time

Fig. 2.23 Types of Averaging
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3. Theoretical Basis of Modal Analysis

A complex structure can be considered as a numberasses interconnected by springs
and damping elements. Since the damping forcesr@alastructure cannot be estimated with
anything like the same accuracy as the elastic inadia forces, a rigorous mathematic
simulation of the damping effects is futile. Neweiess, to account the dissipative forces in
the structure, assumptions of the form of dampisneho be made, to get as good estimate of
the damping forces in practice as possible. Thenfdras to be conductive to easy
mathematical manipulation, specifically adaptaldinear equations of motion - implying
that the damping forces are harmonic when excrtagcharmonic. Two such suitable forms
of damping are:

- viscous damping - damping effect is proportionatétocity F, = b [v
- hysteretic (structural) damping - damping coeffitias inversely proportional to

angular velocityf, = k_i)y v

3.1 Single Degree-of-freedom System (SDOF)

Although very few practical structures could readasly be modelled by a single degree-
of-freedom system, properties of such a systenvang important because those for a more
complex multi degree-of-freedom system can alwaysdpresented as a linear superposition
of a number of SDOF characteristics.

Basic spatial model of SDOF system (see Fig. 3hyists of mase and a sprindc and,
in the case of damped system, of either viscoubptad or hysteretic dampen. In this
model,f(t) is general time varying force an) is response quantity.

f(t)
In this chapter, three types of SDOF model wildescribed: l

m |
- undamped x(t), v(t), a(t)
- viscously damped " b
- hysteretically (or structurally) damped I::I
% 7

Fig. 3.1 Spatial model of SDOF system
3.1.1 Undamped Single Degree-of-freedom System

Spatial model of this system consists of masand springk. For modal model, properties
of the system without external force, i.e. f(t)=@lWwe considered. In this case, equation of
motion is:

ma+kx =0 (3.1)
when substitute foa = " x

mx + kx =0 (3.2)
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Expected solution of this equation is:

x(t) = Xe'™ (3.3)
Putting into equation of motion leads to the regmient that

k-w'm=0 (3.4)
Modal model consists of a single solution (modevibkation) with a natural frequency

given by

QO = |— (35)

For frequency response analysis, excitation isidensd of the form

f(t) = Fe® (3.6)
and solution is assumed of the form

x(t) = Xe'* (3.7)

whereX andF are complex to accommodate both the amplitudepdrage information.
Now the equation of motion is

(k - w’m)Xe'* = Fe“* (3.8)

from which the required response model in the fofma frequency response function is
extracted:

X 1

F kmem 0O 39)

This particular form of frequency response functiorfw), with response parameter
displacement, is called receptance. This functaiong with other versions of FRF, is
independent of the excitation.

3.1.2 Viscously damped SDOF system

3.1.2.1 Free vibration

Adding a viscous dashpbt the equation of motion for free vibration becomes
mla+blv+kix=0 (3.10)
miX+blx+kix=0 (3.11)

Expected solution is of a more general fosms(complex, rather than imaginary, as with
undamped system)

x(t) = Xe® Derivatives: x(t) = Xse
%(t) = Xs%*
Having put these into equation of motion, charastierequation is obtained:

ms® +bs+k =0 (3.12)
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Solution of characteristic equation:

— 2_
b++/b°—4km (3.13)

Si2 =

2m
b b ) k
S,=——=%. || —| —— 3.14
2 2m (ij m (3.14)
L = —0iy Q) -8 =-8%iQ1-C? (3.15)
=-0%iQ (3.16)
k
Where: Q = = ... undamped natural frequency
ézi ... decay constant (3.17)
2m
o b b : .
(=—=—F—+~—==— ... damping ratio 3.18
0.~ 2dkm b, ping (3.18)
Q=,Q2-8" =Q,1-C* ... damped natural frequency (3.19)

Roots of characteristic equation (poles) dependhenvalue of damping rati§. For so
called positive dampingl(= 0), there may be 3 cases, and therefore 3 diffdyges of
motion (see Fig.3.2):

- (=0 undamped vibration
s and s are imaginary

- (<1 damped vibration
s and s are complex conjugates (see Fig. 3.4)

- (=1 aperiodic movement
s and s are real (fol=1: §=5=-9)

If the real part of the pole is positive, which medhat{ < 0 (negative damping), self-
excited vibrations occur (see Fig. 3.3., right kide

§=0 §<<1 <1 §>>1

Qdud—é%

Fig. 3.2  Position of Poles According to Damping Ratio Values

- 40 -



various values of frequenc
+iw +51+|Q

(32410, )t glraasye it al+5+0,)
e( 3,+O )t e(—51+i§21)t +|Qlt +61+|Q +52+|Q
-~ j . w |
_6-lt | +0,t ——/
O S e e

various values of damping &

Fig. 3.3  Frequency Response as a Function of Natural Frequency and Damping Values

--4 Qo ... undamped natural frequel

P=0+i " ____| ... damped natural frequel

0... de/oa; consta

p*=-0-iw ™. _ { = cos -9 damping ratio

== 0

Fig. 3.4  Complex Conjugates - Poles - in Laplace Plane

3.1.2.2 Forced vibration
If movement is caused by acting of harmonic fotbe, equation of motion of viscously
damped system has the form:

mx(t) + bx(t) + kx(t) = () (3.20)
where f(t)= Fé* ... harmonic excitation force

x(t)=Xe™ ... expected solution and its derivatives:

x(t) = icXe'™

%(t) = —w?Xe'
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Dividing the equation (3.20) by mass and putting the expected solution together with
equations (3.5) a (3.17) in it gives:

— X + 20T QX + Q2 [X =Q§[-,E (3.21)

Then, complex displacement amplitude is:

HES
K

X=—g—— Fs X ...static displacement
Qp —w +i2¢wQ, k
F
X = 2k Qi =n ... tuning factor
w . w 0
1—(] +i120 B—
QO 0
= + X (3.22)
1-n°+i2{n
X| =X, ! ... amplitude of displacement (3.23)

E
Ja-n?f +(22n)
Now, steady state solution of equation of motioh be derived:

1

= - ... amplitude of displacement (complex
1-n®+i2ln k P P ( plex)

x(t) = Xe'™ =+E—Ee"*‘ ... displacement time history
1-n°+i2¢n k

Displacement is proportional to the acting fora®portionality constant is:

1

H(n) = m (3.24)

what is so-called frequency response function riecee (dimensionless).

As the displacement is a complex number, it cadibieled to the real part and imaginary
part (by multiplying both numerator and denomindtpidenominator's complex conjugate):

x(t) = 1-n° - 2cn i | F g :
(t) ((1—n2)2+(21n)2 (1‘r]2)2+(2Zrl)2 Jk (3.25)

It can be seen, that the displacement has one part

—_ 1_n2 ljf jot
R = 3.26
) L-n?) +(@n) ) -

that is in-phase with the excitation force andgeeond part

__ o Fa
I = 3.27
e S o0
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that lags the excitation force at°90n Fig. 3.5, vectors OA and OB represent real and
imaginary part of displacement. Vector OC represéme amplitude of displacement given by

JRE(x)+Im?(x) , thus:

x(t) = L e (3.28)

V-n?f +(2zn)
Displacement lags the excitation force at an afigtefined as:

0= arctgiz—zg (3.29)
-n

Steady-state solution of the equation of motiontbars be expressed in the form:

x(t) = ! E—Eei(‘*’t’e) .
Y L(l—nz)ﬂ(zzr])z] K 539

The expression in square brackets is the absoalte\of complex frequency response. It
is often called as aamplification factor and it expresses a dimensionless ratio between the
amplitude of displacement and static displacemehtk.

1

H(n) = (3.31)
Mo Je-n2f +(@2n)
Im(x) |
Fe“ R
O y A Re(x)
x) = 1—I’]2 EE it
Rebd) (1—‘r12)2+(2zr1)2 k
Im(x) = —26n e 1
1-n?) +(2&n)® kK x(t) = f e
1-n2) +(22n X(t) e
B C

Fig. 3.5 Relationship Between the Complex Displacement and the Excitation Force

Frequency response function (3.24) is complex arid & function of frequency (or of
tuning factor, respectively) at the same time. éams that it can not be displayed in a single
two-dimensional plot. Its 3D plot is in Fig. 3.6h& red curve represents a damped system, the

green curve represents an undamped system (inakaf the plot lies in the planeRe(H(n))
and is two-dimensional).
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Re (Hf))
e

-

Fig. 3.6 3D plot of the Frequency Response Function - Undamped and Damped

Projection of this 3D plot to the individual planissin Fig. 3.7. and in Fig. 3.8 (left). In
Fig. 3.8, two of the possible ways of displayingF-&e shown - simultaneous displaying of
real and imaginary part of FRF as functions of diestcy or of tuning factor (top left), or so
called Nyquist diagram which is plot in the plarfee(H(n)); Im(H(n))] - bottom left. In
Nyquist plot, information about the frequency islden - the plot is drawn from the initial
frequency to the final frequency clockwise; the ongjart of the circle represents resonance
and its vicinity (more detailed in chapter 4.3.1.R)fferent colours of plots are for various
levels of damping - from green for an undampedesysto magenta for a critically damped

system {=1).

Imaginary

1

2" o Real
Freguency

Fig. 3.7 3D Plot of the Freguency Response Function (Receptance)
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Al (Hl(n)) | | |(H())I
64 T
2~ real part B 5[ B
1 - i -
\ n magnitude
0 — 3 -
-1 - N -
-2 - 1 -
- I | I I | l l I —=
0 0.5 1 1.5 2 2.5 3 9% 0.5 1 15 2 2.5 3
n
Im (H(n)) O(H(n))
1 | n
imaginary part 180 5 L ¥3
~ _ Bode plot
_ | | | | |
® 0.5 1 15 2 25 3

—o

Nyquist plot

| | \ | |

ST T ime)

Fig. 3.8  Various Forms of Displaying FRF - Viscously Damped System

FRF is frequently displayed as Bode plot, whickimsultaneously display of amplitude and
phase of FRF, both as a function of frequencyyoimg factor) - see Fig. 3.8 (right).
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3.1.2.3 Determination of Resonance Tuning

Resonance can be defined as a state when magoitid®- is maximal. The plot of FRF
magnitude as a function of tuning factor showst tlesonant peak for undamped system
occurs whem=1 and is shifted to the left when damping increa3e determine the resonant
tuning factor, equation (3.31) should be derivethwespect to the tuning factor and then put
the derivative equal to zero.

Hn) = =

Ja-n2) +(22n)
aHn) o N & (3.32)

dn

Then, resonant excitation frequency is:

W, =Q, {/1-2C7 (3.33)
Magnitude of FRF and displacement in resonance are:
1

201~ T2

1
res:xs b
N NE

For light damping { < 0.05) the curves are nearly symmetrical alorey tartical axis
passing through=1. Peak value dH(w)| at the immediate vicinity af=1 is given by

H(w,.) = (3.34)

X (3.35)

H(w,.) = 2_1Z =Q Q ... quality factor (3.36)

3.1.2.4 Determination of Damping from FRF Plots

a) Determination of damping from plot of real part H(7) asa function of 7

The following procedure will derive for which tunirigctorsn, andn, (and corresponding
excitation frequencieey anduy) occur local extremes in the graph of real part RFFas a
function of frequency. These frequency values camdsmly read from the graph and using
them, damping ratig can be expressed (see Fig. 3.9).

1
H - —
) 1-n%+i2ln

B ey e

1-n2) +(22n)* @-WY+@mfi

2

_ 1-n
ReH(rl) = (1_ nz)z N (er])z
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dReH (r])

. =0 N N, = 1-2C
N, =1+ 2
w =0, Q-2 (3.37)
Re (H()) w, =Q, Q1+ X (3.38)
0, V1T
@ w12
|
Wy M— w w, 2 _ 142
o o) 1-%

0 2
Lol fi-27)=1+2¢
o f1-22)
L —(&] (27 -1-27 =0
W)
wzjz_l

2
Q)ZJ +1
W

Fig. 3.9 Determination of Damping from Re (H(c))

(3.39)

b) Determination of damping from half-power points
Half-power points are points on the plot of magdéwf H(), in which the magnitude

decreases to the valuj%EIH,es, which means to thel— of the peak value. In the power

V2

spectrum, it would be one half of the peak valhence the name half-power points.

If H(w) is plotted in logarithmic scale, in these poitlie peak magnitude decreases by
3 dB (see Fig. 3.10).

HI’ES :\/E

halfpower

H

2000gH ., ~ 200G H o00er = 2000g/2 =3

H,.—H

res halfpower

=3B

If these points are denoted &d B and the corresponding frequenadi@sandwy, then the

difference between those frequencieswy is called 3dB band of the system. For light
damping:

Ay = w, —w, =200 1Q,
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whereAwsgg is 3dB band. Thus:

W, 0, _
2 -9 3.40
0, 4 (3.40)
20lbg |(H))
13 dB
P4 P>
20
w
w Qo wy

Fig. 3.10 Determination of damping from 3dB band

Now, it will be proved that frequencies;, and w, are the same frequencies (for slight
damping) as those that were obtained in the previamagraph from the extremes of real part
FRF. Supposing it is true, put the equations (3a8id) (3.38) into equation (3.40):

W, W, _
—=——==2
o ¢

Q,01+20 -Q,0Q/1-27 =Q, 2
1+2¢ -20/(1+27)f1-27) +1- 27 = 42?

2-2\1-40% =47

J1-47% =1-2C7
For light damping{ < 0,05) applies :
1=1

To determine damping for lightly damped systems, shmplified equation (3.40) can be
used even when reading from real part FRF pldhi#f equation is to be valid, the following

should apply:

W, —w, =20 (3.41)
As the plot of FRF magnitude is symmetrical in ¥ingnity of resonance, also applies:

W =Q,-3 (3.42)

w,=Q,+0 (3.43)
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3.1.3 Single Degree-of-freedom System with Hysteretic (&tctural) Damping
3.1.3.1 Forced Vibration

Close inspection of the behaviour of real struguseggests that the viscous damping
model used above is not very representative whpheapto MDOF systems. Real structures
exhibit a frequency dependence that is not destiilyethe standard viscous dashpot. A large
variety of materials, when subjected to cyclic sdrg€for strains below the elastic limit),
exhibits a stress-strain relationship which is abterised by a hysteresis loop. The energy
dissipated per cycle due to internal friction i ttmaterial is proportional to the area within
the hysteresis loop, and hence the name hystelatiping. Internal friction is independent of
the rate of strain (independent of frequency) awdrca significant frequency range is
proportional to the displacement. Thus the damjpinge is proportional to the elastic force,
since energy is dissipated, it must be in phash thi¢ velocity. Thus for simple harmonic
motion, the damping force is given by

ykx = ﬁ (3.44)

wherey is calledstructural damping loss factor.

Note: In literature, structural damping loss faag®often denoted ag, but herey will be
used in order not to confuse it with tuning coedid.

Hysteretic model provides a much simpler analysis MIDOF systems but it presents
difficulties to a rigorous free vibration analysigherefore only forced vibration analysis will
be performed.

Equation of motion for a SDOF system with strudtdie@mping can be written:

mx(t) +% (1) + kx(t) = 7 2) (3.45)
where  f(t)=Feé“ ... harmonic excitation force
x(t)=Xe™ ... expected solution and its derivatives:
x(t) = icXe'™
%(t) = —w?Xe'

Equation of motion can be also rewrite as:

(1) + k(L +iy)x(t) = ()
wherek(1+iy) is called the complex stiffness. A6
By setting the expected solution into the equatibmotion is obtained:

(- mo? +k(1+iy))X = F

After dividing by stiffness k and using equaitons()3
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W F
1-—+iy|[[X=—
g

0

Then, amplitude of complex displacement is:

1
X=—— 3.47
1-n*+iy k (3:47)
1
X = 42 ., st
1-n°+iy
X[ =X B ! ... amplitude of displacement (3.48)

t
Va-nf +y’
Following procedure is analogous to the procedwomfchapter 3.1.2.2 for a system with
viscous damping.

x(t): Xe'* :T%Hyie‘“‘ ... time history of displacement (3.49)
— 1-]’]2 Y N F
x(t)= - | |[—L&
e T
x(t) = —— e (3.50)
l(l_nz) +y2 k
0= arctgl_—y2 ... phase lag between displacement and excitabiae f (3.51)
-n

x(t) = ! gl (3.52)
'(1_ r]2)2 + y2 k
The expression in the square brackets is againbbawge value of frequency response, or

magnification factor, and again it has the meanofga dimensionless ratio between
displacement amplitud¢ and static displacemehtk.

||—|(I’])|: W
-n°) ty

In Fig. 3.11, various types of plots of FRF witle t,ame amount of damping as it was in
Fig. 3.8. When a system is structurally dampedymrast peak in the plot of FRF amplitude
does not shift to the left with increasing amouhdamping, but it still remains on tuning
value n=1. But, as damping increases, the plot does rast 8tith amplitude equal to 1
corresponding to static displacement, but with luesdess then 1. Similar differences are
evident in all types of plots.

