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Modal analysis is defined as the study
of the dynamic characteristics of a
mechanical structure.  This applica-
tion note emphasizes experimental
modal techniques, specifically the
method known as frequency response
function testing.  Other areas are
treated in a general sense to intro-
duce their elementary concepts and 
relationships to one another.  

Although modal techniques are math-
ematical in nature, the discussion is
inclined toward practical application.
Theory is presented as needed to
enhance the logical development of
ideas. The reader will gain a sound
physical understanding of modal
analysis and be able to carry out 
an effective modal survey with 
confidence.

Chapter 1 provides a brief overview
of structural dynamics theory.
Chapter 2 and 3 which is the bulk 
of the note – describes the measure-
ment process for acquiring frequency
response data.  Chapter 4 describes
the parameter estimation methods 
for extracting modal properties.
Chapter 5 provides an overview 
of analytical techniques of structural
analysis and their relation to 
experimental modal testing.

Preface
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Introduction

A basic understanding of structural
dynamics is necessary for successful
modal testing. Specifically, it is
important to have a good grasp of the
relationships between frequency
response functions and their individ-
ual modal parameters illustrated in
Figure 1.1. This understanding is of
value in both the measurement and
analysis phases of the survey. Know-
ing the various forms and trends of
frequency response functions will
lead to more accuracy during the
measurement phase.  During the
analysis phase, knowing how equa-
tions relate to frequency responses
leads to more accurate estimation of
modal parameters.  

The basic equations and their various
forms will be presented conceptually
to give insight into the relationships
between the dynamic characteristics
of the structure and the correspond-
ing frequency response function 
measurements. Although practical 
systems are multiple degree of free-
dom (MDOF) and have some degree
of nonlinearity, they can generally 
be represented as a superposition 
of single degree of freedom (SDOF) 
linear models and will be developed
in this manner.

First, the basics of an SDOF linear
dynamic system are presented to gain
insight into the single mode concepts
that are the basis of some parameter 
estimation techniques. Second, the
presentation and properties of vari-
ous forms of the frequency response
function are examined to understand

the trends and their usefulness in the
measurement process. Finally, these
concepts are extended into MDOF
systems, since this is the type of
behavior most physical structures
exhibit. Also, useful concepts 
associated with damping mechanisms
and linear system assumptions 
are discussed.

Figure 1.1
Phases of a 
modal test
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Structural Dynamics of a Single
Degree of Freedom (SDOF) System

Although most physical structures are
continuous, their behavior can usual-
ly be represented by a discrete
parameter model as illustrated in
Figure 1.2. The idealized elements 
are called mass, spring, damper and
excitation. The first three elements
describe the physical system. Energy
is stored by the system in the mass
and the spring in the form of kinetic
and potential energy, respectively. 
Energy enters the system through 
excitation and is dissipated through
damping.  

The idealized elements of the physi-
cal system can be described by the
equation of motion shown in Figure
1.3. This equation relates the effects
of the mass, stiffness and damping in
a way that leads to the calculation of
natural frequency and damping factor
of the system. This computation is
often facilitated by the use of the def-
initions shown in Figure 1.3 that lead
directly to the natural frequency and
damping factor.

The natural frequency, ω, is in units
of radians per second (rad/s). The
typical units displayed on a digital
signal analyzer, however, are in Hertz
(Hz). The damping factor can also be
represented as a percent of critical
damping – the damping level at which
the system experiences no oscillation.
This is the more common understand-
ing of modal damping. Although there
are three distinct damping cases, 
only the underdamped case (ζ< 1) 
is important for structural dynamics
applications.

Figure 1.2
SDOF discrete
parameter model

Figure 1.3
Equation of 
motion — 
modal definitions

Figure 1.4
Complex roots 
of SDOF 
equation

Figure 1.5
SDOF 
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response/
free decay
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When there is no excitation, the roots
of the equation are as shown in
Figure 1.4. Each root has two parts:
the real part or decay rate, which
defines damping in the system and
the imaginary part, or oscillatory 
rate, which defines the damped 
natural frequency, wd. This free 
vibration response is illustrated 
in Figure 1.5.  

When excitation is applied, the equa-
tion of motion leads to the frequency
response of the system. The frequen-
cy response is a complex quantity
and contains both real and imaginary
parts (rectangular coordinates). It can
be presented in polar coordinates as
magnitude and phase, as well.

Presentation and Characteristics of 
Frequency Response Functions

Because it is a complex quantity, the
frequency response function cannot
be fully displayed on a single two-
dimensional plot. It can, however, be
presented in several formats, each of
which has its own uses. Although the 
response variable for the previous
discussion was displacement, it could
also be velocity or acceleration.
Acceleration is currently the accepted
method of measuring modal
response. 

One method of presenting the data 
is to plot the polar coordinates, mag-
nitude and phase versus frequency 
as illustrated in Figure 1.6.  At reso-
nance, when ω = ωn, the magnitude 
is a maximum and is limited only by
the amount of damping in the system.
The phase ranges from 0° to 180° 
and the response lags the input by 
90° at resonance.

Figure 1.6
Frequency 
response —
polar 
coordinates
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Another method of presenting 
the data is to plot the rectangular 
coordinates, the real part and the
imaginary part versus frequency. 
For a proportionally damped system,
the imaginary part is maximum at 
resonance and the real part is 0, as
shown in Figure 1.7.  

A third method of presenting the 
frequency response is to plot the real
part versus the imaginary part. This is
often called a Nyquist plot or a vector
response plot. This display empha-
sizes the area of frequency response
at resonance and traces out a circle,
as shown in Figure 1.8.  

By plotting the magnitude in decibels
vs logarithmic (log) frequency, it is
possible to cover a wider frequency
range and conveniently display the
range of amplitude. This type of plot, 
often known as a Bode plot, also 
has some useful parameter character-
istics which are described in the 
following plots.  

When ω << ωn the frequency
response is approximately equal to
the asymptote shown in Figure 1.9.
This asymptote is called the stiffness
line and has a slope of 0, 1 or 2 for
displacement, velocity and accelera-
tion responses, respectively. When 
ω >> ωn the frequency response is
approximately equal to the asymptote
also shown in Figure 1.9. This asymp-
tote is called the mass line and has a
slope of -2, -1 or 0 for displacement
velocity or acceleration responses, 
respectively.  

Figure 1.7
Frequency 
response — 
rectangular 
coordinates

Figure 1.8
Nyquist plot 
of frequency 
response
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The various forms of frequency 
response function based on the 
type of response variable are also
defined from a mechanical engineer-
ing viewpoint.  They are somewhat
intuitive and do not necessarily corre-
spond to electrical analogies.  These
forms are summarized in Table 1.1.

Figure 1.9
Different forms 
of frequency 
response

Table 1.1
Different forms 
of frequency response
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Structural Dynamics for a Multiple
Degree of Freedom (MDOF) System

The extension of SDOF concepts to 
a more general MDOF system, with 
n degrees of freedom, is a straightfor-
ward process. The physical system is
simply comprised of an interconnec-
tion of idealized SDOF models, as 
illustrated in Figure 1.10, and is 
described by the matrix equations 
of motion as illustrated in Figure 1.11.  

The solution of the equation with no
excitation again leads to the modal
parameters (roots of the equation) 
of the system. For the MDOF case,
however, a unique displacement 
vector called the mode shape exists
for each distinct frequency and damp-
ing as illustrated in Figure 1.11.  The
free vibration response is illustrated
in Figure 1.12.  

The equations of motion for the
forced vibration case also lead to 
frequency response of the system. 
It can be written as a weighted 
summation of SDOF systems shown
in Figure 1.13.  

The weighting, often called the modal
participation factor, is a function of
excitation and mode shape coeffi-
cients at the input and output degrees
of freedom. 

Figure 1.10
MDOF discrete 
parameter model

Figure 1.11
Equations of
motion — 
modal definitions

Figure 1.12
MDOF impulse
response/
free decay
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The participation factor identifies the
amount each mode contributes to the
total response at a particular point.
An example with 3 degrees of free-
dom showing the individual modal
contributions is shown in Figure 1.14.  

The frequency response of an MDOF
system can be presented in the same
forms as the SDOF case. There are
other definitional forms and proper-
ties of frequency response functions,
such as a driving point measurement,
that are presented in the next chap-
ter. These are related to specific 
locations of frequency response 
measurements and are introduced
when appropriate.

Figure 1.13
MDOF frequency 
response

Figure 1.14
SDOF modal 
contributions
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Damping Mechanism and 
Damping Model

Damping exists in all vibratory 
systems whenever there is energy 
dissipation.  This is true for mechani-
cal structures even though most are
inherently lightly damped.  For free
vibration, the loss of energy from
damping in the system results in the
decay of the amplitude of motion.  
In forced vibration, loss of energy is
balanced by the energy supplied by
excitation.  In either situation, the
effect of damping is to remove energy
from the system.

