An introduction to dynamic optimization

We divide these problems in according to dimensions:

1. Time can be modelled as discrete or continuous
2. Horizon can be finite or infinite

The solutions take the form of a complete time path

Dynamic maximization in continuous time

Example: profit maximization
Initial time $t=0$
Terminal time $\mathrm{t}=T$
At any time we have to choose a control variable u_{t} affecting a state variable y_{t} through an equation of motion.

State variable y_{t} affects the profit π_{t}
The problem is to maximize the profit over the whole period
Then the objective function is

$$
\int_{0}^{T} \pi_{t} d t
$$

y_{0} and y_{T} are given

The simplest problem takes the form of:

$$
\begin{gathered}
\max \int_{0}^{T} F(t, y, u) d t \\
\text { subject to } \\
\frac{d y}{d t} \equiv y^{\prime}=f(t, y, u) \\
y_{0}=A \quad y_{T} \text { free } \\
u_{t} \in U \quad \forall t \in[0, T]
\end{gathered}
$$

We require that $F(t, y, u)$ and $f(t, y, u)$

- are continuous in all arguments,
- have continuous first order partial derivatives w.r.t. y and t

Example

An economy produces Y using capita K and labor L using the production function:

$$
Y=Y(K, L)
$$

Further $Y=C+I$ where I is the capital.
Capital does not depreciate then:

$$
\begin{gathered}
I=\frac{d K}{d t} \\
I=Y-C=Y(K, L)-C=\frac{d K}{d t}
\end{gathered}
$$

If we want maximize the utility over the period from 0 to T the problem becomes:

$$
\begin{gathered}
\max \int_{0}^{T} U(C) d t \\
\text { subject to } \\
\frac{d K}{d t}=Y(K, L)-C \\
K_{0}, K_{T} \text { given }
\end{gathered}
$$

C is the control variable
K is the state variable

Hamiltonian function and costate variable

Costate variable is denoted by $\lambda(t)$
It measures the shadow price of the state variable
Hamiltonian function is:

$$
H(t, y, u, \lambda)=F(t, y, u)+\lambda(t) f(t, y, u)
$$

Then the Hamiltonian function as four arguments: t, y, u, λ

Maximum principle

(i) $H\left(t, y, u^{*}, \lambda\right) \geq H(t, y, u, \lambda) \forall t \in[0, T]$
(ii) $y^{\prime}=\frac{d H}{d \lambda}=f(t, y, u) \quad$ state equation
(iii) $\lambda^{\prime}=-\frac{d H}{d y}$
costate equation
Hamiltonian
System
(iv) $\lambda(T)=0$ transversality condition

In the case the Hamiltonian is differentiable w.r.t. u and yields an interior solution, condition (i) can be replaced by:

$$
\frac{d H}{d u}=0
$$

Condition (iv) is appropriate only for the free-terminal state problem only

Example 1

$$
\begin{gathered}
\max \int_{0}^{T}-\sqrt{1+u^{2}} d t \\
\text { subject to } \\
y^{\prime}=u \\
y_{0}=A \quad y_{T} \text { free }
\end{gathered}
$$

The Hamiltonian function is

$$
H=-\sqrt{1+u^{2}}+\lambda u
$$

$$
H=-\sqrt{1+u^{2}}+\lambda u
$$

(i) $H\left(t, y, u^{*}, \lambda\right) \geq H(t, y, u, \lambda) \forall t \in[0, T]$
(ii) $y^{\prime}=\frac{d H}{d \lambda}$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}$
(iv) $\lambda(T)=0$
state equation
costate equation
transversality condition
(i) $\frac{d H}{d u}=\frac{-u}{\sqrt{1+u^{2}}}+\lambda=0$
(ii) $y^{\prime}=u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=0$
(iv) $\lambda(T)=0$

From (i) we get $u(t)=\frac{\lambda}{\sqrt{1-\lambda^{2}}}$
(i) $\frac{d H}{d u}=\frac{-u}{\sqrt{1+u^{2}}}+\lambda=0$
(ii) $y^{\prime}=u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=0$
(iv) $\lambda(T)=0$

