Problem set 5

- 1. Find the general and the definite solution of the following differential equations. Check the validity of your answers.
 - a. $\frac{dy}{dt} + 4y = 12; \quad y(0) = 2$ b. $\frac{dy}{dt} - 2y = 0; \quad y(0) = 9$ c. $\frac{dy}{dt} + 10y = 15; \quad y(0) = 0$ d. $2\frac{dy}{dt} + 4y = 6; \quad y(0) = 1.5$
- 2. Solve the following first order linear differential equations

a.
$$\frac{dy}{dt} + 2ty = t; y(0) = 1.5$$

b. $\frac{dy}{dt} + t^2y = 5t^2; y(0) = 6$
c. $2\frac{dy}{dt} + 12y + 2e^t = 0; y(0) = \frac{6}{7}$
d. $\frac{dy}{dt} + y = t; y(0)=1$

- 3. Verify that each of the following differential equation is exact, then solve it.
 - a. $3y^2t \, dy + (y^3 + 2t) \, dt = 0$
 - b. t(1+2y)dy + y(1+y) dt = 0c. $\frac{dy}{dt} + \frac{2y^4t+3t^2}{4y^3t^2} = 0$
- 4. Are the following differential equations exact? If not try y, t, y^2 as possible integrating factors
 - a. $2(t^3 + 1) dy + 3yt^2 dt = 0$
 - b. $4y^3t \, dy + (2y^4 + 3t)dt = 0$
- 5. Applying the method to solve an exact differential equation to the general exact differential equation M dy + N dt = 0 derive the following formula for the general solution of an exact differential equation $\int M dy + \int N dt \int \frac{d \int M dy}{dt} dt = c$. Verify that this formula is the solution of exact differential equation M dy + N dt = 0
- 6. Exercises 1, 2,3, 4 in section 15.5 of the textbook