(3.53)
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.Re (Hlm) A ‘I(H(rl)l)l

2r —] 51 ]
real part
1 —] 41— ]
n amplitude
0 > 3 ]

| | | | | l | |
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

Im (H(n)) n

1 T T

0
—= phase
o B -90° i
imaginary pa
| | | |

o -

AT R

4
-180° ] { 1
4= 1 0 0.5 1 1.5 2 2.5 3
KB N Bode plot
~ |
0 0.5 1 15 2 25 3

) - Re (H)
- _
o _
- _
—4- Nyquist plot -
o _
_ | | | |

6*3 -2 -1 0 1 2 3

-Im (H(n))

Fig. 3.11 Various Forms of Displaying FRF - Sructurally (Hysteretically) Damped System
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3.1.3.2 Determination of Damping from FRF Plots

Using the same procedure as in chapter 3.1.2.4pidgnfrom the plot of real part of H
as a function of tuning coefficientwill be determined.

1
H(ﬂ)—m
Re (H 2
et
0 ReH(r]):(lz%
Qo

Fig. 3.12 Determination of Damping from Re (H(&))
Determiningw;, andowy, :

dReH(n) _ 0
= n, = 1-y
N, =y1+y
w =Q,0/1-y (3.54)
w, =Q,Q/1+y (3.55)

Using the same procedure as for viscously dampstérsyleads to:

HE

_\® ! (3.56)
(‘*’zj +1
w,

For light damping approximately applies:
20 =y (3.57)

Y

3.1.4 Various Forms of FRF for Single Degree-of-freedom y&tem

For all three types of systems - undamped, visgausll hysteretically damped - frequency
response function in the form of receptance, iith displacement as response parameter, has
been derived. During modal tests, the responseostlynmeasured using accelerometers, so
FRF in the form of inertance, with accelerationr@sponse parameter, is more common. In
chapter 1.3, relations between the individual fooh&RF were discussed together with the
fact that in frequency domain, forms of FRF deriveain receptance are obtained by simple
multiplication by w (see eq. 1.6 and 1.7). From plots of FRF amplitaslea function of
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frequency, form of FRF can be detected only in tiblganic scale (see Fig. 3.13). In other
plots, shifting by 90is evident for each derivative. Thus, e.g. Nygplst is in the right half-
plane for mobility FRF and in the upper half-pldaeinertance FRF etc.

receptance
0.03 -2

—40
o
' 0.02
- —60

—80

(=2
=
S
5 001
—10(
20

|a(f)] [dB]

0 —12
0 5 10 15 A 1 10 100
f [Hz] f[Hz]
mobilit
15 y 20
0
o1 —
g 5 20
= € 4
> 05 > \
L 60/
0 —8
0 5 10 15 20 1 1 100
f [Hz] f [Hz]
inertance
/100 40
16
— 75 N
2 D 3
é > E 32
< <
25 56////////////
0 -8

0 5 10 15 f[HZ] 20 1 1 10 0

10
f [HZ]

Fig. 3.13 Various Forms of FRF According to Response Parameter

3.2 Multi Degree-of-freedom System (MDOF)

Real structures possess a lot of degrees of freeahoha lot of equations are necessary for
their description. Therefore, matrix form is prefely used for MDOF systems as it enables to
write a single matrix equation instead a numbexcfations.
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3.2.1 Undamped MDOF System

For undamped MDOF system Nf degrees of freedom, the equation of motion in xatr
form is:

Mz} +[KEx@} ={f (0} (3.58)

Where[M] and[K] are the mass and stiffness matrices of order Nod\{%(t)} and{f (t)}
are vectors of time-varying displacements and foofeorder N.

3.2.1.1 Free vibration

In order to determine modal properties of the systéree vibration solution will be
considered by putting

{tm}={o
In that case, solution can be expected in the form
{x(®} ={x}e {} = -w{x]e"
where{X} is a vector of N time-independent amplitudes. Tsisumes that the system is
able to vibrate on a single frequenay
Substituting the homogeneous solution into equatfanotion gives:
(]-w?[M]kx} ={o} (3.59)

The only non-trivial solution is:

det[K]-w’[M] =0 (3.60)
When substituing

W’ =\ (3.61)
then:

def[K]-A[M] =0 ... characteristic equation of the system

The characteristic equation can be transcribededdrm:
d A" +d, AV +...+d,=0 (3.62)

By solving this characteristic equation, N valués\o, which are calle@igenvalues, can
be determined. Undamped natural frequencies cabtagned from eigenvalues as:

Q.2 =\ (3.63)

Substituting any of these back into the equatiob9Byields a corresponding set of relative
values for{X}, le. {LIJ}r, the so-callednode shape (or eigenvector) corresponding to that

natural frequency.

The complete solution can be expressed in two Nx@Wioes:

[QSrJ ... Spectral matrix (eigenvalue matrix) - diagona
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[W] ... modal matrix (matrix of modal shapes); iteids
{oh (v o {wh . {wh]
whereQ?, is the I" eigenvalue, or natural frequency squared, {}H}:j is the I" eigenvector
that describes the corresponding mode shape.

There are various numerical procedures, that corther spatial model represented by
matrices[M] and[K] to the modal model represented by matrik%] and[LIJ].

A spectral matrix is a unique one, but a modal xal not. Whereas the natural
frequencies are fixed quantities, the mode shafesudject to an indeterminate scaling factor
which does not affect the shape of the vibratiomep@nly its amplitude. Thus, a mode shape
vector of

1 3

. o 6
describes exactly the same vibration mode 6:13 etc.

0 0

What determines how the eigenvectors are scalewyromlized, is largely governed by the
numerical procedures followed by the eigensolution.

The actual amplitudes of vibration depend on th&ainconditions and positions and
magnitudes of exciting forces.

The procedure of obtaining eigenvalues and eigaaxwill be illustrated on the example
of two degree-of-freedom undamped system (see.E#).3

e
fa(t) fa(t)
kl " k2 — k3

MWW ™ W
le sz 7

Fig. 3.14 Two Degree-of-freedom System
Equations of motion of this system are:
m %, +(k, + K, )x, —k,x, =f, (3.64)
m,%,—k,x, +(k, +k;)x, =f, (3.65)

or in matrix form:

m;, 0 |[X; +k1+k2 —ko x| T (3.66)
0 m,|(X, -k, ky+k,||x,] |f, '

Consider numerical values:

m; =5 kg m = 10 kg K=k =2N/m k=4 N/m
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Substituting in eq. (3.66), for free vibration (ife=0 and $=0) yields to:
5 0](x, N 4 -2|[x| _|[O
0 10[|%,] |-2 6 ]|x,] |0
4 =2 Y 5 01X, _ 0
-2 6 0 10}/ X, 0

4-5\ -2 (X,
=0 (3.66a)
-2 6-10\[|X,
4-5\ -2
=0
-2 6-10\

(4-5\)(6-100)-(-2)(-2)=0
50\ - 70M +20=0

AM=04¢ Qo1 =404 ¢
)\2:15-2 Qozzlgl
Substituting back i andA; into eq. (3.66a) will give the two natural modeges:
4-5[04 -2 X,
For Qox: =0
-2 6-10004 || X,
2X,-2X,=0 . ,
... One of these equations is enough.
-2X,+2X,=0
= X, =X,

1
Thus the mode shape 1@p; is {W}l = {1}

oo 4750 —2 X
- -2 6-100||X,| -
~X,-2X,=0
X

= )(2=—71

1
Thus the mode shape f@g,is {W}, = {_ 1/2}

Thus the entire solution is given by matrices:

el g SRR

Mode shapes are shown in Fig. 3.15. It can be #edrihe masses move either in phase or
180° out of phase. Since the masses reach theimmaxdisplacements simultaneously, the
nodal points (points, which do not move) are clearly defined.
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Fig. 3.15 Mode Shapes for the two Degree-of-freedom System

3.2.1.2 Orthogonal Properties of Eigenvectors

Solution of the equatiorﬁ[K]—)\[M]){X} ={0} yieldsN eigenvalues antl corresponding
eigenvectors. A particulaf” mode will satisfy:

[KKw}, =A [M}{w}, (3.67)
Premultiply eq. (3.67) by the transpose of anotfiémode shape:

{Whkjw} =2 {wkmlw} (3.68)
Similarly, s" mode will satisfy (after premultiplying by the tispose of ™ eigenvector) :

{Wh [k w) =AWl mfw), (3.69)
As [M] and [K] are symmetric matrices, it applies:

{Wh [kjw) ={wk kv and

{wh [MJw) ={w} [mMEw},

Therefore subtracting eq. (3.69) from eq. (3.68)dg to:

0=(, -Afw} [M}w}, (3.70)
It is obvious that fok#A (two different natural frequencies) applies:

{W)[Mfw}, =0 and (3.71)

{wk[kfw} =0 (3.72)

Equations (3.71) and (3.72) define the orthogomaberties of the mode shapes with
respect to the system mass and stiffness matesggctively.
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In the case ok=As it applies:

{Wh [Kfw) =2 {wH MEw),

Therefore:
{W} [kKw}, =K, ... generalized (modal) stiffness of themode ~ (3.73)
W M{w). =™, ... generalized (modal) mass of tRemode (3.74)
A =Q2 = n}; (3.75)
In matrix notation:
{Wykfwi=[k ] (3.76)
{Wymfw}=[m ] (3.77)
[0z ]=[m, ] dk, ] (3.78)

The numerical values of the mode shapes calcukdbede will be used to determine the
generalized mass and generalized stiffness ofinottes:

1 1 5 01 1 M, O M, =15kg
= =
1 -1/2||0 10||1 -1/2 0 M, M, = 75kg

Then

K,=Q% M, =0415=6N/m
K,=Q M, =175=75N/m

3.2.1.3 Normalization of Mode Shapes

As the mode shapes are arbitrary scaled, the vMuasd K are not unique (in contrary to
the ratio K/ M,), it is not advisable to refer to a particular getized mass or stiffness. This
problem is eliminated by so-callewrmalization of mode shapes. If one of the elements of
the eigenvector is assigned a certain value, teeakelements are also fixed because the
ration between any two elements is constant. Thesgss of adjusting the elements of the
natural modes to make their amplitude unique idatlormalization. There are several ways
how to do it, e.g.:

- mass normalization (to unity modal mass)
- the largest element of the mode shape is set tg uni
- the length of the mode vector is set to unity

Mass normalization

This type of normalization is probably the most coom and has most relevance to modal
testing. The mass-normalized eigenvectors areemrias[tb] and have the particular property
that

- B8 -



[o]" ] o] =[1] (3.79)
[o]" k] o] = [z | (3.80)

The relation between the mass-normalized mode sfuapmode r, {®} , and its more

general form{W} , is simply:

{o} = ﬁ {w}, (3.81)
[@]=[W]dm, ]2 (3.82)

Mass-normalized shapes can be derived by denoliegh u; and substituting to the
equation (3.77):

Wh dm] v}, =m, (W) = {ii} ) {1}
{@}; gm]do}, =

e ol
= W{i%

5uZ +10u” =1

uf = el
15
_ _ 115
=J1/15 {®}, = { Jﬁs}

The same can be obtained by substituting the nmadas into equation (3.81):
o) =L fqu) = L E{l} _ V115
oM, T Y15 Y V15

J2/15
_ 1 _ 124 1 |_
(@)=l = (R s

3.2.1.4 Forced Response Analysis of Multi Degree-of-freed8ystem

Suppose that the structure is excited harmonidatlya set of sinusoidal forces all at the
same frequency, but with individual amplitudes and phases. Then:

-59 -



{f (0} ={Fe~
and solution is assumed to exist of the form:
{x(v} ={x}e"
where {F} and {X} are Nx1 vectors of time-independent complex amplitudes.

The equation of motion then becomes:

(]-w2[m])dx}e ={Fe* (3.83)
or, rearranging to solve for the unknown responses

{x} = (K]-w?[m])" ) (3.84)
which may be written as

X} = [a(w)]qH (3.85)

where [a(oo)] is the NN receptance FRF matrix for the system and conesitits

response model. The general element in the receptance FRF maiﬂ'e(po), is defined as
follows:

X
ij(w):?] : Fm=0; m=1..N : ¥ Kk
k
and as such represents an individual receptanceskpiession very similar to that defined

earlier for the SDOF system.

It is possible to determine values for the elem@rﬁl{sx(co)] at any frequency of interest
simply by substituting the appropriate values into:

[a(e)] = (K] - w2[m])? (3.86)

However, this involves inversion of the system maat each frequency and this has
several disadvantages, namely:

- it becomes costly for large-order systems (lot GfH3)
- it is inefficient if only a few of the individualRF expressions are required
- it provides no insight into the form of the varideRF properties

For these reasons, an alternative way of derinegvairious FRF parameters is used which
makes use of the modal properties of the system.

Come out of inverted eq. (3.86):

(<]-#m])=[a]
Premultiply both sides bb;!l)]T and postmultiply both sides ] to obtain

[o]" k] - e [M])fev] =[] " Thx(e)] ™ cf]
(@2, - o) =[] dae)]™ o]
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which leads to
[a()] = [@]cf03, - o o] (3.87)
It is clear from this equation that the receptamagrix [a(co)] Is symmetric and this will

be recognized as the principle retiprocity which applies to many structural characteristics.
Its implications are that:

X, X
a, :?k':akj:?jk (3.88)

Equation (3.87) enables to compute any individuaF Fparameterp, («) , using the
following formula:

o (rq)j)[(rcbk) < (rwj)[(rwk)
- = = 3.89
WOT2TGE A @) (3:89)
or
N A
O(jk(co):ZQZ’—_’km2 A, ... modal constant, residuum (3.90)
r=1 =4or

In the following example it will be proved that teeame functiom;; could be obtained by
both ways - by direct inversion (eq. 3.86) and fraantial fraction form (eq. 3.89).

Equations of motion of forced undamped vibrationhaf system from Fig. 3.14 are:
(kl +k, _wzml)xl + (_ kz)xz =K

(_k2)xl +(k2 +k3 _wzmz)xz =F,

which yields:
X, B B k, +k, —w’m,
e - all(w) - a4 2
I:1 F,=0 wmm, - (mlkz + mlkS + m2k1 + m2k2)+ (klkz + kzks + klks)

numerically (for m =5 kg, m =10 kg, k = ko =2 N/m, k = 4 N/m):

B B 6 — 10w’
= =ay(w)= 20- 700> + 500"
1 /F,=0

Now, the modal summation formula (3.89) will be disegether with the results obtained
earlier:

_ (o) | (o)
Q2 - Q-

oty ()

numerically (forQo,” = 0.4 §', Qo7 = 1 8', [ ®, =/1/15, ,d, =/ 2/15):
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(@)= 1/15 N 2115 _ 6—10w°
1 04-w 1-w 20-70u? +50w"

which is the same expression as above.

3.2.2 Characteristics and Presentation of Multi Degree-ofreedom FRF Data

As for an SDOF system, for MDOF system there ase #iree alternatives of FRF with
using either displacement or velocity or acceleraas a response parameter, thus obtaining
receptance, mobility or inertance respectively. sehéhree forms are exactly in the same
relation as described earlier, thus:

[Y (w)] = ieda(w)] (3.91)
[A()] =i ()] = ~w[a(w)] (3.92)

According to the place and direction of excitatemmd response (place + direction = DOF),
four types of FRF can be defined:

- point - coordinates of excitation and response are egigl point No 10)

direct - directions of excitation and response are ecugl ODOF 10X)
cross - directions of excitation and response are dffiér(e.g. excitation at
DOF 10Z, response at DOF 10X).

- transfer - coordinates of excitation and response arereifiie

direct (e,g, excitation at DOF 10X, response at DOF 14X)
cross (e,g, excitation at DOF 10X, response at DOF 147)

It is helpful to examine the form which FRF datkemwhen presented in various graphical
formats. This knowledge is necessary in asseskagalidity and interpreting measured data.