From (i) we get $u(t)=\frac{\lambda}{\sqrt{1-\lambda^{2}}}$
From (iii) we get that λ is constant over time
Then using condition (iv) we can conclude that $\lambda^{*}(t)=0 \forall t \in[0, T]$
Then replacing in (i) we get $u^{*}(t)=0$
Using (ii) we have $y^{\prime}=0 \rightarrow y^{*}=c$ (a constant)
Using the initial condition $y(0)=A \rightarrow c=A$

$$
y^{*}(t)=A \quad \forall t \in[0, T]
$$

Example 2

$$
\begin{gathered}
\max \int_{0}^{1}\left(y-u^{2}\right) d t \\
\text { subject to } \\
y^{\prime}=u \\
y(0)=5 \quad y(1) \text { free }
\end{gathered}
$$

The Hamiltonian function is

$$
H=y-u^{2}+\lambda u
$$

$$
H=y-u^{2}+\lambda u
$$

(i) $H\left(t, y, u^{*}, \lambda\right) \geq H(t, y, u, \lambda) \forall t \in[0, T]$
(ii) $y^{\prime}=\frac{d H}{d \lambda}$
state equation
(iii) $\lambda^{\prime}=-\frac{d H}{d y}$
(iv) $\lambda(T)=0$
costate equation
transversality condition
(i) $\frac{d H}{d u}=-2 u+\lambda=0$
(ii) $y^{\prime}=u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=-1$
(iv) $\lambda(T)=0$
(i) $\frac{d H}{d u}=-2 u+\lambda=0$
(ii) $y^{\prime}=u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=-1$
(iv) $\lambda(T)=0$

From (i) we get $u(t)=\frac{\lambda}{2}$
Replacing in (ii) $\rightarrow y^{\prime}=\frac{\lambda}{2}$
Integrating (iii) we get $\lambda(t)=c_{1}-t$
Using (iv) $\lambda(1)=c_{1}-1=0 \rightarrow c_{1}=1 \rightarrow \lambda^{*}(t)=1-t$
Then replacing in [1] $\rightarrow y^{\prime}=\frac{1-t}{2} \quad$ [2]
and integrating

$$
y(t)=\frac{1}{2} t-\frac{1}{4} t^{2}+c_{2}
$$

Using the initial condition $y(0)=5$
$y(0)=\frac{1}{2} 0-\frac{1}{4} 0^{2}+c_{2}=5 \rightarrow c_{2}=5$

$$
y^{*}(t)=\frac{1}{2} t-\frac{1}{4} t^{2}+5
$$

Replacing [2] in (ii)

$$
u^{*}(t)=\frac{1}{2}(1-t)
$$

Example 3

$$
\begin{gathered}
\max \int_{0}^{2}(2 y-3 u) d t \\
\text { subject to } \\
y^{\prime}=y+u \\
y(0)=4 \quad y(2) \text { free and } u(t) \in[0,2]
\end{gathered}
$$

The Hamiltonian function is

$$
H=2 y-3 u+\lambda(y+u)
$$

$$
H=2 y-3 u+\lambda(y+u)
$$

(i) $H\left(t, y, u^{*}, \lambda\right) \geq H(t, y, u, \lambda) \forall t \in[0, T]$
(ii) $y^{\prime}=\frac{d H}{d \lambda}$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}$
(iv) $\lambda(T)=0$
state equation
costate equation
transversality condition
(i) $\frac{d H}{d u}=-3+\lambda=0$
(ii) $y^{\prime}=y+u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=-2-\lambda$
(iv) $\lambda(T)=0$
(i) $\frac{d H}{d u}=-3+\lambda=0$
(ii) $y^{\prime}=y+u$
(iii) $\lambda^{\prime}=-\frac{d H}{d y}=-2-\lambda$
(iv) $\lambda(T)=0$