In previous mathematical formula-
tions the damping force was called
viscous, since it was proportional to
velocity.  However, this does not
imply that the physical damping
mechanism is viscous in nature.  It is
simply a modeling method and it is
important to note that the physical
damping mechanism and the mathe-
matical model of that mechanism are
two distinctly different concepts.  

Most structures exhibit one or more
forms of damping mechanisms, such
as coulomb or structural, which
result from looseness of joints, inter-
nal strain and other complex causes.
However, these mechanisms can be
modeled by an equivalent viscous
damping component.  It can be
shown that only the viscous compo-
nent actually accounts for energy loss
from the system and the remaining
portion of the damping is due to non-
linearities that do not cause energy
dissipation.  Therefore, only the 
viscous term needs to be measured to
characterize the system when using a
linear model.

The equivalent viscous damping 
coefficient is obtained from energy
considerations as illustrated in the

hysteresis loop in Figure 1.15.  E is
the energy dissipated per cycle of
vibration, ceq is the equivalent vis-
cous damping coefficient and X is the
amplitude of vibration. Note that the
criteria for equivalence are equal
energy distribution per cycle and the
same relative amplitude.

Figure 1.15
Viscous damping
energy dissipation

Figure 1.16
System 
block diagram

Figure 1.17
Definition of 
transfer function
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Frequency Response Function and
Transfer Function Relationship

The transfer function is a mathemati-
cal model defining the input-output
relationship of a physical system.
Figure 1.16 shows a block diagram 
of a single input-output system.
System response (output) is caused
by system excitation (input).  The
casual relationship is loosely defined
as shown in Figure 1.17.  Mathemati-
cally, the transfer function is defined
as the Laplace transform of the out-
put divided by the Laplace transform
of the input.  

The frequency response function is
defined in a similar manner and is
related to the transfer function.
Mathematically, the frequency
response function is defined as the
Fourier transform of the output divid-
ed by the Fourier transform of the
input.  These terms are often used
interchangeably and are occasionally
a source of confusion.  

This relationship can be further
explained by the modal test process.
The measurements taken during a
modal test are frequency response
function measurements.  The parame-
ter estimation routines are, in gener-
al, curve fits in the Laplace domain
and result in the transfer functions.
The curve fit simply infers the loca-
tion of system poles in the s-plane
from the frequency response func-
tions as illustrated in Figure 1.18. The
frequency response is simply the
transfer function measured along the
jω axis as illustrated in Figure 1.19.

Figure 1.18
S-plane 
representation
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System Assumptions

The structural dynamics background
theory and the modal parameter 
estimation theory are based on two
major assumptions:

Figure 1.19
3-D Laplace 
representation
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● The system is linear.
● The system is stationary.

There are, of course, a number of
other system assumptions such as
observability, stability, and physical
realizability.  However, these assump-
tions tend to be addressed in the
inherent properties of mechanical
systems.  As such, they do not pres-
ent practical limitations when making
frequency response measurements as
do the assumptions of linearity 
and stationarity.
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Introduction

This chapter investigates the current
instrumentation and  techniques
available for acquiring frequency
response measurements.  The discus-
sion begins with the use of a dynamic
signal analyzer and associated periph-
erals for making these measurements.
The type of modal testing known as
the frequency response function
method, which measures the input
excitation and output response simul-
taneously, as shown in the block dia-
gram in Figure 2.1, is examined.  The
focus is on the use of one input force,
a technique commonly known as sin-
gle-point excitation, illustrated in 
Figure 2.2.  By understanding this
technique, it is easy to expand to the
multiple input technique.  

With a dynamic signal analyzer, 
which is a Fourier transform-based
instrument, many types of excitation
sources can be implemented to meas-
ure a structure’s frequency response
function.  In fact, virtually any physi-
cally realizable signal can be input 
or measured.  The selection and 
implementation of the more common
and useful types of signals for modal
testing are discussed.  

Transducer selection and mounting
methods for measuring these signals
along with system calibration meth-

ods, are also included.  Techniques
for improving the quality and 
accuracy of measurements are then
explored.  These include processes
such as averaging, windowing and
zooming, all of which reduce mea-
surement errors.  Finally, a section 
on measurement interpretation is 
included to aid in understanding the
complete measurement process.

Chapter 2
Frequency Response Measurements

Figure 2.1
System block 
diagram

Figure 2.2
Structure 
under test

Excitation ResponseH( )ω
X( )ω Y( )ω

Structure

Force Transducer

Shaker
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General Test System Configurations

The basic test setup required for 
making frequency response measure-
ments depends on a few major 
factors.  These include the type of
structure to be tested and the level 
of results desired.  Other factors,
including the support fixture and 
the excitation mechanism, also affect
the amount of hardware needed to
perform the test.  Figure 2.3 shows 
a diagram of a basic test system 
configuration.  

The heart of the test system is the
controller, or computer, which is the
operator’s communication link to the
analyzer.   It can be configured with
various levels of memory, displays
and data storage.  The modal analysis 
software usually resides here, as well
as any additional analysis capabilities
such as structural modification and
forced response.  

The analyzer provides the data 
acquisition and signal processing 
operations.  It can be configured with
several input channels, for force and
response measurements, and with
one or more excitation sources for
driving shakers.  Measurement func-
tions such as windowing, averaging
and Fast Fourier Transforms (FFT)
computation are usually processed
within the analyzer.  

For making measurements on simple
structures, the exciter mechanism
can be as basic as an instrumented
hammer.  This mechanism requires 
a minimum amount of hardware.  
An electrodynamic shaker may be
needed for exciting more complicated
structures.  This shaker system re-
quires a signal source, a power ampli-
fier and an attachment device.  The
signal source, as mentioned earlier,
may be a component of the analyzer.

Transducers, along with a power 
supply for signal conditioning, are
used to measure the desired force
and responses.  The piezoelectric
types, which measure force and
acceleration, are the most widely
used for modal testing.  The power
supply for signal conditioning may be
voltage or charge mode and is some-
times provided as a component of the
analyzer, so care should be taken in
setting up and matching this part of
the test system.

Figure 2.3
General test 
configuration

Structure

Transducers

Exciter

Controller

Analyzer
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Supporting The Structure

The first step in setting up a 
structure for frequency response
measurements is to consider the fix-
turing mechanism necessary to obtain
the desired constraints (boundary
conditions).  This is a key step in the
process as it affects the overall struc-
tural characteristics, particularly for
subsequent analyses such as structur-
al modification, finite element corre-
lation and substructure coupling.  

Analytically, boundary conditions 
can be specified in a completely free
or completely constrained sense.  In
testing practice, however, it is gener-
ally not possible to fully achieve
these conditions.  The free condition
means that the structure is, in effect,
floating in space with no attachments
to ground and exhibits rigid body 
behavior at zero frequency.  The 
airplane shown in Figure 2.4a is an
example of this free condition.
Physically, this is not realizable, 
so the structure must be supported 
in some manner.  The constrained
condition implies that the motion,
(displacements/rotations) is set to
zero.  However, in reality most struc-
tures exhibit some degree of flexibili-
ty at the grounded connections.  The
satellite dish in Figure 2.4b is an 
example of this condition.  

In order to approximate the free sys-
tem, the structure can be suspended
from very soft elastic cords or placed
on a very soft cushion.  By doing this,
the structure will be constrained to 
a degree and the rigid body modes
will no longer have zero frequency.
However, if a sufficiently soft support

system is used, the rigid body fre-
quencies will be much lower than the
frequencies of the flexible modes and
thus have negligible effect.  The rule 
of thumb for free supports is that the
highest rigid body mode frequency
must be less than one tenth that of
the first flexible mode.  If this criteri-
on is met, rigid body modes will have 
negligible effect on flexible modes.
Figure 2.5 shows a typical frequency
response measurement of this type
with nonzero rigid body modes.  

The implementation of a constrained
system is much more difficult to
achieve in a test environment.  To
begin with, the base to which the
structure is attached will tend to have
some motion of its own.  Therefore, it
is not going to be purely grounded.
Also, the attachment points will have
some degree of flexibility due to the
bolted, riveted or welded connec-
tions.  One possible remedy for these
problems is to measure the frequency

Figure 2.4a
Example of 
free support 
situation

Figure 2.4b
Example of 
constrained 
support 
situation

Free
Boundary

Constrained
Boundary
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response of the base at the attach-
ment points over the frequency range
of interest.  Then, verify that this
response is significantly lower than
the corresponding response of the
structure, in which case it will have 
a negligible effect.  However, the 
frequency response may not be mea-
surable, but can still influence the
test results.