For the simplest case of an undamped system, fatwthe receptance expression is given

by equation (3.89)a, (w) = i—(rg;)[_ﬂr:zk)
r=1 or

Using the type of log-log plot, individual termstime FRF series can be plotted as separate
curves. The total FRF curve is a summation oftadl individual curves. However, the exact
shape of the curve is not so simple to deducestsaippears because a part of the information
(phase) is not shown. In fact, in some sectiongafh curve, the receptance is actually
positive in sign and in others is negative butéhisrno indication of this on the logarithmic
plot which only shows the modulus. However, wheditaoh of the individual components is
made to determine the complete receptance expngdie signs of various terms are of
considerable importance.

Examine some of the important features using a lsireagample with just two modes:

1 1
[(D] =L _1/2] Two FRF plots, point receptancg, and transfer receptance,, will be

created.
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Expressions for the receptances are:
_ 1 1
T A2 >t =3 2

Qg —w Qp-w

__ 1 05
Q- Q-

01, (0)

)

from which it can be seen that the main differefetween the point and transfer
receptances is in the sign of the modal constaet fumerator) of the second mode. As the
plots only show the modulus, they are apparentbemsitive to this difference. However,
when the two terms are added to produce the aeR&lfor the MDOF system, the following
characteristics will arise, which is illustratedkig. 3.16. In this figure, receptance is plotted,
but the following remarks apply for all types of FReceptance, mobility and inertance).

When considering a point receptance, the numeratthe eq. (3.89) for all modes will
always be positive, as it is a square of modal areetement. In transfer receptance, the
numerator can be either positive or negative adogrdo the signs of elements of
eigenvectors.

10
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0.01
1110 3
1°10
1'10

log allT

110
{10
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log a2
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10
1
0.1
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$10°

10 0

'
10
log w

Fig.3.16  Point (upper) and Transfer Receptance (below) FRF Plot
for Undamped 2DOF System

Point Receptance

At frequencies below the first natural frequenaythbterms in the sum have the same sign
and thus are additive, making the total FRF cuigadr than each component, but as the plot
uses a logarithmic scale, the contribution of teeosd mode at these low frequencies is
relatively insgnificant. Hence, the total FRF curs@nly slightly above that for the first term.
A similar argument and result apply at the highgérency end, above the second natural
frequency, where the total plot is just above foatthe second term alone. However, in the
region between the two resonances, the two comp®mave opposite signs to each other so
that they are subtractive, and at the point whiaeg tross, their sum is zero since they are of
equal magnitude but of opposite sign there. Ongarlthmic plot of this type, this produces
the antiresonance characteristic which reflects dhaesonance. In the immediate vicinity of
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any resonance, the contribution of the term whasteral frequency is nearby is so much
greater than the other one that the total is, fiecefthe same as that one term. Physically, the
response of the MDOF system just at one of itsrahftequencies is dominated by that mode
and other modes have very little influence (it aggpfor undamped or very slightly damped
systems).

Transfer Receptance

Similar reasoning as for point receptance can haieap when progressing along the
frequency range with the only difference that thgns of the two terms in the sum are
opposite in this case. Thus, at very low and véagh frequencies, the total FRF curve lies just
below that of the nearest individual component &l the region between the resonances,
the two components now have the same sign and eocdhcelling-out feature is not
encountered and only a minimum, rather than amtr@sce, occurs.

The principles illustrated here may be extendecrig number of degrees of freedom.
There is a fundamental rule that if two consecuthades have the same sign for the modal
constants, then there will be an antiresonanceoatesfrequency between the natural
frequencies of those two modes. If they have oppasyns, there will not be an antiresonance
but just a minimum. The most important feature mtfrasonance is perhaps the fact that there
is a phase change associated with it, as wellvasydow magnitude.

It is also interesting to determine what controlsether a particular FRF will have positive
or negative modal constants, and thus whether lit @xhibit antiresonances or not. A
considerable insight may be gained by considefwegarigin of the modal constant: it is the
product of two eigenvector elements, one at thpamse point and the other at the excitation
point. For point mobility, the total modal constdot every mode must be positive, it being
the square of a number. This means that for poRf,Rhere must be an antiresonance
following every resonance, without exception.

The situation for transfer FRFs is less categorizatause the modal constant will
sometimes be positive and sometimes negative, depgmnipon whether the excitation and
response move in phase or not. Thus, we expectferafrRF measurements to show a
mixture of antiresonances and minima (valleys). Ewev, the mixture can be anticipated to
some extent because it can be shown that the fuaffeat are the two points in question, the
more likely are the two eigenvector elements teralite in sign as progressed through the
modes. Thus, it might be expected that the tranBRRF between two positions widely
separated on the structure will exhibit fewer @stimances than the one for two points
relatively close together.

A clear example of this is given in Fig. 3.17 foAROF system, showing a complete set of
FRFs for excitation at one extreme point in therfaf mobility.

Finally, it should be remarked that if either thecigation or the response coordinates
happen to coincide with a node for one of the mddes, ®,[ ®, =0), then this mode will
not appear as a resonance on the FRF plot. Inctisa, A, =0 and so the only response

which will be encountered at or near= Q, will be due to the off-resonant contribution of
all the other modes.
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The form of the FRF plot of a damped system isegsiimilar to those for an undamped
system described above. The resonances and anaress are blunted by inclusion of
damping, and the phase angles (not shown) arengetcexactly 0° or 180°, but the general
appearance of the plot is an extension of thatfersystem without damping. This applies as
long as the modes are relatively well separateds Tondition is satisfied unless the
separation between adjacent natural frequencigedssed as a percentage of their mean) is
of the same order as, or less than, the modal dmmiaictors, in which case it becomes
difficult to distinguish the individual modes.

Fig. 3.18 shows a receptance plot of a 2DOF systigia same system as in Fig. 3.16, with
damping added.

5105 | | R I I
10 > 1'10 >
0.1 1 10 Iog 100 0.1 1 10 log w100

Fig.3.17 Mohility Plots of a 4ADOF System
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Fig. 3.18 Point (upper) and Transfer Receptance (below) FRF Plot
for Damped 2DOF system

As for the SDOF case, it is interesting to exantireeform of Nyquist circle for an MDOF
system as well. Nyquist plot of 2DOF system is showFig. 3.19 - point receptance on the
left and transfer receptance on the right. Receptaf a proportionally damped system is
plotted in a solid line, receptance of non-promordlly damped system in a dashed line (in
that case, modal circles are rotated). Non-propaali damping will be discussed in detail in
chapter 3.2.3.4.

Im aiq

Fig.3.19 Nyquist Plots of Point and Transfer Receptances

3D plot of the point receptance of a 3DOF propowity damped system and its
projections to the individual planes is shown ig.A.20.
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Fig.3.20 3D Receptance Plot of a 3DOF System

3.2.3 Damped Multi Degree-of-Freedom System
3.2.3.1 Proportional Viscous Damping

A special type of damping that is quite easy tdude in analysis is so-callgutoportional
damping. The advantage of using a proportional dampingehimdthe analysis of structures is
that the modes of such a structure are almostiainb those of the undamped version of the
model. Specifically, the mode shapes are idenéindlthe natural frequencies are very similar
to those of the simpler undamped system. It is iptesfo derive modal properties of a
proportionally damped system by fully analysing tihelamped version and then making a
correction for the presence of damping. While firigcedure is often used in the theoretical
analysis of structures, it should be mentioned ithet only valid in the case of this special
type or distribution of damping, which may not apa real structures studied in modal tests.

Adding a viscous damping matrix [B]to the genergua&ion of motion for an MDOF
system, following equation applies :

[Mf}+ [Bx} +[KKx} ={f} (3.93)

First, the case where the damping matrix is digeptbportional to the stiffness matrix,
will be discussed:

[B]=B[K] (3.94)

If the damping matrix is pre- and post-multipliegthe eigenvector matriEw] in just the
same way as it was done previously for the masstifidess matrices, it becomes:
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[WI'[BIw]=plk]=[b,] (3.95)

where the diagonal elemertis represent the modal damping of the various modlélseo
system. The fact that this matrix is also diagom&ans that the undamped system mode
shapes are also those of the damped system, ands thi particular feature of this type of
damping. This can easily be demonstrated. Subistitatodal coordinates {p} for {x}

{x}=[w]{p} (3.96)
into the equation of motion and pre-multiplyindpyt [LIJ]T leads to :

[m, Jcfi} + b, Jcfio} + [k, ] o} = {0} (3.97)
from where the't equation is :

m.p, +b,p, +k.p, =0 (3.98)

which is a equation of a single degree-of-freedgmstesn, or of a single mode of the
system. This mode has a complex eigenva@lue -9, +iQ, with an oscillatory part:

k b 1

Q, =Q, 1~ Qf =—- {,=———=2pQ,  (3.99)
0 0 m, 2 krmr 2 0
and a decay part:
_ _B 2
0, =(,Q, = 5 [Qg, (3.100)

A simple extension of the steps performed in forcedponse analysis of undamped
systems (equations 3.83 to 3.89) lead to the dieimfor the general receptance FRF as:

(] = [K +iwB - M (3.101)
or
1 S S NN
=2 (e, Jrilab,) T 02—+ 2,

(3.102)

which has a very similar form to that for the ungheah system except that now it becomes
complex in the denominator as a result of the sioln of damping.

General Forms of Proportional Damping

Other distributions of damping bring about the saemult and they are included in the
classificationproportional damping. The usual definition of proportional damping st the
damping matrix [B] should be of the form:

[B] = B[K] +y[M] (3.103)
In this case, the damped system will have eigegadund eigenvectors as follows:
BQ y
Q, =Q,1-C ; =0+ 3.104
r Or ZI‘ Zr 2 ZQOr ( )

and lq_) dampedJ - |_LIJ undampedJ
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Distribution of damping of this type is often pléale from the practical standpoint - the
actual damping mechanisms are usually analogossftioess elements (for internal material
or hysteretic damping) or to mass elements (fatitnh damping). There is a more general
definition of the condition required for the dampgtem to possess the same mode shapes
as its undamped counterpart, and that is:

(M k])dmI[8])= (M]7[B])M][K]) (3.105)

although it is more difficult to make a direct plogd interpretation of its form.

3.2.3.2 Proportional Hysteretic Damping

An identical procedure can be used for an MDOFesgstvith proportional hysteretic
damping, producing the same essential resulthelfgeneral system equations of motion are
expressed as

MK} + [K +iH[x} = {f} (3.106)
and the hysteretic damping matrix [H] is propor&riypically:
[H]=B1K]+v[Mm] (3.107)

then the mode shapes for the damped system ane idgatical to those of the undamped
system and the eigenvalues take the complex form:
N =0 (1+in,) 0 =X =B+

3.108
f m o} 2109

Note: n, is the hysteretic damping loss factor. In the ¢&ap.1.3.1, this loss factor was
denoted ay (and in the entire chapter 3riwas used for tuning coefficient). In the following
text, the loss factor will be denotedrpé accordance with common notation in literature.

The general FRF expression is:

N Wi, N 0,0,
()= = 1
() ;(k, m, )+ink, ZQZ —oF +in, Q2 (3.109)

3.2.3.3 Hysteretic Damping - General Case

As stated above, the case of proportional dampsng particular one which does not
always apply. It is justified in a theoretical aysa¢ because it is realistic and also because of a
lack of any more accurate model. However, it isontignt to consider the most general case in
order to be able to interpret and analyse correletydata observed on real structures.

The general equation of motion for an MDOF systerith vihysteretic damping and
harmonic excitation is:

MK} +[K[x} +i[HEx} = {Fe (3.110)
Now, first consider the case where there is notatioh and assume a solution of the form:
{x} ={x}e™ (3.111)
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Substituted to the equation of motion, this trialluion leads to a complex eigenproblem
whose solution is in the form of two matrices (asthe earlier undamped case), containing
the eigenvalues and eigenvectors. In this casé, iatrices are complex, meaning that each
natural frequency and each mode shape is desdrib&ims of complex quantities. Th8 r
eigenvalue is written as

N2 =QF(L+in,) (3.112)

whereQ, is the natural frequency angl is the damping loss factor for that mode. The
natural frequency2; is not necessarily equal to the natural frequeridiie undamped system,
Qor, as was the case for proportional hysteretic dagipalthough the two values will
generally be very close in practice.

The complex mode shapes means that the amplitudacbf DOF has both magnitude and
phase angle. This is only very slightly differerdrh the undamped case where there is also
both magnitude and phase, but the phase angléher & or 180, which can be completely
described using real numbers{positive magnitude, 180negative magnitude).

Eigensolution of the damped system possess the sgraef orthogonality properties as
those demonstrated in chapter 3.2.1.2 for the upddnsystem and may be defined by
equations:

[W]' M]w]=[m,] (3.113)
(W] [K +iH][w]=[k,] (3.114)

Again, the modal mass and stiffness parameters ¢oomplex) depend upon normalisation
of the mode shape vectors for their magnitudeslways obey the relationship:

N o=—C (3.115)

and a set of mass-normalized eigenvectors canfreedes:

{0}, = mfg {w}, (3.116)

3.2.3.4 MDOF System with General Hysteretic Damping - FdrBesponse Solution

The equation of motion for a forced response amalysan MDOF system with harmonic
excitation and response is:

K +iH - w’M[x}e ={Fle (3.117)

Again, a direct solution to this problem may beaid by using the equations of motion
to give:

{x} = [k +iH - M| A = [a(w}P (3.118)
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but this is again very inefficient for numericalpdipation and the procedure by multiplying
both sides of the equation by the eigenvectorsheilused. Following the same procedures as
between equations (3.86) and (3.87), it can bdemrit

[a(e] = [@][0 - o )| [@] (3.119)

From this matrix equation, any FRF element(w) can be extracted and expressed
explicitly in a series form:

N ¢ [P
— r j k
' = 3.120
) ;Qf—wzﬂr]er (3.120)
which can also be rewritten in various alternatixags, such as:
N W LW N A
a,(w)=> Rl o a,(w)=> ik (3.121)

Zm (Q7 -—w +in,Q?%) Q7 -w +in, Q7

In these expressions, both the numerator and deboniare complex as a result of the
complexity of the eigenvectors. It is in this respinat the general damping case differs from
that for proportional damping.

3.2.3.5 MDOF Systems - Summary for Various Types of Damping

An analysis of an MDOF system with a general fofriscous damping is omitted in this
text, because it constitutes a much more diffiquttblem than that of an analysis of an
MDOF system with a general form of hysteretic damgpiOnly results are stated here - in
table 3.1., definitions of FRFs and "natural freggies" are summarized for all types of
damping.

The basic definition of "natural frequency” derivéom the undamped system's
eigenvalues which yield the frequencies at whiee fvibration of the system can take place.
These undamped system natural frequencies are biwéme square roots of the eigenvalues
and identified by the symbd, and they occur in expressions for both free vibrat
response:

N .
X(t) =D X e (3.122)
r=1
and for forced vibration, the FRF:
N A
oa(w)=» —— 3.123
(W) ;Qgr_wz ( )

For damped systems, the situation is more complicand leads to two alternative
characteristic frequency parameters being defifaath called "natural frequencies” - one for
free vibration Q) and the second for forced vibratid®, ).
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NATURAL FREQ.
SYSTEM EQUATION FOR FRF C D free forced
Q, Q,
undamped N ®.[IP real 0 Q, Q,
oy (0) = z 3 z constant 0 O
r=1 QOr W
roportiona N & [P real real Q Q
p p . a (w) — z r ]m k Or Or
hysteretic Ik =~ Q2 - +in,Q2 constant |constant
roportiona N LD real real _72 | Q
" vipscous oy (W)= ——5 constant Ror=6 0
Q2 - +2iwQ,L, (@)
general ()= N P[P, complex | real Q, Q
hysteretic A \00) = ; Q2 - +in, Q2 constant |constant
R, +i > [IS
general AN complex | real |, ¢ Z| @
viscous Ok (w)= ; Q% +2i0Q'L, (W) (W) ' '
Tab3.1 FRF Formulae and Natural Frequencies for All Types of Damping

The natural frequenc®, constitutes the oscillatory part of the free vilma characteristic
which, being complex, contains an exponential déeay as well. Thus:

N .
x(t) =) X e

r=1

(3.124)

whereQ, may or may not be equal @, depending on the type and distribution of the
damping.

The "natural frequencyQ,' comes from the general form of the FRF expressibith,
combining all the previous cases, may be writtetheform:
N
C
a((k)) = z QIZ _

r=1 r

r 3.125
w’ +iD, ( )

Here, G may be real or complex and @ill be real; both may be constant or frequency
dependent an@," will, in general, be different to bofR,, andQ;.

Table 3.1 summarizes systems with all the abovetiored types od damping.