Consider condition (i) $\frac{d H}{d u}=\lambda-3=0$
If $\lambda>3$ function H is maximized for $u=2$
If $\lambda<3$ function H is maximized for $u=0$
Consider (iii) (costate equation) solving this differential equation

$$
\lambda(t)=A e^{-t}-2
$$

Using (iv) λ (2) $=A e^{-2}-2=0 \rightarrow A=2 e^{2}$

$$
\lambda^{*}(t)=2 e^{2-t}-2
$$

Note that $\lambda^{*}(t)=2 e^{2-t}-2$ is a decreasing function of t

$$
\begin{gathered}
\lambda^{*}(0)=2 e^{2}-2=12.8 \\
\lambda^{*}(2)=2 e^{0}-2=0
\end{gathered}
$$

Then there is a critical time τ such that
$\lambda^{*}(t)>3$ if $t<\tau \rightarrow u^{*}=2$
$\lambda^{*}(t)<3$ if $t>\tau \rightarrow u^{*}=0$

To find a critical time τ we solve by τ the condition

$$
\lambda^{*}(\tau)=2 e^{2-\tau}-2=3
$$

Solution is $\tau=1.08$
Then

$$
\begin{aligned}
& u^{*}(t)=2 \text { if } t<1.08 \\
& u^{*}(t)=0 \text { if } t>1.08
\end{aligned}
$$

Alternative terminal conditions

1) Fixed terminal point $\rightarrow Y(T)=y_{T}$ with T and y_{T} given.
no transversality condition is necessary
2) Horizontal terminal line

Transversality condition is $H_{t=T}=0$
3) Truncated vertical line

Transversality condition is

$$
\lambda(T) \geq 0, y_{T} \geq y_{\min },\left(y_{T}-y_{\min }\right) \lambda(T)=0
$$

4) Truncated horizontal vertical line

Transversality condition is

$$
H_{t=T_{\max }} \geq 0, \quad T \leq T_{\max }, \quad\left(T-T_{\max }\right) H_{t=T_{\max }}=0
$$

Example: Lifetime utility maximization

$$
\begin{gathered}
\max \int_{0}^{T} U(C(t)) e^{-\delta t} d t \\
\text { subject to } \\
K^{\prime}=r K(t)-C(t) \\
K(0)=K_{0} \quad K(T) \geq 0
\end{gathered}
$$

We assume that $U(C)$ is increasing and concave
The Hamiltonian function is

$$
H=U(C(t)) e^{-\delta t}+\lambda(r K(t)-C(t))
$$

$$
H=U(C(t)) e^{-\delta t}+\lambda(r K(t)-C(t))
$$

(i) $\frac{d H}{d C}=U^{\prime}(C(t)) e^{-\delta t}-\lambda=0$
(ii) $K^{\prime}=r K(t)-C(t)$
(iii) $\lambda^{\prime}=-r \lambda$
(iv) $\quad \lambda(T) \geq 0, K(T) \geq 0,(K(T)) \lambda(T)=0$
(Truncated vertical line)
Differentiating (i) we get
$U^{\prime \prime}(C) C^{\prime} e^{-\delta t}-\delta U^{\prime}(C) e^{-\delta t}=\lambda^{\prime} \quad[1]$
Replacing (i) in (iii) we get

$$
\lambda^{\prime}=-r U^{\prime}(C) e^{-\delta t}
$$

Replacing in [1] we get

Replacing in [1] we

$$
\begin{gathered}
U^{\prime \prime}(C) C^{\prime} e^{-\delta t}-\delta U^{\prime}(C) e^{-\delta t}=-r U^{\prime}(C) e^{-\delta t} \\
U^{\prime \prime}(C) C^{\prime}-\delta U^{\prime}(C)=-r U^{\prime}(C) \\
U^{\prime \prime}(C) C^{\prime}+(r-\delta) U^{\prime}(C)=0 \\
(r-\delta)=-\frac{U^{\prime \prime}(C) C^{\prime}}{U^{\prime}(C)}
\end{gathered}
$$

Note C will be increasing over time only if $r>\delta$
Solving (iii) we get

$$
\lambda(t)=\lambda_{0} e^{-r t}
$$

Replacing in (i) $U^{\prime}(C)=\lambda_{0} e^{(\delta-r) t}$
Marginal utility will be increasing over time if $\delta>r$
Note $\lambda(T)>0$ then the terminal condition has to be $K(T)=0$

Dynamic maximization in discrete time using Euler equations

Problem

An individual has to choose the optimal levels of consumption in future periods.