There is not a best practical or 
appropriate method for supporting 
a structure for frequency response
testing. Each situation has its own
characteristics.  From a practical
standpoint, it would not be feasible 
to support a large factory machine
weighing several tons in a free test
state.  On the other hand, there may
be no convenient way to ground a
very small, lightweight device for the
constrained test state.  A situation
could occur, with a satellite for exam-
ple, where the results of both tests
are desired.  The free test is required
to analyze the satellite’s operating
environment in space.  However, the
constrained test is also needed to
assess the launch environment
attached to the boost vehicle.
Another reason for choosing the
appropriate boundary conditions is
for finite element model correlation
or substructure coupling analyses.  At
any rate, it is certainly important dur-
ing this phase of the test to ascertain
all the conditions in which the results
may be used.

Figure 2.5
Frequency 
response 
of freely 
suspended 
system
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Exciting the Structure

The next step in the measurement
process involves selecting an 
excitation function (e.g., random
noise) along with an excitation sys-
tem (e.g., a shaker) that best suits the
application.  The choice of excitation
can make the difference between a
good measurement and a poor one.
Excitation selection should be
approached from both the type of
function desired and the type of exci-
tation system available because they
are interrelated.  The excitation func-
tion is the mathematical signal used
for the input.  The excitation system
is the physical mechanism used to
prove the signal.  Generally, the
choice of the excitation function 
dictates the choice of the excitation
system, a true random or burst 

random function requires a shaker
system for implementation.  In gener-
al, the reverse is also true.  Choosing
a hammer for the excitation system
dictates an impulsive type excitation 
function.

Excitation functions fall into four
general categories: steady-state, 
random, periodic and transient.
There are several papers that go into
great detail examining the applica-
tions of the most common excitation
functions.  Table 2.1 summarizes the
basic characteristics of the ones that
are most useful for modal testing.
True random, burst random and 
impulse types are considered in the
context of this note since they are the
most widely implemented.  The best
choice of excitation function depends
on several factors: available signal

processing equipment, characteristics
of the structure, general measure-
ment considerations and, of course,
the excitation system.

A full function dynamic signal analyz-
er will have a signal source with a
sufficient number of functions for
exciting the structure.  With lower
quality analyzers, it may be necessary
to obtain a signal source as a sepa-
rate part of the signal processing
equipment.  These sources often 
provide fixed sine and true random
functions as signals; however, these
may not be acceptable in applications
where high levels of accuracy are
desired.  The types of functions 
available have a significant influence
on measurement quality.  

Periodic* Transient
in analyzer window in analyzer window

Sine True Pseudo Random Fast Impact Burst Burst
steady random random sine sine random
state

Minimze leakage No No Yes Yes Yes Yes Yes Yes
Signal to noise Very Fair Fair Fair High Low High Fair

high
RMS to peak ratio High Fair Fair Fair High Low High Fair
Test measurement time Very Good Very Fair Fair Very Very Very

long good good good good
Controlled frequency content Yes Yes* Yes* Yes* Yes* No Yes* Yes*
Controlled amplitude content Yes No Yes* No Yes* No Yes* No
Removes distortion No Yes No Yes No No No Yes
Characterize nonlinearity Yes No No No Yes No Yes No

*  Requires additional equipment or special hardware
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The dynamics of the structure 
are also important in choosing the 
excitation function.  The level of 
nonlinearities can be measured and
characterized effectively with sine
sweeps or chirps, but a random func-
tion may be needed to estimate the
best linearized model of a nonlinear
system.  The amount of damping and
the density of the modes within the
structure can also dictate the use of
specific excitation functions.  If
modes are closely coupled and/or
lightly damped, an excitation function
that can be implemented in a leakage-
free manner (burst random for exam-
ple) is usually the most appropriate.

Excitation mechanisms fall into four
categories: shaker, impactor, step
relaxation and self-operating.  Step
relaxation involves preloading the
structure with a measured force
through a cable then releasing the

cable and measuring the transients.
Self-operating involves exciting the
structure through an actual operating
load.  This input cannot be measured
in many cases, thus limiting its useful-
ness.  Shakers and impactors are the
most common and are discussed in
more detail in the following sections.
Another method of excitation mecha-
nism classification is to divide them
into attached and nonattached
devices.  A shaker is an attached
device, while an impactor is not, 
(although it does make contact for a
short period of time).

Shaker Testing

The most useful shakers for modal
testing are the electromagnetic
shown in Fig. 2.6 (often called 
electrodynamic) and the electro
hydraulic (or, hydraulic) types.  With
the electromagnetic shaker, (the more
common of the two), force is generat-
ed by an alternating current that
drives a magnetic coil.  The maximum
frequency limit varies from approxi-
mately 5 kHz to 20 kHz depending 
on the size; the smaller shakers 
having the higher operating range.
The maximum force rating is also a
function of the size of the shaker and
varies from approximately 2 lbf to
1000 lbf; the smaller the shaker, the
lower the force rating. 

With hydraulic shakers, force 
is generated through the use of 
hydraulics, which can provide much
higher force levels – some up to 
several thousand pounds.  The maxi-
mum frequency range is much lower
though – about 1 kHz and below.  An
advantage of the hydraulic shaker is
its ability to apply a large static pre-
load to the structure.  This is useful
for massive structures such as grind-
ing machines that operate under 
relatively high preloads which may 
alter their structural characteristics.
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There are several potential problem
areas to consider when using a 
shaker system for excitation.  To
begin with, the shaker is physically
mounted to the structure via the
force transducer, thus creating the
possibility of altering the dynamics 
of the structure.  With lightweight
structures, the mechanism used to
mount the load cell may add appre-
ciable mass to the structure.  This
causes the force measured by the
load cell to be greater than the force
actually applied to the structure.
Figure 2.7 describes how this mass
loading alters the input force.  Since
the extra mass is between the load
cell and the structure the load cell
senses this extra mass as part of 
the structure.

Since the frequency response is a 
single input function, the shaker
should transmit only one component
of force in line with the main axis of
the load cell.  In practical situations,
when a structure is displaced along 
a linear axis it also tends to rotate
about the other two axes.  To mini-
mize the problem of forces being
applied in other directions, the shaker
should be connected to the load 
cell through a slender rod, called 
a stinger, to allow the structure to
move freely in the other directions.
This rod, shown in Figure 2.8, has 
a strong axial stiffness, but weak
bending and shear stiffnesses.  In
effect, it acts like a truss member,
carrying only axial loads but no
moments or shear loads.

Figure 2.6
Electrodynamic 
shaker with 
power amplifier 
and signal source

Figure 2.7
Mass loading 
from shaker 
setup
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The method of supporting the shaker
is another factor that can affect the
force imparted to the structure.  The
main body of the shaker must be 
isolated from the structure to prevent
any reaction forces from being trans-
mitted through the base of the shaker
back to the structure.  This can be
accomplished by mounting the shaker
on a solid floor and suspending the
structure from above.  The shaker
could also be supported on a mechan-
ically isolated foundation.  Another
method is to suspend the shaker, in
which case an inertial mass usually
needs to be attached to the shaker
body in order to generate a measura-
ble force, particularly at lower 
frequencies.  Figure 2.9 illustrates 
the different types of shaker setups.

Another potential problem associated
with electromagnetic shakers is the
impedance mismatch that can exist
between the structure and the shaker
coil.  The electrical impedance of the
shaker varies with the amplitude of
motion of the coil.  At a resonance
with a small effective mass, very 
little force is required to produce a
response.  This can result in a drop 
in the force spectrum in the vicinity
of the resonance, causing the force 
measurement to be susceptible to
noise.  Figure 2.10 illustrates an
example of this phenomenon.  The
problem can usually be corrected by
using shakers with different size coils
or driving the shaker with a constant-
current type amplifier.  The shaker
could also be moved to a point with a
larger effective mass.

Figure 2.8
Stinger 
attachment 
to structure

Figure 2.9
Test support 
mechanisms

Figure 2.10
Shaker/structure
impedance 
mismatch
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Impact Testing

Another common excitation mecha-
nism in modal testing is an impact
device.  Although it is a relatively 
simple technique to implement, it’s
difficult to obtain consistent results.
The convenience of this technique 
is attractive because it requires very
little hardware and provides shorter
measurement times.  The method of
applying the impulse, shown in Figure
2.11, includes a hammer, an electric
gun or a suspended mass.  The ham-
mer, the most common of these, is
used in the following discussion.
However, this information also
applies to the other types of 
impact devices.  

Since the force is an impulse, the
amplitude level of the energy applied
to the structure is a function of the
mass and the velocity of the hammer.
This is due to the concept of linear
momentum, which is defined as mass
times velocity.  The linear impulse is
equal to the incremental change in
the linear momentum.  It is difficult
though to control the velocity of the
hammer, so the force level is usually
controlled by varying the mass.
Impact hammers are available in
weights varying from a few ounces to 
several pounds.  Also, mass can be
added to or removed from most ham-
mers, making them useful for testing
objects of varying sizes and weights.