3.2.3.6 Excitation by a General Force Vector

Now, a hysteretically damped MDOF system will bensidered again. Its equation of
motion in the case of harmonic excitation has tenf(3.117):

K +iH - M [[x}e ={Fle“

If the system is excited simultaneously at sevpaahts (rather than at just one, as in the
case of the individual FRF expression), the sofutsogiven by eq. (3.118):
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() = [k +iH —om] {7} = (R

A more explicit solution can be derived in the form

% {0} {FH{e}
Xy = r L 3.126
) ;Qf—wzﬂner ( )
This equation permits the calculation of one or eniodividual responses to excitation of
several simultaneous harmonic forces, all of whinhst have the same frequency but may
vary in amplitude and phase.

The resulting vector of responses is sometimesresfeto asforced vibration mode or,
more commonly, asperating deflection shape (ODS). When the excitation frequency is close
to one of the system's natural frequencies, the @iliSeflect the shape of the nearby mode
because one term in the series of (3.126) will date, but it will not be identical to it
because of the contributions of all the other modes

3.2.3.7 Excitation by a Vector of Mono-Phased Forces

Consider a special case where the structure wikkmted by a vector of mono-phased
forces. All the forces will have the same frequeacyl phase, only their amplitudes may
differ. In this case, it would be of interest tooknwhether there exist some conditions under
which it is possible to obtain a similarly mono-pkd response (the whole system responding
with a single phase angle).

So, let the force and response vectors be repezsbnt
{t}={Fe* (3.127)
{x} ={x}e'® (3.128)

where {F} and {X} are vectors of real quantitiesul&tituting them into equation of
motion, (3.117) yields to :

K +iH - M [x}e“ @& = {Fle“ (3.129)

K +iH - wMfX} e ={F}

K +iH - M [x} fcosp - i Bing) = {F} (3.130)
After splitting (3.130) into real and imaginary par

(K - w*M]cosp +[H]sing x} = {F} (3.131)

(- |K = w?M|sing + [H]cosp )X} = {0} (3.132)

Equation (3.132) can be considered as an eigenyahl#dem which has "rootsp. and
corresponding "vectors{'K}S. These may be inserted back into (3.131) in otdexstablish

the form of the mono-phased force vector necedsabying out the mono-phased response
vector described byk}.. Thus, a set oN mono-phased force vectors is obtained, each of
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which results in a mono-phased response charaatsrisvhen applied as excitation to the
system.

The equations used to obtain the above mentionetieoare functions of frequency and
thus each solution applies only at one specifigdesncy,w..

A situation of particular interest occurs when ag#lagp between all the forces and all
the responses is exactly®@n this case, the eq. (3.132) reduces to:

K - w?M[(x} ={0} (3.133)

Solving this equation, natural frequencies and mslikgpes of an undamped system are
determined. This is a very important result revepthat it is always possible to find a set of
mono-phased forces which will cause a mono-phasedfsesponses and, moreover, if these
two sets of mono-phased parameters are separatdbily 90, then the frequency at which
the system is vibrating is identical to one of itsdamped natural frequencies and the
displacement shape is the corresponding undampde st@pe.

This very important result is the basis for manyh&f multi-shaker test procedures used to
isolate the undamped modes of structures for casgamwith the theoretical prediction. It is
commonly used in the aircraft industry.

It should be emphasized that, by this method, up@éahhmodes are directly obtained,
whereas almost all other methods extract the adaped modes of the system under test.
The physical principle of this method is that tloecé vector is chosen so that it exactly
balances all the damping forces whatever theselbmand so the principle applies equally to
all types of damping.
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4. Modal Test

In this chapter, the procedure how to perform moelst will be discussed. This procedure
involves three or four main stages:

1) preparation of the measured structure and creatinggeometrical model for
measurement

2) measurement itself

3) identification of modal parameters from the mead uata

4) (verification of the obtained modal model, its carnpon with a computational model
etc.)

All these stages will be discussed step by steig. dtear that using various procedures in

the individual stages will highly depend on thegmse of modal test (see chapter 1.1).

4.1 Preparation
4.1.1 Preparation of the Measured Structure

Various types of how to support the structure dynmeasurement were briefly mentioned
in chapter 1.4. Here, the individual possibilitved be discussed in more detalil.

4.1.1.1 Free Support

Free support (free-free conditions) is theoretycalich a type of support where the tested
object is not attached to ground at any of its do@tes and is freely suspended in space. In
theoretical analysis, a freely supported body aigib rigid body modes, i.e. 3 displacements
in the direction of 3 coordinates and 3 rotationsuad the coordinate axes. All those six
modes have the natural frequency equal to zero.

In practice, free support is realized either bytipgtthe body on a very soft pad (e.g. foam)
or suspending it on soft springs. It is obvioud firequencies of rigid body modes will not be
equal to zero in that case, but the values willVéey low. Such support is considered to be
free if the highest natural frequency of rigid badgdes is less than 10% of the value of the
lowest deformation natural frequency. So, if thietfbending mode of a beam is e.g. 150 Hz,
all of the rigid body modes should be less tharHz5 When this condition is satisfied, the
influence of support to deformation natural frequies is negligible.

Damping of the individual modes, rather than ndttrequencies, could be influenced by
the support. Thus, if the measurement is performigial the aim to determine precise values
of damping, the influence of the support could bmimized by placing soft suspension
springs into nodal points. But, nodal points aréedent for each of the modes, so for
obtaining as precise values of damping as pos#ibd®uld be necessary to measure each
mode with different placing of suspension springs.

Free support is both the simplest and the mosalgeitif the modal model obtained from
measurements is to be compared with the computdtinadal model. Thus, it is worth to use
it whenever it is possible.
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4.1.1.2 Grounded (Fixed) Support

Grounded (fixed, clamped) support is theoreticallgh a type of support where some
points on the body (some DOFs) are completely fizgdonnecting to the ground. This could
not be reached in practice, so the support is densil to be fixed if the response of the fixed
DOFs is less than 10% of the response of the dil@Fs. This type of support causes
difficulties when comparing experimental modal mlodih the computational modal model,
because the differences in both models could besechunamely by different boundary
conditions. But, sometimes it is necessary to hisetype of support, if modal properties have
no importance when the structure is freely supploféeg. for turbine blades).

Another difficulty with such a type of support igtlvrepeatability of the measurements.
Despite any effort (tighten the screws connectimg $tructure with the measurement base
using a torque wrench, etc.), 100% repeatabilifgiisng if disassembly and reassembly of the
measurement base is performed. According to expsgjenatural frequencies of the
individual modes could differ after such mount rabint in the range up t€6%.

4.1.1.3 Support in-situ

This type of support is the simplest as for prefana- there is no preparation,
measurement is performed in the actual operaticoadlitions. This type of support is used
when there is no other possibility (when measuamgry heavy structure, large machine, etc.)
or, when modal properties in operational conditians of interest. It is clear that it is even
more difficult to compare an experimental modelhwis computational model with this type
of support than it is with fixed support.

4.1.2 Preparation of Experimental Model

In this chapter, anodel will denote a geometrical model of the measuredctire with
defined points and degrees of freedom in which omnressents are to be performed. This
means no kind of mathematical model (spatial, modaésponse).

A mesh of points representing the measured streigiuto be selected. In each of these
points, it should be decided in which directions theasurements are to be performed, i.e.
degrees of freedom are to be defined. Most oftaly, the transversal degrees of freedom are
measured (i.e. directions X, Y and Z). In speceses, rotational degrees of freedom could be
measured as well, but these require special traesdand procedures that are not common
and are not supported by most of modal softwar&ggges.

The density of the mesh of the measurement poigtdyhdepends on the frequency range
of the measurements or, more precisely definedthennumber of modes that would be
identified - it is important to consider that thigler the mode, the more nodal lines possess
its mode shape and the more points are necessaligfay it realistically. So, the rule for
defining the density of the mesh (i.e. number oh{®) is: define just enough points to be able
to reliably identify all of the modes in the measdifrequency range, but not too many points
(or DOFs), because redundant points mean a moeedomsuming modal test.

It should be mentioned, that the density of meshsdoot affect the precision of the
obtained modal parameters! It only affects the ityaf displaying mode shapes and thus the
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possibility to identify them correctly. It is a cqietely different situation from finite element
calculations where the density of the mesh highflyences the precision of the solution.

84 d 78 75
g gz 80 T3 T2
8 a2~ 79 f6 7 70 - 69
= s el
21
5 4 4 57 7 18
47
48 8 1
97 3 1
g
reference DOF 977

Fig. 4.1 Example of the Geometrical Model for Modal Test

A mesh of points should be drawn on the measuredtste (see Fig. 4.1) and the same
model should be created in the modal test softwals®, so-called eference DOF is to be
defined - this is the DOF, in which point direct FB& measured, which means that the DOF
of excitation and of response is the same. Whenodaimtest is performed using impact
excitation, an accelerometer is usually fixed i@ teference point. When a dynamic exciter is
used for excitation, it is connected to the striecin the reference point. Requirements for the
location of the reference point are somewhat cdidtary:

1. It should be placed in a way that there is an aaegresponse by all of the modes so
that the signal to noise ratio is as good as plessib

2. It should be placed in a way that the influencatbfching accelerometer or dynamic
exciter is as low as possible.

It is obvious that these two requirements are mtrealiction, because the highest influence
on the structure caused by attaching acceleroretexciter would be at position, where the
structure exhibits the highest response. Thustantige it is necessary to choose a reasonable
compromise between those two requirements. Moreovieen the mass of accelerometer in
comparison to the mass of the measured structuegiggible, its influence is also negligible.

The first requirement is related to the fact thia¢ must be careful that the reference point
would not also be a nodal point of one mode frooséhwhich are of interest. In this case, the
response of this mode is zero and it would not desible to identify it. One of the ways to
avoid this situation is to approximately know theoda shapes in advance, e.g. from a
computational model. Another option, if mode shapes not known and can not be
estimated, is to try different locations of theereice point before the entire modal test and
watch if the number of resonances in the measuRde iB stable. If some of the resonances
disappears at any point, it means that at thistp®ia nodal point of the particular mode shape
and that this point can not serve as a reference.

-77 -



4.2 Measurement Techniques

This chapter deals with measurement techniqueshwdmie used for modal testing. There
are two types of vibration measurement:

- Those in which just one type of parameter is meab(usually the response levels)
- Those in which both input and response output parars are measured.
According to the basic relationship:
RESPONSE = PROPERTIEBSINPUT

it is clear that only when two of the three termghis equation have been measured, it can be
defined completely what is going on in the vibrataf the test object. If we measure only the
response, we are unable to say whether a parlicllmyh response level is due to a strong
excitation or to a resonance of the structure. Nbetess, both types of measurements have
their applications and much of the equipment astriments used is the same in both cases.

This text is focused on the second type of measemgmwvhere both excitation and
response are measured simultaneously so that #ie éguation can be used to deduce the
system properties directly from the measured d&fthin this category there are a number of
different approaches which can be used, but it lshio&: started with a method referred as the
single-point excitation (although this point may change its location dgrthe modal test).
Using this method, either one row or one columtheffrequency response function matrix is
measured. There are two principially identical nfiodiions of the single-point excitation

method:
- SISO (Single Input Single Output)

- SIMO (Single Input Multiple Output) - the number @fitputs (responses) depends on
the number of channels that are at disposal oratla¢yzer, i.e. how many responses
can be captured simultaneously. The principle giali post-processing is the same as
for SISO - the classical FRF is used accordingitq®1).

Another type of measurement is so called MIMO (lifxdt Input Multiple Output), during
which excitation at multiple points is applied sitaneously. This type of measurements is
essential for modal testing in these cases:

- Large structures that are impossible to be excigedg only one exciter.

- Complex structures that exhibit local modes. Lonades are modes when only a part
of structure vibrates and it is impossible to exeill these modes simultaneously with a

single exciter.

- Symmetrical structures that exhibit multiple mod®go or more modes at the same
frequency). In order to isolate these modes, itesessary to have as many reference
points as is the number of modes at the same fnegue

MIMO method is a common standard in aircraft antbmotive industries, but it has a
slightly different theoretical background than $@&pgoint excitation and thus it will not be
discussed in detail in this text.
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4.2.1 Basic Measurement Setup

The experimental setup used for FRF measuremesisalig consists of three or four
major items:

- an excitation mechanism
- atransduction system, to measure the various measnof interest
- an analyzer, to extract the desired informatiomftine measured signals

- (computing system, to post-process the measurexy datract modal parameters,
animate mode shapes etc.)

accelerometer

force transducer

impact analyzer
hammer

Fig. 4.2 Experimental Setup Where Impact Hammer is Used for Excitation

A typical experimental setup for excitation usimgpiact an hammer is shown in Fig. 4.2.
In this case, the accelerometer is fixed in therefce point and the structure is subsequently
excited at all the points. It provides one rowlw FRF matrix. A typical experimental setup
for excitation using dynamic exciter is shown ig.H.3. In this case, the exciter is fixed in
the reference point and the response is subseguertdsured at all the points (or at all the
points simultaneously, depending on how many aealyzchannels are at disposal). It
provides one column of the FRF matrix.

accelerometer testpiece

TV

force transduct

dynarm'c/'

excitel

\ power amplifier

Fig. 4.3  Experimental Setup Where Dynamic Exciter is Used for Excitation
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4.2.1.1 Excitation Techniques

There are several ways how to excite vibration stiracture. They can be divided into two
major groups:

1. impact excitation
- using impact (modal) hammer - the most common ntetho
- releasing from the deformed position - e.g. byingtacross the suspension cable
- hitting by a falling mass
- using a pendulum impactor

2. excitation using an attached exciter
- electromagnetic exciter - the most common method
- electro-hydraulic exciter
- mechanical exciter - eccentric rotating masses

There are other, non-standard excitation methaatsaite used for large structures (bridges,
off-shore platforms etc.):

- using jet engines
- natural excitation (by wind, sea waves, traffic)

They are used in so callemperational modal analysis (see chapter 6) and lead to an
unscaled modal model.

4.2.1.1.1 Impact Excitation Using I mpact Hammer

Using an impact hammer is the simplest and fasiest of exciting a structure into
vibration. It requires no preparation work and thsisvery suitable to use in operational
conditions. Moreover, it does not influence theictire by attaching the exciter, which is an
advantage itself.

The hammer consists of a head, force transdupeganid handle. An impactor can also be
used - it is basically a hammer without a handée (Big. 4.4). The equipment of a hammer is
usually completed with a set of tips of differetiffsess and with a set of heads of different
masses. A force transducer detects the magnitudeedforce felt by the impactor which is
assumed to be equal and opposite to that expeddncthe structure.

The magnitude of the impact is basically determibgdhe mass of the hammer head and
the velocity with which it is moving when it hithd structure. The operator controls the
velocity rather than the force level itself, andasoappropriate way of adjusting the order of
the force level is by varying the mass of the haminead.

The frequency range which is effectively excitedtig type of device is controlled by the
stiffness of the contacted surfaces and the masheothammer head: there is a system

contacstiffness

y. above which it is difficult to deliver
impactormass

resonance at a frequency given#

energy into the test structure. When the hammerinipacts the test structure, this will
experience a force pulse which is substantially tha half-sine shape, as shown in Fig. 4.5
(left). A pulse of this type has a frequency conteinthe form illustrated in Fig. 4.5 (right)
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which is essentially flat up to a certain freque(fgyand then it is of uncertain strength above
this frequency. This means that it is relativeleffactive at exciting vibrations in the
frequency range abowvig and so it is necessary to have some control overmptrameter. It
can be shown that there is a direct relationshipvéxen the first cut-off frequencil, , and the
duration of the pulseT. , and that in order to raise the frequency ramngs necessary to
induce a shorter pulse length. This, in turn, latesl to the stiffness (not the hardness) of the
contacting surfaces and the mass of the impactad.hEhe stiffer the materials, the shorter
will be the duration of the pulse and the highell i the frequency range covered by the
impact. Similarly, the lighter the impactor mas$g higher the effective frequency range. It is
for this purpose that a set of different hammes ipd heads are used to enable the regulation
of the frequency range. Generally, it can be daad & tip as soft as possible has to be used in
order to supply input energy only to the frequermyge of interest. Using a stiffer tip than
necessary leads to the fact that the supplied gregses vibrations outside the frequency
band of interest at the expense of those withmzbne.

head
Fig. 4.4 Impactor and Impact Hammer Details
a(t) Gaa(f)
o
E
AN
t f
f
T. ¢

Fig. 45 Impact Force Pulse and its Spectrum

There are some disadvantages associated with aisimgpact hammer:

- Control of the frequency range of excitation isited and, moreover, it is rarely
possible to use frequency zoom.

- Crest factor is very high and due to a high peakllef the acting force there is a
danger of causing a local damage to the structaek exciting its nonlinear
behaviour.
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- Window (weighting) functions have to be used bathifiput and output signal.