Individual starts with a given endowment that evolves by a given (exogenous) rate of interest.

We assume that this individual is characterized by an exponential discounting.

Two class of problems:

1. finite number of periods
2. infinite number of periods.

Finite Time

At the begin of each period t an individual is endowed by x_{t}.
The endowment produces interests, so the budget for period t is given by $R x_{t}$, where $R>1$.

This individual has to decide the share of the budget $\left(R x_{t}\right)$ to consume (c_{t}).

The share of the budget that is not consumed in period t will be the endowment in period $t+1, x_{t+1}$.

Then $\rightarrow R x_{t}=x_{t+1}+c_{t}$

The problem is:

$$
\left\{\begin{array}{c}
\max _{\forall c_{\mathrm{t}}} \sum_{t=0}^{n} U\left(c_{t}\right) \delta^{t} \quad \text { subject to } \\
R x_{t}=x_{t+1}+c_{t} \\
c_{t} \geq 0, \quad x_{t} \geq 0, \quad x_{0} \text { given }
\end{array}\right.
$$

δ^{t} is the discount function where $0<\delta<1$.
x_{0} is the endowment at time 0
Maximization is with respect to variables c_{t} for each $t \in\{0,1,2, \ldots, n\}$
c_{t} is the control variable
x_{t} is the state variable

Consider the constraint $\quad R x_{t}=x_{t+1}+c_{t}$
Then $\quad c_{t}=R x_{t}-x_{t+1}$
Replacing in the objective function the problem can be written as:

$$
\left\{\begin{array}{c}
\max _{\forall \mathrm{x}_{\mathrm{t}}} \sum_{t=0}^{n} U\left(R x_{t}-x_{t+1}\right) \delta^{t} \\
\text { such that: } \\
0 \leq x_{t+1} \leq R x_{t} \\
x_{0} \text { given }
\end{array}\right.
$$

Note that in the utility function appears only state variables x_{t}
So maximization is with respect to state variables x_{t}.

To solve this problem we have to compute the first order conditions for all n state variables.

$$
\begin{aligned}
& \ldots+\delta^{t-1} U\left(R x_{t-1}-x_{t}\right)+\delta^{t} U\left(R x_{t}-\boldsymbol{x}_{\boldsymbol{t}+\mathbf{1}}\right) \\
& +\delta^{t+1} U\left(R \boldsymbol{x}_{\boldsymbol{t}+\mathbf{1}}-x_{t+2}\right)+\delta^{t+2} U\left(R x_{t+2}-x_{t+3}\right)+\cdots
\end{aligned}
$$

Note $\boldsymbol{x}_{\boldsymbol{t}+\boldsymbol{1}}$ appears only two times
Then the partial derivative respect to x_{t} is:

$$
-U^{\prime}\left(R x_{t-1}-x_{t}\right) \delta^{t-1}+U^{\prime}\left(R x_{t}-x_{t+1}\right) R \delta^{t}=0 \forall t \in\{1,2, . . n\}
$$

These conditions are called Eulero Lagrange conditions.

Note that in this problem, characterized by an exponential discount, the n equations are linear transformations each other.

Therefore we can consider only one, that is:

$$
-U^{\prime}\left(R x_{t-1}-x_{t}\right)+U^{\prime}\left(R x_{t}-x_{t+1}\right) R \delta=0
$$

and using the relation $R x_{t}=x_{t+1}+c_{t}$ we have:
$-U^{\prime}\left(c_{t-1}\right)+U^{\prime}\left(c_{t}\right) R \delta=0 \rightarrow U^{\prime}\left(c_{t-1}\right)=U^{\prime}\left(c_{t}\right) R \delta$
Note: If $U($.$) is increasing and concave, the first order conditions$ are necessary and sufficient for a maximum.

If $R \delta \geq 1$ (≤ 1) the marginal utility is decreasing (increasing) on the time; it follows that consumption is increasing (decreasing) on the time.