The frequency content of the energy
applied to the structure is a function
of the stiffness of the contacting sur-
faces and, to a lesser extent, the mass
of the hammer.  The stiffness of the
contacting surfaces affects the shape
of the force pulse, which in turn
determines the frequency content.  

Figure 2.11
Impact devices 
for testing

Figure 2.12
Frequency 
content of 
various pulses
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It is not feasible to change the 
stiffness of the test object, therefore
the frequency content is controlled by
varying the stiffness of the hammer
tip.  The harder the tip, the shorter
the pulse duration and thus the high-
er the frequency content.  Figure 2.12 
illustrates this effect on the force
spectrum.  The rule of thumb is to
choose a tip so that the amplitude 
of the force spectrum is no more 
than 10 dB to 20 dB down at the 
maximum frequency of interest as
shown in Figure 2.13.  A disadvantage
to note here is that the force spec-
trum of an impact excitation cannot
be band-limited at lower frequencies
when making zoom measurements, 
so the lower out-of-band modes will
still be excited.

Impact testing has two potential 
signal processing problems associat-
ed with it.  The first – noise – can 
be present in either the force or
response signal as a result of a long
time record.  The second – leakage –
can be present in the response signal
as a result of a short time record.
Compensation for both these prob-
lems can be accomplished with 
windowing techniques.  

Since the force pulse is usually very
short relative to the length of the time
record, the portion of the signal after
the pulse is noise and can be elimi-
nated without affecting the pulse
itself.  The window designed to 
accomplish this, called a force 
window, is shown in Figure 2.14.  
The small amount of oscillation that
occurs at the end of the pulse is 
actually part of the pulse.  It is a
result of signal processing and 
should not be truncated.

Figure 2.13
Useful frequency
range of pulse 
spectrum

Figure 2.14
Force pulse 
with force 
window applied

Hz 2.5kFxd Y 0

-130

dB

10.0
/Div

-50.0

POWER SPEC1 1Avg  0%Ovlp  Fr/Ex

rms

v 2

-72 dB

-88 dB

Sec 100mFxd X 250µ

-40.0
m

Real

20.0
m

/Div

120
m

FILT TIIME1 0%Ovlp

v

Force Pulse

Time
Force Window

Ampl

1.0

τ



24

The response signal is an exponential
decaying function and may decay out
before or after the end of the meas-
urement.  If the structure is heavily
damped, the response may decay out
before the end of the time record.  In
this case, the response window can
be used to eliminate the remaining
noise in the time record.  If the struc-
ture is lightly damped, the response
may continue beyond the end of the
time record.  In this case, it must be
artificially forced to decay out to min-
imize leakage.  The window designed
to accomplish either result, called 
the exponential window, is shown in
Figure 2.15.  The rule of thumb for
setting the time constant, (the time
required for the amplitude to be
reduced by a factor of 1/e), is about
one-fourth the time record length, T.
The result of this is shown in 
Figure 2.15.  

Unlike the force window, the expo-
nential window can alter the resulting
frequency response because it has 
the effect of adding artificial damping
to the system.  The added damping
coefficient can usually be backed
out of the measurement after signal
processing, but numerical problems
may arise with lightly damped struc-
tures.  This can happen when the
added damping from the exponential
window is significantly more than 
the true damping in the structure.  A
better measurement procedure in this
case would be to zoom, thus utilizing
a longer time record in order to 
capture the entire response, instead 
of relying on the exponential window.

Figure 2.15
Decaying 
response with 
exponential 
window applied
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Transduction

Now that an excitation system has
been set up to force the structure into
motion, the transducers for sensing
force and motion need to be selected.
Although there are various types of
transducers, the piezoelectric type 
is the most widely used for modal
testing. It has wide frequency and
dynamic ranges, good linearity and is
relatively durable. The piezoelectric
transducer is an electromechanical
sensor that generates an electrical
output when subjected to vibration.
This is accomplished with a crystal
element that creates an electrical
charge when mechanically strained.

The mechanism of the force transduc-
er, called a load cell, functions in a
fairly simple manner. When the crys-
tal element is strained, either by ten-
sion or compression, it generates a
charge proportional to the applied
force. In this case, the applied force
is from the shaker. However, due to
mounting methods discussed earlier,
this is not necessarily the force trans-
mitted to the structure.  

The mechanism of the response
transducer, called an accelerometer,
functions in a similar manner. When
the accelerometer vibrates, an inter-
nal mass in the assembly applies a
force to the crystal element which is
proportional to the acceleration. This 
relationship is simply Newton’s Law:
force equals mass times acceleration.

The properties to consider in 
selecting a load cell include both the
type of force sensor and its perfor-
mance characteristics. The type of
force sensing for which load cells are
designed include compression, ten-
sion, impact or some combination

Figure 2.16
Frequency 
response of 
transducer

Figure 2.17
Stud mounted 
load cell
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thereof. Most shaker tests require at
least a compression and tension type.
A hammer test, for example, would
require an impact transducer.

Some of the operating specifications
to consider are sensitivity, resonant
frequency, temperature range and
shock rating.  Sensitivity is measured
in terms of voltage/force with units 
of mV/1b or mV/N.  Analyzers have 
a range of input voltage settings;
therefore, sensitivity should be 
chosen along with a power supply
amplification level to generate a 
measurable voltage.

The resonant frequency of a load cell
is simply a function of its physical
mass and stiffness characteristics.
The frequency range of the test
should fall within the linear range
below the resonant peak of the fre-
quency response of the load cell, as
shown in Figure 2.16.  The rule of
thumb for shock rating is that the
maximum vibration level expected
during the test should not exceed one
third the shock rating.

The load cell should be mounted to
the structure with a threaded stud for
best results as shown in Figure 2.17.
If this is not feasible, then an alterna-
tive method of first fixing a spacer to
the structure with some type of adhe-
sive (such as dental cement) and then
stud mounting the load cell to this
spacer will usually suffice for low
force levels.

The properties to consider in select-
ing an accelerometer are very similar
to those of the load cell, although
they are related to acceleration rather
than force.  The type of response is
limited to acceleration as the term
implies, since displacement and
velocity transducers are not available

Figure 2.18
Frequency 
response of 
transducer
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in the piezoelectric type.  However, if
displacement or velocity responses
are desired, the acceleration response
can be artificially integrated once or
twice to give velocity and displace-
ment responses, respectively. 

In general, the optimum acceler-
ometer has high sensitivity, wide 
frequency range and small mass.
Trade-offs are usually made since
high sensitivity usually dictates a 
larger mass for all but the most 
expensive accelerometers.  The 
sensitivity, measured in mV/G, and the
shock rating should be selected in the
same manner as with the load cell.

Although the resonant frequency of
the accelerometer (freely suspended)
is a function of its mass and stiffness
characteristics, the actual natural 
frequency (when mounted) is general-
ly dictated by the stiffness of the
mounting method used. The effect of
various mounting methods is shown
in Figure 2.18.  The rule of thumb is
to set the maximum frequency of the
test at no more than one-tenth the
mounted natural frequency of the 
accelerometer.  This is within the 
linear range of the mounted frequen-
cy response of the accelerometer.

Another important consideration is
the effect of mass loading from the
accelerometer.  This occurs as a
result of the mass of the accelerome-
ter being a significant fraction of the
effective mass of a particular mode.
A simple procedure to determine if
this loading is significant can be 
done as follows:

Figure 2.19
Mass loading 
from 
accelerometer
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● Measure a typical frequency 
response function of the test object
using the desired accelerometer.

● Mount another accelerometer 
(in addition to the first) with the
same mass at the same point and
repeat the measurement.

● Compare the two measurements and
look for frequency shifts and ampli-
tude changes.

If the two measurements differ signif-
icantly, as illustrated in Figure 2.19,
then mass loading is a problem and
an accelerometer with less mass
should be used.  On very small struc-
tures, it may be necessary to measure
the response with a non-contacting
transducer, such as an acoustical or
optical sensor, in order to eliminate
any mass loading.
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Figure 2.20
Example of 
the input 
half ranging

Figure 2.21
Example of 
the input 
under ranging

Figure 2.22
Example of 
the input 
over ranging
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Measurement Interpretation

Having discussed the mechanics of
setting up a modal test, it is appropri-
ate at this point to make some trial
measurements and examine their
trends before proceeding with data
collection.  Taking the time to investi-
gate preliminaries of the test, such 
as exciter or response locations, 
various types of excitation functions
and different signal processing
parameters will lead to higher quality
measurements.  This section includes
preliminary checks such as adequate
signal levels, minimum leakage 
measurements and linearity and 
reciprocity checks.  The concept and
trends of the driving point measure-
ment and the combinations of mea-
surements that constitute a complete
modal survey are discussed.

After the structure has been support-
ed and instrumented for the test, 
the time domain signals should be
examined before making measure-
ments.  The input range settings on
the analyzer should be set at no more
than two times the maximum signal
level as shown in Figure 2.20.  Often
called half-ranging, this takes advan-
tage of the dynamic range of the 
analog-to-digital converter without
underranging or overranging the 
signals. 