When using impact excitation, different weightingn€tions are used for input and output
signals. The input signal is weighted witlansient window that serves for suppressing noise
to zero in the time period when the impact forceasacting but the measurement of response
is in progress. In order to be sure that the smfi length of the transient window are set
correctly, it is worth to expand the vertical agsthat level of noise is visible. For the output
signal (response), exponential window is often usednprove the analysis by minimizing
leakage error that is caused by truncating the tsgeal. The length of the exponential
window (its time constarnt) should be set with regard to the requirement ttatignal at its
end should be attenuated to the level of noiset ¢east by 40 dB. The windows for both
signals should started at the same time if themoisystem delay. Weighting windows are
shown in Fig. 4.6.

Transient weighting of input signal Exponential gfging of output signal
1; ElﬂDr: ,I\\
won | {1 ]
400m 200m l ) T
o 0 m hﬂl Aﬂ M A o =
-400m -200m ' W vv u ’

-800m -400m

Az -600m

RES -800m
= -
0 20m 40m &0m  80m 100m 120m 140m 160m 180m 200m 220m 240m 0 z0m 40m  60m  G0m 100m 120m 140m 1E0m 180m 200m 220m 240m

[E] [

Fig. 4.6  Weighting Windows for Impact Excitation

By applying exponential weighting, an electronianéng is added to the system. Under
this condition, the damping value determined by sneament will be over-estimated and for
obtaining the true value, compensation for the eeptial window should be performed (see
Fig. 4.7).

Correction of the decay constant: b(t)
6=9, -9, 1
d... true value

Om ... measured value

window function
/ original signal

3, =1 influence of exp. W. BAE A s n
T, t
Correction of damping ratio: ]i/ (i ‘7|
6 _6n—0, shift length =,
Z—Q—:Q—:Zm_zw |
i ’ sample time T

Fig. 4.7  Compensation for Exponential Weighting
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Some of the disadvantages of application of impachmer excitation can be avoided by
applying so-calledandom impact excitation. This means several consecutive hits during the
record (see Fig. 4.8). In this case, Hanning wintowused both for input and output signals in
order to push the signals to zero in their edgesmaimimize the error caused by leakage. As
the windows applied to the input and output sigaaésthe same, their influence on FRF will
be cancelled out and no compensation for weightiimglow is necessary when damping is
estimated.

Random impact excitation introduces more energg thaingle impact during one record
and the crest factor is lower. All advantages gbact excitation remain unchanged, namely
its easy use in operational conditions. Moreovkis type of excitation may be used for
measurements in a narrow frequency band or witjugacy zoom. In these cases, record time
is quite long and if only a single impact was ughd,structure would vibrate for much shorter
time period than the measurement period was. Bly@gpmore hits, this problem is avoided,
but still there is a risk that most of the energp@ied to the structure will be out of the
measurement range, because control over the freguange of excitation is always limited
when an impact hammer is used.

recorded analyzed

excitation

respon

Tm

Fig. 4.8 SgnalsInvolved in Random Impact Excitation

4.2.1.1.2 Excitation with the Help of Dynamic Exciter

Perhaps the most common type of exciter is dleetromagnetic (or electrodynamic)
shaker in which the supplied input signal is convertedioalternating magnetic field where a
coil is placed which is attached to the drive pdrhe device and to the structure. In this case,
the frequency and amplitude of excitation are adled independently of each other, giving
more operational flexibility. It is useful becauges often better to vary the level of the
excitation as resonances are passed through. Howieweust be mentioned that electrical
impedance of these devices varies with the amg@itfdnotion of the moving coil and so it
is not possible to deduce the excitation forceegiffom a measurement of the voltage applied
to the shaker or by measuring the current pashimogigh the shaker because this measures the
force applied not to the structure itself, buthe assembly of structure and shaker drive. The
difference between this force and that appliedh® structure is quite small, but near the
resonance a very little force is required to pradadarge response and without altering the
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settings on the power amplifier or signal generaioere is a marked reduction in the force
level at frequencies adjacent to the structurdisrabfrequencies. As a result, measurement of
force at frequencies adjacent to natural frequenicielines to be contaminated by noise. So,
the force acting on the structure should be medsaseclose as possible to the structure's
surface, the same as with impact excitation.

Generally, the larger the shaker, the greaterahmefwhich may be generated for exciting
the structure, but the working frequency rangeinsitéd at the same time. An effective
excitation is possible only as long as the moviaggof the exciter remain a rigid mass. Once
the frequency of vibration approaches and passedirdt natural frequency of the coil and
drive platform, there is a severe attenuation efftrce which is available for driving the test
object and although some excitation is possiblesaltbis critical frequency, it does impose a
natural limit on the useful working range of theside. This frequency is of course lower for
larger shakers.

In special cases, it is appropriate to usedl@ntrohydraulic exciter. These are cases of
testing structures or materials, the normal vibratambience of which is associated with
higher static load that may quite often alter theéynamic characteristics or even their
geometry. An advantage of electrohydraulic exciterheir ability to apply simultaneously a
static load as well as dynamic vibratory load tietnecessary in such cases. Another
advantage that may hydraulic exciters offer is plesibility of providing a relatively long
stroke, thereby permitting the excitation of stunets at large amplitudes. On the other hand,
hydraulic exciters tend to be limited in operatiofraquency range above 1 kHz, whereas
electromagnetic exciters can operate well into3d&0 kHz region, depending on their size.
Hydraulic exciters are more complex and expensaléhough generally compact and
lightweight compared with electromagnetic exciters.

Another type of exciter that is worth to be menédns amechanical exciter. It is realized
by means of eccentric rotating masses (unbalaraes)t is able to generate the prescribed
force at various frequencies, although its consahot much flexible. The amplitude of the
exciting force is given by the unbalanced massitndn be changed only by changing either
the mass or its radius which both is impossiblgéoform during operation. This type of
exciter is also relatively ineffective at lower dreencies, because the exciting force depends
on the square of rotational speed. However, ifatibon amplitudes caused by this type of
exciter is not too large in reference to the odbitotating mass, amplitude and phase of the
excitation force are exactly known and require dditonal measurements unlike other type
of exciters. A mechanical exciter is used to meadarge structures such as bridges or
bedplates of turbogenerators.

Attachment of an Exciter to a Structure

When using an electromagnetic or electrohydrautiter, it is necessary to connect the
driving platform of the shaker to the structureyally incorporating a force transducer. Some
precautions must be taken in order to avoid theodhiction of unwanted excitations or
inadvertent modification of the structure. From thefinition of a single FRF as a ratio
between the harmonic response at D@Bused by a single harmonic force applied in XOF
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it is evident that this single force must be thdyoexcitation of the structure and this
requirement should by met in the modal test. Altffoit may seem that the exciter is capable
of applying the force in one direction only, assitessentially a unidirectional device, there
exists a problem on most practical structures whosgion is generally complex and
multidirectional. The problem is that when pushe@me direction, the structure responds not
only in the same direction but also in others. Suciion is expected but it is possible that it
can give rise to a secondary form of excitationhi# shaker is incorrectly attached to the
structure.

The moving part of the shaker is usually very molailong the axis of its drive but very
stiff in the other directions. Thus, if the strugwishes to respond both in line of action of
the exciter and in lateral direction, then thefiséi§s of the exciter will cause resisting forces
or moments to be generated which are, in effeatyted on the structure in the form of
secondary excitation. The response transducers kiotinng of this and they pick up the total
response, which is caused not only by the drivigd which is known, but also by the
secondary and unknown forces.

force transduce
drive rod

exciter

Fig. 4.9 Exciter Attachment and Drive Rod Assembly

The solution is to attach the shaker to the stredforough arive rod or similar connector
which has the characteristic of being stiff in afieection (that of the intended excitation)
while at the same time being relatively flexiblethe other five directions. A suitable drive
rod, orstinger, is shown in Fig. 4.9. It is made of 1 mm diamewae of the length of about
10 to 50 mm. Care must be taken not to over-congteng the drive rod is too long or too
flexible, it begins to introduce the effects of @&/n resonances into the measurements and
contaminates the genuine data.

Another requirement that has to be met in orddraee the precise measurements of the
excitation force is to place the force transduseclase to the measured structure as possible.
Correct arrangement of the connection that is rsecgsfor reliable FRF measurements is
shown in Fig. 4.10 and also in a practical exampleg. 4.9.
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force transducer

testpiece /excner

accelerometer at
reference DO ™~ |

\

drive rod

Fig. 4.10 Placing of Force Transducer and Attachment of the Exciter to the Testpiece

Another consideration which concerns the shakethés question of how it should be
supported, or mounted, in relation to the testcstme. Several possibilities are shown in Fig.
4.11 - three of them are acceptable and one istigfasdory. Generally, it can be said that
either the shaker or the structure should be fregbported.

In Fig, 4.11 (left), and also in Fig. 4.12, the lghrais fixed to the ground while the test
structure is supported by a soft suspension. thésmost satisfactory arrangement and it is
often used for light structures that can be suggbfteely. In the middle of Fig. 4.11, two
arrangements in which the shaker is resilientlypsuied are shown. In this case, the
measured structure can be either grounded or freepported. The problem with this
arrangement is that the reaction force causes @&ment of the shaker body which, at low
frequencies, can be of large displacement. Thisirim causes a reduction in the force acting
on the structure and thereby adding an additioraatia mass to the shaker may be necessary.

The arrangement in Fig. 4.11 (right) is unsatisfacfor the modal test, because reaction
forces in shaker's support introduce an additiamaditation to the structure that is not
measured by the force transducer.

ideal configuration suitable configuration  unsatisactory configuration

free structure
free shaker

] )| )|

free supported structure

grounded shaker grounded structure

= grounded shaker

S
grounded structure
free shaker

Fig.4.11 Various Mounting Arrangements for Exciter with Respect to Reaction Forces
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4.2.1.1.3 Types of Excitation Signals

When an attached shaker is used for excitatiorrethee various possibilities regarding
types of the excitation signals. The types of dgjoan be divided into (see Fig.4.13):

- harmonic (sinusoidal) - spectrum contains onlynglsi frequency of the sinewave
- broadband - spectrum contains a band of frequenitiesther splits into:

0 impulse (transient)
= single pulse (or impact)
= periodic pulse
= random impact

o random

0 pseudorandom

0 swept sine (chirp)

Impulse excitation is mostly applied in the formasf impact or random impact using an
impact hammer (see chapter 4.2.1.1.1), but it ¢sml@e applied with the help of an attached
shaker. In this case, it would be most likely agknor periodic pulse. All of the above
mentioned signals are usually provided by a sigygderator which is usually part of the
analyzer. The signal from the generator goes thrahg power amplifier, then to the dynamic
exciter and then to the structure.

Note.: Swept sine signal can also be produced hyeehanical vibration exciter, while
nature excitation by sea waves or road traffic poed a random signal.

Sine signal

The single sine signal of constant frequency cadlh&®e applied in modal tests. This type
of signal can be used in the form sigpped sine in FRA analyzers (FRA = Frequency
Response Analyzer) that, in contrast to FFT anatyz#o not perform the Fourier transform
of signals, but directly measure the steady-stagpanse of the system to the steady-state
harmonic excitation. The frequency of excitatiorclenged step by step and the ratio of the
response to the excitation is recorded. In this,wsaybsequently, the entire FRF in the
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frequency range of interest is obtained. This pidace is very time consuming, but it is
basically the only option if the nonlinearities structures are to be examined in detail. The
frequency range of the measurement can be set @lanbsgrarily, thus this procedure is
applied with the use of the frequency zoom to exanfiiequency regions near resonances.

( sine pulse
a(t a(q ll
l VVVVVV R t
%"e
swept sine periodic pulse
a(t a(t} I I ll
| VALY WHWWW t Ty b
random impact

a(t a(t} 1
"““"'M" "' m u t | g

pseudorandom random impact

aty i oo a(t)lllllllll
: t t

e T T To o T

Fig. 4.13 Basic Types of Excitation Sgnals

Random Signal

Random signal is characterized by its power spledeasity Ga(f) and the amplitude
probability density p(a) with Gaussian normal dlsition (see Fig. 4.14). Crest factor and
signal to noise ratio are quite good with this tgbsignal.

a(t)

p(a

baseband 7 Y zoom
Gaa(f)

- f s f
frequency range frequency range

Fig. 4.14 Random Sgnal - Time History and Spectrum
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Random signal can be generated in a limited frecquéand according to the frequency
range of interest. It can be used for baseband urmaents as well as for zoom
measurements. The signal is not periodic withinrdeord time, so it is necessary to apply
Hanning window to both input and output signalsrimimize the leakage error. Changes in
amplitudes and phases of the excitation signaramdom, thus averaging is necessary. The
influence of the eventual nonlinearities is avedagat and the ideal linearized FRF estimate
is obtained.

Pseudorandom signal

Pseudorandom signal is essentially a piece of randignal that is repeating with the
periodT. This period is equal to the record length in @malyzer. Consequently, no leakage
error occurs because the signal is periodic ineberd time so that no weighting windows are
necessary (rectangular window = no window). Thiplies that the signal only contains
frequencies coinciding with the lines computed he analyzer. Normally it is designed to
have the same level in each line. At a given feaqgy, a system will always be excited at the
same level since each recording contains the safoemation. Therefore no averaging of
non-linearities can be obtained and this type ghali is only suitable for a perfectly linear
system. As with the random signal, the pseudoransigmal can be used both for baseband
and zoom measurements.

A special type of pseudorandom signal is a chigpai It is a swept sine signal with a high
sweep rate when sweep from the minimal to the makiraquency is repeated each period
and this period is equal to the record length.

4.2.1.2 Transducers Used for Excitation Force and Respdlessurements

A detailed description of the individual types wHrisducers is not the subject of this text. It
should only be emphasized here that each sens@umesaexactly what is happening with it
itself. It should be ensured by proper attachmdnhe sensor to the structure so that this
would be the same as what is happening to thetstei@and what should be measured.
Further, it is important to realize that each tcreer has its own resonant frequency which
mostly depends on the mass of the transducer arahvughfurther more or less influenced by
the attachment of the transducer to the structline. effective frequency range in which a
transducer may be used is to approximately 1/8@f/alue of this frequency. Various ways of
transducer attachment that are sorted accordingowo much they reduce the transducer's
natural frequency (from the best to the worst) are:

- screw (stud)

- special cement

- thin double adhesive stud
- beeswax (up to £0C only)
- magnet

Beeswax is very often used in modal tests for httemnt of accelerometers because it is
quite undemanding and quick and does not signifigaaduce the effective frequency range
of the transducer. On the contrary, attachment thithuse of magnet is not appropriate and it
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is mostly used for operational measurement but opl{o about 1500 Hz. If a structure with a
curved surface is to be measured, mounting witieviiase can be used.

When an impact hammer is used for excitation, egfdransducer is an integral part of the
hammer and it is not attached to the structure.Wé¢hdynamic exciter is used for excitation, a
force transducer should be attached to the strictas described in chapter 4.2.1.1.2.
(Fig. 4.10). It is mostly attached with a screwit s not possible to drill a thread for a screw
into the measured structure, it is possible tosesealled "plug”. It is a small cylinder, one
base of which is smooth and cemented to the sudhtiee measured structure and a screw
thread is drilled into its second base. The foraagducer is screwed into this thread as shown
in Fig. 4.9.

Another aspect that should be considered in théegbof selecting transducers for modal
tests is the mass of the transducer in relatioinéomass of the measured structure to avoid
dynamic properties of the measured structure talteeed significantly by the transducer. It
was already mentioned in chapter 4.1.2. regardiegselection of reference point, where the
influence of transducer placement to the dynamaperties of the structure was discussed.
Mass of the transducer plays a role especiallygint Istructures. Generally, it should be less
than 10% of the mass of the structure. From thecjpie of design of accelerometers, it is
obvious that the smaller the transducer, the lotsegensitivity but higher the frequency range
of the measurement. For special applications, utccbappen that a transducer that would be
light enough not to alter the structure would hav¢he same time inadequate sensitivity. In
these cases, a non-contact transducer can beeugelhser doppler vibrometer.