A Note on first other conditions

$$
\begin{aligned}
& \ldots+\delta^{t-1} U\left(R x_{t-1}-x_{t}\right)+\delta^{t} U\left(R x_{t}-\boldsymbol{x}_{\boldsymbol{t}+\mathbf{1}}\right) \\
& +\delta^{t+1} U\left(R \boldsymbol{x}_{\boldsymbol{t}+\mathbf{1}}-x_{t+2}\right)+\delta^{t+2} U\left(R x_{t+2}-x_{t+3}\right)+\cdots
\end{aligned}
$$

Note $\boldsymbol{x}_{\boldsymbol{t}+\boldsymbol{1}}$ appears only two times

Condition of Eulero-Lagrange:

Assume $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots \ldots, x_{n}^{*}\right)$ is the solution
Then

$$
\begin{gathered}
U\left(R x_{t}^{*}-x_{t+1}\right)+\delta U\left(R x_{t+1}-x_{t+2}^{*}\right) \\
\leq \\
U\left(R x_{t}^{*}-x_{t+1}^{*}\right)+\delta U\left(R x_{t+1}^{*}-x_{t+2}^{*}\right)
\end{gathered}
$$

Using first order conditions

$$
U^{\prime}\left(c_{t-1}\right)=U^{\prime}\left(c_{t}\right) R \delta
$$

we find a relation that links consumption at time t with
consumption at time $t-1$, which is:

$$
c_{t}=f\left(c_{t-1}\right)
$$

We note that in an optimal consumption plan, if the utility
function is characterized by Non Satiation the individual has to
consume the endowment as possible.
This means that $x_{n+1}=0$
Sometime $x_{n+1} \neq 0$ (bequest)

An optimum plan has to satisfy the following condition:

$$
\sum_{t=0}^{n} \frac{c_{t}}{R^{t+1}}=x_{0}
$$

(If $x_{n+1} \neq 0$ then $\sum_{t=0}^{n} \frac{c_{t}}{R^{t+1}}=x_{0}-x_{n+1}$ has to be satisfied) Using the relation $c_{t}=f\left(c_{t-1}\right)$ we can solve it by c_{0}. Indeed every c_{t} can be written as a function of c_{0}

$$
\begin{gathered}
c_{1}=f\left(c_{0}\right) \\
c_{2}=f\left(c_{1}\right)=f\left(f\left(c_{0}\right)\right) \\
c_{3}=f\left(c_{2}\right)=f\left(f\left(c_{1}\right)\right)=f\left(f\left(f\left(c_{0}\right)\right)\right)
\end{gathered}
$$

Example 1 (logarithmic utility in finite time):

Assume $U\left(c_{t}\right)=\ln c_{t}$.
The first order condition is

$$
\begin{gathered}
-\frac{1}{R x_{t-1}-x_{t}}+\frac{R \delta}{R x_{t}-x_{t+1}}=0 \\
-\frac{1}{c_{t-1}}+\frac{R \delta}{c_{t}}=0
\end{gathered}
$$

that gives

$$
c_{t}=R \delta c_{t-1}
$$

We can explicit each c_{t} as

$$
c_{t}=(R \delta)^{t} c_{0}
$$

Then

$$
\begin{gathered}
\sum_{t=0}^{n} \frac{c_{t}}{R^{t+1}}=x_{0} \\
\rightarrow \\
\sum_{t=0}^{n} \frac{(R \delta)^{t} c_{0}}{R^{t+1}}=x_{0} \\
\rightarrow \\
\frac{c_{0}}{R} \sum_{t=0}^{n} \delta^{t}=x_{0} \\
\rightarrow \\
\frac{c_{0}}{R} \frac{1-\delta^{n+1}}{1-\delta}=x_{0} \\
c_{0}=R \frac{1-\delta}{1-\delta^{n+1}} x_{0}
\end{gathered}
$$

Infinite time

In infinite time the problem (1) is written as:

$$
\left\{\begin{array}{c}
\max _{\forall c_{\mathrm{t}}} \sum_{t=0}^{\infty} U\left(c_{t}\right) \delta^{t} \\
\text { subject to } \\
R x_{t}=x_{t+1}+c_{t} \\
c_{t} \geq 0 \\
x_{t} \geq 0 \\
x_{0} \text { given }
\end{array}\right.
$$