The effect resulting from under-
ranging a signal, where the response
input level is severely low relative to
the analyzer setting, is illustrated in
Figure 2.21.  Notice the apparent
noise between the peaks in the fre-
quency response and the resulting
poor coherence function.  In 
Figure 2.22, the response is severely
overloading the analyzer input sec-
tion and is being clipped.  This results
in poor frequency response and, 
consequently, poor coherence since
the actual response is not being 
measured correctly.

It is also advisable to verify that the
signals are indeed the type expected,
(e.g., random noise).  With a random
signal, it is advisable to measure the
histogram to verify that it is not 
contaminated with other signal 
components, i.e., it has a Gaussian
distribution as shown in Figure 2.23.
This can be visually checked as 
illustrated with the transient signals
in Figure 2.24.

Figure 2.23
Random 
test signals

Figure 2.24
Transient 
test signals
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Measurement Averaging

In order to reduce the statistical 
variance of a measurement with a
random excitation function (such as
random noise) and also reduce the
effects of nonlinearities, it is neces-
sary to employ an averaging process.
By averaging several time records
together, statistical reliability can
be increased and random noise asso-
ciated with nonlinearities can be
reduced.  One method to gain insight
into the variance of a measurement 
is to observe the Nyquist display of

the frequency response.  The circle
appears very distorted for a measure-
ment with few averages, but begins 
to smooth out with more and more
averages.  This process can be seen 
in Figure 3.1.  With each data record
acquired, the frequency spectrum has
a different magnitude and phase 
distribution. As these spectra are 
averaged, the nonlinear terms tend 
to cancel, thus resulting in the best
linear estimate.

Chapter 3
Improving Measurement Accuracy

Figure 3.1
Measurement 
averaging 
frequency 
response
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Windowing Time Data

There is a property of the Fast 
Fourier transform (FFT) that affects
the energy distribution in the frequen-
cy spectrum.  It is the result of the
physical limitation of measuring a
finite length time record along with
the periodicity assumption required
of the time record by the FFT.  This
does not present a problem when the
signal is exactly periodic in the time
record or when a transient signal is
completely captured within the time
record.  However, in the case of true
random excitation or in the transient
case when the entire response is not
captured, a phenomenon called leak-
age results.  This has the effect of
smearing or leaking energy into adja-
cent frequency lines of the spectrum,
thus distorting it.  Figure 3.2 illus-
trates an example of the effects of 
severe leakage problems with true
random excitation.  The effect is to 
underestimate the amplitude and
overestimate the damping factor.

One of the most common techniques
for reducing the effects of leakage
with a non-periodic signal is to artifi-
cially force the signal to 0 at the
beginning and end of the time record
to make it appear periodic to the 
analyzer.  This is accomplished by
multiplying the time record by a
mathematical curve, known as a win-
dow function, before processing the
FFT.  Another measurement is taken
with a Hann window applied to the
true random excitation signal, shown
in Figure 3.3.  This measurement is
more accurate, but notice that the
coherence is still less than unity at
the resonance.  The window does not

Figure 3.2
Frequency 
response with 
true random 
signal and 
no windows

Figure 3.3
Frequency 
response with 
burst random 
signal
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eliminate leakage completely and it
also distorts the measurement as a 
result of eliminating some data.  A
better measurement technique is to
use an excitation that is periodic
within the time record such as burst
random, in order to eliminate the
leakage problem as illustrated in
Figure 3.4.

Increasing Measurement Resolution

Another measurement capability 
that is often needed, particularly 
for lightly damped structures, is to
obtain more frequency resolution in
the vicinity of resonance peaks.  It
may not be possible in a baseband
measurement to extract valid modal
parameters with inadequate informa-
tion.  Normally, the Fourier transform
is calculated over a frequency range
from 0 to some maximum frequency.
Zoom processing is a technique in
which the lower and upper frequency
limits are independently selectable
over fixed ranges within the analyzer.
The capability to zoom allows closely
spaced modes to be more accurately
identified by concentrating the mea-
surement points over a narrower
band.  The result of this increased
measurement accuracy is shown in
Figure 3.5.  Another result is that 
distortion due to leakage is reduced, 
because the smearing of energy 
is now within a narrower bandwidth,
but not eliminated.  Another related
process associated with zooming is
the ability to band-limit the excitation
to concentrate the available energy
within the given frequency 
range of the test.

Figure 3.4
Frequency 
response with 
true random 
signal and
Hann window
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Figure 3.5
Effects of 
increasing 
frequency 
resolution
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Complete Survey

As frequency response functions are
being acquired and stored for subse-
quent modal parameter estimation, 
an adequate set of measurements
must be collected in order to arrive
at a complete set of modal parame-
ters.  This section describes the 
number and type of measurements
that constitute complete modal sur-
vey.  Definitions and concepts, such
as driving point measurement and
a row or column of the frequency 
response matrix are discussed.
Optimal shaker and accelerometer
locations are also included.

A complete, although redundant, set
of frequency response measurements
would form a square matrix of size N,
where the row corresponds to
response points and the columns 
correspond to excitation points, as
illustrated in Figure 3.6.  It can be
shown, however, that any particular
row or column contains sufficient 
information to compute the complete
set of frequencies, damping, and
mode shapes.  In other words, if 
the excitation is at point 3, and the
response is measured at all the
points, including point 3, then column
of the frequency response matrix will
be measured.  This situation would be
the result of a shaker test. On the
other hand, if an accelerometer is
attached to point 7, and a hammer is
used to excite the structure at all
points, including point 7, then row 7
on the matrix will be measured.  This
would be the result of an impact test.

The measurement where the
response point and direction are the
same as the excitation point and
direction is called a driving point
measurement.  The beam in Figure
3.7 illustrates a measurement of this
type.  Driving point measurements

form the diagonal of the frequency
response matrix shown above. They
also exhibit unique characteristics
that are not only useful for checking
measurement quality, but necessary
for accomplishing a comprehensive
modal analysis, which includes not
only frequencies, damping factors and
scaled mode shapes, but modal mass

and stiffness as well.  It is not neces-
sary to make a driving point measure-
ment to obtain only frequencies,
damping factors and unscaled mode
shapes.  However, a set of scaled
mode shapes and consequently,
modal mass and stiffness cannot be
extracted from a set of measurements
that does not contain a driving point.

Figure 3.6
Frequency 
response 
matrix

Figure 3.7
Driving point 
measurement
setup
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Recall from Chapter 1, Structural
Dynamics Background, that the 
response of a MDOF system is simply
the weighted sum of a number of
SDOF systems. The characteristics 
of the driving point measurement 
can be easily explained and presented
as a consequence of this property. 
Figure 3.8 shows a typical driving
point measurement displayed in 
rectangular and polar coordinates. 
As seen in the imaginary part of the
rectangular coordinates, all of the 
resonant peaks lie in the same direc-
tion. In other words, they are in
phase with each other. This charac-
teristic becomes more intuitive when 
illustrated with the beam modes in
Figure 3.9. The response point moves
in the same direction as the excita-
tion point at all the modes, since it 
is measured at the same physical 
location as the excitation.

By observing the trends of this 
measurement in polar coordinates 
in Figure 3.9, a further understanding
of its characteristics can be gained.
When the magnitude is displayed in
log format (dB), anti-resonances
occur between every resonance
throughout the frequency range.  The
individual SDOF systems sum to 0 at
the frequencies where the mass and
stiffness lines of adjacent modes
intersect since all the modes are in
phase with each other.  This results 
in the near 0 magnitude of an anti-
resonance.  Also notice the phase
lead as the magnitude passes through
an anti-resonance and the opposite
phase lag as the magnitude passes
through a resonance.  These trends 
of the driving point measurement
should be observed and monitored
throughout the measurement process
as a check for maintaining a 
consistent set of data.

Figure 3.8
Driving point 
frequency 
response

Figure 3.9
Typical 
free beam 
mode shapes
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The remaining measurements, where
the response coordinates are differ-
ent from the excitation coordinates,
are called cross-point measurements.
Figure 3.10 illustrates a typical cross-
point measurement.  All the modes 
are not necessarily in phase with
each other, as seen in the imaginary
display.  Since the response points
are not at the same location as the
excitation point, the response can
move either in phase or out of phase
with the excitation.  This motion,
which defines the mode shape, 
is a function of the measurement 
location, and will vary from measure-
ment to measurement.  In the dB 
display, if any two adjacent modes
are in phase at a particular point,
then an anti-resonance will exist
between them.  If any two adjacent
modes are out of phase, then their
mass and stiffness lines will not 
cancel at the intersection and a
smooth curve will appear instead,
as seen in Figure 3.10.