4.2.1.3 Analyzer
Two types of analyzers - FRA or FFT - can be useaetrform modal tests.
Frequency Response Analyzer (FRA)

This type of analyzer has been already mentionechapter 4.2.1.1.3 in relation to the
stepped-sine excitation. It does not perform Fouransform of time signals. The principle of
its operation is as follows: The source ammmand signal is a sine-wave at the desired
frequency. Measured signals from the force andomsp transducers undergo a digital
filtering process during which all components witliquency different to that of the command
signal are eliminated. Non-synchronous compongagttien is improved by filtering over a
longer period of time. This is quantified by themaer of cycles of the command signal
during which the computations are performed. By firiocess, a very accurate measurement
of the signal component at the desired frequenopiained. FRF at the desired frequency is
directly given by the ratio of amplitudes of thepense and force signals. Then, the frequency
of the command signal is changed by a step cornelipg to frequency resolution and the
process is repeated. Step by step, the entiredrnaguband of interest is measured. This is a
very accurate and very time consuming measureri@at. is why this type of analyzer is not
commonly used for modal tests, but only for speaplications, namely for studying non-
linearities.
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Fast Fourier Transform (FFT) Analyzer (frequenpgedral analyzer)

The principle of operation of this type of analyneas described in detail in the chapter 2 -
Dual-channel Analysis. Basic principles can be samnred as:

- All the frequency components present in the compilae varying signal are measured
simultaneously.

- The output is a spectrum containing a finite numbecomponents, describing the
relative amplitudes of the entire range of frequesipresent in the signal.

- Calculates additional functions and all calculagiare based on the discrete Fourier
transform.

- Signal should always be subjected to the anti4alig§lter prior to entering the A/D
converter.

4.2.2 Preparation of Measurement

After the tested structure is prepared (supporaed)the geometrical model is created, the
measurement can start. Remember that when a strustexcited with an attached shaker,
the shaker and the force transducer are placdueimeference point (DOF) and the response
transducer (usually accelerometer) is placed ssoadyg to all the points (see Fig. 4.15). If the
number of measured DOFs is not greater than amayzbannels that are at disposal,
responses at all the DOFs can be captured simoliahe In any case, one column of the FRF
matrix is obtained.

Fig. 4.15 Preparation of Measurements - Shaker Excitation

When hammer excitation is used, the accelerometgsually placed in the reference point
and the structure is excited successively in @&lphints, thus producing one row of the FRF
matrix (see Fig. 4.16). However, this is not acstule. If the tested structure is quite complex
and some of the DOFs that have to be measuredaadéy faccessible, it might be easier to
place an accelerometer to them rather than to edurcimpact in them. In that case, the
structure might be excited with an impact hammeraitixed (reference) point and the
response accelerometer might be roving. Likewieg triaxial accelerometer is used to
capture responses, it can not be used as refereecaise only one degree-of-freedom is the
reference one (supposing SISO or SIMO techniquielisTwhen a triaxial accelerometer is
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used, it is always a roving one and the DOF oftaekon is fixed, regardless whether hammer
or shaker excitation is applied.

Prior to starting with the entire modal test, itagpropriate to perform some checks in
order to be sure that the measured data will beecoWith hammer excitation, it is simple to
perform the reciprocity check. Theoretically, ifs&ructure is excited in DOF and the
response is captured in DQFit should be the same as the reciprocal situgganitation in
DOF j and response in DOBH. In both case, an identical FRF should be obthine
Hij (f)=H;i (f).

The most important check that should never be ethid that of checking the accuracy of
reference point measurement.

Fig. 4.16 Preparation of Measurements - Hammer Excitation

4.2.2.1 Reference Point Measurement

In chapter 4.1.2, the requirements regarding tfe¥eace point were discussed. It is a good
idea to start a modal test with reference pointsueament and to perform all the possible
checks to ensure that this measurement is corrigettp continuing with measurements in all
other points. One should always keep in mind tr@nflow-quality data, it is not possible to
obtain a reliable modal model whatever sophistatgtest-processing is used. From this
perspective, the care given to the initial chedkthe accuracy of data appears to be excellent
investment. The correct reference point shouldtakthe following features (see Fig. 4.17):

- There is an antiresonance behind each resonamceRRF plot when displayed in dB.
- In a phase FRF plot, the phase only varies indhge of 1860.

- In the plot of imaginary part of inertance or relegge and in the plot of real part of
mobility, all the peaks are of the same signs.

There are some other requirements that apply toedisurements, not only to the reference
point measurement. However, if they are satisf@ditlie reference point measurement, they
are usually satisfied for all the other measureraeswell. These are the following:

- Coherence function (eq. 2.10) should have the vaseclose to 1 as possible.
Generally, this cannot be achieved in the wholguemcy range. Usually, even for
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good quality measurements, coherence in antiresesan far below 1 (see Fig. 4.17)
as a result of the fact that the level of the digmat these frequencies comparable to
the noise level. On the contrary, near resonareesdherence function use to be close
to 1 even for mesurements of lower quality.

Nyquist plot should draw a distinct circle sectifox each resonance. In Fig. 4.17
(below) it can be seen that one of the modes {hiadirst mode actually) didn't draw a
very distinct circle. This is the sign of the legkaerror and related insufficient
frequency resolution of measurement. (Of courdeastits effect to coherence function
as well.) This case will be discussed in more tiétachapter 4.3.1.2 after learning
about modal circle properties.
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Fig. 4.17 Checking of Accuracy of Reference Point Measurement

4.3 Experimental Modal Analysis - Modal Parameters Idetification

After acquiring all the data by performing measueets at all the DOFs, thus obtaining
either one row or one column of the FRF matrix, alaghalysis software is to be used to
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post-process this data. This part of modal tesaliedexperimental modal analysis as this is

the stage of the experimental approach correspgridithe stages calledodal analysis also

in theoretical approach. In both cases, modal amsalieads to identification of modal
properties of the system. However, it should bécedtthat these two processes are somehow
different. experimental approach deals with cunttf) theoretical expressions to the actual
measured data, while theoretical analysis deals tvé eigenvalue problem.

Nowadays, a lot of software packages for the erpamtal modal analysis exist and the
analyst is not supposed to carry out this stagé@owit software support. In each software
package, several methods for post-processing aht#esured data are at disposal, and it is the
responsibility of the analyst to choose the mograpriate method for each application. In
increasing complexity, the methods involve the wsial of a part of a single FRF curve
encompassing single resonance, then of a complet® @ncompassing several resonances
and, finally, of a set of many FRF plots all on #ane structure. In every case, however, the
task undertaken is basically the same: to findctbefficients in a theoretical expression for
the FRF which most closely matches the measured @his task is most readily tackled by
using the partial fraction series-form for the FRE,developed in chapter 3 for different types
of system. The particular advantage of the senesfFRF approach is that the coefficients
thus determined are directly related to the modapgrties of the system under test, and these
are generally the very parameters that are sought.

In this text, only three of all the existing metkauiill be described.

4.3.1 Single Degree-of-Freedom Approach

There are several modal analysis methods that xpk same basic assumption: that in
the vicinity of resonance, the entire responsénefdystem is dominated by the nearest mode.
These methods can be further divided into:

- those based on an assumption that all the resp®igdeen by this single mode (e.g. the
simplest method call peak-amplitude or peak-picking

- those based on an assumption that contributiontttédranodes are represented by a
single approximation (e.g. the circle-fit method).

4.3.1.1 Peak-picking method

This is a method that works adequately for stresfwhose FRFs exhibit well separated
modes which are not so lightly damped that accuretasurements at resonances are difficult
to obtain but which, on the other hand, are noheavily damped that the response at a
resonance is strongly influenced by more than ondanThe applicability of this method is
limited, but it can be useful in more difficult essfor obtaining initial estimates to the
parameters required, thereby speeding up more glenawve-fitting procedures which require
starting estimates. This method is also used intifigation of operational deflection shapes.
Its application is as follows:
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1) On the FRF plot, the individual resonant peaks ideatified and frequencies with
maximum response are consider to be natural frengesa,.

2) Local maximum value |H| of FRF at the natural femty is noted.

3) 3dB bandwidthAw is detected and damping value is determined fraif-gower
points -w, andw, (eq. 3.40):
W - AW
r]r:(a wb)l]_ r]rzzzr

Q’ Q

r
4) An estimate for the modal constant can be obtayegissuming that the total response
in the resonant region is attributed to a singkentén the general FRF series (eq.

A rA'k
3.121): a, (w)=)" J

for w=0Q
r=1 Qf_wz-l-iner r

AI‘
2 1
reir

Modal constant can be found froit| = thus A, =|H@?n,

4.3.1.2 Circle-fit Method

For the general SDOF system, a Nyquist plot of feggpy response properties produces
circle-like curves and in two special cases it piEs an exact circle (mobility of the
viscously damped system and receptance of therbtistdly damped system). The MDOF
systems also produce Nyquist plots of FRF data hvhiclude sections of near-circular arcs
corresponding to the regions near the natural &eges. This characteristic provides the
basis of one of the most important types of modalysis - SDOF circle-fit method.

In this text, the described procedure will be based system with structural damping and
thus the receptance form of FRF shall be used. Mewryef it is required to use a model
incorporating viscous damping, then mobility forrh KRF should be used. Although this
gives a different general appearance to the plats they are rotated by 90° on the complex
plane - most of the following analysis and commeqigly equally to both cases. Some of the
more discriminating modal analysis packages offex thoice between the two types of
damping and simply take receptance or mobility datathe circle-fitting according to the
selection.

The circle-fit method exploits the fact that in Wieinity of a resonance, the behaviour of
most systems is dominated by a single mode. Algeddhg this means that the magnitude of
the FRF is effectively controlled by one of thenterin the series, that being the one relating
to the mode whose resonance is being observedaghwenption can be expressed as follows.
From eq. (3.121):

N A.
a, (w)= o K 4.1a
Jk( ) ;Qi_wz"'ir]ng ( )
This can be rewritten, without simplification, as
A N A
a, (w)= ok + s Kk 4.1b
= e T 2 G g @10
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The SDOF assumption is that for a small range exfuency in the vicinity of the natural
frequency of the™ mode, the second of the two terms in (4.1b) islpdadependent of
frequencyw, and the expression for the receptance may beewdts:

r

A,
+ B (4.2)

a. \w H ;
1k( )w:Q, Qrz_(*)2+ir]rQr2 r=jk

The total receptance plot may be treated as aeawith the same properties as the modal
circle for the specific mode in question but whishlisplaced from the origin of the complex
plane by an amount determined by the contributiballothe other modes. It cannot be said
that other modes are unimportant or negligible #eqthe reverse, their influence can be
considerable - but rather that their combined éftam be represented as a constant term
around this resonance.

Properties of modal circle:

Assuming a system with structural damping, thedfsiction under consideration is:

a(w) = i 1 (4.3)

2
=1 ) :
Q21— — | +i
rEE (er r]r]

since the only effect of including the modal consta , is to scale the size of the circle

(by
be seen that for any frequenoyfollowing relationships may be written:

rAjk‘) and to rotate it (by 1 A, ). A plot of the quantityx(w) is given in Fig. 4.18. It can

Im(a) _ n,
t = = 4.4
o(v) Rela) aY (4.4a)
Qr
Re{a) 1(5]
0 —y)= a = = r
tg(90° - y) () tg(8/2) 5 (4.4b)
from which is obtained:

o =Q?[f1-n, (g(8/2)) (4.4c)

alm (o)

Re @) Re @)
y/aw=0 - >
0
W

Fig. 4.18 Properties of Modal Circle

- 06 -



Differentiating the equation 4.4c with respecBtgields to:

dw® _ QEDT],[

do 2 n? (4.5)

The reciprocal of this quantity is the measurehef tate at which the locus sweeps around
the circular arc. It can be seen to reach a maximalne (maximum sweep rate) when
w=Q,, the natural frequency of the mode. This is showurther differentiation, this time

with respect to the frequency:

i(d‘*’jzo pro Q?-w?=0 (4.6)
dw| db

The above property proves useful in analysing MD¥@$tems data since, in general, it is
not known exactly where is the natural frequency,ibrelative spacing of the measured data
points around the circular arc near each resoneacebe examined, it should be possible to
determine its value.

Damping can be determined with the help of two {®on the circle ey, above resonance
andw, below resonance. Substituting to (4.4b) leads to:

oleu12)= ﬁ tg(6, /2) = &_1

n, N,
and from these two equations, an expression fodaneping of the mode can be obtained:

W -

_ A 4.7
o’ g, 12)+ q(6, /2) )
This is an exact expression, and applies for alélke of damping. If light damping is

considered (loss factor about 2-3%), the expreggiaf) simplifies to:

N,

w, -«
0204 a b
150 o6, 12)+ tole, 12))

When the two point are considered for whigh=6, =90° (the half-power points), the

(4.8)

familiar formula is obtained:

_ Wy Tl
=—= 1 4.9a
Uy (4.92)
or, if the damping is not light:
2 —
Gl (4.9b)

2Q?
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The final property relates to the diameter of madadle that is for the quantity specified

by the eq. (4.3) given asg— When scaled by a modal constant added in the ratarethe

reir

diameter will be:

rAjk‘
Q7 O,
and, as mentioned before, the whole circle wilkrdtated so that the principal diameter - the

one that passes through the point pertinent tan#tteral frequency - is oriented at an angle
0,A, to the negative imaginary axis. This means th#t is negative, the circle will lie in

D, = (4.10)

r

the upper half-plane and this is a situation tlaanot arise for a point FRF, only for a transfer
FRF. The constanBj from the eq. (4.2) is determined as a distanad®ftop” of the main
diameter of the modal circle from the origin (ség B.19).

Im(a) T Re(c)
Bik ”

EII‘A]k

Q

Fig. 4.19 Sift and Rotation of the Modal Circle

When modal parameters are extracted from the medgiata, typically not the whole
modal circle is available. For a system with welparated modes it can be expected that each
resonance will form a larger part of circle, buttwincreasing modal interference when close
modes or high level of damping occurs, it shoulegkpected that only small circular sections
will be detectable (maybe 4%r 6C). If the Nyquist plot will not form a distinct @ular
section in the vicinity of the resonance, the idamattion of modal parameters is problematic.

In Fig 4.17 (at the bottom) is the Nyquist plotrfraneasurement of a system with well
separated modes. It is the reference point measmteamd all the other plots in this figure
indicate measurement of sufficient quality. Howe\he Nyquist plot of the first mode did
not form a distinct circular part. In this case,ist due to leakage error and associated
insufficient frequency resolution. In the figureuf points closest to the resonance are marked
with the red colour and it can be seen that theepwate around the resonance is so high that
it did not manage to form a circle. From this meament, the accurate value of natural
frequency could be identified without any probldmot the damping estimate would not be
reliable. To fix this situation, the frequency rangf the measurement should be decreased.
This will cause prolonging of the measurement ticwsequently suppressing leakage error
and obtaining finer frequency resolution of the mwament.
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4.3.2 MDOF System Approximation Methods

There is a lot of situations in which the SDOF aggh to the modal analysis is either
inadequate or inappropriate. Several alternativthats that can commonly be classified as
multi degree-of-freedom approximation can be usdtiése cases.

One of the particular cases is that for very lightdamped systems, for which
measurements in resonances are inaccurate anzuldith obtain. These are not of concern of
this text.

The opposite case represents systems with verelglasoupled modes, for which
approximation by a single mode is inappropriate.cBgely coupled modes are meant those
modes whose natural frequencies are very closadb ether or which are relatively heavily
damped or both. With these systems, the responsat idetermined by a single mode (or by
one member of FRF series) even in resonance. ldgher a simple extension of a SDOF
method or a general approximation approach can dwel.ults principle will be briefly
described below.

General approximation approach

The individual measured FRF data will be denoted as
af(w,)=al (4.11a)

while the corresponding "theoretical" values w#l denoted as

& A, 1 1
a,(w)=a,= = Kk +— - 4.11b
do)ma = g kY @i -
where the coefficientsA ., ,A,, ..., Q1, Qz, ..., N1, N2, ..., K a M} are all to be

determined.

The member% represents the effect of low-frequency modes @hbst lie below
0V ik

the lower limit of the measured frequency band) thmﬂmemberiR represents the effect of
ik
high-frequency modes (those that lie above the jppé of the measured frequency band).
An individual error,g,, can be defined as
€, =(0(;“ —0(,,) (4.12)
and this will be expressed as a scalar value:
E, :‘g?‘ (4.13)
If a weighting factorw, is added to each frequency point under investigathe process

of approximation has to determine the values ofutenown coefficients in (4.11) so that the
overall error
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p
EIZW(E( (4.14)
/=1

is minimized. This is achieved by derivative of #ression (4.14) with respect to each
of the unknowns separately, thus creating a setsomany equations as is the number of
unknowns, each in the form:

—=0 ad=1A s A --ElC (4.15)

A set of equations created like this is not, unfoately, linear for many of the coefficients
(all parameter€)s ans) and thus it can not be solved directly. Therefomrious algorithms
use their own procedures and apply various sincglifbns. Most of them use some form of
iterative solution, some of them use linearizatm nearly all of them rely on good initial
estimates.