The solution is similar to the finite time problem and the levels of consumption are linked by the relation of Eulero - Lagrange

$$
-U^{\prime}\left(R x_{t-1}-x_{t}\right)+U^{\prime}\left(R x_{t}-x_{t+1}\right) R \delta=0
$$

and using the relation $R x_{t}=x_{t+1}+c_{t}$ we have:
$-U^{\prime}\left(c_{t-1}\right)+U^{\prime}\left(c_{t}\right) R \delta=0 \rightarrow U^{\prime}\left(c_{t-1}\right)=U^{\prime}\left(c_{t}\right) R \delta$

A candidate solution is given by:

$$
\begin{equation*}
\sum_{t=0}^{\infty} \frac{c_{t}}{R^{t+1}}=x_{0} \tag{1}
\end{equation*}
$$

Using the relation

$$
U^{\prime}\left(c_{t-1}\right)=U^{\prime}\left(c_{t}\right) R \delta
$$

we get a relation

$$
c_{t}=f\left(c_{t-1}\right)
$$

Given that c_{t} can be written as a function of c_{0}, we can solve the condition [1] by c_{0}
The transversality condition $x_{n+1}=0$ now is replaced by:

$$
\lim _{t \rightarrow \infty} \delta^{t} P_{t} x_{t}=0, \text { where } P_{t}=\frac{\partial U\left(R x_{t}-x_{t+1}\right)}{\partial x_{t}}
$$

Then we have to check if this condition is satisfied by the candidate solution.

Example 2 (logarithmic utility in infinite time):

The first order condition is the same than the finite time problem.

So, from the previous example, we have that:
$c_{t}=R \delta c_{t-1}$
and
$c_{t}=(R \delta)^{t} c_{0}$.
Replacing c_{t} in $\sum_{t=0}^{\infty} \frac{c_{t}}{R^{t+1}}=x_{0}$
and solving by c_{o} we get
$c_{0}=R(1-\delta) x_{0}$.

Using these relations we find that
$x_{t}=R \delta x_{t-1}=(R \delta)^{t} x_{0}$.
Then
$P_{t}=\frac{\partial \ln \left(R x_{t}-x_{t+1}\right)}{\partial x_{t}}=\frac{R}{R x_{t}-x_{t+1}}$.
Therefore we can check the end condition is satisfied, that is:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{\delta^{t} R}{R x_{t}-x_{t+1}}(R \delta)^{t} x_{0}=\lim _{t \rightarrow \infty} \frac{\delta^{t} R}{(R \delta)^{t} c_{0}}(R \delta)^{t} x_{0} \\
& =\lim _{t \rightarrow \infty} \delta^{t} R \frac{x_{0}}{c_{0}}=0
\end{aligned}
$$

Model of growth with one sector

Suppose a simple economy where individuals produce only one good
(y) that is used for consumption and investment.
i. in each period t, the good y is produced in quantity $y_{t}=f\left(k_{t}\right)$ where k_{t} is the stock of capital.
ii. In each period t the output can be divided by consumption c_{t} and investment i_{t}.
iii. $k_{t+1}=i_{t}$ (the capital depreciates completed in each period)
iv. $k_{t+1}+c_{t}=f\left(k_{t}\right)$
v . The representative individual has to decide the quantity to consume in each period c_{t}.

The problem is:

$$
\left\{\begin{array}{c}
\max _{\forall c_{\mathrm{t}}} \sum_{t=0}^{\infty} U\left(c_{t}\right) \delta^{t} \quad \text { subject to } \\
f\left(k_{t}\right)=k_{t+1}+c_{t} \\
c_{t} \geq 0, \quad k_{t} \geq 0, \quad k_{0} \text { given }
\end{array}\right.
$$

δ^{t} is the discount function where $0<\delta<1$.
k_{0} is the capital at time 0
Maximization is with respect to variables c_{t} for each $t \in\{0,1,2, \ldots, n\}$