In order to excite all the modes 
within the frequency range of inter-
est, several shaker or accelerometer
locations should be examined.  A
point or line on the structure that
remains stationary is called a node
point or node line.  The node points
of a cantilever beam are illustrated in
Figure 3.11.  The number and location
of these nodes are a function of the
particular mode of vibration and
increase as mode number increases.

Figure 3.10
Cross-point 
frequency 
response

Figure 3.11
Typical 
cantilever 
beam mode 
shapes
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If the response is measured at the
end of the beam at point 1 and 
excitation is applied at point 3, all
modes will be excited and the result-
ing frequency response will contain
all the modes as shown in Figure
3.10.  However, if the response is at
point 1 but the excitation is moved to
point 2, the second mode will not be
excited and the resulting frequency
response will appear as shown in 
Figure 3.12.  Referring to Figure 3.11,
note that point 2 is a node point for
mode 2 and very near a node point
for mode 3.  Mode 2 does not appear
in the imaginary display and mode 3
is barely discernible.  In dB coordi-
nates, the mode 3 appears to exist but
it is still difficult to observe mode 2.
It may be advisable or necessary at
times to gather more than one set of
data at different excitation locations
in order to measure all the modes.  It
should also be noted that the same
observations can be made in an
impact test where the response 
point would also be moved to 
various locations.

Another concept associated with a
linear structure concerns a property
of the frequency response matrix.
The frequency response matrix 
for a linear system can be shown 
to be symmetric due to Maxwell’s
Reciprocity Theorem.  Simply stated,
a measurement with the excitation 
at point i and the response at point j
is equal to the measurement with 
the excitation at point j and the 
response at point i.  This is illustrated
in Figure 3.13.  A check can be made
on the measurement process by 
comparing these two reciprocal 
measurements at various pairs of
points and observing any differences
between them.  This can be helpful
for noting nonlinearities when 
applying different force levels. 

Figure 3.12
Frequency 
response with 
excitation at 
node of 
vibration

Figure 3.13
Symmetric 
frequency
response 
matrix
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Introduction

The previous chapter presented 
several techniques for making 
frequency response measurements
for modal analysis.  Having acquired
this data, the next major step of the
process is the use of parameter esti-
mation techniques – “curve fitting” –
to identify the modal parameters.  A
vast amount of literature exists on
the subject of curve fitting measured
data to estimate the modal properties 
of a structure.  However, this 
information tends to be mathemati-
cally vigorous and is generally biased
toward a particular type of algorithm.
It is the intent of this chapter to cate-
gorize, in a conceptual manner, the
different types of curve fttters and
discuss the applications and prob-
lems associated with those most 
commonly implemented.

It was discussed earlier that a 
minimum of one row or column of
the frequency response matrix, or its
equivalent, must be measured in
order to identify a complete set of
modal parameters.  Although addi-
tional data is, in principle, redundant
information, it can be used to verify

and increase the confidence level of
the estimated parameters.  The fre-
quency and damping for each mode
can be estimated from any combina-
tion of these measurements.  The 
residues and, consequently, the modal
coefficients are then computed for
each measurement point.  The mode
shapes are then scaled and sorted for
each resonant frequency.  Finally, 
the modal mass and stiffness can be
determined from these scaled param-
eters as illustrated in Figure 4.1.

Chapter 4
Modal Parameter Estimation

Figure 4.1
Typical flow 
of modal test
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Modal Parameters

One of the most fundamental 
assumptions of modal testing is that 
a mode of vibration can be excited 
at any point on the structure, except
at nodes of vibration where it has no
motion.  This is why a single row or
column of the frequency response
matrix provides sufficient informa-
tion to estimate modal parameters.
As a result, the frequency and damp-
ing of any mode in a structure are
constants that can be estimated 
from any one of the measurements 
as shown in Figure 4.2.  In other
words, the frequency and damping 
of any mode are global properties of
the structure.

In practical applications, it is impor-
tant to include sufficient points in the
test to completely describe all the
modes of interest.  If the excitation
point has not been chosen carefully
or if enough response points are 
not measured, then a particular mode
may not be adequately represented.
At times it may become necessary to
include more than one excitation
location in order to adequately
describe all of the modes of interest.
Frequency responses can be meas-
ured independently with single-point
excitation or simultanously with 
multiple-point excitations.

The mode shapes as a whole are also
global properties of the structure, but
have relative values depending on the
point of excitation and scaling and
sorting factors.  On the other hand,
each individual modal coefficient that
makes up the mode shape is a local
property in the sense that it is esti-
mated from the particular measure-
ment associated with that point as
shown in Figure 4.3.

Figure 4.2
Concepts of 
modal parameters

Figure 4.3
Modal 
parameters
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Curve Fitting Methods

Due to the large amount of literature
and algorithms currently available for
curve fitting structural data, it has 
become difficult to determine the 
exact need for each method and
which method is best.  There is no
ideal solution and the common 
methods are only approximations.
Also, many of the methods are very
similar to each other and, in some
cases, simply extensions of a few
basic techniques.

Although there are several ways in
which curve fitting methods can be
categorized, the most straightforward
is single-mode versus multiple-
mode classification.  Besides the 
intuitive reasoning for single- and 
multiple-mode approximations, there
are some practical reasons for this
classification.  The major difference
in the level of sophistication, or l
evel of accuracy, among curve fitters
is between a single-mode and a multi-
ple-mode method.  Also, the comput-
ing resources needed (computation
speed, memory size and I/0 capabili-
ty) for multiple-mode methods 
can increase tremendously.  Other
sub-catagories and extensions that
fall mostly within multiple-mode
methods are shown in Figure 4.4.

Users generally fall into one of three
major groups.  The first group is pri-
marily concerned with troubleshoot-
ing existing mechanical equipment.
They are usually concerned with time
and require a fast, medium quality
curve fitter.  The second group is
more serious about quantitative
parameter estimates for use in a

modal model.  For example, they
require more accuracy and are willing
to spend more time obtaining results.
The final group is pushing the state of
the art and is involved with develop-
ment work.  Accuracy, rather than 
time, is of paramount importance.

Figure 4.4
Increasing 
accuracy in 
curve fit 
methods
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Single-Mode Methods

As stated earlier, the general 
procedure for estimating modal 
parameters is to estimate frequencies
and damping factors, then estimate
modal coefficients. For most single-
mode parameter estimation tech-
niques, however, this is not always
the case.  In fact, it is not absolutely
necessary to estimate damping in
order to obtain modal coefficients.
This is typical in a troubleshooting 
environment where frequencies and
mode shapes are of primary concern. 

The basic assumption for single-mode
approximations is that in the vicinity
of a resonance, the response is due
primarily to that single mode.  The
resonant frequency can be estimated
from the frequency response data 
(illustrated in Figure 4.5) by observ-
ing the frequency at which any of the
following trends occur:

Figure 4.5
Frequency 
response

ωn — Frequency

Real

Imaginary

ωn — Frequency

Magnitude

Phase

● The magnitude of the frequency
response is a maximum.

● The imaginary part of the 
frequency response is a 
maximum or minimum.

● The real part of the frequency 
response is zero.

● The response lags the input by 
90° phase.

It was discussed earlier that the
height of the resonant peak is a 
function of damping.  The damping
factor can be estimated by the half-
power method or other related math-
ematical or graphical method.  In the
half-power method, the damping is
estimated by determining the sharp-
ness of the resonant peak.  It can be
shown from Figure 4.6 that damping
can be related to the width of the
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peak between the half-power points:
points below and above the resonant
peak at which the response magni-
tude is .7071 times the resonant 
magnitude. 

One of the simplest single-mode
modal coefficient estimation tech-
niques is the quadrature method,
often called “peak picking”. Modal
coefficients are estimated from the
imaginary (quadrature) part of the
frequency response, so the method is
not a curve fit in the strict sense of
the term.  As mentioned earlier, the
imaginary part reaches a maximum at
the resonant frequency and is 90° 
out of phase with respect to the
input.  The magnitude of the modal
coefficient is simply taken as the 
value of the imaginary part at 
resonance as illustrated in Figure 4.7.
The sign (phase) is taken from the 
direction that the peak lies along 
the imaginary axis, either positive or
negative.  This implies that the phase
angle is either 0° or 180°.

The quadrature response method is
one of the more popular techniques
for estimating modal parameters
because it is easy to use, very fast
and requires minimum computing
resources.  It is, however, sensitive to
noise on the measurement and effects
from adjacent modes.  This method is
best suited for structures with light
damping and well separated modes
where modal coefficients are essen-
tially real valued.  It is most useful for
troubleshooting problems, however,
where it is not necessary to create a
modal model and time is limited. 