4.4 Modal Model

Whichever of the approximation method has been,ubedapproximation process should
result in a consistent modal model. When globalhod$ are used, the consistent model is
their direct output. But when simpler SDOF methbdse been used, some additional steps
should be done such as averaging of natural frege@nd modal damping values obtained
from the individual FRF characteristics. Howevdl, these steps are built-in in software
packages for experimental modal analysis and thlystmeed not to care for them.

- spectral matrix: eigenvalues - natural frequenares damping - are on the diagonal

- modal matrix: its columns are eigenvectors pertinemndividual natural frequencies

4.4.1 Presentation of the Obtained Modal Model

The actual output from modal analysis software lbanmepresented in the form of tables.
Such tables (results from StarStruct software)savn in Figs. 4.20 and 4.22. In Fig. 4.20 is
a table with the estimated natural frequenciesdardping values. Damping is stated in two
forms there: damp [Hz] determines one half of 3dBdwhile damp [%] is the damping ratio
multiplied by 100. Other software packages may giamping values in different forms, e.g.
as loss factorg. In Fig. 4.22 is a table of mode shapes wherentti@idual mode shapes are
given numerically - in the form of relative dispéswents and phase angles in the individual
degrees of freedom. In the displayed table, vaioethe first mode for the few first points can
be seen. Data originates from the measurement aiieaxial accelerometer was used so that
each point has 3 DOF - directions X, Y and Z.

Software packages usually enable to export andringata files in the standard Universal
file format (UFF) and many of them enable data exge with other software packages as
well, not only for experimental modal analysis, lalgo for a finite element analysis (quite
common is communication with ANSYS software etc.).
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Presenting results in a table form may be useful,itb the case of mode shapes it is not
very transparent and it is only used for numeramahparison of mode shapes obtained from
experiment and from computations (for more detade chapter 4.4.3). For mode shape
inspection and assessment, its drawing, eithefcstat animated, is used. All software
packages for modal analysis enable to display nsbdges in animation and some of them
enable their export in AVI format as well. If theode shape has to be presented in the printed
form, it is only possible to use static pictures}. such as in Fig. 4.21. - here, the two utmost
positions of the 8 mode shape from the table in Fig. 4.20 are shawe;undeformed
structure is in red, the mode shape in black colour

E Frequency Results: Freq & Damp

File Edit List Scaling
70.476M
b ode Freq.[Hz] Dramp.[Hz] Dramp.[%] -
1 70.48 453 63e-3 B43.72e-3
2 214.44 9351 3e-2 436.08e-2
K] 290148 BE7.11e-3 226.45e-3
4 J23ER 72352e-3 223 508e-3
4] 364.30 132 62 46e-3
B 438.70 177 403 64e-3
7 45308 3185 249.67e-3
a 521.10 1.34 256.90e-3
3 533560 931, 38e-2 186.82e-2
10 5a0.03 244 419 96e-3
11 B89.30 137 233.02e-3
12 h917 45 594 hZe-3
13 Fa0.5h 413 b9 62e-3 .

Fig. 4.20 STAR Software Results - Table of Natural Frequencies and Damping Values

Fig. 4.21 Satic Display of the Mode Shape
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Ei Frequency Results: Shapes

File Edit List =l
b ode j Freq.[Hz] Dramp.[Hz] Dramp. %) [dnits: Dezcription:
1 || |mea 453603 | 6437223 | Urknown  [# 2:70.48 Hz
1]
Dir.1 Dir.2 Dir.3 -
Puaint bl ag. Phase bl ag. Phaze b ag. Phase
212 18763 345 187.64 1.88 7T
2 209 18732 337 752 1.51 187.01
3 215 7.04 342 £.93 1.3 E.20
4 211 £.98 326 186.44 158 187.52
] 215 18736 243 a.04 1.38 188.00
G 222 187.51 A03.14e-3 828 475 36e-3 187.57
7 218 18713 B24.00e-3 187.86 B16.94e-3 787
a 215 18710 2 187.39 1.39 723
9 218 7.29 216 B.25 1.39 ah58
10 222 £.54 1.0 6.64 h26.27e-3 E.88
11 223 7.39 230.25e-3 173.35 G4215e-3 190.33
12 210 .80 1.78 186.56 1.23 186.87
13 950.13e-3 18735 235 8.09 B61.78e-3 188.79
14 938, 7de-3 7.28 2.08 702 B19.62e-3 a1z
15 2823213 18762 Fr.29e-3 7.80 180.60e-3 18714
16 282 33e-3 7.51 N3e3 217 1631823 127
17 288 27e-3 12209 B20.07e-3 12812 215.3e3 243
18 933.97e-3 710 BO351e-3 188.34 266.58e-3 184.25
19 913.82e-3 18722 220 187.53 14 45e-3 723
20 F17.38e-3 742 1.68 186.05 930.07e-3 183.75 w

Fig. 4.22 STAR Software Results - Table of Mode Shapes

4.4.2 Verification of the Obtained Modal Model

Just the same as the accuracy of the reference pe@surement was checked before the
modal test proceeded to all the other measuremienigsnow appropriate to review, at least
briefly, the accuracy of the obtained modal mogebr to comparing it with another model,
mostly with a computational model obtained by #nilement calculations.

If a structure whose modes are well separated &suared (and moreover, if it is measured
freely supported), probably no problems with mopatameters identification occur and the
obtained modal model will be most likely correcthéh a more complex structure with
coupled modes and with a large amount of (nonptapwl) damping is measured, the
process of modal parameters extraction will be nommaplicated. It is often necessary or at
least useful to try various approximation methods ahoose the one that gives the best
results. But which will be the best to choose?hlé extracted mode shapes are inspected
visually in animation, they should exhibit systeimanotion. Some of the "mode shapes”
could exhibit chaotic motion, could be something ITbumpy”, etc. If this happens, there are
two possibilities:

- It is so-calledcomputational mode or false mode. If the software is asked to extract the
mode (or two or more modes) in the given frequeranyge, it always meets this
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requirement. But it might happen that if, let's,dAyee modes are required and there are
only two true modes in the frequency band, thedtbktracted mode is a false mode.

To decide which of the two above possibilities gpfolr the particular case, the analyst
should mainly rely on his experience, but theresarae possibilities that could help, e.g.:

- If computationally derived modal parameters araligbosal for the given structure, the
knowledge of how the mode shapes should look lkaviailable and all the redundant
modes may be excluded from the measured set. itdsological, but it is not so clear:
When the structure is measured supported otherihee in free conditions, the actual
boundary conditions could be different from thaedisn computation and, consequently,
the computed mode shapes could differ as well. Shigation could be discovered by
obtaining nice smooth mode shapes form the measmterhat are missing in the
computational model. In this case, error will besinlikely on the computational side. In
any case, the knowledge of theoretical mode shiaplesipful in rejecting the false mode
shapes from the experimental model (or in realizimgt some of the modes should be
identified more carefully).

- Complexity of the mode shapes could be examined. It meaegamine to which extent
the displacements in the mode shapes are complekers. Generally, it can be said that
the less complex the mode shape is, the more pioliais correct. This assumption
applies especially for lightly damped structuresaswed in free conditions. For such
structures, complex mode shape may not occur. @nctmtrary, when a structure is
heavily damped and the damping is non-proportigndglistributed (e.g. a structure
comprising rubber parts), high complexity of mode®es is expected and it might not
signify an approximation error.

A complex mode shape is easily identified in anioraty its waving movement. This
visual effect originates from the fact that thepthsements in the individual points do not
reach their utmost positions simultaneously. Counsstly, nodal lines change their positions.
Thus, complex mode shapes cannot be displayed statig pictures, it is only possible to
display them in animation. A poor attempt to digpglaem statically can be done by so called
normalization - displacements are transformed to the real nusntneassigning zero to phase
angles of those displacements that have phasesangdee close to zero (thus obtaining
positive amplitude) and by assigning 180 phase angles of those displacements that have
phase angles more close to 18thus obtaining negative amplitude). Doing thisreal
approximation of the complex shapes is obtainedait be seen in Fig 4.20 that the mode
shape stated there is very slightly complex, agptiese angles are mostly very close t@0
180°.

If two or more mode shapes look similar, it agaigimbe an approximation error. It might
happen when the software identifies false modem ftbe reason described above (more
modes are required in the frequency bands thamyregist). In this case, it is worth to
examine the MAC matrix. It will be discussed inalketn the next chapter, because its main
purpose is in comparing of two models obtained iffer@nt methods, but it can be used also
for a single model only. In this case, all valuestive main diagonal will be equal to 1 and all
the other values should be numbers close to zeeonumber close to 1 appears out of the
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main diagonal, it most likely indicates a false mod@his applies for modes whose frequency
are quite close.

Different situation occurs when two mode shape& lery similar, but their frequencies
are quite apart from each other. In this casentbde shapes differ very likely in something
that was not measured (e.g. movement in directiah ohly measurements in directions X
and Z were performed). The geometrical model usedhbdal test is usually quite simple and
it could easily happen that it would not capturetla¢ details of the movement. Thus, two
modes could appear as being the same even if treynat. In this case, it is not a
measurement or approximation error, but the coreszpiof insufficiently fine model.

4.4.3 Comparison of the Experimentally and Computationall Derived Models

In chapter 1.1 it was stated that a modal testely wften performed with the aim to
compare dynamic behaviour of the structure derifrech computations and those that is
really observed in practise. Sometimes, this pwdg<alledverification (updating) of the
theoretical model and it takes several steps:

- comparison of the dynamic properties - experimergatheoretical model
- quantification of the differences between those data sets
- making changes in one of the sets of results irraachieve better correspondence

If this is achieved, the theoretical model can bestdered as verified and thus it is ready
for use in a subsequent analysis.

Comparison of dynamic properties of the experimeatal theoretical models can be
performed for all the three types of dynamic modsfsmatial, modal and response). From the
opposite procedures used in experimental and thearanalysis it is clear that what is the
most convenient type of model for a theoreticallysis would be worst accessible for an
experimental analysis and vice versa. A theoretinalysis starts with the spatial model, but it
is quite difficult to achieve it through the measdidata - it requires application of additional
data processing procedures that are usually nqiaheof software packages. On the contrary,
frequency response functions that are directlyinbthby measurements are relatively tedious
to acquire in the theoretical model. Therefore,tiest common form for comparing the two
sets of data is the modal model. Several possasliof comparing modal models are stated
below.

4.4.3.1 Comparison of Natural Freqguencies

Quite obvious is to compare measured vs. calculaéatral frequencies. This is often done
by a simple tabelation of both result sets, butaaenuseful form is to draw the experimental
value vs. the theoretical value for all the modesuded into comparison, as is shown in Fig.
4.23. In this way, not only the degree of consisyelbetween the two sets of results can be
seen, but also the nature and possible causeg digbrepances. The drawn points should lie
on the line with the slope 1 or near this linethiy lie near a line with the slope other than 1,
the cause of this discrepancy is quite sure in riecb material properties used for
computation. If the points are widely spread alding line, there is a serious error in the
model that represents the structure and a basgsessment should be done. Particular
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attention has to be paid to the case where thdéspdeaviate slightly from the ideal line, but in
a systematic rather than random manner, sincesituation implies that there is a specific
feature which is responsible for the deviation aad not simply be attributed to experimental
errors.

If the scatter is small and randomly distributedngl the line of the #5slope, the values
are supposed to originate from the normal procéssodelling and measurement. Generally,
the higher (in order) is the frequency, the largerthe difference between theoretical
(computed) and measured values. The differencesiidhibave the tendency that the
theoretical values of frequencies are higher thanteasured ones, because usually damping
is not included in the theoretical values whereassured frequencies are always damped and
thus of lower values.

Comparison of Natural Freauencies

2000

1500

1000

500

computed [Hz]

0 500 1000 1500 2000
measured [Hz]

Fig. 4.23 Graphical Comparison of Natural Fregquencies

When most of the points are near the ideal linaqgoints in Fig. 4.23) and some points
are far from this line (red point in Fig. 4.23),cbuld by the case that different modes are
compared. This is quite a frequent mistake thatlesits allow to happen. It should be
emphasized that if 10 modes are identified form sueaments and 10 modes in the same
frequency band are identified from theoretical wsial it cannot be guaranteed that tfie 1
mode may be assigned to th® dne from the different analysis, the™® the 18 etc. It
could happen that:

- The order of two modes close in frequency is chdmge¢he two compared models.

- One mode is missing in the experimental model (reddrause the reference point was
at the nodal line of that mode), and at the samme tone mode is missing in the
theoretical model (because its frequency in themkeanalysis is above the frequency
range in which comparison is performed). Thus, rinmber of modes is the same in
both models, but not all of them create pertinemtspto be compared.

It is clear from the above that the identified m®dmnnot be compared automatically,
because in all the methods discussed here it whaad to erroneous conclusions. It is
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essential to check the mode shapes visually andhntae pertinent modes together prior to
starting with any comparison of the two models.rggthis, the risk of comparing two modes
that do not match is eliminated. This risk is quitgh, as it is quite a common situation that
some modes are missing in the experimental modrieitheless, if the modes are correctly
matched, the fact of a missing mode in the experiedemodel cannot be considered as a
mistake that would prevent good comparison of tix@ models or verifying the theoretical
model. It is quite sufficient to verify and upddtee theoretical model in accordance with
those modes that are at disposal (it is supposadsttime higher modes might be missing
rather than lower ones).

4.4.3.2 Graphical Comparison of Modal Shapes

One of the possibilities how to compare the modapsh is to draw the deformed shapes
for both models - theoretical and experimentald averlay the two pictures. A disadvantage
of this approach is that even though the differerean be seen, it is difficult to interpret them
and often the obtained pictures are very confuasithere is a lot of information in them.

A more convenient method is similar to that for pinaal comparison of natural
frequencies. Mode shape elements are drawn to-thelat, again measured vs. computed,
and in an ideal case, they should again be scdttezar the line with the slope 1. For this
comparison, it is necessary to choose those pbymts the theoretical model (which usually
has much more degrees-of-freedom than experimantadel) that coincide with the
experimental model.

Graphical Comparison of the Mode Shapes
20 -
15 -~
./. A
o 1
g
< 5 L]
n /
g A mode #1
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Experimental Mode Shapes

Fig. 4.24 Graphical Comparison of the Mode Shapes

The nature of deviations from the ideal state agairaquite clearly indicate the cause of
the discrepancy: if the points lie near a line witle slope other than 1, then one of the
compared mode shapes is not normalized to the mmotyal mass or there is some other scale
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error. If the scatter is large, then there is esewnaccuracy in one of the data sets and if the
scatter is excessive, two different modal vectbas o not belong to the same mode might be
compared.

In Fig. 4.24, comparison of three mode shapes, ehdliferent colour, is shown. It can be
seen that the®land the ¥ shape exhibit a good accordance, while this issedor the %
shape. This is quite a typical result, as with eéasing order of modal shapes it is more
difficult to achieve accordance.

4.4.3.3 Numerical Comparison of Mode Shapes

As an alternative to the above introduced graplapakoach, numerical comparison of the
mode shapes can be used. The expressions (4.164.4il below suppose that mode shapes
data may be complex. The experimental (measuredersbape is denoted agf and the
theoretical (computed, analytical) mode shape ot as @.}. These concepts are in fact
useful for all types of comparisons, not only expent vs. theory, but they can be used to
compare any pair of mode shape estimates.

The first criterion deals with the quantity callddodal Scale Factor (MSF) and it
represents the slope of the best line fitted topibiats in Fig. 4.24. This quantity is defined as
(two forms are possible according to which of thedenshapes is taken as reference):

n

3 (00), (04 > (0,),@)

MSHX,A)=2 MSHA,X)=2 (4.16)
;(cpA )(@.); ;(cpx ) (@);

It should be noted that this criterion providesimaication concerning the quality of fitting
the line to the points, but only its slope.

The second criterion is called Mode Shape Coraattoefficient (MSCC) or Modal
Assurance Criterion (MAC) and provides the meastidistances of point from the ideal line
in the least square sense. It is defined as:

2

3 (9), (@)

j=L

S0 |{S00 0]

=

MAC(A,X)= (4.17)

and it is a scalar value, although the data of neltugpes are complex. As the modal scale
factor does not indicate the degree of corresparelgéhe modal assurance criterion does not
distinguish between a random scatter responsibietife discrepancies and systematic

discrepancies either. So even though these paresmate useful means to quantify the

comparison between the two data sets of mode shidyegsdo not give a complete insight and

should be considered primarily in connection wilihtg such as the one shown in Fig 4.22.