Eulero Lagrange condition is

$$
U^{\prime}\left(f\left(k_{t-1}\right)-k_{t}\right)=U^{\prime}\left(f\left(k_{t}\right)-k_{t+1}\right) f^{\prime}\left(k_{t}\right) \delta
$$

This condition is sufficient for an optimum if the function $f($.$) is$ concave and is satisfied the following transversality condition

$$
\lim _{t \rightarrow \infty} \delta^{t} P_{t} k_{t}=0, \text { where } P_{t}=\frac{\partial U\left(f\left(k_{t}\right)-k_{t+1}\right)}{\partial k_{t}}
$$

Assume

$$
\begin{gathered}
U\left(c_{t}\right)=\ln c_{t} \\
f\left(k_{t}\right)=k_{t}^{\alpha}
\end{gathered}
$$

Eulero Lagrange condition is:

$$
\frac{1}{k_{t-1}^{\alpha}-k_{t}}=\frac{\alpha \delta k_{t}^{\alpha-1}}{k_{t}^{\alpha}-k_{t+1}}
$$

Solving by k_{t+1} we get:

$$
k_{t+1}=k_{t}^{\alpha}(1+\alpha \delta)-\alpha \delta k_{t}^{\alpha-1} k_{t-1}^{\alpha}
$$

There are many paths that satisfy the Eulero Lagrange condition.
One can be the following. Divide the above condition by $k_{t}{ }^{\alpha}$:

$$
\frac{k_{t+1}}{k_{t}^{\alpha}}=(1+\alpha \delta)-\alpha \delta \frac{k_{t-1}^{\alpha}}{k_{t}}
$$

Let be $Z_{h}=\frac{k_{h}}{k_{h-1}^{\alpha}}$ then:

$$
Z_{t+1}=(1+\alpha \delta)-\frac{\alpha \delta}{Z_{t}}
$$

$$
Z_{t+1}=(1+\alpha \delta)-\frac{\alpha \delta}{Z_{t}}
$$

Assuming $Z_{t+1}=Z_{t}=Z$

$$
Z=(1+\alpha \delta)-\frac{\alpha \delta}{Z}
$$

Solving by Z we get $Z=\alpha \delta$ and $Z=1$.
a) $k_{t}=\alpha \delta k_{t-1}^{\alpha}$
b) $k_{t}=k_{t-1}^{\alpha}$

In case b) consumption is 0 in all periods, then utility is not defined $\left(\lim _{x \rightarrow 0} \ln x=-\infty\right)$

We check solution a) $k_{t}=\alpha \delta k_{t-1}^{\alpha}$
$\lim _{t \rightarrow \infty} \delta^{t} P_{t} k_{t}=0$, where $P_{t}=\frac{\partial \ln \left(k_{t}^{\alpha}-k_{t+1}\right)}{\partial k_{t}}=\frac{\alpha k_{t}^{\alpha-1}}{k_{t}^{\alpha}-k_{t+1}}$.

$$
\begin{equation*}
\delta^{t} P_{t} k_{t}=\delta^{t} \frac{\alpha k_{t}^{\alpha-1}}{k_{t}^{\alpha}-k_{t+1}} k_{t}=\delta^{t} \frac{\alpha k_{t}^{\alpha}}{k_{t}^{\alpha}-k_{t+1}} \tag{1}
\end{equation*}
$$

Using $k_{t+1}=\alpha \delta k_{t}^{\alpha}$ we get $k_{t+1}-k_{t}^{\alpha}=\alpha \delta k_{t}^{\alpha}-k_{t}^{\alpha}=k_{t}^{\alpha}(\alpha \delta-1)$
$k_{t}^{\alpha}-k_{t+1}=k_{t}^{\alpha}(1-\alpha \delta)$ replacing in [1]

$$
\delta^{t} P_{t} k_{t}=\frac{\delta^{t} \alpha}{(1-\alpha \delta)}
$$

then

$$
\lim _{t \rightarrow \infty} \delta^{t} P_{t} k_{t}=\lim _{t \rightarrow \infty} \frac{\delta^{t} \alpha}{(1-\alpha \delta)}=0
$$