Figure 4.6
Damping factor 
from half power

Figure 4.7
Quadrature 
peak pick

Figure 4.8
Circle fit 
method
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Another single-mode technique,
called the circle fit, was originally
developed for structural damping but
can be extended to the viscous damp-
ing case.  Recall from Chapter 1 that
the frequency response of a mode
traces out a circle in the imaginary
plane.  The method fits a circle to 
the real and imaginary part of the 
frequency response data by minimiz-
ing the error between the radius of
the fitted circle and the measured
data.  The modal coefficient is then
determined from the diameter of the
circle as illustrated in Figure 4.8.  The
phase is determined from the positive
or negative half of the imaginary axis
in which the circle lies.

Frequency and damping can be 
estimated by one of the methods 
discussed earlier or by some of the
MDOF methods to be discussed later.
Damping can also be estimated from
the spacing of points along the
Nyquist plot from the circle.

The circle fit method is fairly fast 
and requires minimum computer
resources.  It usually results in better
parameter estimates than obtained 
by the quadrature method because 
it uses more of the measurement
information and is not as sensitive 
to effects from adjacent modes as 
illustrated in Figure 4.9.  It is also 
less sensitive to noise and distortion
on the measurement.  However, it 
requires much more user interaction
than the quadrature method; conse-
quently, it is prone to errors, particu-
larly when fitting closely spaced
modes.

A SDOF method related to the circle
fit is a frequency domain curve fit to
a single-mode analytical expression
of the frequency response.  This
expression is generally formulated 
as a second order polynomial with
residual terms to take into account
the effects of out of band modes.
Because of its similarities to the 
circle fit, it possesses the same basic
advantages and disadvantages.

Concept of Residual Terms

Before proceeding to multiple-mode
methods, it is appropriate to discuss
the residual effects that out-of-band
modes have on estimated parameters.
In general, structures possess an 
infinite number of modes.  However,
there are only a limited number that
are usually of concern.  Figure 4.10
illustrates the analytical expression

Figure 4.9
Comparison of 
quadrature and 
circle fit methods

Figure 4.10
Analytical 
expression of 
frequency 
response
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for the frequency response of a 
structure taking into account the 
total number of realizable modes.
Unfortunately, the measured frequen-
cy response is limited to some fre-
quency range of interest depending
on the capabilities of the analyzer 
and the frequency resolution desired.
This range may not necessarily
include several lower frequency
modes and most certainly will not 
include some higher frequency
modes.  However, the residual effects
of these out-of-band modes will be
present in the measurement and, 
consequently, affect the accuracy 
of parameter estimation.

Although parameters of the 
out-of-band modes cannot be identi-
fied, their effects can be represented
by two relatively simple terms.  It can
be seen from Figure 4.11 that the
effects of the lower modes tend to
have mass-like behavior and the
effects of the higher modes tend to
have stiffness-like behavior.  The 
analytical expression for the residual
terms can then be written as shown
in Figure 4.12.  Notice that the 
residual terms are equivalent to the
asymptotic behavior of the mass and
stiffness of a SDOF system discussed
in the chapter on structural dynamics.

Useful information can often be
gained from the residual terms that
has some physical significance.  First,
if the structure is freely supported
during the test, then the low frequen-
cy residual term can be a direct 
measure of rigid body mass proper-
ties of the structure.  The high fre-
quency term, on the other hand, can
be a measure of the local flexibility 
of the driving point.

Figure 4.11
Single mode 
summation of 
frequency 
response

Figure 4.12
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of frequency 
response

dB
 M

ag
ni

tu
de

0.0
ω1 ω2 ω3 Frequency

dB
 M

ag
ni

tu
de

0.0
ω1 ω2 ω3 Frequency

Mass Line

Stiffness Line

H( ) =ω φ φi j
k

Higher Modes

H( ) =ω φ φi j
-w m2 Lower Modes



45

Multiple-Mode Methods

The single-mode methods discussed
earlier perform reasonably well for
structures with lightly damped and
well separated modes.  These meth-
ods are also satisfactory in situations
where accuracy is of secondary con-
cern.  However, for structures with
closely spaced modes, particularly
when heavily damped, (as shown in
Figure 4.13) the effects of adjacent
modes can cause significant approxi-
mations.  In general, it will be neces-
sary to implement a multiple-mode
method to more accurately identify
the modal parameters of these types
of structures.

The basic task of all multiple-mode
methods is to estimate the coeffi-
cients in a multiple- mode analytical
expression for the frequency
response function.  This is done by
curve fitting a multiple-mode form 
of the frequency response function 
to frequency domain measurements.  
An equivalent method is to curve fit 
a multiple response form of the 
impulse response function to time
domain data.  In either process, all
the modal parameters (frequency,
damping and modal coefficient) 
for all the modes are estimated 
simultaneously.

There are a number of multiple-mode
methods currently available for curve
fitting measured data to estimate
modal parameters.  However, there
are essentially two different forms 
of the frequency response function
which are used for curve fitting.
These are the partial fraction form
and the polynomial form which are
shown in Figure 4.14.  They are 
equivalent analytical forms and can

Figure 4.13
Damping and 
modal coupling

Figure 4.14
Frequency
response 
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be shown to be related to the struc-
tural frequency response developed
earlier in Chapter 1.  The impulse
response function, obtained by
inverse Fourier transforming the 
frequency response function into the
time domain, is also shown in Figure
4.14.

When the partial fraction form of the
frequency response is used, the
modal parameters can be estimated
directly from the curve fitting
process.  A least squares error
approach yields a set of linear 
equations that must be solved for 
the modal coefficients and a set of
nonlinear equations that must be
solved for frequency and damping.
Because an iterative solution is
required to solve these equations,
there is potential for convergence
problems and long computation
times.

If the polynomial form of the frequen-
cy response is used, the coefficients
of the polynomials are identified dur-
ing the curve fitting process.  A root
finding solution must then be used to 
determine the modal parameters. The
advantage of the polynomial form is
that the equations are linear and the
coefficients can be solved by a nonit-
erative process.  Therefore, conver-
gence problems are minimal and
computing time is more reasonable. 

The complex exponential method 
is a time domain method that fits
decaying exponentials to impulse
response data.  The equations are
nonlinear, so an iterative procedure is
necessary to obtain a solution.  The
method is relatively insensitive to
noise on the data, but suffers from
sensitivity to time domain aliasing, as
a result of truncation in the frequency 
domain from inverse Fourier trans-
forming the frequency responses.

In principle, it should not matter
whether frequency domain data or
time domain data is used for curve
fitting since the same information is
contained in both domains.  However,
there are some practical reasons,
based on frequency domain and time 
domain operations, that seem to favor
the frequency domain.  One, the mea-
surement data can be restricted to
some desired frequency range and
any noise or distortion outside this
range can effectively be ignored.
Another, the cross spectra and
autospectra needed to compute fre-
quency responses can be formed

faster than the corresponding time 
domain correlation functions.  It is
true that the time domain can be used
to select modes having different
damping values, but this is usually
not as important as the ability to
select a frequency range of interest.

Each method has its advantages and
disadvantages, but the fundamental
problems of noise, distortion and
interference from adjacent modes
remain.  As a result, none of the
methods work well in all situations.
It is also unlikely that some “magic”
method will be discovered that elimi-
nates all of these problems.  All of the
methods work well with ideal data,
but cannot be evaluated by analytical
means alone.  The important factor is
how well they work, or gracefully fail,
with real experimental data complete
with noise and distortion.
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Concept of Real and Complex Modes

The structural model discussed so far
is based on the concept of propor-
tional viscous damping which implies
the existence of real, or normal,
modes.  Mathematically, this implies
that the physical damping matrix 
can be defined as linear combination
of the physical mass and stiffness
matrices as shown in Figure 4.15.
The mode shapes, are, in effect real
valued, meaning the phase angles 
differ by 0° or 180°.  Physically, all 
the points reach their maximum 
excursion at the same time as in a
standing wave pattern.  One of the
consequences of this assumption, 
discussed earlier, is that the imagi-
nary part of the frequency response
reaches a maximum at resonance 
and the real part is 0 valued as illus-
trated in Figure 4.16.  Note also that
the Nyquist circle lies along the 
imaginary axis.

However, physical structures exhibit
a more complicated form of damping
which results in non-proportional
damping. The mode shapes are, 
generally, complex valued, meaning
the phase angles can have values 
other than 0° or 180°.  Physically, 
the points reach their maximum 
excursions at various times as in a
traveling wave pattern.  With non-
proportional damping, the imaginary
part of the frequency response no
longer reaches a maximum at reso-
nance nor is the real part nonzero 
valued as illustrated in Figure 4.17.
Note also that the Nyquist circle is 
rotated at an angle in the complex
plane.

When damping is light, as is the case
in most mechanical structures, the
proportional damping assumption is
generally an accurate approximation.  
Although damping is not proportional
to the mass and stiffness, the nonpro-
portional coupling effects may be
small enough not to cause serious
errors.  Physically, this means that the
damping is sufficiently small so that

coupling is a second-order effect.  It
should be noted that closely-spaced
modes often appear complex as a
result of the effects from adjacent
modes as illustrated in Figure 4.18.
In reality, they may actually be 
more real than they appear.