It is worth to consider two special cases: (1) thhen two mode shapes are identical and
(2) that when two mode shapes differ by a simpéasanultiple. In the case (1) applies:
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{od={o}

from which it can be seen that
MSHX,A)=MSHA,X)=1

and also that
MAC(X,A)=1

In the case (2),9x} = W Pa} and it is found out that

MSHX,A)=y , whilst MSF(A,X):%

but since the two modes are still quite perfeatiyelated, it still applies:
MAC(X,A)=1

In practice, a typical data would be less ideahttieese and what is expected is that if the
involved experimental and theoretical mode shapesldvreally belong to the same mode,
then the MAC value would be close to 1, whilsthiéy would belong to different modes, the
MAC value would be close to zero. If a setmf experimental modes and a setrof
theoretical modes are taken into account, a MACrimaihx X ma can be computed and
displayed in a matrix that would clearly indicatbigh experimental mode matches to which
theoretical mode. It is difficult to give exact uak that should the MAC values be to ensure
good results. Generally, the values greater th@usl@ould be obtained for the same modes and
values less than 0.05 for the different modes.

T &C %
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Fig.4.25 MAC Matrix - Graphical Form

It is worth to mention some possible causes of megeresults of these calculations. Apart
from the obvious reason that the model is defec&C values less than 1 can be caused by:

- non-linearities in the tested structures

- noise in measured data that was not averaged out
- weak modal analysis of the measured data

- incorrect selection of DOFs included into correlati
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In Fig. 4.25 is an example of MAC matrix that confemmn comparison of two sets of
experimental data, both from the same structure mom a modal test when hammer
excitation was used, the second when shaker excitatas used. The structure had very
similar mode shapes of th& and the # mode, and these modes were spaced only 0.4 Hz in
frequency. Their identification was very difficidind it can be seen from the MAC matrix
where the element (3,3) is less than 0.8 and #reazit (3,4) is greater than 0.4.

Note.: MAC criterion has already been mentionethachapter 4.4.2. If MAC criterion is
applied on one set of results, the values on thia kiagonal are all exactly equal to 1 and
significant are the out-of-diagonal values onlyeyt should be close to zero. If they are not,
there is a risk of false mode existence.
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5. Operational Deflection Shapes (ODS)

The issue of visualization the operational deftatishapes belongs to the area of vibration
diagnostics, where it is used to solve specifidbfgms related to operation of machines. If
this issue is sometimes assigned to a modal aralyss probably because it uses the same
tools, both technical and software. Basic equipmfamt operational deflection shapes
identification comprises a dual or multi-channeglgmer, set of two or more accelerometers
and for one of the ODS types, so called spectraSOsbftware for experimental modal
analysis can also be used.

Operational deflection shapes are used as a diagrosl for visualization of the actual
dynamic behaviour of machines. This visualizatierves for better understanding of what is
happening with the given equipment and thus previdebasis for decisions on problem
solving. If the vibration levels are unsatisfactaitye ODS is to find the "weak point" of the
structure at given operating conditions. Applicatmf ODS is indicated especially when the
structure vibrates on a single predominant frequeme this case it is possible that the system
retuned itself close to the resonance. This capérapy reducing the stiffness of the support
due to mechanical looseness - it may be a looseplae, anchor bolt cracked, etc. If defects
of this type are suspected, they can be easilgweteising ODS visualization, if well-defined
model is used. Conversely, this method is not Blat# vibrations are excessive in a wide
range of operating conditions.

Another possible application of ODS is verificatiohforced response simulation which
was performed on a modal model, obtained experiatigrdr by calculation.

Operational deflection shapes

visualize vibration behaviour of structures

under the actual operational conditions

Thus, operational deflection shapes are about ifteEtion of the forced vibrations. The
system and the input excitation forces are not ese no assumptions about the linear
behaviour of the system are made, only the vibmatesponse of the system is measured (see
Fig. 5.1). The advantage of the ODS is that theadyn behaviour of the structure under the
actual operational conditions and under actual Haon conditions is identified. The
disadvantage is (in comparison with a modal tést) ho model of the system is obtained and
thus no estimates about its response under diffemsmitions could be made.

—>
—>
—> {Xi(w)} ... measured vibration response signals
—>

Fig.5.1  SgnalsMeasured for ODS
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Operational conditions refers to rotational spdedd, pressure, temperature, flow, etc.
These conditions could be stationary, quasi-statip(slightly varying rotational speed, run-
up, run-down) or transient (e.g. a piece of a ratls on the measured structure). According
to the operational conditions, the type of ODS #théwe chosen. Basically, there are two types
of ODS:

1. Soectral ODS - deflection shapes on the individual frequenciesrders are obtained.
When the operational conditions are stationaryuesmcy spectra are used; when they
are quasi-stationary, order spectra are used. Assalt of measurements, relative
amplitudes and phase angles of the individual desgoé-freedom on the individual
frequencies (or order components) are obtained. ifdevidual DOFs could be
measured simultaneously (if enough of accelerorseded analyzer channels are at
disposal) or successively. In principle, two acamieeters are sufficient for spectral
ODS measurements - one of them is the referencésagidced in a fixed position and
the second one captures the response in each bfaks.

2. Time ODS - deformation process as a function of time isaoi#d. This type of ODS is
used for transient signals. It is clear that whamgient process is observed, it is not
possible to measure the individual DOFs successibeit they should be measured all
at once. This leads to higher demands on techegrapment - multiple sensors, multi-
channel analyzer, software and equipment must éeapsoftware for modal analysis
cannot be used. To view the time ODS, signals famtelerometers are integrated to
provide speed or displacement.

The procedure for application of ODS is very simila that for a modal test. It includes
following steps:

- preparation
- measurements
- post-processing of the measured data

As for a modal test, a geometrical model shouldpotepared for measuring operational
deflection shapes. It is usually simpler than fleatmodal test, because ODS measurements
are focused on identifying how the machine behagea rigid body with respect to the base
plate or to other parts of the machine-set, ratth@n on deformation of the machine itself. A
smaller number of measured DOFs is sufficient fos task. However, it is necessary to
include points on the supporting structure of theasured structure, on the base plate, etc.
because the most relevant information about thereatf the defect often originates from the
information about the movement of the structurdwéspect to the base.

On the geometrical model, degrees-of-freedom shbeldefined. If triaxial accelerometer
is used, all point will be measured in three DOBs ¥ and Z), with mono-axial
accelerometer it should be decided, which direstiane to be measured.

Then, reference DOF (position + direction) shoutddefined. In order to obtained high-
quality measurements, it is required for refereDEG# to exhibit response of sufficiently high
levels at all frequencies that are of interest.eference accelerometer (rather than a force
transducer in modal test) is placed to the referddOF (see Fig. 5.2).
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Using a reference accelerometer, so-called tramsdoilis, T(f), is measured. It is a
function very similar to frequency response funatibut it has the signal from a reference
accelerometer rather than the signal from a faarestucer in the denominator:

— X|(f) - GXiXi — Gxixref
T(f)_xref(f) (_G G J (5.1)

XiXret XrefXref
The second possibility how to provide the referesmmal is to use a phase reference
instead of a reference accelerometer. It is th@lgish configuration for ODS measurements as
possible - single-channel analyzer with the pobsilmf phase measurements is sufficient. In
this case, autospectrum with the assigned phaseasured instead of transmissibility.

Prior to starting complete measurements, it isuldef check if all the components of the
measurement chain are set correctly, for examplehbcking the transmissibility function in
the reference degree-of-freedom. As it is a radibtwo identical signals, it should be close to
unity in the whole measured frequency range. In big, transmissibilities measured at the
reference point are shown - dark line is for traissibility in reference DOF, light lines are
for transmissibilities in reference point, but ither two directions. A triaxial accelerometer
was used for that measurements.

reference accelerometer

accelerometer for
response measurements

Fig. 5.2 Example of Transmissibility Measurements
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transmissibility transmissibility
| in the reference DOF in the same point,
(point and direction) other two directions
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Fig. 5.3  Transmissibility in the Reference Point

After all measurements are done, post-processinigeomeasured data is performed either
in special software for ODS or in modal analysifiveare. If the latter is used, the peak-peak
approximation method is used to obtain operatistapes (see chapter 4.3.2.1). Strictly
speaking, no approximation is associated with timethod - amplitudes at relevant
frequencies are read only. For rotating machinérg, relevant frequency used to be the
rotational speed and its harmonics.

Results may be obtained in table form (as in Figl} but much more illustrative is to use
an animated display of the obtained shape. Opeadtideflection shapes (similarly to
complex mode shapes) cannot be accurately displayathtic position, because different
points do not reach the utmost positions at theesame - it can be said that the movement of
the structure follows the excitation force.
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6. Operational Modal Analysis (OMA)

Operational modal analysis is a method that endblebtain a modal model based only on
response measurements. The measurement procedtine same as for transmissibility
measurements, but the mathematical background dbehim operational modal analysis is
much more complex. It can be said that only a massicrease in computational capacity of
computers in recent years has facilitated the eemeyand expansion of this method.

Operational modal analysis, as the name suggestgerformed under actual operating
conditions of the measured machine or device, ahythe vibration responses are measured,
not the input excitation forces. Nevertheless, lalvaodal model of the measured system can
be obtained by this method, even if unnormalizelois Tmethod is particularly suitable for
modal tests of large structures, artifical examatof which is diffficult or even impossible. It
is successfully used for modal tests of bridgesdibgs, off-shore platforms, etc. In these
cases, natural excitation from traffic, wind or seaves is broadband excitation, and this is
the main pre-requisite for a successful modal téstvadays, OMA is beginning to apply also
in engineering applications such as in modal tekt®tating machinery, on-road and in-fly
tests, etc. In these cases, the kind of naturatagixm constitutes a limitation for the use of
this method. For instance, the main excitationdarcrotating machinery originates from the
rotational speed and excitation on other frequenisieery small. Under these circumstances,
reliability of the obtained modal model would beitqgunsatisfactory. The situation can be
improved by applying an additional broadband exicitathat is not measured (see Fig. 6.1).

accelerometer
for response
measuremen

reference accelerometer

additional broadband
excitation with hammer
that is not measured

Fig.6.1  Measurement Setup for Operational Modal Analysis with Additional Excitation

The advantages of the operational modal analysiemmparison to the classical modal test
can be summarized as follows:
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* No elaborate fixturing of structures, shakers andd transducers:
- no test rigs needed
- short setup time
- no dynamic loading from shakers and stingers
- no crest factor problems as when using hammers
- no potential destruction of structure
* Modal model can represent real operating conditions
- true boundary conditions
- actual force and vibration levels
e Only natural random or unmeasured artificial exmtarequired.

* No interference or interruption of daily use.
* Modal testing can be applied in parallel with otapplications.

« OMA is inherently a poly-reference method, as theitation acts in multiple
positions simultaneously. Identification of mulgpiodes is possible.

Disadvantages of the OMA method should also be iowed, namely:

* The obtained modal model is unscaled, thus no foesponse and modification
simulations are possible.

* The method requires more operator's skills, préyaisas often needed.

» Large time histories might be required:
- more data handling capacity needed
- higher computational power needed

In operational modal analysis, some assumptionsldhi® accepted. They may be divided
into theoretical (mathematical) and practical.

Theoretical assumptions:

» Stationary input force signals can be approximateflitered zero mean Gaussian
white noise.

- Signals are completely described by their corretafunctions.

- Synthesized spectral densities and correlationtime are similar to those
obtained from experimental data.

Practical assumptions:

» Broadband excitation
* All modes must be excited (as in classical modzt) te

And it is the the fact that true broadband exatatis not always achieved that causes
problems in data analysis. If the structure is texcby white noise only, then all the peaks in
response spectrum indicate modes and the spectomtais only information about the
structure itself (see Fig. 6.2 at the top). Howetlais is generally not the case in practice. If
the spectrum of the excitation force was measundthi is not done in operational modal
analysis), it would become evident that it is rlat but it has its spectral distribution. This
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fact demonstrates itself in the spectrum as aduitionodes (see Fig. 6.2 in the middle). But
the response spectrum is further contaminatedhmr dactors, such as influence of noise, and
also frequencies of rotational speed and its haiesarccur in the spectrum. All these results
into the response spectrum shown in Fig. 6.2. at hbttom. It is obvious that the
mathematical apparatus, however perfect it couldi®enot able to distinguish the true
structure modes from the false modes originatinoghfthe uneven distribution of the exciting
forces. To distinguish them, operator's experiemc@reliminary knowledge about the real
modes of the structure obtained from theoreticall@hare necessary.

When rotating machinery is examined, it is advisatd know at least the operational
deflection shapes prior to starting with the opgeral modal analysis. OMA would most
likely result in a mixture of true structural modmsd operational deflection shapes, where the
latter would dominate and so it is worth to knowoatbthem. If they were not measured in
advance, they would be at least expected at thopudrecies of rotational speed and its
harmonics.
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Fig. 6.2  Response Spectrumin Operational Conditions
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6.1 Identification Methods

The mathematical apparatus of an operational madalysis is quite complex and it is
beyond the possibilities of the author of this textdescribe the theoretical background in
detail. Therefore, the methods are introduced lmry very briefly. Software package
"PULSE Operational Modal Analysis" that is usedtla@ Department of Mechanics has
implemented two techniques of modal parameterdifttEtion:

- non-parametric - implemented diequency domain decomposition (FDD). Modal
parameters are estimated directly from curves,tional relationships or tables.

- parametric - implemented astochastic subspace identification (SSI). Modal
parameters are estimated from a parametric matked fio the signal processed data.

Procedure of the frequency domain decompositioatets as follows:

- power spectral density (PSD) estimation (see ER). 6

- singular value decomposition (SVD) of PSD

- identification of single degree-of-freedom (SDOR)dwrls from SVD
- modal parameter identification from SDOF models

Singular value decomposition of PSD is describethbyexpression:

. d d, . .
GW(I(Dj) = Zk: i(x)j——k)\k(pk(pl +i(x)j——k)\*k(pk(ka = Zk: Sk(pk(p-l[ +Sk(pk(ka (6.1)

where g is constant and real for the given frequency. S¥Performed for each frequency.
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Fig. 6.3  Power Spectral Density Estimate
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[dB | (1 m/s), / Hz] Singular Values of Spectral Density Matrix
of Data Set Measurement 1
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Fig. 6.4  Sngular Values

One of the parameters that the operator sets IfOMA software is the number of the
required singular values (there are three singuddwes in Fig. 6.4). The theory says that if
there is a peak in the upper line (green), at leastmode exists at that frequency, if there is a
peak in the second line (red), at least two modst e that frequency, etc. (Author's short
experience with OMA has not proved this theory)yet.

6.2 Presentation of Results

As the classical modal analysis, the operationalahanalysis leads to a modal model, i.e.
modal and spectral matrices are obtained. A modmlaincan be considered valid only if all
false modes and operational deflection shapesarewed from it, as discussed above.

“ Mode % Frequ.. % StdFr. % Dam.. % Std... % Creation Date..
22-05-2007 12:31:32
@MUCIEE 112 0.3705 1.989 02421 22-05-2007 12:31:38
@MUCIE 3 146.9 14 54 1.885 05866 22-05-2007 12:31:42
@Mnde:i 232 0.01487 0.8545 0.02111 22-05-2007 12:31:47
@Mnde 5 476.6 10.36 1.249 0.3852 22-05-2007 12:31:52
@Mnde G 5154 0.491 0.4158 003736 22-05-2007 12:31:587
@MUCIET 3915 (.6606 0.3261 01367 22-05-2007 12:32:.05
@MUCIE 3 9929 3.048 0.2991 01438 22-05-2007 123213
@I‘u‘lnde 9 997 4 7178 0.3038 01577 22-05-2007 12:32:19
@Mnde 10 1368 0.6367 0194 0.01442 22-05-2007 12:34:26
@Mnde 11 1888 2718 0.1491 0.04608 22-05-2007 12:34:40
@I‘u‘lnde 12 2060 1.83 01377 0.01951 22-05-2007 12:34:47
dhMnde 13 2499 1933 0123 003ZR3  22-NR-2007 193454

Fig. 6.5 Tableof Natural Frequencies and Damping Ratios Resulted from OMA

- 118 -



Spectral matrix displays the software PULSE Openrati Modal Analysis in the table form
where natural frequencies and damping ratios atedisee Fig. 6.5). As these are statistical
estimates, standard deviations of each value aredsas well. Modal matrix, i.e. mode shapes
in a numerical format, can be exported in the wsikefile format (UFF) to various other

software. For inspection of mode shapes, an andndiplay is again the most convenient
way.
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