Figure 4.15
Proportional 
damping 
representation

Figure 4.16

Figure 4.17

Figure 4.18
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spaced real 
modes
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Introduction

The basic techniques for performing a
modal test to identify the dynamic
properties of a structure have been
described in the previous chapters.
An introduction to the applications 
of the resulting frequency responses
and modal parameters is the focus 
of this chapter.  The discussion is spe-
cifically concerned with the uses of a
response model or a modal model
with structural analysis methods as
shown in Figure 5.1.  The intent is to
bring together the experimental and
analytical tools for solving noise,
vibration and failure problems. 

A response model is simply the set of
frequency response measurements
acquired during the modal test.
These measurements contain all the
dynamics of the structure needed for
subsequent analyses.  A modal model
is derived from the response model
and is a function of the parameter
estimation technique used.  It not
only includes frequencies, damping
factors, and mode shapes, but also
modal mass and modal stiffness.
These masses and stiffnesses depend
on the method that was used to scale 
the mode shapes.  A subset of the
modal model consisting of only the
frequencies and unscaled mode
shapes can be useful for some 
troubleshooting applications where
frequencies and mode shapes are the
primary concern.  However, for appli-
cations involving analysis methods,
such as structural modification and

substructure coupling, a complete
modal model is required.  This 
definition of a complete modal model
should not be confused with the 
concept of a truncated mode set in
which all the modes are not included.

Chapter 5
Structural Analysis Methods

Figure 5.1
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Structural Modification

When troubleshooting a vibration
problem or investigating simple
design changes, an analysis method
known as structural modification,
illustrated in Figure 5.2, can be very
useful.  Basically, the method deter-
mines the effects of mass, stiffness
and damping changes on the dynamic
characteristics of the structure.  It is
a straightforward technique and gives
reasonable solutions for simple
design studies.  Some of the benefits
of using structural modification are
reduced time and cost for implement-
ing design changes and elimination 
of the trial-and-error approach to
solving existing vibration problems.
The technique can be extended to 
an iterative process, often called 
sensitivity analysis, in order to 
categorize the sensitivity of specific
amounts of mass, stiffness or 
damping changes.

In general, structural modification
involves two interrelated design
investigations.  In the first, a physical
mass, stiffness or damping change
can be specified with the analysis
determining the modified set of
modal parameters.  The second
involves specifying a frequency and
having the analysis determine the
amount of mass, stiffness or damping
needed to shift a resonance to this
new frequency.  For the user’s 
convenience, specific applications of
these basic methods, such as tuned
absorber, design are usually included.

Figure 5.2
Structural 
modification 
simulation
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measurement at every location to be
modified.  The modal model may be
more intuitive since it contains direct
mass, stiffness and damping informa-
tion directly.  However, it does suffer
from being tedious and time consum-
ing to derive and is sensitive to the
number and type of modes extracted.
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Finite Element Correlation

Finite element analysis is a numerical
procedure useful for solving structur-
al mechanics problems.  More specifi-
cally, it is an analytical method for
determining the modal properties of 
a structure.  It is often necessary to
validate the results from this theoreti-
cal prediction with measured data
from a modal test.  This correlation
method is generally an iterative
process and involves two major steps.
First, the modal parameters, both fre-
quencies and mode shapes, are com-
pared and the differences quantified.
Second, adjustments and modifica-
tions are made, usually to the finite
element model, to achieve more com-
parable results.  The finite element
model can then be used to simulate
responses to actual operating 
environments.

The correlation task is usually begun
by comparing the measured and pre-
dicted frequencies.  This is often done
by making a table to compare each
mode frequency by frequency as
shown in Table 5.1.  It is more useful,
however, to graphically compare the
entire set of frequencies by plotting
measured versus the predicted 
results as shown in Figure 5.3.  This
shows not only the relative differenc-
es between the frequencies, but also
the global trends and suggests possi-
ble causes of these differences.  If
there is a direct correlation the points
will lie on a straight line with a slope
of 1.0.  If a random scatter arises,
then the finite element model may
not be an accurate representation of
the structure.  This could result from

an inappropriate element type or 
a poor element mesh in the finite 
element model.  It could also result
from incorrect boundary conditions
in either the test or the analysis.  If
the points lie on a straight line, but
with a slope other than 1, then the
problem may be a mass loading prob-
lem in the modal test or an incorrect
material property, such as elastic
modulus or material density, in the
finite element model.

The parameter comparison is not
actually this simple, nor is it com-
plete, because the mode shapes must
also be compared at the same time to

ensure a one-to-one correspondence 
between the frequency and the mode
shape.  Remember that a distinct
mode shape is associated with each
distinct frequency.  One technique 
for performing this comparison is 
to simply overlay the plotted mode
shapes from the test and analysis and
observe their general trends.  This
can become rather difficult, though,
for structures with complicated 
geometry because the plots tend to
get cluttered. 

Figure 5.3
Graphical 
comparison 
of frequencies

Table 5.1
Tabular 
comparisons 
of frequency

FE (Hz) Test (Hz)

17.5 15.7

21.3 19.4

26.4 25.5

30.0 28.3

31.2 30.5

Fe

Test
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Numerical techniques have been
developed to perform statistical 
comparisons between any two mode
shapes, illustrated in Figure 5.4.  The
first results in the modal scale factor
(MSF) – a proportionality constant
between the two shapes.  If the 
constant is equal to 1.0, this means
the shapes were scaled in the same
manner such as unity modal mass.  If
the constant is any value other than
1.0, then the shapes were scaled 
differently.  The second, and more
important method, results in the
modal assurance criterion (MAC), a 
correlation coefficient between the
two mode shapes.  If the coefficient is
equal to 1.0, then the two shapes are
perfectly correlated.  In practice, 
any value between 0.9 and 1.0 is 
considered good correlation.  If the
coefficient is any value less than 1.0,
then there is some degree of 
inconsistency, proportional to the
value of the factor, between the
shapes.  This can be caused by an
inaccurate finite element model, as
described earlier, or the presence of
noise and nonlinearities in the mea-
sured data.  It should be noted that in
order for these comparisons to have
a reasonable degree of accuracy, it 
is very important that coordinate
locations in the modal test coincide
with coordinates in the finite 
element mesh. 

There are other numerical methods
for comparing the measured and 
predicted modal parameters of a
structure.  One such technique, called
direct system parameter identifica-
tion, is the derivation of a physical
model of a structure from measured
force and response data.  However,
techniques such as this are beyond
the scope of this text and can be
found in technical articles about
modal analysis.

Figure 5.4
Numerical 
comparison of 
mode shapes

Mode 2

Mode 1

MAC — Correlation Coefficient

MSF — Proportionality Constant

How were the modes scaled?

Unit Modal Mass

[ ]M [ ]I

Are the modes the same mode?
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Substructure Coupling Analysis

In analyses involving large structures
or structures with many components
it may not be feasible to assemble a
finite element model of the entire 
structure.  The time involved in build-
ing the model may be unacceptable
and the model may contain more de-
grees of freedom than the computer
can handle.  As a result, it may be
necessary to employ a modeling
reduction method known as substruc-
ture coupling or component mode 
synthesis illustrated in Figure 5.5.

Substructure coupling involves the
division of the structure into various
components, modeling these compo-
nents for their individual dynamics
and then combining these individual
results into one model to analyze the 
dynamics of the complete structure.
These component models can take on
several different mathematical forms
each of which has a particular useful-
ness.  Common models include modal
models and physical models from a
finite element analysis, modal models
from a modal test, rigid body models
and physical springs and dampers.
The component models are combined
through a transformation that relates
their dynamics at the interfaces.  The
results from the analysis of the com-
plete structure can then be correlated
with equivalent modal test results in
the same manner as described earlier.

A modal model of a component for
substructure coupling must contain
the modal mass, stiffness and damp-
ing factors along with the modal
matrix.  The modal matrix of a 
structure is simply a matrix whose
columns are comprised of the respec-

tive modes of the structure.  In the
special case where the mode shapes
have been scaled to unity modal
mass, the modal model reduces to 
the frequencies, damping and mode
shapes.

Figure 5.5
Substructure 
coupling 
analysis

Airplane

Component Analysis

Fuselage
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Forced Response Simulation

One of the major design goals for
most engineering analyses is to be
able to predict system responses to
actual operating forces.  This can
enable engineers to ultimately find
optimal solutions to troublesome
noise or vibration problems.  This 
technique, illustrated in Figure 5.6, 
is commonly called forced response
simulation or forced response predic-
tion.  Forces can be specified for any
degree of freedom in the modal
model and displacements, velocities
or accelerations can be predicted for
any degree of freedom.

Figure 5.6
Forced 
response 
simulation

Force Inputs

System Model

Engine RPM Road Surface
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